bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / gpu / drm / ttm / ttm_page_alloc_dma.c
blob323cadaeb7d137a5c090f76fc677452c84967b9a
1 /*
2 * Copyright 2011 (c) Oracle Corp.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
27 * A simple DMA pool losely based on dmapool.c. It has certain advantages
28 * over the DMA pools:
29 * - Pool collects resently freed pages for reuse (and hooks up to
30 * the shrinker).
31 * - Tracks currently in use pages
32 * - Tracks whether the page is UC, WB or cached (and reverts to WB
33 * when freed).
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
47 #include <linux/mm.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #if IS_ENABLED(CONFIG_AGP)
54 #include <asm/agp.h>
55 #endif
56 #ifdef CONFIG_X86
57 #include <asm/set_memory.h>
58 #endif
60 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
61 #define SMALL_ALLOCATION 4
62 #define FREE_ALL_PAGES (~0U)
63 #define VADDR_FLAG_HUGE_POOL 1UL
64 #define VADDR_FLAG_UPDATED_COUNT 2UL
66 enum pool_type {
67 IS_UNDEFINED = 0,
68 IS_WC = 1 << 1,
69 IS_UC = 1 << 2,
70 IS_CACHED = 1 << 3,
71 IS_DMA32 = 1 << 4,
72 IS_HUGE = 1 << 5
76 * The pool structure. There are up to nine pools:
77 * - generic (not restricted to DMA32):
78 * - write combined, uncached, cached.
79 * - dma32 (up to 2^32 - so up 4GB):
80 * - write combined, uncached, cached.
81 * - huge (not restricted to DMA32):
82 * - write combined, uncached, cached.
83 * for each 'struct device'. The 'cached' is for pages that are actively used.
84 * The other ones can be shrunk by the shrinker API if neccessary.
85 * @pools: The 'struct device->dma_pools' link.
86 * @type: Type of the pool
87 * @lock: Protects the free_list from concurrnet access. Must be
88 * used with irqsave/irqrestore variants because pool allocator maybe called
89 * from delayed work.
90 * @free_list: Pool of pages that are free to be used. No order requirements.
91 * @dev: The device that is associated with these pools.
92 * @size: Size used during DMA allocation.
93 * @npages_free: Count of available pages for re-use.
94 * @npages_in_use: Count of pages that are in use.
95 * @nfrees: Stats when pool is shrinking.
96 * @nrefills: Stats when the pool is grown.
97 * @gfp_flags: Flags to pass for alloc_page.
98 * @name: Name of the pool.
99 * @dev_name: Name derieved from dev - similar to how dev_info works.
100 * Used during shutdown as the dev_info during release is unavailable.
102 struct dma_pool {
103 struct list_head pools; /* The 'struct device->dma_pools link */
104 enum pool_type type;
105 spinlock_t lock;
106 struct list_head free_list;
107 struct device *dev;
108 unsigned size;
109 unsigned npages_free;
110 unsigned npages_in_use;
111 unsigned long nfrees; /* Stats when shrunk. */
112 unsigned long nrefills; /* Stats when grown. */
113 gfp_t gfp_flags;
114 char name[13]; /* "cached dma32" */
115 char dev_name[64]; /* Constructed from dev */
119 * The accounting page keeping track of the allocated page along with
120 * the DMA address.
121 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
122 * @vaddr: The virtual address of the page and a flag if the page belongs to a
123 * huge pool
124 * @dma: The bus address of the page. If the page is not allocated
125 * via the DMA API, it will be -1.
127 struct dma_page {
128 struct list_head page_list;
129 unsigned long vaddr;
130 struct page *p;
131 dma_addr_t dma;
135 * Limits for the pool. They are handled without locks because only place where
136 * they may change is in sysfs store. They won't have immediate effect anyway
137 * so forcing serialization to access them is pointless.
140 struct ttm_pool_opts {
141 unsigned alloc_size;
142 unsigned max_size;
143 unsigned small;
147 * Contains the list of all of the 'struct device' and their corresponding
148 * DMA pools. Guarded by _mutex->lock.
149 * @pools: The link to 'struct ttm_pool_manager->pools'
150 * @dev: The 'struct device' associated with the 'pool'
151 * @pool: The 'struct dma_pool' associated with the 'dev'
153 struct device_pools {
154 struct list_head pools;
155 struct device *dev;
156 struct dma_pool *pool;
160 * struct ttm_pool_manager - Holds memory pools for fast allocation
162 * @lock: Lock used when adding/removing from pools
163 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
164 * @options: Limits for the pool.
165 * @npools: Total amount of pools in existence.
166 * @shrinker: The structure used by [un|]register_shrinker
168 struct ttm_pool_manager {
169 struct mutex lock;
170 struct list_head pools;
171 struct ttm_pool_opts options;
172 unsigned npools;
173 struct shrinker mm_shrink;
174 struct kobject kobj;
177 static struct ttm_pool_manager *_manager;
179 static struct attribute ttm_page_pool_max = {
180 .name = "pool_max_size",
181 .mode = S_IRUGO | S_IWUSR
183 static struct attribute ttm_page_pool_small = {
184 .name = "pool_small_allocation",
185 .mode = S_IRUGO | S_IWUSR
187 static struct attribute ttm_page_pool_alloc_size = {
188 .name = "pool_allocation_size",
189 .mode = S_IRUGO | S_IWUSR
192 static struct attribute *ttm_pool_attrs[] = {
193 &ttm_page_pool_max,
194 &ttm_page_pool_small,
195 &ttm_page_pool_alloc_size,
196 NULL
199 static void ttm_pool_kobj_release(struct kobject *kobj)
201 struct ttm_pool_manager *m =
202 container_of(kobj, struct ttm_pool_manager, kobj);
203 kfree(m);
206 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
207 const char *buffer, size_t size)
209 struct ttm_pool_manager *m =
210 container_of(kobj, struct ttm_pool_manager, kobj);
211 int chars;
212 unsigned val;
213 chars = sscanf(buffer, "%u", &val);
214 if (chars == 0)
215 return size;
217 /* Convert kb to number of pages */
218 val = val / (PAGE_SIZE >> 10);
220 if (attr == &ttm_page_pool_max)
221 m->options.max_size = val;
222 else if (attr == &ttm_page_pool_small)
223 m->options.small = val;
224 else if (attr == &ttm_page_pool_alloc_size) {
225 if (val > NUM_PAGES_TO_ALLOC*8) {
226 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
227 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
228 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
229 return size;
230 } else if (val > NUM_PAGES_TO_ALLOC) {
231 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
232 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
234 m->options.alloc_size = val;
237 return size;
240 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
241 char *buffer)
243 struct ttm_pool_manager *m =
244 container_of(kobj, struct ttm_pool_manager, kobj);
245 unsigned val = 0;
247 if (attr == &ttm_page_pool_max)
248 val = m->options.max_size;
249 else if (attr == &ttm_page_pool_small)
250 val = m->options.small;
251 else if (attr == &ttm_page_pool_alloc_size)
252 val = m->options.alloc_size;
254 val = val * (PAGE_SIZE >> 10);
256 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
259 static const struct sysfs_ops ttm_pool_sysfs_ops = {
260 .show = &ttm_pool_show,
261 .store = &ttm_pool_store,
264 static struct kobj_type ttm_pool_kobj_type = {
265 .release = &ttm_pool_kobj_release,
266 .sysfs_ops = &ttm_pool_sysfs_ops,
267 .default_attrs = ttm_pool_attrs,
270 #ifndef CONFIG_X86
271 static int set_pages_array_wb(struct page **pages, int addrinarray)
273 #if IS_ENABLED(CONFIG_AGP)
274 int i;
276 for (i = 0; i < addrinarray; i++)
277 unmap_page_from_agp(pages[i]);
278 #endif
279 return 0;
282 static int set_pages_array_wc(struct page **pages, int addrinarray)
284 #if IS_ENABLED(CONFIG_AGP)
285 int i;
287 for (i = 0; i < addrinarray; i++)
288 map_page_into_agp(pages[i]);
289 #endif
290 return 0;
293 static int set_pages_array_uc(struct page **pages, int addrinarray)
295 #if IS_ENABLED(CONFIG_AGP)
296 int i;
298 for (i = 0; i < addrinarray; i++)
299 map_page_into_agp(pages[i]);
300 #endif
301 return 0;
303 #endif /* for !CONFIG_X86 */
305 static int ttm_set_pages_caching(struct dma_pool *pool,
306 struct page **pages, unsigned cpages)
308 int r = 0;
309 /* Set page caching */
310 if (pool->type & IS_UC) {
311 r = set_pages_array_uc(pages, cpages);
312 if (r)
313 pr_err("%s: Failed to set %d pages to uc!\n",
314 pool->dev_name, cpages);
316 if (pool->type & IS_WC) {
317 r = set_pages_array_wc(pages, cpages);
318 if (r)
319 pr_err("%s: Failed to set %d pages to wc!\n",
320 pool->dev_name, cpages);
322 return r;
325 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
327 dma_addr_t dma = d_page->dma;
328 d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
329 dma_free_coherent(pool->dev, pool->size, (void *)d_page->vaddr, dma);
331 kfree(d_page);
332 d_page = NULL;
334 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
336 struct dma_page *d_page;
337 unsigned long attrs = 0;
338 void *vaddr;
340 d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
341 if (!d_page)
342 return NULL;
344 if (pool->type & IS_HUGE)
345 attrs = DMA_ATTR_NO_WARN;
347 vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
348 pool->gfp_flags, attrs);
349 if (vaddr) {
350 if (is_vmalloc_addr(vaddr))
351 d_page->p = vmalloc_to_page(vaddr);
352 else
353 d_page->p = virt_to_page(vaddr);
354 d_page->vaddr = (unsigned long)vaddr;
355 if (pool->type & IS_HUGE)
356 d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
357 } else {
358 kfree(d_page);
359 d_page = NULL;
361 return d_page;
363 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
365 enum pool_type type = IS_UNDEFINED;
367 if (flags & TTM_PAGE_FLAG_DMA32)
368 type |= IS_DMA32;
369 if (cstate == tt_cached)
370 type |= IS_CACHED;
371 else if (cstate == tt_uncached)
372 type |= IS_UC;
373 else
374 type |= IS_WC;
376 return type;
379 static void ttm_pool_update_free_locked(struct dma_pool *pool,
380 unsigned freed_pages)
382 pool->npages_free -= freed_pages;
383 pool->nfrees += freed_pages;
387 /* set memory back to wb and free the pages. */
388 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
390 struct page *page = d_page->p;
391 unsigned i, num_pages;
392 int ret;
394 /* Don't set WB on WB page pool. */
395 if (!(pool->type & IS_CACHED)) {
396 num_pages = pool->size / PAGE_SIZE;
397 for (i = 0; i < num_pages; ++i, ++page) {
398 ret = set_pages_array_wb(&page, 1);
399 if (ret) {
400 pr_err("%s: Failed to set %d pages to wb!\n",
401 pool->dev_name, 1);
406 list_del(&d_page->page_list);
407 __ttm_dma_free_page(pool, d_page);
410 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
411 struct page *pages[], unsigned npages)
413 struct dma_page *d_page, *tmp;
415 if (pool->type & IS_HUGE) {
416 list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
417 ttm_dma_page_put(pool, d_page);
419 return;
422 /* Don't set WB on WB page pool. */
423 if (npages && !(pool->type & IS_CACHED) &&
424 set_pages_array_wb(pages, npages))
425 pr_err("%s: Failed to set %d pages to wb!\n",
426 pool->dev_name, npages);
428 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
429 list_del(&d_page->page_list);
430 __ttm_dma_free_page(pool, d_page);
435 * Free pages from pool.
437 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
438 * number of pages in one go.
440 * @pool: to free the pages from
441 * @nr_free: If set to true will free all pages in pool
442 * @use_static: Safe to use static buffer
444 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
445 bool use_static)
447 static struct page *static_buf[NUM_PAGES_TO_ALLOC];
448 unsigned long irq_flags;
449 struct dma_page *dma_p, *tmp;
450 struct page **pages_to_free;
451 struct list_head d_pages;
452 unsigned freed_pages = 0,
453 npages_to_free = nr_free;
455 if (NUM_PAGES_TO_ALLOC < nr_free)
456 npages_to_free = NUM_PAGES_TO_ALLOC;
457 #if 0
458 if (nr_free > 1) {
459 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
460 pool->dev_name, pool->name, current->pid,
461 npages_to_free, nr_free);
463 #endif
464 if (use_static)
465 pages_to_free = static_buf;
466 else
467 pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
468 GFP_KERNEL);
470 if (!pages_to_free) {
471 pr_debug("%s: Failed to allocate memory for pool free operation\n",
472 pool->dev_name);
473 return 0;
475 INIT_LIST_HEAD(&d_pages);
476 restart:
477 spin_lock_irqsave(&pool->lock, irq_flags);
479 /* We picking the oldest ones off the list */
480 list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
481 page_list) {
482 if (freed_pages >= npages_to_free)
483 break;
485 /* Move the dma_page from one list to another. */
486 list_move(&dma_p->page_list, &d_pages);
488 pages_to_free[freed_pages++] = dma_p->p;
489 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
490 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
492 ttm_pool_update_free_locked(pool, freed_pages);
494 * Because changing page caching is costly
495 * we unlock the pool to prevent stalling.
497 spin_unlock_irqrestore(&pool->lock, irq_flags);
499 ttm_dma_pages_put(pool, &d_pages, pages_to_free,
500 freed_pages);
502 INIT_LIST_HEAD(&d_pages);
504 if (likely(nr_free != FREE_ALL_PAGES))
505 nr_free -= freed_pages;
507 if (NUM_PAGES_TO_ALLOC >= nr_free)
508 npages_to_free = nr_free;
509 else
510 npages_to_free = NUM_PAGES_TO_ALLOC;
512 freed_pages = 0;
514 /* free all so restart the processing */
515 if (nr_free)
516 goto restart;
518 /* Not allowed to fall through or break because
519 * following context is inside spinlock while we are
520 * outside here.
522 goto out;
527 /* remove range of pages from the pool */
528 if (freed_pages) {
529 ttm_pool_update_free_locked(pool, freed_pages);
530 nr_free -= freed_pages;
533 spin_unlock_irqrestore(&pool->lock, irq_flags);
535 if (freed_pages)
536 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
537 out:
538 if (pages_to_free != static_buf)
539 kfree(pages_to_free);
540 return nr_free;
543 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
545 struct device_pools *p;
546 struct dma_pool *pool;
548 if (!dev)
549 return;
551 mutex_lock(&_manager->lock);
552 list_for_each_entry_reverse(p, &_manager->pools, pools) {
553 if (p->dev != dev)
554 continue;
555 pool = p->pool;
556 if (pool->type != type)
557 continue;
559 list_del(&p->pools);
560 kfree(p);
561 _manager->npools--;
562 break;
564 list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
565 if (pool->type != type)
566 continue;
567 /* Takes a spinlock.. */
568 /* OK to use static buffer since global mutex is held. */
569 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
570 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
571 /* This code path is called after _all_ references to the
572 * struct device has been dropped - so nobody should be
573 * touching it. In case somebody is trying to _add_ we are
574 * guarded by the mutex. */
575 list_del(&pool->pools);
576 kfree(pool);
577 break;
579 mutex_unlock(&_manager->lock);
583 * On free-ing of the 'struct device' this deconstructor is run.
584 * Albeit the pool might have already been freed earlier.
586 static void ttm_dma_pool_release(struct device *dev, void *res)
588 struct dma_pool *pool = *(struct dma_pool **)res;
590 if (pool)
591 ttm_dma_free_pool(dev, pool->type);
594 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
596 return *(struct dma_pool **)res == match_data;
599 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
600 enum pool_type type)
602 const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
603 enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
604 struct device_pools *sec_pool = NULL;
605 struct dma_pool *pool = NULL, **ptr;
606 unsigned i;
607 int ret = -ENODEV;
608 char *p;
610 if (!dev)
611 return NULL;
613 ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
614 if (!ptr)
615 return NULL;
617 ret = -ENOMEM;
619 pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
620 dev_to_node(dev));
621 if (!pool)
622 goto err_mem;
624 sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
625 dev_to_node(dev));
626 if (!sec_pool)
627 goto err_mem;
629 INIT_LIST_HEAD(&sec_pool->pools);
630 sec_pool->dev = dev;
631 sec_pool->pool = pool;
633 INIT_LIST_HEAD(&pool->free_list);
634 INIT_LIST_HEAD(&pool->pools);
635 spin_lock_init(&pool->lock);
636 pool->dev = dev;
637 pool->npages_free = pool->npages_in_use = 0;
638 pool->nfrees = 0;
639 pool->gfp_flags = flags;
640 if (type & IS_HUGE)
641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
642 pool->size = HPAGE_PMD_SIZE;
643 #else
644 BUG();
645 #endif
646 else
647 pool->size = PAGE_SIZE;
648 pool->type = type;
649 pool->nrefills = 0;
650 p = pool->name;
651 for (i = 0; i < ARRAY_SIZE(t); i++) {
652 if (type & t[i]) {
653 p += snprintf(p, sizeof(pool->name) - (p - pool->name),
654 "%s", n[i]);
657 *p = 0;
658 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
659 * - the kobj->name has already been deallocated.*/
660 snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
661 dev_driver_string(dev), dev_name(dev));
662 mutex_lock(&_manager->lock);
663 /* You can get the dma_pool from either the global: */
664 list_add(&sec_pool->pools, &_manager->pools);
665 _manager->npools++;
666 /* or from 'struct device': */
667 list_add(&pool->pools, &dev->dma_pools);
668 mutex_unlock(&_manager->lock);
670 *ptr = pool;
671 devres_add(dev, ptr);
673 return pool;
674 err_mem:
675 devres_free(ptr);
676 kfree(sec_pool);
677 kfree(pool);
678 return ERR_PTR(ret);
681 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
682 enum pool_type type)
684 struct dma_pool *pool, *tmp, *found = NULL;
686 if (type == IS_UNDEFINED)
687 return found;
689 /* NB: We iterate on the 'struct dev' which has no spinlock, but
690 * it does have a kref which we have taken. The kref is taken during
691 * graphic driver loading - in the drm_pci_init it calls either
692 * pci_dev_get or pci_register_driver which both end up taking a kref
693 * on 'struct device'.
695 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
696 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
697 * thing is at that point of time there are no pages associated with the
698 * driver so this function will not be called.
700 list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
701 if (pool->type != type)
702 continue;
703 found = pool;
704 break;
706 return found;
710 * Free pages the pages that failed to change the caching state. If there
711 * are pages that have changed their caching state already put them to the
712 * pool.
714 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
715 struct list_head *d_pages,
716 struct page **failed_pages,
717 unsigned cpages)
719 struct dma_page *d_page, *tmp;
720 struct page *p;
721 unsigned i = 0;
723 p = failed_pages[0];
724 if (!p)
725 return;
726 /* Find the failed page. */
727 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
728 if (d_page->p != p)
729 continue;
730 /* .. and then progress over the full list. */
731 list_del(&d_page->page_list);
732 __ttm_dma_free_page(pool, d_page);
733 if (++i < cpages)
734 p = failed_pages[i];
735 else
736 break;
742 * Allocate 'count' pages, and put 'need' number of them on the
743 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
744 * The full list of pages should also be on 'd_pages'.
745 * We return zero for success, and negative numbers as errors.
747 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
748 struct list_head *d_pages,
749 unsigned count)
751 struct page **caching_array;
752 struct dma_page *dma_p;
753 struct page *p;
754 int r = 0;
755 unsigned i, j, npages, cpages;
756 unsigned max_cpages = min(count,
757 (unsigned)(PAGE_SIZE/sizeof(struct page *)));
759 /* allocate array for page caching change */
760 caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
762 if (!caching_array) {
763 pr_debug("%s: Unable to allocate table for new pages\n",
764 pool->dev_name);
765 return -ENOMEM;
768 if (count > 1) {
769 pr_debug("%s: (%s:%d) Getting %d pages\n",
770 pool->dev_name, pool->name, current->pid, count);
773 for (i = 0, cpages = 0; i < count; ++i) {
774 dma_p = __ttm_dma_alloc_page(pool);
775 if (!dma_p) {
776 pr_debug("%s: Unable to get page %u\n",
777 pool->dev_name, i);
779 /* store already allocated pages in the pool after
780 * setting the caching state */
781 if (cpages) {
782 r = ttm_set_pages_caching(pool, caching_array,
783 cpages);
784 if (r)
785 ttm_dma_handle_caching_state_failure(
786 pool, d_pages, caching_array,
787 cpages);
789 r = -ENOMEM;
790 goto out;
792 p = dma_p->p;
793 list_add(&dma_p->page_list, d_pages);
795 #ifdef CONFIG_HIGHMEM
796 /* gfp flags of highmem page should never be dma32 so we
797 * we should be fine in such case
799 if (PageHighMem(p))
800 continue;
801 #endif
803 npages = pool->size / PAGE_SIZE;
804 for (j = 0; j < npages; ++j) {
805 caching_array[cpages++] = p + j;
806 if (cpages == max_cpages) {
807 /* Note: Cannot hold the spinlock */
808 r = ttm_set_pages_caching(pool, caching_array,
809 cpages);
810 if (r) {
811 ttm_dma_handle_caching_state_failure(
812 pool, d_pages, caching_array,
813 cpages);
814 goto out;
816 cpages = 0;
821 if (cpages) {
822 r = ttm_set_pages_caching(pool, caching_array, cpages);
823 if (r)
824 ttm_dma_handle_caching_state_failure(pool, d_pages,
825 caching_array, cpages);
827 out:
828 kfree(caching_array);
829 return r;
833 * @return count of pages still required to fulfill the request.
835 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
836 unsigned long *irq_flags)
838 unsigned count = _manager->options.small;
839 int r = pool->npages_free;
841 if (count > pool->npages_free) {
842 struct list_head d_pages;
844 INIT_LIST_HEAD(&d_pages);
846 spin_unlock_irqrestore(&pool->lock, *irq_flags);
848 /* Returns how many more are neccessary to fulfill the
849 * request. */
850 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
852 spin_lock_irqsave(&pool->lock, *irq_flags);
853 if (!r) {
854 /* Add the fresh to the end.. */
855 list_splice(&d_pages, &pool->free_list);
856 ++pool->nrefills;
857 pool->npages_free += count;
858 r = count;
859 } else {
860 struct dma_page *d_page;
861 unsigned cpages = 0;
863 pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
864 pool->dev_name, pool->name, r);
866 list_for_each_entry(d_page, &d_pages, page_list) {
867 cpages++;
869 list_splice_tail(&d_pages, &pool->free_list);
870 pool->npages_free += cpages;
871 r = cpages;
874 return r;
878 * The populate list is actually a stack (not that is matters as TTM
879 * allocates one page at a time.
880 * return dma_page pointer if success, otherwise NULL.
882 static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
883 struct ttm_dma_tt *ttm_dma,
884 unsigned index)
886 struct dma_page *d_page = NULL;
887 struct ttm_tt *ttm = &ttm_dma->ttm;
888 unsigned long irq_flags;
889 int count;
891 spin_lock_irqsave(&pool->lock, irq_flags);
892 count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
893 if (count) {
894 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
895 ttm->pages[index] = d_page->p;
896 ttm_dma->dma_address[index] = d_page->dma;
897 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
898 pool->npages_in_use += 1;
899 pool->npages_free -= 1;
901 spin_unlock_irqrestore(&pool->lock, irq_flags);
902 return d_page;
905 static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
907 struct ttm_tt *ttm = &ttm_dma->ttm;
908 gfp_t gfp_flags;
910 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
911 gfp_flags = GFP_USER | GFP_DMA32;
912 else
913 gfp_flags = GFP_HIGHUSER;
914 if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
915 gfp_flags |= __GFP_ZERO;
917 if (huge) {
918 gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
919 __GFP_KSWAPD_RECLAIM;
920 gfp_flags &= ~__GFP_MOVABLE;
921 gfp_flags &= ~__GFP_COMP;
924 return gfp_flags;
928 * On success pages list will hold count number of correctly
929 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
931 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
932 struct ttm_operation_ctx *ctx)
934 struct ttm_tt *ttm = &ttm_dma->ttm;
935 struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
936 unsigned long num_pages = ttm->num_pages;
937 struct dma_pool *pool;
938 struct dma_page *d_page;
939 enum pool_type type;
940 unsigned i;
941 int ret;
943 if (ttm->state != tt_unpopulated)
944 return 0;
946 INIT_LIST_HEAD(&ttm_dma->pages_list);
947 i = 0;
949 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
952 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
953 goto skip_huge;
955 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
956 if (!pool) {
957 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
959 pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
960 if (IS_ERR_OR_NULL(pool))
961 goto skip_huge;
964 while (num_pages >= HPAGE_PMD_NR) {
965 unsigned j;
967 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
968 if (!d_page)
969 break;
971 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
972 pool->size, ctx);
973 if (unlikely(ret != 0)) {
974 ttm_dma_unpopulate(ttm_dma, dev);
975 return -ENOMEM;
978 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
979 for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
980 ttm->pages[j] = ttm->pages[j - 1] + 1;
981 ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
982 PAGE_SIZE;
985 i += HPAGE_PMD_NR;
986 num_pages -= HPAGE_PMD_NR;
989 skip_huge:
990 #endif
992 pool = ttm_dma_find_pool(dev, type);
993 if (!pool) {
994 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
996 pool = ttm_dma_pool_init(dev, gfp_flags, type);
997 if (IS_ERR_OR_NULL(pool))
998 return -ENOMEM;
1001 while (num_pages) {
1002 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
1003 if (!d_page) {
1004 ttm_dma_unpopulate(ttm_dma, dev);
1005 return -ENOMEM;
1008 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
1009 pool->size, ctx);
1010 if (unlikely(ret != 0)) {
1011 ttm_dma_unpopulate(ttm_dma, dev);
1012 return -ENOMEM;
1015 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
1016 ++i;
1017 --num_pages;
1020 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
1021 ret = ttm_tt_swapin(ttm);
1022 if (unlikely(ret != 0)) {
1023 ttm_dma_unpopulate(ttm_dma, dev);
1024 return ret;
1028 ttm->state = tt_unbound;
1029 return 0;
1031 EXPORT_SYMBOL_GPL(ttm_dma_populate);
1033 /* Put all pages in pages list to correct pool to wait for reuse */
1034 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
1036 struct ttm_tt *ttm = &ttm_dma->ttm;
1037 struct dma_pool *pool;
1038 struct dma_page *d_page, *next;
1039 enum pool_type type;
1040 bool is_cached = false;
1041 unsigned count, i, npages = 0;
1042 unsigned long irq_flags;
1044 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1047 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1048 if (pool) {
1049 count = 0;
1050 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1051 page_list) {
1052 if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1053 continue;
1055 count++;
1056 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1057 ttm_mem_global_free_page(ttm->glob->mem_glob,
1058 d_page->p, pool->size);
1059 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1061 ttm_dma_page_put(pool, d_page);
1064 spin_lock_irqsave(&pool->lock, irq_flags);
1065 pool->npages_in_use -= count;
1066 pool->nfrees += count;
1067 spin_unlock_irqrestore(&pool->lock, irq_flags);
1069 #endif
1071 pool = ttm_dma_find_pool(dev, type);
1072 if (!pool)
1073 return;
1075 is_cached = (ttm_dma_find_pool(pool->dev,
1076 ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1078 /* make sure pages array match list and count number of pages */
1079 count = 0;
1080 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1081 page_list) {
1082 ttm->pages[count] = d_page->p;
1083 count++;
1085 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1086 ttm_mem_global_free_page(ttm->glob->mem_glob,
1087 d_page->p, pool->size);
1088 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1091 if (is_cached)
1092 ttm_dma_page_put(pool, d_page);
1095 spin_lock_irqsave(&pool->lock, irq_flags);
1096 pool->npages_in_use -= count;
1097 if (is_cached) {
1098 pool->nfrees += count;
1099 } else {
1100 pool->npages_free += count;
1101 list_splice(&ttm_dma->pages_list, &pool->free_list);
1103 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1104 * to free in order to minimize calls to set_memory_wb().
1106 if (pool->npages_free >= (_manager->options.max_size +
1107 NUM_PAGES_TO_ALLOC))
1108 npages = pool->npages_free - _manager->options.max_size;
1110 spin_unlock_irqrestore(&pool->lock, irq_flags);
1112 INIT_LIST_HEAD(&ttm_dma->pages_list);
1113 for (i = 0; i < ttm->num_pages; i++) {
1114 ttm->pages[i] = NULL;
1115 ttm_dma->dma_address[i] = 0;
1118 /* shrink pool if necessary (only on !is_cached pools)*/
1119 if (npages)
1120 ttm_dma_page_pool_free(pool, npages, false);
1121 ttm->state = tt_unpopulated;
1123 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1126 * Callback for mm to request pool to reduce number of page held.
1128 * XXX: (dchinner) Deadlock warning!
1130 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1131 * shrinkers
1133 static unsigned long
1134 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1136 static unsigned start_pool;
1137 unsigned idx = 0;
1138 unsigned pool_offset;
1139 unsigned shrink_pages = sc->nr_to_scan;
1140 struct device_pools *p;
1141 unsigned long freed = 0;
1143 if (list_empty(&_manager->pools))
1144 return SHRINK_STOP;
1146 if (!mutex_trylock(&_manager->lock))
1147 return SHRINK_STOP;
1148 if (!_manager->npools)
1149 goto out;
1150 pool_offset = ++start_pool % _manager->npools;
1151 list_for_each_entry(p, &_manager->pools, pools) {
1152 unsigned nr_free;
1154 if (!p->dev)
1155 continue;
1156 if (shrink_pages == 0)
1157 break;
1158 /* Do it in round-robin fashion. */
1159 if (++idx < pool_offset)
1160 continue;
1161 nr_free = shrink_pages;
1162 /* OK to use static buffer since global mutex is held. */
1163 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1164 freed += nr_free - shrink_pages;
1166 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1167 p->pool->dev_name, p->pool->name, current->pid,
1168 nr_free, shrink_pages);
1170 out:
1171 mutex_unlock(&_manager->lock);
1172 return freed;
1175 static unsigned long
1176 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1178 struct device_pools *p;
1179 unsigned long count = 0;
1181 if (!mutex_trylock(&_manager->lock))
1182 return 0;
1183 list_for_each_entry(p, &_manager->pools, pools)
1184 count += p->pool->npages_free;
1185 mutex_unlock(&_manager->lock);
1186 return count;
1189 static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1191 manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1192 manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1193 manager->mm_shrink.seeks = 1;
1194 return register_shrinker(&manager->mm_shrink);
1197 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1199 unregister_shrinker(&manager->mm_shrink);
1202 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1204 int ret;
1206 WARN_ON(_manager);
1208 pr_info("Initializing DMA pool allocator\n");
1210 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1211 if (!_manager)
1212 return -ENOMEM;
1214 mutex_init(&_manager->lock);
1215 INIT_LIST_HEAD(&_manager->pools);
1217 _manager->options.max_size = max_pages;
1218 _manager->options.small = SMALL_ALLOCATION;
1219 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1221 /* This takes care of auto-freeing the _manager */
1222 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1223 &glob->kobj, "dma_pool");
1224 if (unlikely(ret != 0))
1225 goto error;
1227 ret = ttm_dma_pool_mm_shrink_init(_manager);
1228 if (unlikely(ret != 0))
1229 goto error;
1230 return 0;
1232 error:
1233 kobject_put(&_manager->kobj);
1234 _manager = NULL;
1235 return ret;
1238 void ttm_dma_page_alloc_fini(void)
1240 struct device_pools *p, *t;
1242 pr_info("Finalizing DMA pool allocator\n");
1243 ttm_dma_pool_mm_shrink_fini(_manager);
1245 list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1246 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1247 current->pid);
1248 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1249 ttm_dma_pool_match, p->pool));
1250 ttm_dma_free_pool(p->dev, p->pool->type);
1252 kobject_put(&_manager->kobj);
1253 _manager = NULL;
1256 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1258 struct device_pools *p;
1259 struct dma_pool *pool = NULL;
1261 if (!_manager) {
1262 seq_printf(m, "No pool allocator running.\n");
1263 return 0;
1265 seq_printf(m, " pool refills pages freed inuse available name\n");
1266 mutex_lock(&_manager->lock);
1267 list_for_each_entry(p, &_manager->pools, pools) {
1268 struct device *dev = p->dev;
1269 if (!dev)
1270 continue;
1271 pool = p->pool;
1272 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1273 pool->name, pool->nrefills,
1274 pool->nfrees, pool->npages_in_use,
1275 pool->npages_free,
1276 pool->dev_name);
1278 mutex_unlock(&_manager->lock);
1279 return 0;
1281 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1283 #endif