2 * Copyright 2011 (c) Oracle Corp.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
29 * - Pool collects resently freed pages for reuse (and hooks up to
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #if IS_ENABLED(CONFIG_AGP)
57 #include <asm/set_memory.h>
60 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
61 #define SMALL_ALLOCATION 4
62 #define FREE_ALL_PAGES (~0U)
63 #define VADDR_FLAG_HUGE_POOL 1UL
64 #define VADDR_FLAG_UPDATED_COUNT 2UL
76 * The pool structure. There are up to nine pools:
77 * - generic (not restricted to DMA32):
78 * - write combined, uncached, cached.
79 * - dma32 (up to 2^32 - so up 4GB):
80 * - write combined, uncached, cached.
81 * - huge (not restricted to DMA32):
82 * - write combined, uncached, cached.
83 * for each 'struct device'. The 'cached' is for pages that are actively used.
84 * The other ones can be shrunk by the shrinker API if neccessary.
85 * @pools: The 'struct device->dma_pools' link.
86 * @type: Type of the pool
87 * @lock: Protects the free_list from concurrnet access. Must be
88 * used with irqsave/irqrestore variants because pool allocator maybe called
90 * @free_list: Pool of pages that are free to be used. No order requirements.
91 * @dev: The device that is associated with these pools.
92 * @size: Size used during DMA allocation.
93 * @npages_free: Count of available pages for re-use.
94 * @npages_in_use: Count of pages that are in use.
95 * @nfrees: Stats when pool is shrinking.
96 * @nrefills: Stats when the pool is grown.
97 * @gfp_flags: Flags to pass for alloc_page.
98 * @name: Name of the pool.
99 * @dev_name: Name derieved from dev - similar to how dev_info works.
100 * Used during shutdown as the dev_info during release is unavailable.
103 struct list_head pools
; /* The 'struct device->dma_pools link */
106 struct list_head free_list
;
109 unsigned npages_free
;
110 unsigned npages_in_use
;
111 unsigned long nfrees
; /* Stats when shrunk. */
112 unsigned long nrefills
; /* Stats when grown. */
114 char name
[13]; /* "cached dma32" */
115 char dev_name
[64]; /* Constructed from dev */
119 * The accounting page keeping track of the allocated page along with
121 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
122 * @vaddr: The virtual address of the page and a flag if the page belongs to a
124 * @dma: The bus address of the page. If the page is not allocated
125 * via the DMA API, it will be -1.
128 struct list_head page_list
;
135 * Limits for the pool. They are handled without locks because only place where
136 * they may change is in sysfs store. They won't have immediate effect anyway
137 * so forcing serialization to access them is pointless.
140 struct ttm_pool_opts
{
147 * Contains the list of all of the 'struct device' and their corresponding
148 * DMA pools. Guarded by _mutex->lock.
149 * @pools: The link to 'struct ttm_pool_manager->pools'
150 * @dev: The 'struct device' associated with the 'pool'
151 * @pool: The 'struct dma_pool' associated with the 'dev'
153 struct device_pools
{
154 struct list_head pools
;
156 struct dma_pool
*pool
;
160 * struct ttm_pool_manager - Holds memory pools for fast allocation
162 * @lock: Lock used when adding/removing from pools
163 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
164 * @options: Limits for the pool.
165 * @npools: Total amount of pools in existence.
166 * @shrinker: The structure used by [un|]register_shrinker
168 struct ttm_pool_manager
{
170 struct list_head pools
;
171 struct ttm_pool_opts options
;
173 struct shrinker mm_shrink
;
177 static struct ttm_pool_manager
*_manager
;
179 static struct attribute ttm_page_pool_max
= {
180 .name
= "pool_max_size",
181 .mode
= S_IRUGO
| S_IWUSR
183 static struct attribute ttm_page_pool_small
= {
184 .name
= "pool_small_allocation",
185 .mode
= S_IRUGO
| S_IWUSR
187 static struct attribute ttm_page_pool_alloc_size
= {
188 .name
= "pool_allocation_size",
189 .mode
= S_IRUGO
| S_IWUSR
192 static struct attribute
*ttm_pool_attrs
[] = {
194 &ttm_page_pool_small
,
195 &ttm_page_pool_alloc_size
,
199 static void ttm_pool_kobj_release(struct kobject
*kobj
)
201 struct ttm_pool_manager
*m
=
202 container_of(kobj
, struct ttm_pool_manager
, kobj
);
206 static ssize_t
ttm_pool_store(struct kobject
*kobj
, struct attribute
*attr
,
207 const char *buffer
, size_t size
)
209 struct ttm_pool_manager
*m
=
210 container_of(kobj
, struct ttm_pool_manager
, kobj
);
213 chars
= sscanf(buffer
, "%u", &val
);
217 /* Convert kb to number of pages */
218 val
= val
/ (PAGE_SIZE
>> 10);
220 if (attr
== &ttm_page_pool_max
)
221 m
->options
.max_size
= val
;
222 else if (attr
== &ttm_page_pool_small
)
223 m
->options
.small
= val
;
224 else if (attr
== &ttm_page_pool_alloc_size
) {
225 if (val
> NUM_PAGES_TO_ALLOC
*8) {
226 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
227 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 7),
228 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
230 } else if (val
> NUM_PAGES_TO_ALLOC
) {
231 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
232 NUM_PAGES_TO_ALLOC
*(PAGE_SIZE
>> 10));
234 m
->options
.alloc_size
= val
;
240 static ssize_t
ttm_pool_show(struct kobject
*kobj
, struct attribute
*attr
,
243 struct ttm_pool_manager
*m
=
244 container_of(kobj
, struct ttm_pool_manager
, kobj
);
247 if (attr
== &ttm_page_pool_max
)
248 val
= m
->options
.max_size
;
249 else if (attr
== &ttm_page_pool_small
)
250 val
= m
->options
.small
;
251 else if (attr
== &ttm_page_pool_alloc_size
)
252 val
= m
->options
.alloc_size
;
254 val
= val
* (PAGE_SIZE
>> 10);
256 return snprintf(buffer
, PAGE_SIZE
, "%u\n", val
);
259 static const struct sysfs_ops ttm_pool_sysfs_ops
= {
260 .show
= &ttm_pool_show
,
261 .store
= &ttm_pool_store
,
264 static struct kobj_type ttm_pool_kobj_type
= {
265 .release
= &ttm_pool_kobj_release
,
266 .sysfs_ops
= &ttm_pool_sysfs_ops
,
267 .default_attrs
= ttm_pool_attrs
,
271 static int set_pages_array_wb(struct page
**pages
, int addrinarray
)
273 #if IS_ENABLED(CONFIG_AGP)
276 for (i
= 0; i
< addrinarray
; i
++)
277 unmap_page_from_agp(pages
[i
]);
282 static int set_pages_array_wc(struct page
**pages
, int addrinarray
)
284 #if IS_ENABLED(CONFIG_AGP)
287 for (i
= 0; i
< addrinarray
; i
++)
288 map_page_into_agp(pages
[i
]);
293 static int set_pages_array_uc(struct page
**pages
, int addrinarray
)
295 #if IS_ENABLED(CONFIG_AGP)
298 for (i
= 0; i
< addrinarray
; i
++)
299 map_page_into_agp(pages
[i
]);
303 #endif /* for !CONFIG_X86 */
305 static int ttm_set_pages_caching(struct dma_pool
*pool
,
306 struct page
**pages
, unsigned cpages
)
309 /* Set page caching */
310 if (pool
->type
& IS_UC
) {
311 r
= set_pages_array_uc(pages
, cpages
);
313 pr_err("%s: Failed to set %d pages to uc!\n",
314 pool
->dev_name
, cpages
);
316 if (pool
->type
& IS_WC
) {
317 r
= set_pages_array_wc(pages
, cpages
);
319 pr_err("%s: Failed to set %d pages to wc!\n",
320 pool
->dev_name
, cpages
);
325 static void __ttm_dma_free_page(struct dma_pool
*pool
, struct dma_page
*d_page
)
327 dma_addr_t dma
= d_page
->dma
;
328 d_page
->vaddr
&= ~VADDR_FLAG_HUGE_POOL
;
329 dma_free_coherent(pool
->dev
, pool
->size
, (void *)d_page
->vaddr
, dma
);
334 static struct dma_page
*__ttm_dma_alloc_page(struct dma_pool
*pool
)
336 struct dma_page
*d_page
;
337 unsigned long attrs
= 0;
340 d_page
= kmalloc(sizeof(struct dma_page
), GFP_KERNEL
);
344 if (pool
->type
& IS_HUGE
)
345 attrs
= DMA_ATTR_NO_WARN
;
347 vaddr
= dma_alloc_attrs(pool
->dev
, pool
->size
, &d_page
->dma
,
348 pool
->gfp_flags
, attrs
);
350 if (is_vmalloc_addr(vaddr
))
351 d_page
->p
= vmalloc_to_page(vaddr
);
353 d_page
->p
= virt_to_page(vaddr
);
354 d_page
->vaddr
= (unsigned long)vaddr
;
355 if (pool
->type
& IS_HUGE
)
356 d_page
->vaddr
|= VADDR_FLAG_HUGE_POOL
;
363 static enum pool_type
ttm_to_type(int flags
, enum ttm_caching_state cstate
)
365 enum pool_type type
= IS_UNDEFINED
;
367 if (flags
& TTM_PAGE_FLAG_DMA32
)
369 if (cstate
== tt_cached
)
371 else if (cstate
== tt_uncached
)
379 static void ttm_pool_update_free_locked(struct dma_pool
*pool
,
380 unsigned freed_pages
)
382 pool
->npages_free
-= freed_pages
;
383 pool
->nfrees
+= freed_pages
;
387 /* set memory back to wb and free the pages. */
388 static void ttm_dma_page_put(struct dma_pool
*pool
, struct dma_page
*d_page
)
390 struct page
*page
= d_page
->p
;
391 unsigned i
, num_pages
;
394 /* Don't set WB on WB page pool. */
395 if (!(pool
->type
& IS_CACHED
)) {
396 num_pages
= pool
->size
/ PAGE_SIZE
;
397 for (i
= 0; i
< num_pages
; ++i
, ++page
) {
398 ret
= set_pages_array_wb(&page
, 1);
400 pr_err("%s: Failed to set %d pages to wb!\n",
406 list_del(&d_page
->page_list
);
407 __ttm_dma_free_page(pool
, d_page
);
410 static void ttm_dma_pages_put(struct dma_pool
*pool
, struct list_head
*d_pages
,
411 struct page
*pages
[], unsigned npages
)
413 struct dma_page
*d_page
, *tmp
;
415 if (pool
->type
& IS_HUGE
) {
416 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
)
417 ttm_dma_page_put(pool
, d_page
);
422 /* Don't set WB on WB page pool. */
423 if (npages
&& !(pool
->type
& IS_CACHED
) &&
424 set_pages_array_wb(pages
, npages
))
425 pr_err("%s: Failed to set %d pages to wb!\n",
426 pool
->dev_name
, npages
);
428 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
) {
429 list_del(&d_page
->page_list
);
430 __ttm_dma_free_page(pool
, d_page
);
435 * Free pages from pool.
437 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
438 * number of pages in one go.
440 * @pool: to free the pages from
441 * @nr_free: If set to true will free all pages in pool
442 * @use_static: Safe to use static buffer
444 static unsigned ttm_dma_page_pool_free(struct dma_pool
*pool
, unsigned nr_free
,
447 static struct page
*static_buf
[NUM_PAGES_TO_ALLOC
];
448 unsigned long irq_flags
;
449 struct dma_page
*dma_p
, *tmp
;
450 struct page
**pages_to_free
;
451 struct list_head d_pages
;
452 unsigned freed_pages
= 0,
453 npages_to_free
= nr_free
;
455 if (NUM_PAGES_TO_ALLOC
< nr_free
)
456 npages_to_free
= NUM_PAGES_TO_ALLOC
;
459 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
460 pool
->dev_name
, pool
->name
, current
->pid
,
461 npages_to_free
, nr_free
);
465 pages_to_free
= static_buf
;
467 pages_to_free
= kmalloc(npages_to_free
* sizeof(struct page
*),
470 if (!pages_to_free
) {
471 pr_debug("%s: Failed to allocate memory for pool free operation\n",
475 INIT_LIST_HEAD(&d_pages
);
477 spin_lock_irqsave(&pool
->lock
, irq_flags
);
479 /* We picking the oldest ones off the list */
480 list_for_each_entry_safe_reverse(dma_p
, tmp
, &pool
->free_list
,
482 if (freed_pages
>= npages_to_free
)
485 /* Move the dma_page from one list to another. */
486 list_move(&dma_p
->page_list
, &d_pages
);
488 pages_to_free
[freed_pages
++] = dma_p
->p
;
489 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
490 if (freed_pages
>= NUM_PAGES_TO_ALLOC
) {
492 ttm_pool_update_free_locked(pool
, freed_pages
);
494 * Because changing page caching is costly
495 * we unlock the pool to prevent stalling.
497 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
499 ttm_dma_pages_put(pool
, &d_pages
, pages_to_free
,
502 INIT_LIST_HEAD(&d_pages
);
504 if (likely(nr_free
!= FREE_ALL_PAGES
))
505 nr_free
-= freed_pages
;
507 if (NUM_PAGES_TO_ALLOC
>= nr_free
)
508 npages_to_free
= nr_free
;
510 npages_to_free
= NUM_PAGES_TO_ALLOC
;
514 /* free all so restart the processing */
518 /* Not allowed to fall through or break because
519 * following context is inside spinlock while we are
527 /* remove range of pages from the pool */
529 ttm_pool_update_free_locked(pool
, freed_pages
);
530 nr_free
-= freed_pages
;
533 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
536 ttm_dma_pages_put(pool
, &d_pages
, pages_to_free
, freed_pages
);
538 if (pages_to_free
!= static_buf
)
539 kfree(pages_to_free
);
543 static void ttm_dma_free_pool(struct device
*dev
, enum pool_type type
)
545 struct device_pools
*p
;
546 struct dma_pool
*pool
;
551 mutex_lock(&_manager
->lock
);
552 list_for_each_entry_reverse(p
, &_manager
->pools
, pools
) {
556 if (pool
->type
!= type
)
564 list_for_each_entry_reverse(pool
, &dev
->dma_pools
, pools
) {
565 if (pool
->type
!= type
)
567 /* Takes a spinlock.. */
568 /* OK to use static buffer since global mutex is held. */
569 ttm_dma_page_pool_free(pool
, FREE_ALL_PAGES
, true);
570 WARN_ON(((pool
->npages_in_use
+ pool
->npages_free
) != 0));
571 /* This code path is called after _all_ references to the
572 * struct device has been dropped - so nobody should be
573 * touching it. In case somebody is trying to _add_ we are
574 * guarded by the mutex. */
575 list_del(&pool
->pools
);
579 mutex_unlock(&_manager
->lock
);
583 * On free-ing of the 'struct device' this deconstructor is run.
584 * Albeit the pool might have already been freed earlier.
586 static void ttm_dma_pool_release(struct device
*dev
, void *res
)
588 struct dma_pool
*pool
= *(struct dma_pool
**)res
;
591 ttm_dma_free_pool(dev
, pool
->type
);
594 static int ttm_dma_pool_match(struct device
*dev
, void *res
, void *match_data
)
596 return *(struct dma_pool
**)res
== match_data
;
599 static struct dma_pool
*ttm_dma_pool_init(struct device
*dev
, gfp_t flags
,
602 const char *n
[] = {"wc", "uc", "cached", " dma32", "huge"};
603 enum pool_type t
[] = {IS_WC
, IS_UC
, IS_CACHED
, IS_DMA32
, IS_HUGE
};
604 struct device_pools
*sec_pool
= NULL
;
605 struct dma_pool
*pool
= NULL
, **ptr
;
613 ptr
= devres_alloc(ttm_dma_pool_release
, sizeof(*ptr
), GFP_KERNEL
);
619 pool
= kmalloc_node(sizeof(struct dma_pool
), GFP_KERNEL
,
624 sec_pool
= kmalloc_node(sizeof(struct device_pools
), GFP_KERNEL
,
629 INIT_LIST_HEAD(&sec_pool
->pools
);
631 sec_pool
->pool
= pool
;
633 INIT_LIST_HEAD(&pool
->free_list
);
634 INIT_LIST_HEAD(&pool
->pools
);
635 spin_lock_init(&pool
->lock
);
637 pool
->npages_free
= pool
->npages_in_use
= 0;
639 pool
->gfp_flags
= flags
;
641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
642 pool
->size
= HPAGE_PMD_SIZE
;
647 pool
->size
= PAGE_SIZE
;
651 for (i
= 0; i
< ARRAY_SIZE(t
); i
++) {
653 p
+= snprintf(p
, sizeof(pool
->name
) - (p
- pool
->name
),
658 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
659 * - the kobj->name has already been deallocated.*/
660 snprintf(pool
->dev_name
, sizeof(pool
->dev_name
), "%s %s",
661 dev_driver_string(dev
), dev_name(dev
));
662 mutex_lock(&_manager
->lock
);
663 /* You can get the dma_pool from either the global: */
664 list_add(&sec_pool
->pools
, &_manager
->pools
);
666 /* or from 'struct device': */
667 list_add(&pool
->pools
, &dev
->dma_pools
);
668 mutex_unlock(&_manager
->lock
);
671 devres_add(dev
, ptr
);
681 static struct dma_pool
*ttm_dma_find_pool(struct device
*dev
,
684 struct dma_pool
*pool
, *tmp
, *found
= NULL
;
686 if (type
== IS_UNDEFINED
)
689 /* NB: We iterate on the 'struct dev' which has no spinlock, but
690 * it does have a kref which we have taken. The kref is taken during
691 * graphic driver loading - in the drm_pci_init it calls either
692 * pci_dev_get or pci_register_driver which both end up taking a kref
693 * on 'struct device'.
695 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
696 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
697 * thing is at that point of time there are no pages associated with the
698 * driver so this function will not be called.
700 list_for_each_entry_safe(pool
, tmp
, &dev
->dma_pools
, pools
) {
701 if (pool
->type
!= type
)
710 * Free pages the pages that failed to change the caching state. If there
711 * are pages that have changed their caching state already put them to the
714 static void ttm_dma_handle_caching_state_failure(struct dma_pool
*pool
,
715 struct list_head
*d_pages
,
716 struct page
**failed_pages
,
719 struct dma_page
*d_page
, *tmp
;
726 /* Find the failed page. */
727 list_for_each_entry_safe(d_page
, tmp
, d_pages
, page_list
) {
730 /* .. and then progress over the full list. */
731 list_del(&d_page
->page_list
);
732 __ttm_dma_free_page(pool
, d_page
);
742 * Allocate 'count' pages, and put 'need' number of them on the
743 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
744 * The full list of pages should also be on 'd_pages'.
745 * We return zero for success, and negative numbers as errors.
747 static int ttm_dma_pool_alloc_new_pages(struct dma_pool
*pool
,
748 struct list_head
*d_pages
,
751 struct page
**caching_array
;
752 struct dma_page
*dma_p
;
755 unsigned i
, j
, npages
, cpages
;
756 unsigned max_cpages
= min(count
,
757 (unsigned)(PAGE_SIZE
/sizeof(struct page
*)));
759 /* allocate array for page caching change */
760 caching_array
= kmalloc(max_cpages
*sizeof(struct page
*), GFP_KERNEL
);
762 if (!caching_array
) {
763 pr_debug("%s: Unable to allocate table for new pages\n",
769 pr_debug("%s: (%s:%d) Getting %d pages\n",
770 pool
->dev_name
, pool
->name
, current
->pid
, count
);
773 for (i
= 0, cpages
= 0; i
< count
; ++i
) {
774 dma_p
= __ttm_dma_alloc_page(pool
);
776 pr_debug("%s: Unable to get page %u\n",
779 /* store already allocated pages in the pool after
780 * setting the caching state */
782 r
= ttm_set_pages_caching(pool
, caching_array
,
785 ttm_dma_handle_caching_state_failure(
786 pool
, d_pages
, caching_array
,
793 list_add(&dma_p
->page_list
, d_pages
);
795 #ifdef CONFIG_HIGHMEM
796 /* gfp flags of highmem page should never be dma32 so we
797 * we should be fine in such case
803 npages
= pool
->size
/ PAGE_SIZE
;
804 for (j
= 0; j
< npages
; ++j
) {
805 caching_array
[cpages
++] = p
+ j
;
806 if (cpages
== max_cpages
) {
807 /* Note: Cannot hold the spinlock */
808 r
= ttm_set_pages_caching(pool
, caching_array
,
811 ttm_dma_handle_caching_state_failure(
812 pool
, d_pages
, caching_array
,
822 r
= ttm_set_pages_caching(pool
, caching_array
, cpages
);
824 ttm_dma_handle_caching_state_failure(pool
, d_pages
,
825 caching_array
, cpages
);
828 kfree(caching_array
);
833 * @return count of pages still required to fulfill the request.
835 static int ttm_dma_page_pool_fill_locked(struct dma_pool
*pool
,
836 unsigned long *irq_flags
)
838 unsigned count
= _manager
->options
.small
;
839 int r
= pool
->npages_free
;
841 if (count
> pool
->npages_free
) {
842 struct list_head d_pages
;
844 INIT_LIST_HEAD(&d_pages
);
846 spin_unlock_irqrestore(&pool
->lock
, *irq_flags
);
848 /* Returns how many more are neccessary to fulfill the
850 r
= ttm_dma_pool_alloc_new_pages(pool
, &d_pages
, count
);
852 spin_lock_irqsave(&pool
->lock
, *irq_flags
);
854 /* Add the fresh to the end.. */
855 list_splice(&d_pages
, &pool
->free_list
);
857 pool
->npages_free
+= count
;
860 struct dma_page
*d_page
;
863 pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
864 pool
->dev_name
, pool
->name
, r
);
866 list_for_each_entry(d_page
, &d_pages
, page_list
) {
869 list_splice_tail(&d_pages
, &pool
->free_list
);
870 pool
->npages_free
+= cpages
;
878 * The populate list is actually a stack (not that is matters as TTM
879 * allocates one page at a time.
880 * return dma_page pointer if success, otherwise NULL.
882 static struct dma_page
*ttm_dma_pool_get_pages(struct dma_pool
*pool
,
883 struct ttm_dma_tt
*ttm_dma
,
886 struct dma_page
*d_page
= NULL
;
887 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
888 unsigned long irq_flags
;
891 spin_lock_irqsave(&pool
->lock
, irq_flags
);
892 count
= ttm_dma_page_pool_fill_locked(pool
, &irq_flags
);
894 d_page
= list_first_entry(&pool
->free_list
, struct dma_page
, page_list
);
895 ttm
->pages
[index
] = d_page
->p
;
896 ttm_dma
->dma_address
[index
] = d_page
->dma
;
897 list_move_tail(&d_page
->page_list
, &ttm_dma
->pages_list
);
898 pool
->npages_in_use
+= 1;
899 pool
->npages_free
-= 1;
901 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
905 static gfp_t
ttm_dma_pool_gfp_flags(struct ttm_dma_tt
*ttm_dma
, bool huge
)
907 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
910 if (ttm
->page_flags
& TTM_PAGE_FLAG_DMA32
)
911 gfp_flags
= GFP_USER
| GFP_DMA32
;
913 gfp_flags
= GFP_HIGHUSER
;
914 if (ttm
->page_flags
& TTM_PAGE_FLAG_ZERO_ALLOC
)
915 gfp_flags
|= __GFP_ZERO
;
918 gfp_flags
|= GFP_TRANSHUGE_LIGHT
| __GFP_NORETRY
|
919 __GFP_KSWAPD_RECLAIM
;
920 gfp_flags
&= ~__GFP_MOVABLE
;
921 gfp_flags
&= ~__GFP_COMP
;
928 * On success pages list will hold count number of correctly
929 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
931 int ttm_dma_populate(struct ttm_dma_tt
*ttm_dma
, struct device
*dev
,
932 struct ttm_operation_ctx
*ctx
)
934 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
935 struct ttm_mem_global
*mem_glob
= ttm
->glob
->mem_glob
;
936 unsigned long num_pages
= ttm
->num_pages
;
937 struct dma_pool
*pool
;
938 struct dma_page
*d_page
;
943 if (ttm
->state
!= tt_unpopulated
)
946 INIT_LIST_HEAD(&ttm_dma
->pages_list
);
949 type
= ttm_to_type(ttm
->page_flags
, ttm
->caching_state
);
951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
952 if (ttm
->page_flags
& TTM_PAGE_FLAG_DMA32
)
955 pool
= ttm_dma_find_pool(dev
, type
| IS_HUGE
);
957 gfp_t gfp_flags
= ttm_dma_pool_gfp_flags(ttm_dma
, true);
959 pool
= ttm_dma_pool_init(dev
, gfp_flags
, type
| IS_HUGE
);
960 if (IS_ERR_OR_NULL(pool
))
964 while (num_pages
>= HPAGE_PMD_NR
) {
967 d_page
= ttm_dma_pool_get_pages(pool
, ttm_dma
, i
);
971 ret
= ttm_mem_global_alloc_page(mem_glob
, ttm
->pages
[i
],
973 if (unlikely(ret
!= 0)) {
974 ttm_dma_unpopulate(ttm_dma
, dev
);
978 d_page
->vaddr
|= VADDR_FLAG_UPDATED_COUNT
;
979 for (j
= i
+ 1; j
< (i
+ HPAGE_PMD_NR
); ++j
) {
980 ttm
->pages
[j
] = ttm
->pages
[j
- 1] + 1;
981 ttm_dma
->dma_address
[j
] = ttm_dma
->dma_address
[j
- 1] +
986 num_pages
-= HPAGE_PMD_NR
;
992 pool
= ttm_dma_find_pool(dev
, type
);
994 gfp_t gfp_flags
= ttm_dma_pool_gfp_flags(ttm_dma
, false);
996 pool
= ttm_dma_pool_init(dev
, gfp_flags
, type
);
997 if (IS_ERR_OR_NULL(pool
))
1002 d_page
= ttm_dma_pool_get_pages(pool
, ttm_dma
, i
);
1004 ttm_dma_unpopulate(ttm_dma
, dev
);
1008 ret
= ttm_mem_global_alloc_page(mem_glob
, ttm
->pages
[i
],
1010 if (unlikely(ret
!= 0)) {
1011 ttm_dma_unpopulate(ttm_dma
, dev
);
1015 d_page
->vaddr
|= VADDR_FLAG_UPDATED_COUNT
;
1020 if (unlikely(ttm
->page_flags
& TTM_PAGE_FLAG_SWAPPED
)) {
1021 ret
= ttm_tt_swapin(ttm
);
1022 if (unlikely(ret
!= 0)) {
1023 ttm_dma_unpopulate(ttm_dma
, dev
);
1028 ttm
->state
= tt_unbound
;
1031 EXPORT_SYMBOL_GPL(ttm_dma_populate
);
1033 /* Put all pages in pages list to correct pool to wait for reuse */
1034 void ttm_dma_unpopulate(struct ttm_dma_tt
*ttm_dma
, struct device
*dev
)
1036 struct ttm_tt
*ttm
= &ttm_dma
->ttm
;
1037 struct dma_pool
*pool
;
1038 struct dma_page
*d_page
, *next
;
1039 enum pool_type type
;
1040 bool is_cached
= false;
1041 unsigned count
, i
, npages
= 0;
1042 unsigned long irq_flags
;
1044 type
= ttm_to_type(ttm
->page_flags
, ttm
->caching_state
);
1046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1047 pool
= ttm_dma_find_pool(dev
, type
| IS_HUGE
);
1050 list_for_each_entry_safe(d_page
, next
, &ttm_dma
->pages_list
,
1052 if (!(d_page
->vaddr
& VADDR_FLAG_HUGE_POOL
))
1056 if (d_page
->vaddr
& VADDR_FLAG_UPDATED_COUNT
) {
1057 ttm_mem_global_free_page(ttm
->glob
->mem_glob
,
1058 d_page
->p
, pool
->size
);
1059 d_page
->vaddr
&= ~VADDR_FLAG_UPDATED_COUNT
;
1061 ttm_dma_page_put(pool
, d_page
);
1064 spin_lock_irqsave(&pool
->lock
, irq_flags
);
1065 pool
->npages_in_use
-= count
;
1066 pool
->nfrees
+= count
;
1067 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
1071 pool
= ttm_dma_find_pool(dev
, type
);
1075 is_cached
= (ttm_dma_find_pool(pool
->dev
,
1076 ttm_to_type(ttm
->page_flags
, tt_cached
)) == pool
);
1078 /* make sure pages array match list and count number of pages */
1080 list_for_each_entry_safe(d_page
, next
, &ttm_dma
->pages_list
,
1082 ttm
->pages
[count
] = d_page
->p
;
1085 if (d_page
->vaddr
& VADDR_FLAG_UPDATED_COUNT
) {
1086 ttm_mem_global_free_page(ttm
->glob
->mem_glob
,
1087 d_page
->p
, pool
->size
);
1088 d_page
->vaddr
&= ~VADDR_FLAG_UPDATED_COUNT
;
1092 ttm_dma_page_put(pool
, d_page
);
1095 spin_lock_irqsave(&pool
->lock
, irq_flags
);
1096 pool
->npages_in_use
-= count
;
1098 pool
->nfrees
+= count
;
1100 pool
->npages_free
+= count
;
1101 list_splice(&ttm_dma
->pages_list
, &pool
->free_list
);
1103 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1104 * to free in order to minimize calls to set_memory_wb().
1106 if (pool
->npages_free
>= (_manager
->options
.max_size
+
1107 NUM_PAGES_TO_ALLOC
))
1108 npages
= pool
->npages_free
- _manager
->options
.max_size
;
1110 spin_unlock_irqrestore(&pool
->lock
, irq_flags
);
1112 INIT_LIST_HEAD(&ttm_dma
->pages_list
);
1113 for (i
= 0; i
< ttm
->num_pages
; i
++) {
1114 ttm
->pages
[i
] = NULL
;
1115 ttm_dma
->dma_address
[i
] = 0;
1118 /* shrink pool if necessary (only on !is_cached pools)*/
1120 ttm_dma_page_pool_free(pool
, npages
, false);
1121 ttm
->state
= tt_unpopulated
;
1123 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate
);
1126 * Callback for mm to request pool to reduce number of page held.
1128 * XXX: (dchinner) Deadlock warning!
1130 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1133 static unsigned long
1134 ttm_dma_pool_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
1136 static unsigned start_pool
;
1138 unsigned pool_offset
;
1139 unsigned shrink_pages
= sc
->nr_to_scan
;
1140 struct device_pools
*p
;
1141 unsigned long freed
= 0;
1143 if (list_empty(&_manager
->pools
))
1146 if (!mutex_trylock(&_manager
->lock
))
1148 if (!_manager
->npools
)
1150 pool_offset
= ++start_pool
% _manager
->npools
;
1151 list_for_each_entry(p
, &_manager
->pools
, pools
) {
1156 if (shrink_pages
== 0)
1158 /* Do it in round-robin fashion. */
1159 if (++idx
< pool_offset
)
1161 nr_free
= shrink_pages
;
1162 /* OK to use static buffer since global mutex is held. */
1163 shrink_pages
= ttm_dma_page_pool_free(p
->pool
, nr_free
, true);
1164 freed
+= nr_free
- shrink_pages
;
1166 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1167 p
->pool
->dev_name
, p
->pool
->name
, current
->pid
,
1168 nr_free
, shrink_pages
);
1171 mutex_unlock(&_manager
->lock
);
1175 static unsigned long
1176 ttm_dma_pool_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
1178 struct device_pools
*p
;
1179 unsigned long count
= 0;
1181 if (!mutex_trylock(&_manager
->lock
))
1183 list_for_each_entry(p
, &_manager
->pools
, pools
)
1184 count
+= p
->pool
->npages_free
;
1185 mutex_unlock(&_manager
->lock
);
1189 static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager
*manager
)
1191 manager
->mm_shrink
.count_objects
= ttm_dma_pool_shrink_count
;
1192 manager
->mm_shrink
.scan_objects
= &ttm_dma_pool_shrink_scan
;
1193 manager
->mm_shrink
.seeks
= 1;
1194 return register_shrinker(&manager
->mm_shrink
);
1197 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager
*manager
)
1199 unregister_shrinker(&manager
->mm_shrink
);
1202 int ttm_dma_page_alloc_init(struct ttm_mem_global
*glob
, unsigned max_pages
)
1208 pr_info("Initializing DMA pool allocator\n");
1210 _manager
= kzalloc(sizeof(*_manager
), GFP_KERNEL
);
1214 mutex_init(&_manager
->lock
);
1215 INIT_LIST_HEAD(&_manager
->pools
);
1217 _manager
->options
.max_size
= max_pages
;
1218 _manager
->options
.small
= SMALL_ALLOCATION
;
1219 _manager
->options
.alloc_size
= NUM_PAGES_TO_ALLOC
;
1221 /* This takes care of auto-freeing the _manager */
1222 ret
= kobject_init_and_add(&_manager
->kobj
, &ttm_pool_kobj_type
,
1223 &glob
->kobj
, "dma_pool");
1224 if (unlikely(ret
!= 0))
1227 ret
= ttm_dma_pool_mm_shrink_init(_manager
);
1228 if (unlikely(ret
!= 0))
1233 kobject_put(&_manager
->kobj
);
1238 void ttm_dma_page_alloc_fini(void)
1240 struct device_pools
*p
, *t
;
1242 pr_info("Finalizing DMA pool allocator\n");
1243 ttm_dma_pool_mm_shrink_fini(_manager
);
1245 list_for_each_entry_safe_reverse(p
, t
, &_manager
->pools
, pools
) {
1246 dev_dbg(p
->dev
, "(%s:%d) Freeing.\n", p
->pool
->name
,
1248 WARN_ON(devres_destroy(p
->dev
, ttm_dma_pool_release
,
1249 ttm_dma_pool_match
, p
->pool
));
1250 ttm_dma_free_pool(p
->dev
, p
->pool
->type
);
1252 kobject_put(&_manager
->kobj
);
1256 int ttm_dma_page_alloc_debugfs(struct seq_file
*m
, void *data
)
1258 struct device_pools
*p
;
1259 struct dma_pool
*pool
= NULL
;
1262 seq_printf(m
, "No pool allocator running.\n");
1265 seq_printf(m
, " pool refills pages freed inuse available name\n");
1266 mutex_lock(&_manager
->lock
);
1267 list_for_each_entry(p
, &_manager
->pools
, pools
) {
1268 struct device
*dev
= p
->dev
;
1272 seq_printf(m
, "%13s %12ld %13ld %8d %8d %8s\n",
1273 pool
->name
, pool
->nrefills
,
1274 pool
->nfrees
, pool
->npages_in_use
,
1278 mutex_unlock(&_manager
->lock
);
1281 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs
);