2 * Copyright (C) 2016 Broadcom
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * DOC: VC4 DSI0/DSI1 module
20 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
21 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
24 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
25 * while the compute module brings both DSI0 and DSI1 out.
27 * This driver has been tested for DSI1 video-mode display only
28 * currently, with most of the information necessary for DSI0
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drm_mipi_dsi.h>
36 #include <drm/drm_of.h>
37 #include <drm/drm_panel.h>
38 #include <linux/clk.h>
39 #include <linux/clk-provider.h>
40 #include <linux/completion.h>
41 #include <linux/component.h>
42 #include <linux/dmaengine.h>
43 #include <linux/i2c.h>
44 #include <linux/of_address.h>
45 #include <linux/of_platform.h>
46 #include <linux/pm_runtime.h>
50 #define DSI_CMD_FIFO_DEPTH 16
51 #define DSI_PIX_FIFO_DEPTH 256
52 #define DSI_PIX_FIFO_WIDTH 4
54 #define DSI0_CTRL 0x00
56 /* Command packet control. */
57 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
58 #define DSI1_TXPKT1C 0x04
59 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
60 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
61 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
62 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
64 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
65 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
66 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
67 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
68 /* Primary display where cmdfifo provides part of the payload and
69 * pixelvalve the rest.
71 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
72 /* Secondary display where cmdfifo provides part of the payload and
75 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
77 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
78 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
80 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
81 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
82 /* Command only. Uses TXPKT1H and DISPLAY_NO */
83 # define DSI_TXPKT1C_CMD_CTRL_TX 0
84 /* Command with BTA for either ack or read data. */
85 # define DSI_TXPKT1C_CMD_CTRL_RX 1
86 /* Trigger according to TRIG_CMD */
87 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
88 /* BTA alone for getting error status after a command, or a TE trigger
89 * without a previous command.
91 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
93 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
94 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
95 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
96 # define DSI_TXPKT1C_CMD_EN BIT(0)
98 /* Command packet header. */
99 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
100 #define DSI1_TXPKT1H 0x08
101 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
102 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
103 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
104 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
105 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
106 # define DSI_TXPKT1H_BC_DT_SHIFT 0
108 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
109 #define DSI1_RXPKT1H 0x14
110 # define DSI_RXPKT1H_CRC_ERR BIT(31)
111 # define DSI_RXPKT1H_DET_ERR BIT(30)
112 # define DSI_RXPKT1H_ECC_ERR BIT(29)
113 # define DSI_RXPKT1H_COR_ERR BIT(28)
114 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
115 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
116 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
117 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
118 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
119 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
120 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
121 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
122 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
123 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
124 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
125 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
127 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
128 #define DSI1_RXPKT2H 0x18
129 # define DSI_RXPKT1H_DET_ERR BIT(30)
130 # define DSI_RXPKT1H_ECC_ERR BIT(29)
131 # define DSI_RXPKT1H_COR_ERR BIT(28)
132 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
133 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
134 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
135 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
136 # define DSI_RXPKT1H_DT_SHIFT 0
138 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
139 #define DSI1_TXPKT_CMD_FIFO 0x1c
141 #define DSI0_DISP0_CTRL 0x18
142 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
143 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
144 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
145 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
146 # define DSI_DISP0_LP_STOP_DISABLE 0
147 # define DSI_DISP0_LP_STOP_PERLINE 1
148 # define DSI_DISP0_LP_STOP_PERFRAME 2
150 /* Transmit RGB pixels and null packets only during HACTIVE, instead
151 * of going to LP-STOP.
153 # define DSI_DISP_HACTIVE_NULL BIT(10)
154 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
155 # define DSI_DISP_VBLP_CTRL BIT(9)
156 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
157 # define DSI_DISP_HFP_CTRL BIT(8)
158 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
159 # define DSI_DISP_HBP_CTRL BIT(7)
160 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
161 # define DSI_DISP0_CHANNEL_SHIFT 5
162 /* Enables end events for HSYNC/VSYNC, not just start events. */
163 # define DSI_DISP0_ST_END BIT(4)
164 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
165 # define DSI_DISP0_PFORMAT_SHIFT 2
166 # define DSI_PFORMAT_RGB565 0
167 # define DSI_PFORMAT_RGB666_PACKED 1
168 # define DSI_PFORMAT_RGB666 2
169 # define DSI_PFORMAT_RGB888 3
170 /* Default is VIDEO mode. */
171 # define DSI_DISP0_COMMAND_MODE BIT(1)
172 # define DSI_DISP0_ENABLE BIT(0)
174 #define DSI0_DISP1_CTRL 0x1c
175 #define DSI1_DISP1_CTRL 0x2c
176 /* Format of the data written to TXPKT_PIX_FIFO. */
177 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
178 # define DSI_DISP1_PFORMAT_SHIFT 1
179 # define DSI_DISP1_PFORMAT_16BIT 0
180 # define DSI_DISP1_PFORMAT_24BIT 1
181 # define DSI_DISP1_PFORMAT_32BIT_LE 2
182 # define DSI_DISP1_PFORMAT_32BIT_BE 3
184 /* DISP1 is always command mode. */
185 # define DSI_DISP1_ENABLE BIT(0)
187 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
189 #define DSI0_INT_STAT 0x24
190 #define DSI0_INT_EN 0x28
191 # define DSI1_INT_PHY_D3_ULPS BIT(30)
192 # define DSI1_INT_PHY_D3_STOP BIT(29)
193 # define DSI1_INT_PHY_D2_ULPS BIT(28)
194 # define DSI1_INT_PHY_D2_STOP BIT(27)
195 # define DSI1_INT_PHY_D1_ULPS BIT(26)
196 # define DSI1_INT_PHY_D1_STOP BIT(25)
197 # define DSI1_INT_PHY_D0_ULPS BIT(24)
198 # define DSI1_INT_PHY_D0_STOP BIT(23)
199 # define DSI1_INT_FIFO_ERR BIT(22)
200 # define DSI1_INT_PHY_DIR_RTF BIT(21)
201 # define DSI1_INT_PHY_RXLPDT BIT(20)
202 # define DSI1_INT_PHY_RXTRIG BIT(19)
203 # define DSI1_INT_PHY_D0_LPDT BIT(18)
204 # define DSI1_INT_PHY_DIR_FTR BIT(17)
206 /* Signaled when the clock lane enters the given state. */
207 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
208 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
209 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
211 /* Signaled on timeouts */
212 # define DSI1_INT_PR_TO BIT(13)
213 # define DSI1_INT_TA_TO BIT(12)
214 # define DSI1_INT_LPRX_TO BIT(11)
215 # define DSI1_INT_HSTX_TO BIT(10)
217 /* Contention on a line when trying to drive the line low */
218 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
219 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
221 /* Control error: incorrect line state sequence on data lane 0. */
222 # define DSI1_INT_ERR_CONTROL BIT(7)
223 /* LPDT synchronization error (bits received not a multiple of 8. */
225 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
226 /* Signaled after receiving an error packet from the display in
227 * response to a read.
229 # define DSI1_INT_RXPKT2 BIT(5)
230 /* Signaled after receiving a packet. The header and optional short
231 * response will be in RXPKT1H, and a long response will be in the
234 # define DSI1_INT_RXPKT1 BIT(4)
235 # define DSI1_INT_TXPKT2_DONE BIT(3)
236 # define DSI1_INT_TXPKT2_END BIT(2)
237 /* Signaled after all repeats of TXPKT1 are transferred. */
238 # define DSI1_INT_TXPKT1_DONE BIT(1)
239 /* Signaled after each TXPKT1 repeat is scheduled. */
240 # define DSI1_INT_TXPKT1_END BIT(0)
242 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
243 DSI1_INT_ERR_CONTROL | \
244 DSI1_INT_ERR_CONT_LP0 | \
245 DSI1_INT_ERR_CONT_LP1 | \
251 #define DSI0_STAT 0x2c
252 #define DSI0_HSTX_TO_CNT 0x30
253 #define DSI0_LPRX_TO_CNT 0x34
254 #define DSI0_TA_TO_CNT 0x38
255 #define DSI0_PR_TO_CNT 0x3c
256 #define DSI0_PHYC 0x40
257 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
258 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
259 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
260 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
261 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
262 # define DSI1_PHYC_CLANE_ULPS BIT(17)
263 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
264 # define DSI_PHYC_DLANE3_ULPS BIT(13)
265 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
266 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
267 # define DSI0_PHYC_CLANE_ULPS BIT(9)
268 # define DSI_PHYC_DLANE2_ULPS BIT(9)
269 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
270 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
271 # define DSI_PHYC_DLANE1_ULPS BIT(5)
272 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
273 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
274 # define DSI_PHYC_DLANE0_ULPS BIT(1)
275 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
277 #define DSI0_HS_CLT0 0x44
278 #define DSI0_HS_CLT1 0x48
279 #define DSI0_HS_CLT2 0x4c
280 #define DSI0_HS_DLT3 0x50
281 #define DSI0_HS_DLT4 0x54
282 #define DSI0_HS_DLT5 0x58
283 #define DSI0_HS_DLT6 0x5c
284 #define DSI0_HS_DLT7 0x60
286 #define DSI0_PHY_AFEC0 0x64
287 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
288 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
289 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
290 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
291 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
292 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
293 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
294 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
295 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
296 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
297 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
298 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
299 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
300 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
301 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
302 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
303 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
304 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
305 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
306 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
307 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
308 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
309 # define DSI1_PHY_AFEC0_RESET BIT(13)
310 # define DSI1_PHY_AFEC0_PD BIT(12)
311 # define DSI0_PHY_AFEC0_RESET BIT(11)
312 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
313 # define DSI0_PHY_AFEC0_PD BIT(10)
314 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(10)
315 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
316 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
317 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
318 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(8)
319 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
320 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
321 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
322 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
324 #define DSI0_PHY_AFEC1 0x68
325 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
326 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
327 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
328 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
329 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
330 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
332 #define DSI0_TST_SEL 0x6c
333 #define DSI0_TST_MON 0x70
335 # define DSI_ID_VALUE 0x00647369
337 #define DSI1_CTRL 0x00
338 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
339 # define DSI_CTRL_HS_CLKC_SHIFT 14
340 # define DSI_CTRL_HS_CLKC_BYTE 0
341 # define DSI_CTRL_HS_CLKC_DDR2 1
342 # define DSI_CTRL_HS_CLKC_DDR 2
344 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
345 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
346 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
347 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
348 # define DSI_CTRL_CAL_BYTE BIT(9)
349 # define DSI_CTRL_INV_BYTE BIT(8)
350 # define DSI_CTRL_CLR_LDF BIT(7)
351 # define DSI0_CTRL_CLR_PBCF BIT(6)
352 # define DSI1_CTRL_CLR_RXF BIT(6)
353 # define DSI0_CTRL_CLR_CPBCF BIT(5)
354 # define DSI1_CTRL_CLR_PDF BIT(5)
355 # define DSI0_CTRL_CLR_PDF BIT(4)
356 # define DSI1_CTRL_CLR_CDF BIT(4)
357 # define DSI0_CTRL_CLR_CDF BIT(3)
358 # define DSI0_CTRL_CTRL2 BIT(2)
359 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
360 # define DSI0_CTRL_CTRL1 BIT(1)
361 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
362 # define DSI0_CTRL_CTRL0 BIT(0)
363 # define DSI1_CTRL_EN BIT(0)
364 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
365 DSI0_CTRL_CLR_PBCF | \
366 DSI0_CTRL_CLR_CPBCF | \
367 DSI0_CTRL_CLR_PDF | \
369 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
370 DSI1_CTRL_CLR_RXF | \
371 DSI1_CTRL_CLR_PDF | \
374 #define DSI1_TXPKT2C 0x0c
375 #define DSI1_TXPKT2H 0x10
376 #define DSI1_TXPKT_PIX_FIFO 0x20
377 #define DSI1_RXPKT_FIFO 0x24
378 #define DSI1_DISP0_CTRL 0x28
379 #define DSI1_INT_STAT 0x30
380 #define DSI1_INT_EN 0x34
381 /* State reporting bits. These mostly behave like INT_STAT, where
382 * writing a 1 clears the bit.
384 #define DSI1_STAT 0x38
385 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
386 # define DSI1_STAT_PHY_D3_STOP BIT(30)
387 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
388 # define DSI1_STAT_PHY_D2_STOP BIT(28)
389 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
390 # define DSI1_STAT_PHY_D1_STOP BIT(26)
391 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
392 # define DSI1_STAT_PHY_D0_STOP BIT(24)
393 # define DSI1_STAT_FIFO_ERR BIT(23)
394 # define DSI1_STAT_PHY_RXLPDT BIT(22)
395 # define DSI1_STAT_PHY_RXTRIG BIT(21)
396 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
397 /* Set when in forward direction */
398 # define DSI1_STAT_PHY_DIR BIT(19)
399 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
400 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
401 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
402 # define DSI1_STAT_PR_TO BIT(15)
403 # define DSI1_STAT_TA_TO BIT(14)
404 # define DSI1_STAT_LPRX_TO BIT(13)
405 # define DSI1_STAT_HSTX_TO BIT(12)
406 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
407 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
408 # define DSI1_STAT_ERR_CONTROL BIT(9)
409 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
410 # define DSI1_STAT_RXPKT2 BIT(7)
411 # define DSI1_STAT_RXPKT1 BIT(6)
412 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
413 # define DSI1_STAT_TXPKT2_DONE BIT(4)
414 # define DSI1_STAT_TXPKT2_END BIT(3)
415 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
416 # define DSI1_STAT_TXPKT1_DONE BIT(1)
417 # define DSI1_STAT_TXPKT1_END BIT(0)
419 #define DSI1_HSTX_TO_CNT 0x3c
420 #define DSI1_LPRX_TO_CNT 0x40
421 #define DSI1_TA_TO_CNT 0x44
422 #define DSI1_PR_TO_CNT 0x48
423 #define DSI1_PHYC 0x4c
425 #define DSI1_HS_CLT0 0x50
426 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
427 # define DSI_HS_CLT0_CZERO_SHIFT 18
428 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
429 # define DSI_HS_CLT0_CPRE_SHIFT 9
430 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
431 # define DSI_HS_CLT0_CPREP_SHIFT 0
433 #define DSI1_HS_CLT1 0x54
434 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
435 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
436 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
437 # define DSI_HS_CLT1_CPOST_SHIFT 0
439 #define DSI1_HS_CLT2 0x58
440 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
441 # define DSI_HS_CLT2_WUP_SHIFT 0
443 #define DSI1_HS_DLT3 0x5c
444 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
445 # define DSI_HS_DLT3_EXIT_SHIFT 18
446 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
447 # define DSI_HS_DLT3_ZERO_SHIFT 9
448 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
449 # define DSI_HS_DLT3_PRE_SHIFT 0
451 #define DSI1_HS_DLT4 0x60
452 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
453 # define DSI_HS_DLT4_ANLAT_SHIFT 18
454 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
455 # define DSI_HS_DLT4_TRAIL_SHIFT 9
456 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
457 # define DSI_HS_DLT4_LPX_SHIFT 0
459 #define DSI1_HS_DLT5 0x64
460 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
461 # define DSI_HS_DLT5_INIT_SHIFT 0
463 #define DSI1_HS_DLT6 0x68
464 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
465 # define DSI_HS_DLT6_TA_GET_SHIFT 24
466 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
467 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
468 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
469 # define DSI_HS_DLT6_TA_GO_SHIFT 8
470 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
471 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
473 #define DSI1_HS_DLT7 0x6c
474 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
475 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
477 #define DSI1_PHY_AFEC0 0x70
479 #define DSI1_PHY_AFEC1 0x74
480 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
481 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
482 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
483 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
484 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
485 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
486 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
487 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
488 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
489 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
491 #define DSI1_TST_SEL 0x78
492 #define DSI1_TST_MON 0x7c
493 #define DSI1_PHY_TST1 0x80
494 #define DSI1_PHY_TST2 0x84
495 #define DSI1_PHY_FIFO_STAT 0x88
496 /* Actually, all registers in the range that aren't otherwise claimed
497 * will return the ID.
501 /* General DSI hardware state. */
503 struct platform_device
*pdev
;
505 struct mipi_dsi_host dsi_host
;
506 struct drm_encoder
*encoder
;
507 struct drm_bridge
*bridge
;
511 struct dma_chan
*reg_dma_chan
;
512 dma_addr_t reg_dma_paddr
;
514 dma_addr_t reg_paddr
;
516 /* Whether we're on bcm2835's DSI0 or DSI1. */
519 /* DSI channel for the panel we're connected to. */
526 /* Input clock from CPRMAN to the digital PHY, for the DSI
529 struct clk
*escape_clock
;
531 /* Input clock to the analog PHY, used to generate the DSI bit
534 struct clk
*pll_phy_clock
;
536 /* HS Clocks generated within the DSI analog PHY. */
537 struct clk_fixed_factor phy_clocks
[3];
539 struct clk_hw_onecell_data
*clk_onecell
;
541 /* Pixel clock output to the pixelvalve, generated from the HS
544 struct clk
*pixel_clock
;
546 struct completion xfer_completion
;
550 #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
553 dsi_dma_workaround_write(struct vc4_dsi
*dsi
, u32 offset
, u32 val
)
555 struct dma_chan
*chan
= dsi
->reg_dma_chan
;
556 struct dma_async_tx_descriptor
*tx
;
560 /* DSI0 should be able to write normally. */
562 writel(val
, dsi
->regs
+ offset
);
566 *dsi
->reg_dma_mem
= val
;
568 tx
= chan
->device
->device_prep_dma_memcpy(chan
,
569 dsi
->reg_paddr
+ offset
,
573 DRM_ERROR("Failed to set up DMA register write\n");
577 cookie
= tx
->tx_submit(tx
);
578 ret
= dma_submit_error(cookie
);
580 DRM_ERROR("Failed to submit DMA: %d\n", ret
);
583 ret
= dma_sync_wait(chan
, cookie
);
585 DRM_ERROR("Failed to wait for DMA: %d\n", ret
);
588 #define DSI_READ(offset) readl(dsi->regs + (offset))
589 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
590 #define DSI_PORT_READ(offset) \
591 DSI_READ(dsi->port ? DSI1_##offset : DSI0_##offset)
592 #define DSI_PORT_WRITE(offset, val) \
593 DSI_WRITE(dsi->port ? DSI1_##offset : DSI0_##offset, val)
594 #define DSI_PORT_BIT(bit) (dsi->port ? DSI1_##bit : DSI0_##bit)
596 /* VC4 DSI encoder KMS struct */
597 struct vc4_dsi_encoder
{
598 struct vc4_encoder base
;
602 static inline struct vc4_dsi_encoder
*
603 to_vc4_dsi_encoder(struct drm_encoder
*encoder
)
605 return container_of(encoder
, struct vc4_dsi_encoder
, base
.base
);
608 #define DSI_REG(reg) { reg, #reg }
609 static const struct {
615 DSI_REG(DSI0_HSTX_TO_CNT
),
616 DSI_REG(DSI0_LPRX_TO_CNT
),
617 DSI_REG(DSI0_TA_TO_CNT
),
618 DSI_REG(DSI0_PR_TO_CNT
),
619 DSI_REG(DSI0_DISP0_CTRL
),
620 DSI_REG(DSI0_DISP1_CTRL
),
621 DSI_REG(DSI0_INT_STAT
),
622 DSI_REG(DSI0_INT_EN
),
624 DSI_REG(DSI0_HS_CLT0
),
625 DSI_REG(DSI0_HS_CLT1
),
626 DSI_REG(DSI0_HS_CLT2
),
627 DSI_REG(DSI0_HS_DLT3
),
628 DSI_REG(DSI0_HS_DLT4
),
629 DSI_REG(DSI0_HS_DLT5
),
630 DSI_REG(DSI0_HS_DLT6
),
631 DSI_REG(DSI0_HS_DLT7
),
632 DSI_REG(DSI0_PHY_AFEC0
),
633 DSI_REG(DSI0_PHY_AFEC1
),
637 static const struct {
643 DSI_REG(DSI1_HSTX_TO_CNT
),
644 DSI_REG(DSI1_LPRX_TO_CNT
),
645 DSI_REG(DSI1_TA_TO_CNT
),
646 DSI_REG(DSI1_PR_TO_CNT
),
647 DSI_REG(DSI1_DISP0_CTRL
),
648 DSI_REG(DSI1_DISP1_CTRL
),
649 DSI_REG(DSI1_INT_STAT
),
650 DSI_REG(DSI1_INT_EN
),
652 DSI_REG(DSI1_HS_CLT0
),
653 DSI_REG(DSI1_HS_CLT1
),
654 DSI_REG(DSI1_HS_CLT2
),
655 DSI_REG(DSI1_HS_DLT3
),
656 DSI_REG(DSI1_HS_DLT4
),
657 DSI_REG(DSI1_HS_DLT5
),
658 DSI_REG(DSI1_HS_DLT6
),
659 DSI_REG(DSI1_HS_DLT7
),
660 DSI_REG(DSI1_PHY_AFEC0
),
661 DSI_REG(DSI1_PHY_AFEC1
),
665 static void vc4_dsi_dump_regs(struct vc4_dsi
*dsi
)
669 if (dsi
->port
== 0) {
670 for (i
= 0; i
< ARRAY_SIZE(dsi0_regs
); i
++) {
671 DRM_INFO("0x%04x (%s): 0x%08x\n",
672 dsi0_regs
[i
].reg
, dsi0_regs
[i
].name
,
673 DSI_READ(dsi0_regs
[i
].reg
));
676 for (i
= 0; i
< ARRAY_SIZE(dsi1_regs
); i
++) {
677 DRM_INFO("0x%04x (%s): 0x%08x\n",
678 dsi1_regs
[i
].reg
, dsi1_regs
[i
].name
,
679 DSI_READ(dsi1_regs
[i
].reg
));
684 #ifdef CONFIG_DEBUG_FS
685 int vc4_dsi_debugfs_regs(struct seq_file
*m
, void *unused
)
687 struct drm_info_node
*node
= (struct drm_info_node
*)m
->private;
688 struct drm_device
*drm
= node
->minor
->dev
;
689 struct vc4_dev
*vc4
= to_vc4_dev(drm
);
690 int dsi_index
= (uintptr_t)node
->info_ent
->data
;
691 struct vc4_dsi
*dsi
= (dsi_index
== 1 ? vc4
->dsi1
: NULL
);
697 if (dsi
->port
== 0) {
698 for (i
= 0; i
< ARRAY_SIZE(dsi0_regs
); i
++) {
699 seq_printf(m
, "0x%04x (%s): 0x%08x\n",
700 dsi0_regs
[i
].reg
, dsi0_regs
[i
].name
,
701 DSI_READ(dsi0_regs
[i
].reg
));
704 for (i
= 0; i
< ARRAY_SIZE(dsi1_regs
); i
++) {
705 seq_printf(m
, "0x%04x (%s): 0x%08x\n",
706 dsi1_regs
[i
].reg
, dsi1_regs
[i
].name
,
707 DSI_READ(dsi1_regs
[i
].reg
));
715 static void vc4_dsi_encoder_destroy(struct drm_encoder
*encoder
)
717 drm_encoder_cleanup(encoder
);
720 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs
= {
721 .destroy
= vc4_dsi_encoder_destroy
,
724 static void vc4_dsi_latch_ulps(struct vc4_dsi
*dsi
, bool latch
)
726 u32 afec0
= DSI_PORT_READ(PHY_AFEC0
);
729 afec0
|= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS
);
731 afec0
&= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS
);
733 DSI_PORT_WRITE(PHY_AFEC0
, afec0
);
736 /* Enters or exits Ultra Low Power State. */
737 static void vc4_dsi_ulps(struct vc4_dsi
*dsi
, bool ulps
)
739 bool non_continuous
= dsi
->mode_flags
& MIPI_DSI_CLOCK_NON_CONTINUOUS
;
740 u32 phyc_ulps
= ((non_continuous
? DSI_PORT_BIT(PHYC_CLANE_ULPS
) : 0) |
741 DSI_PHYC_DLANE0_ULPS
|
742 (dsi
->lanes
> 1 ? DSI_PHYC_DLANE1_ULPS
: 0) |
743 (dsi
->lanes
> 2 ? DSI_PHYC_DLANE2_ULPS
: 0) |
744 (dsi
->lanes
> 3 ? DSI_PHYC_DLANE3_ULPS
: 0));
745 u32 stat_ulps
= ((non_continuous
? DSI1_STAT_PHY_CLOCK_ULPS
: 0) |
746 DSI1_STAT_PHY_D0_ULPS
|
747 (dsi
->lanes
> 1 ? DSI1_STAT_PHY_D1_ULPS
: 0) |
748 (dsi
->lanes
> 2 ? DSI1_STAT_PHY_D2_ULPS
: 0) |
749 (dsi
->lanes
> 3 ? DSI1_STAT_PHY_D3_ULPS
: 0));
750 u32 stat_stop
= ((non_continuous
? DSI1_STAT_PHY_CLOCK_STOP
: 0) |
751 DSI1_STAT_PHY_D0_STOP
|
752 (dsi
->lanes
> 1 ? DSI1_STAT_PHY_D1_STOP
: 0) |
753 (dsi
->lanes
> 2 ? DSI1_STAT_PHY_D2_STOP
: 0) |
754 (dsi
->lanes
> 3 ? DSI1_STAT_PHY_D3_STOP
: 0));
757 DSI_PORT_WRITE(STAT
, stat_ulps
);
758 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) | phyc_ulps
);
759 ret
= wait_for((DSI_PORT_READ(STAT
) & stat_ulps
) == stat_ulps
, 200);
761 dev_warn(&dsi
->pdev
->dev
,
762 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
763 DSI_PORT_READ(STAT
));
764 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) & ~phyc_ulps
);
765 vc4_dsi_latch_ulps(dsi
, false);
769 /* The DSI module can't be disabled while the module is
770 * generating ULPS state. So, to be able to disable the
771 * module, we have the AFE latch the ULPS state and continue
772 * on to having the module enter STOP.
774 vc4_dsi_latch_ulps(dsi
, ulps
);
776 DSI_PORT_WRITE(STAT
, stat_stop
);
777 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) & ~phyc_ulps
);
778 ret
= wait_for((DSI_PORT_READ(STAT
) & stat_stop
) == stat_stop
, 200);
780 dev_warn(&dsi
->pdev
->dev
,
781 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
782 DSI_PORT_READ(STAT
));
783 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) & ~phyc_ulps
);
789 dsi_hs_timing(u32 ui_ns
, u32 ns
, u32 ui
)
791 /* The HS timings have to be rounded up to a multiple of 8
792 * because we're using the byte clock.
794 return roundup(ui
+ DIV_ROUND_UP(ns
, ui_ns
), 8);
797 /* ESC always runs at 100Mhz. */
798 #define ESC_TIME_NS 10
801 dsi_esc_timing(u32 ns
)
803 return DIV_ROUND_UP(ns
, ESC_TIME_NS
);
806 static void vc4_dsi_encoder_disable(struct drm_encoder
*encoder
)
808 struct vc4_dsi_encoder
*vc4_encoder
= to_vc4_dsi_encoder(encoder
);
809 struct vc4_dsi
*dsi
= vc4_encoder
->dsi
;
810 struct device
*dev
= &dsi
->pdev
->dev
;
812 vc4_dsi_ulps(dsi
, true);
814 clk_disable_unprepare(dsi
->pll_phy_clock
);
815 clk_disable_unprepare(dsi
->escape_clock
);
816 clk_disable_unprepare(dsi
->pixel_clock
);
821 /* Extends the mode's blank intervals to handle BCM2835's integer-only
824 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
825 * driver since most peripherals are hanging off of the PLLD_PER
826 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
827 * the pixel clock), only has an integer divider off of DSI.
829 * To get our panel mode to refresh at the expected 60Hz, we need to
830 * extend the horizontal blank time. This means we drive a
831 * higher-than-expected clock rate to the panel, but that's what the
834 static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder
*encoder
,
835 const struct drm_display_mode
*mode
,
836 struct drm_display_mode
*adjusted_mode
)
838 struct vc4_dsi_encoder
*vc4_encoder
= to_vc4_dsi_encoder(encoder
);
839 struct vc4_dsi
*dsi
= vc4_encoder
->dsi
;
840 struct clk
*phy_parent
= clk_get_parent(dsi
->pll_phy_clock
);
841 unsigned long parent_rate
= clk_get_rate(phy_parent
);
842 unsigned long pixel_clock_hz
= mode
->clock
* 1000;
843 unsigned long pll_clock
= pixel_clock_hz
* dsi
->divider
;
846 /* Find what divider gets us a faster clock than the requested
849 for (divider
= 1; divider
< 8; divider
++) {
850 if (parent_rate
/ divider
< pll_clock
) {
856 /* Now that we've picked a PLL divider, calculate back to its
859 pll_clock
= parent_rate
/ divider
;
860 pixel_clock_hz
= pll_clock
/ dsi
->divider
;
862 adjusted_mode
->clock
= pixel_clock_hz
/ 1000;
864 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
865 adjusted_mode
->htotal
= adjusted_mode
->clock
* mode
->htotal
/
867 adjusted_mode
->hsync_end
+= adjusted_mode
->htotal
- mode
->htotal
;
868 adjusted_mode
->hsync_start
+= adjusted_mode
->htotal
- mode
->htotal
;
873 static void vc4_dsi_encoder_enable(struct drm_encoder
*encoder
)
875 struct drm_display_mode
*mode
= &encoder
->crtc
->state
->adjusted_mode
;
876 struct vc4_dsi_encoder
*vc4_encoder
= to_vc4_dsi_encoder(encoder
);
877 struct vc4_dsi
*dsi
= vc4_encoder
->dsi
;
878 struct device
*dev
= &dsi
->pdev
->dev
;
879 bool debug_dump_regs
= false;
880 unsigned long hs_clock
;
882 /* Minimum LP state duration in escape clock cycles. */
883 u32 lpx
= dsi_esc_timing(60);
884 unsigned long pixel_clock_hz
= mode
->clock
* 1000;
885 unsigned long dsip_clock
;
886 unsigned long phy_clock
;
889 ret
= pm_runtime_get_sync(dev
);
891 DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi
->port
);
895 if (debug_dump_regs
) {
896 DRM_INFO("DSI regs before:\n");
897 vc4_dsi_dump_regs(dsi
);
900 /* Round up the clk_set_rate() request slightly, since
901 * PLLD_DSI1 is an integer divider and its rate selection will
904 phy_clock
= (pixel_clock_hz
+ 1000) * dsi
->divider
;
905 ret
= clk_set_rate(dsi
->pll_phy_clock
, phy_clock
);
907 dev_err(&dsi
->pdev
->dev
,
908 "Failed to set phy clock to %ld: %d\n", phy_clock
, ret
);
911 /* Reset the DSI and all its fifos. */
913 DSI_CTRL_SOFT_RESET_CFG
|
914 DSI_PORT_BIT(CTRL_RESET_FIFOS
));
917 DSI_CTRL_HSDT_EOT_DISABLE
|
918 DSI_CTRL_RX_LPDT_EOT_DISABLE
);
920 /* Clear all stat bits so we see what has happened during enable. */
921 DSI_PORT_WRITE(STAT
, DSI_PORT_READ(STAT
));
923 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
924 if (dsi
->port
== 0) {
925 u32 afec0
= (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ
) |
926 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ
));
929 afec0
|= DSI0_PHY_AFEC0_PD_DLANE1
;
931 if (!(dsi
->mode_flags
& MIPI_DSI_MODE_VIDEO
))
932 afec0
|= DSI0_PHY_AFEC0_RESET
;
934 DSI_PORT_WRITE(PHY_AFEC0
, afec0
);
936 DSI_PORT_WRITE(PHY_AFEC1
,
937 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1
) |
938 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0
) |
939 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE
));
941 u32 afec0
= (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ
) |
942 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ
) |
943 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE
) |
944 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0
) |
945 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1
) |
946 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2
) |
947 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3
));
950 afec0
|= DSI1_PHY_AFEC0_PD_DLANE3
;
952 afec0
|= DSI1_PHY_AFEC0_PD_DLANE2
;
954 afec0
|= DSI1_PHY_AFEC0_PD_DLANE1
;
956 afec0
|= DSI1_PHY_AFEC0_RESET
;
958 DSI_PORT_WRITE(PHY_AFEC0
, afec0
);
960 DSI_PORT_WRITE(PHY_AFEC1
, 0);
962 /* AFEC reset hold time */
966 ret
= clk_prepare_enable(dsi
->escape_clock
);
968 DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret
);
972 ret
= clk_prepare_enable(dsi
->pll_phy_clock
);
974 DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret
);
978 hs_clock
= clk_get_rate(dsi
->pll_phy_clock
);
980 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
981 * not the pixel clock rate. DSIxP take from the APHY's byte,
982 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
983 * that rate. Separately, a value derived from PIX_CLK_DIV
984 * and HS_CLKC is fed into the PV to divide down to the actual
985 * pixel clock for pushing pixels into DSI.
987 dsip_clock
= phy_clock
/ 8;
988 ret
= clk_set_rate(dsi
->pixel_clock
, dsip_clock
);
990 dev_err(dev
, "Failed to set pixel clock to %ldHz: %d\n",
994 ret
= clk_prepare_enable(dsi
->pixel_clock
);
996 DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret
);
1000 /* How many ns one DSI unit interval is. Note that the clock
1001 * is DDR, so there's an extra divide by 2.
1003 ui_ns
= DIV_ROUND_UP(500000000, hs_clock
);
1005 DSI_PORT_WRITE(HS_CLT0
,
1006 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 262, 0),
1007 DSI_HS_CLT0_CZERO
) |
1008 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 0, 8),
1010 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 38, 0),
1011 DSI_HS_CLT0_CPREP
));
1013 DSI_PORT_WRITE(HS_CLT1
,
1014 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 60, 0),
1015 DSI_HS_CLT1_CTRAIL
) |
1016 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 60, 52),
1017 DSI_HS_CLT1_CPOST
));
1019 DSI_PORT_WRITE(HS_CLT2
,
1020 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 1000000, 0),
1023 DSI_PORT_WRITE(HS_DLT3
,
1024 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 100, 0),
1026 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 105, 6),
1028 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 40, 4),
1031 DSI_PORT_WRITE(HS_DLT4
,
1032 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, lpx
* ESC_TIME_NS
, 0),
1034 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns
, 0, 8),
1035 dsi_hs_timing(ui_ns
, 60, 4)),
1036 DSI_HS_DLT4_TRAIL
) |
1037 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT
));
1039 /* T_INIT is how long STOP is driven after power-up to
1040 * indicate to the slave (also coming out of power-up) that
1041 * master init is complete, and should be greater than the
1042 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
1043 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1044 * T_INIT,SLAVE, while allowing protocols on top of it to give
1045 * greater minimums. The vc4 firmware uses an extremely
1046 * conservative 5ms, and we maintain that here.
1048 DSI_PORT_WRITE(HS_DLT5
, VC4_SET_FIELD(dsi_hs_timing(ui_ns
,
1049 5 * 1000 * 1000, 0),
1052 DSI_PORT_WRITE(HS_DLT6
,
1053 VC4_SET_FIELD(lpx
* 5, DSI_HS_DLT6_TA_GET
) |
1054 VC4_SET_FIELD(lpx
, DSI_HS_DLT6_TA_SURE
) |
1055 VC4_SET_FIELD(lpx
* 4, DSI_HS_DLT6_TA_GO
) |
1056 VC4_SET_FIELD(lpx
, DSI_HS_DLT6_LP_LPX
));
1058 DSI_PORT_WRITE(HS_DLT7
,
1059 VC4_SET_FIELD(dsi_esc_timing(1000000),
1060 DSI_HS_DLT7_LP_WUP
));
1062 DSI_PORT_WRITE(PHYC
,
1063 DSI_PHYC_DLANE0_ENABLE
|
1064 (dsi
->lanes
>= 2 ? DSI_PHYC_DLANE1_ENABLE
: 0) |
1065 (dsi
->lanes
>= 3 ? DSI_PHYC_DLANE2_ENABLE
: 0) |
1066 (dsi
->lanes
>= 4 ? DSI_PHYC_DLANE3_ENABLE
: 0) |
1067 DSI_PORT_BIT(PHYC_CLANE_ENABLE
) |
1068 ((dsi
->mode_flags
& MIPI_DSI_CLOCK_NON_CONTINUOUS
) ?
1069 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS
)) |
1071 VC4_SET_FIELD(lpx
- 1, DSI0_PHYC_ESC_CLK_LPDT
) :
1072 VC4_SET_FIELD(lpx
- 1, DSI1_PHYC_ESC_CLK_LPDT
)));
1074 DSI_PORT_WRITE(CTRL
,
1075 DSI_PORT_READ(CTRL
) |
1078 /* HS timeout in HS clock cycles: disabled. */
1079 DSI_PORT_WRITE(HSTX_TO_CNT
, 0);
1080 /* LP receive timeout in HS clocks. */
1081 DSI_PORT_WRITE(LPRX_TO_CNT
, 0xffffff);
1082 /* Bus turnaround timeout */
1083 DSI_PORT_WRITE(TA_TO_CNT
, 100000);
1084 /* Display reset sequence timeout */
1085 DSI_PORT_WRITE(PR_TO_CNT
, 100000);
1087 if (dsi
->mode_flags
& MIPI_DSI_MODE_VIDEO
) {
1088 DSI_PORT_WRITE(DISP0_CTRL
,
1089 VC4_SET_FIELD(dsi
->divider
,
1090 DSI_DISP0_PIX_CLK_DIV
) |
1091 VC4_SET_FIELD(dsi
->format
, DSI_DISP0_PFORMAT
) |
1092 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME
,
1093 DSI_DISP0_LP_STOP_CTRL
) |
1097 DSI_PORT_WRITE(DISP0_CTRL
,
1098 DSI_DISP0_COMMAND_MODE
|
1102 /* Set up DISP1 for transferring long command payloads through
1105 DSI_PORT_WRITE(DISP1_CTRL
,
1106 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE
,
1107 DSI_DISP1_PFORMAT
) |
1110 /* Ungate the block. */
1112 DSI_PORT_WRITE(CTRL
, DSI_PORT_READ(CTRL
) | DSI0_CTRL_CTRL0
);
1114 DSI_PORT_WRITE(CTRL
, DSI_PORT_READ(CTRL
) | DSI1_CTRL_EN
);
1116 /* Bring AFE out of reset. */
1117 if (dsi
->port
== 0) {
1119 DSI_PORT_WRITE(PHY_AFEC0
,
1120 DSI_PORT_READ(PHY_AFEC0
) &
1121 ~DSI1_PHY_AFEC0_RESET
);
1124 vc4_dsi_ulps(dsi
, false);
1126 if (debug_dump_regs
) {
1127 DRM_INFO("DSI regs after:\n");
1128 vc4_dsi_dump_regs(dsi
);
1132 static ssize_t
vc4_dsi_host_transfer(struct mipi_dsi_host
*host
,
1133 const struct mipi_dsi_msg
*msg
)
1135 struct vc4_dsi
*dsi
= host_to_dsi(host
);
1136 struct mipi_dsi_packet packet
;
1137 u32 pkth
= 0, pktc
= 0;
1139 bool is_long
= mipi_dsi_packet_format_is_long(msg
->type
);
1140 u32 cmd_fifo_len
= 0, pix_fifo_len
= 0;
1142 mipi_dsi_create_packet(&packet
, msg
);
1144 pkth
|= VC4_SET_FIELD(packet
.header
[0], DSI_TXPKT1H_BC_DT
);
1145 pkth
|= VC4_SET_FIELD(packet
.header
[1] |
1146 (packet
.header
[2] << 8),
1147 DSI_TXPKT1H_BC_PARAM
);
1149 /* Divide data across the various FIFOs we have available.
1150 * The command FIFO takes byte-oriented data, but is of
1151 * limited size. The pixel FIFO (never actually used for
1152 * pixel data in reality) is word oriented, and substantially
1153 * larger. So, we use the pixel FIFO for most of the data,
1154 * sending the residual bytes in the command FIFO at the start.
1156 * With this arrangement, the command FIFO will never get full.
1158 if (packet
.payload_length
<= 16) {
1159 cmd_fifo_len
= packet
.payload_length
;
1162 cmd_fifo_len
= (packet
.payload_length
%
1163 DSI_PIX_FIFO_WIDTH
);
1164 pix_fifo_len
= ((packet
.payload_length
- cmd_fifo_len
) /
1165 DSI_PIX_FIFO_WIDTH
);
1168 WARN_ON_ONCE(pix_fifo_len
>= DSI_PIX_FIFO_DEPTH
);
1170 pkth
|= VC4_SET_FIELD(cmd_fifo_len
, DSI_TXPKT1H_BC_CMDFIFO
);
1174 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX
,
1175 DSI_TXPKT1C_CMD_CTRL
);
1177 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX
,
1178 DSI_TXPKT1C_CMD_CTRL
);
1181 for (i
= 0; i
< cmd_fifo_len
; i
++)
1182 DSI_PORT_WRITE(TXPKT_CMD_FIFO
, packet
.payload
[i
]);
1183 for (i
= 0; i
< pix_fifo_len
; i
++) {
1184 const u8
*pix
= packet
.payload
+ cmd_fifo_len
+ i
* 4;
1186 DSI_PORT_WRITE(TXPKT_PIX_FIFO
,
1193 if (msg
->flags
& MIPI_DSI_MSG_USE_LPM
)
1194 pktc
|= DSI_TXPKT1C_CMD_MODE_LP
;
1196 pktc
|= DSI_TXPKT1C_CMD_TYPE_LONG
;
1198 /* Send one copy of the packet. Larger repeats are used for pixel
1199 * data in command mode.
1201 pktc
|= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT
);
1203 pktc
|= DSI_TXPKT1C_CMD_EN
;
1205 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY
,
1206 DSI_TXPKT1C_DISPLAY_NO
);
1208 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT
,
1209 DSI_TXPKT1C_DISPLAY_NO
);
1212 /* Enable the appropriate interrupt for the transfer completion. */
1213 dsi
->xfer_result
= 0;
1214 reinit_completion(&dsi
->xfer_completion
);
1215 DSI_PORT_WRITE(INT_STAT
, DSI1_INT_TXPKT1_DONE
| DSI1_INT_PHY_DIR_RTF
);
1217 DSI_PORT_WRITE(INT_EN
, (DSI1_INTERRUPTS_ALWAYS_ENABLED
|
1218 DSI1_INT_PHY_DIR_RTF
));
1220 DSI_PORT_WRITE(INT_EN
, (DSI1_INTERRUPTS_ALWAYS_ENABLED
|
1221 DSI1_INT_TXPKT1_DONE
));
1224 /* Send the packet. */
1225 DSI_PORT_WRITE(TXPKT1H
, pkth
);
1226 DSI_PORT_WRITE(TXPKT1C
, pktc
);
1228 if (!wait_for_completion_timeout(&dsi
->xfer_completion
,
1229 msecs_to_jiffies(1000))) {
1230 dev_err(&dsi
->pdev
->dev
, "transfer interrupt wait timeout");
1231 dev_err(&dsi
->pdev
->dev
, "instat: 0x%08x\n",
1232 DSI_PORT_READ(INT_STAT
));
1235 ret
= dsi
->xfer_result
;
1238 DSI_PORT_WRITE(INT_EN
, DSI1_INTERRUPTS_ALWAYS_ENABLED
);
1241 goto reset_fifo_and_return
;
1243 if (ret
== 0 && msg
->rx_len
) {
1244 u32 rxpkt1h
= DSI_PORT_READ(RXPKT1H
);
1245 u8
*msg_rx
= msg
->rx_buf
;
1247 if (rxpkt1h
& DSI_RXPKT1H_PKT_TYPE_LONG
) {
1248 u32 rxlen
= VC4_GET_FIELD(rxpkt1h
,
1249 DSI_RXPKT1H_BC_PARAM
);
1251 if (rxlen
!= msg
->rx_len
) {
1252 DRM_ERROR("DSI returned %db, expecting %db\n",
1253 rxlen
, (int)msg
->rx_len
);
1255 goto reset_fifo_and_return
;
1258 for (i
= 0; i
< msg
->rx_len
; i
++)
1259 msg_rx
[i
] = DSI_READ(DSI1_RXPKT_FIFO
);
1261 /* FINISHME: Handle AWER */
1263 msg_rx
[0] = VC4_GET_FIELD(rxpkt1h
,
1264 DSI_RXPKT1H_SHORT_0
);
1265 if (msg
->rx_len
> 1) {
1266 msg_rx
[1] = VC4_GET_FIELD(rxpkt1h
,
1267 DSI_RXPKT1H_SHORT_1
);
1274 reset_fifo_and_return
:
1275 DRM_ERROR("DSI transfer failed, resetting: %d\n", ret
);
1277 DSI_PORT_WRITE(TXPKT1C
, DSI_PORT_READ(TXPKT1C
) & ~DSI_TXPKT1C_CMD_EN
);
1279 DSI_PORT_WRITE(CTRL
,
1280 DSI_PORT_READ(CTRL
) |
1281 DSI_PORT_BIT(CTRL_RESET_FIFOS
));
1283 DSI_PORT_WRITE(TXPKT1C
, 0);
1284 DSI_PORT_WRITE(INT_EN
, DSI1_INTERRUPTS_ALWAYS_ENABLED
);
1288 static int vc4_dsi_host_attach(struct mipi_dsi_host
*host
,
1289 struct mipi_dsi_device
*device
)
1291 struct vc4_dsi
*dsi
= host_to_dsi(host
);
1293 dsi
->lanes
= device
->lanes
;
1294 dsi
->channel
= device
->channel
;
1295 dsi
->mode_flags
= device
->mode_flags
;
1297 switch (device
->format
) {
1298 case MIPI_DSI_FMT_RGB888
:
1299 dsi
->format
= DSI_PFORMAT_RGB888
;
1300 dsi
->divider
= 24 / dsi
->lanes
;
1302 case MIPI_DSI_FMT_RGB666
:
1303 dsi
->format
= DSI_PFORMAT_RGB666
;
1304 dsi
->divider
= 24 / dsi
->lanes
;
1306 case MIPI_DSI_FMT_RGB666_PACKED
:
1307 dsi
->format
= DSI_PFORMAT_RGB666_PACKED
;
1308 dsi
->divider
= 18 / dsi
->lanes
;
1310 case MIPI_DSI_FMT_RGB565
:
1311 dsi
->format
= DSI_PFORMAT_RGB565
;
1312 dsi
->divider
= 16 / dsi
->lanes
;
1315 dev_err(&dsi
->pdev
->dev
, "Unknown DSI format: %d.\n",
1320 if (!(dsi
->mode_flags
& MIPI_DSI_MODE_VIDEO
)) {
1321 dev_err(&dsi
->pdev
->dev
,
1322 "Only VIDEO mode panels supported currently.\n");
1329 static int vc4_dsi_host_detach(struct mipi_dsi_host
*host
,
1330 struct mipi_dsi_device
*device
)
1335 static const struct mipi_dsi_host_ops vc4_dsi_host_ops
= {
1336 .attach
= vc4_dsi_host_attach
,
1337 .detach
= vc4_dsi_host_detach
,
1338 .transfer
= vc4_dsi_host_transfer
,
1341 static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs
= {
1342 .disable
= vc4_dsi_encoder_disable
,
1343 .enable
= vc4_dsi_encoder_enable
,
1344 .mode_fixup
= vc4_dsi_encoder_mode_fixup
,
1347 static const struct of_device_id vc4_dsi_dt_match
[] = {
1348 { .compatible
= "brcm,bcm2835-dsi1", (void *)(uintptr_t)1 },
1352 static void dsi_handle_error(struct vc4_dsi
*dsi
,
1353 irqreturn_t
*ret
, u32 stat
, u32 bit
,
1359 DRM_ERROR("DSI%d: %s error\n", dsi
->port
, type
);
1364 * Initial handler for port 1 where we need the reg_dma workaround.
1365 * The register DMA writes sleep, so we can't do it in the top half.
1366 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1367 * parent interrupt contrller until our interrupt thread is done.
1369 static irqreturn_t
vc4_dsi_irq_defer_to_thread_handler(int irq
, void *data
)
1371 struct vc4_dsi
*dsi
= data
;
1372 u32 stat
= DSI_PORT_READ(INT_STAT
);
1377 return IRQ_WAKE_THREAD
;
1381 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1382 * 1 where we need the reg_dma workaround.
1384 static irqreturn_t
vc4_dsi_irq_handler(int irq
, void *data
)
1386 struct vc4_dsi
*dsi
= data
;
1387 u32 stat
= DSI_PORT_READ(INT_STAT
);
1388 irqreturn_t ret
= IRQ_NONE
;
1390 DSI_PORT_WRITE(INT_STAT
, stat
);
1392 dsi_handle_error(dsi
, &ret
, stat
,
1393 DSI1_INT_ERR_SYNC_ESC
, "LPDT sync");
1394 dsi_handle_error(dsi
, &ret
, stat
,
1395 DSI1_INT_ERR_CONTROL
, "data lane 0 sequence");
1396 dsi_handle_error(dsi
, &ret
, stat
,
1397 DSI1_INT_ERR_CONT_LP0
, "LP0 contention");
1398 dsi_handle_error(dsi
, &ret
, stat
,
1399 DSI1_INT_ERR_CONT_LP1
, "LP1 contention");
1400 dsi_handle_error(dsi
, &ret
, stat
,
1401 DSI1_INT_HSTX_TO
, "HSTX timeout");
1402 dsi_handle_error(dsi
, &ret
, stat
,
1403 DSI1_INT_LPRX_TO
, "LPRX timeout");
1404 dsi_handle_error(dsi
, &ret
, stat
,
1405 DSI1_INT_TA_TO
, "turnaround timeout");
1406 dsi_handle_error(dsi
, &ret
, stat
,
1407 DSI1_INT_PR_TO
, "peripheral reset timeout");
1409 if (stat
& (DSI1_INT_TXPKT1_DONE
| DSI1_INT_PHY_DIR_RTF
)) {
1410 complete(&dsi
->xfer_completion
);
1412 } else if (stat
& DSI1_INT_HSTX_TO
) {
1413 complete(&dsi
->xfer_completion
);
1414 dsi
->xfer_result
= -ETIMEDOUT
;
1422 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1423 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1427 vc4_dsi_init_phy_clocks(struct vc4_dsi
*dsi
)
1429 struct device
*dev
= &dsi
->pdev
->dev
;
1430 const char *parent_name
= __clk_get_name(dsi
->pll_phy_clock
);
1431 static const struct {
1432 const char *dsi0_name
, *dsi1_name
;
1435 { "dsi0_byte", "dsi1_byte", 8 },
1436 { "dsi0_ddr2", "dsi1_ddr2", 4 },
1437 { "dsi0_ddr", "dsi1_ddr", 2 },
1441 dsi
->clk_onecell
= devm_kzalloc(dev
,
1442 sizeof(*dsi
->clk_onecell
) +
1443 ARRAY_SIZE(phy_clocks
) *
1444 sizeof(struct clk_hw
*),
1446 if (!dsi
->clk_onecell
)
1448 dsi
->clk_onecell
->num
= ARRAY_SIZE(phy_clocks
);
1450 for (i
= 0; i
< ARRAY_SIZE(phy_clocks
); i
++) {
1451 struct clk_fixed_factor
*fix
= &dsi
->phy_clocks
[i
];
1452 struct clk_init_data init
;
1455 /* We just use core fixed factor clock ops for the PHY
1456 * clocks. The clocks are actually gated by the
1457 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1458 * setting if we use the DDR/DDR2 clocks. However,
1459 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1460 * setting both our parent DSI PLL's rate and this
1461 * clock's rate, so it knows if DDR/DDR2 are going to
1462 * be used and could enable the gates itself.
1465 fix
->div
= phy_clocks
[i
].div
;
1466 fix
->hw
.init
= &init
;
1468 memset(&init
, 0, sizeof(init
));
1469 init
.parent_names
= &parent_name
;
1470 init
.num_parents
= 1;
1472 init
.name
= phy_clocks
[i
].dsi1_name
;
1474 init
.name
= phy_clocks
[i
].dsi0_name
;
1475 init
.ops
= &clk_fixed_factor_ops
;
1477 ret
= devm_clk_hw_register(dev
, &fix
->hw
);
1481 dsi
->clk_onecell
->hws
[i
] = &fix
->hw
;
1484 return of_clk_add_hw_provider(dev
->of_node
,
1485 of_clk_hw_onecell_get
,
1489 static int vc4_dsi_bind(struct device
*dev
, struct device
*master
, void *data
)
1491 struct platform_device
*pdev
= to_platform_device(dev
);
1492 struct drm_device
*drm
= dev_get_drvdata(master
);
1493 struct vc4_dev
*vc4
= to_vc4_dev(drm
);
1494 struct vc4_dsi
*dsi
= dev_get_drvdata(dev
);
1495 struct vc4_dsi_encoder
*vc4_dsi_encoder
;
1496 struct drm_panel
*panel
;
1497 const struct of_device_id
*match
;
1498 dma_cap_mask_t dma_mask
;
1501 match
= of_match_device(vc4_dsi_dt_match
, dev
);
1505 dsi
->port
= (uintptr_t)match
->data
;
1507 vc4_dsi_encoder
= devm_kzalloc(dev
, sizeof(*vc4_dsi_encoder
),
1509 if (!vc4_dsi_encoder
)
1511 vc4_dsi_encoder
->base
.type
= VC4_ENCODER_TYPE_DSI1
;
1512 vc4_dsi_encoder
->dsi
= dsi
;
1513 dsi
->encoder
= &vc4_dsi_encoder
->base
.base
;
1515 dsi
->regs
= vc4_ioremap_regs(pdev
, 0);
1516 if (IS_ERR(dsi
->regs
))
1517 return PTR_ERR(dsi
->regs
);
1519 if (DSI_PORT_READ(ID
) != DSI_ID_VALUE
) {
1520 dev_err(dev
, "Port returned 0x%08x for ID instead of 0x%08x\n",
1521 DSI_PORT_READ(ID
), DSI_ID_VALUE
);
1525 /* DSI1 has a broken AXI slave that doesn't respond to writes
1526 * from the ARM. It does handle writes from the DMA engine,
1527 * so set up a channel for talking to it.
1529 if (dsi
->port
== 1) {
1530 dsi
->reg_dma_mem
= dma_alloc_coherent(dev
, 4,
1531 &dsi
->reg_dma_paddr
,
1533 if (!dsi
->reg_dma_mem
) {
1534 DRM_ERROR("Failed to get DMA memory\n");
1538 dma_cap_zero(dma_mask
);
1539 dma_cap_set(DMA_MEMCPY
, dma_mask
);
1540 dsi
->reg_dma_chan
= dma_request_chan_by_mask(&dma_mask
);
1541 if (IS_ERR(dsi
->reg_dma_chan
)) {
1542 ret
= PTR_ERR(dsi
->reg_dma_chan
);
1543 if (ret
!= -EPROBE_DEFER
)
1544 DRM_ERROR("Failed to get DMA channel: %d\n",
1549 /* Get the physical address of the device's registers. The
1550 * struct resource for the regs gives us the bus address
1553 dsi
->reg_paddr
= be32_to_cpup(of_get_address(dev
->of_node
,
1557 init_completion(&dsi
->xfer_completion
);
1558 /* At startup enable error-reporting interrupts and nothing else. */
1559 DSI_PORT_WRITE(INT_EN
, DSI1_INTERRUPTS_ALWAYS_ENABLED
);
1560 /* Clear any existing interrupt state. */
1561 DSI_PORT_WRITE(INT_STAT
, DSI_PORT_READ(INT_STAT
));
1563 if (dsi
->reg_dma_mem
)
1564 ret
= devm_request_threaded_irq(dev
, platform_get_irq(pdev
, 0),
1565 vc4_dsi_irq_defer_to_thread_handler
,
1566 vc4_dsi_irq_handler
,
1570 ret
= devm_request_irq(dev
, platform_get_irq(pdev
, 0),
1571 vc4_dsi_irq_handler
, 0, "vc4 dsi", dsi
);
1573 if (ret
!= -EPROBE_DEFER
)
1574 dev_err(dev
, "Failed to get interrupt: %d\n", ret
);
1578 dsi
->escape_clock
= devm_clk_get(dev
, "escape");
1579 if (IS_ERR(dsi
->escape_clock
)) {
1580 ret
= PTR_ERR(dsi
->escape_clock
);
1581 if (ret
!= -EPROBE_DEFER
)
1582 dev_err(dev
, "Failed to get escape clock: %d\n", ret
);
1586 dsi
->pll_phy_clock
= devm_clk_get(dev
, "phy");
1587 if (IS_ERR(dsi
->pll_phy_clock
)) {
1588 ret
= PTR_ERR(dsi
->pll_phy_clock
);
1589 if (ret
!= -EPROBE_DEFER
)
1590 dev_err(dev
, "Failed to get phy clock: %d\n", ret
);
1594 dsi
->pixel_clock
= devm_clk_get(dev
, "pixel");
1595 if (IS_ERR(dsi
->pixel_clock
)) {
1596 ret
= PTR_ERR(dsi
->pixel_clock
);
1597 if (ret
!= -EPROBE_DEFER
)
1598 dev_err(dev
, "Failed to get pixel clock: %d\n", ret
);
1602 ret
= drm_of_find_panel_or_bridge(dev
->of_node
, 0, 0,
1603 &panel
, &dsi
->bridge
);
1608 dsi
->bridge
= devm_drm_panel_bridge_add(dev
, panel
,
1609 DRM_MODE_CONNECTOR_DSI
);
1610 if (IS_ERR(dsi
->bridge
))
1611 return PTR_ERR(dsi
->bridge
);
1614 /* The esc clock rate is supposed to always be 100Mhz. */
1615 ret
= clk_set_rate(dsi
->escape_clock
, 100 * 1000000);
1617 dev_err(dev
, "Failed to set esc clock: %d\n", ret
);
1621 ret
= vc4_dsi_init_phy_clocks(dsi
);
1628 drm_encoder_init(drm
, dsi
->encoder
, &vc4_dsi_encoder_funcs
,
1629 DRM_MODE_ENCODER_DSI
, NULL
);
1630 drm_encoder_helper_add(dsi
->encoder
, &vc4_dsi_encoder_helper_funcs
);
1632 ret
= drm_bridge_attach(dsi
->encoder
, dsi
->bridge
, NULL
);
1634 dev_err(dev
, "bridge attach failed: %d\n", ret
);
1638 pm_runtime_enable(dev
);
1643 static void vc4_dsi_unbind(struct device
*dev
, struct device
*master
,
1646 struct drm_device
*drm
= dev_get_drvdata(master
);
1647 struct vc4_dev
*vc4
= to_vc4_dev(drm
);
1648 struct vc4_dsi
*dsi
= dev_get_drvdata(dev
);
1650 pm_runtime_disable(dev
);
1652 vc4_dsi_encoder_destroy(dsi
->encoder
);
1658 static const struct component_ops vc4_dsi_ops
= {
1659 .bind
= vc4_dsi_bind
,
1660 .unbind
= vc4_dsi_unbind
,
1663 static int vc4_dsi_dev_probe(struct platform_device
*pdev
)
1665 struct device
*dev
= &pdev
->dev
;
1666 struct vc4_dsi
*dsi
;
1669 dsi
= devm_kzalloc(dev
, sizeof(*dsi
), GFP_KERNEL
);
1672 dev_set_drvdata(dev
, dsi
);
1676 /* Note, the initialization sequence for DSI and panels is
1677 * tricky. The component bind above won't get past its
1678 * -EPROBE_DEFER until the panel/bridge probes. The
1679 * panel/bridge will return -EPROBE_DEFER until it has a
1680 * mipi_dsi_host to register its device to. So, we register
1681 * the host during pdev probe time, so vc4 as a whole can then
1682 * -EPROBE_DEFER its component bind process until the panel
1683 * successfully attaches.
1685 dsi
->dsi_host
.ops
= &vc4_dsi_host_ops
;
1686 dsi
->dsi_host
.dev
= dev
;
1687 mipi_dsi_host_register(&dsi
->dsi_host
);
1689 ret
= component_add(&pdev
->dev
, &vc4_dsi_ops
);
1691 mipi_dsi_host_unregister(&dsi
->dsi_host
);
1698 static int vc4_dsi_dev_remove(struct platform_device
*pdev
)
1700 struct device
*dev
= &pdev
->dev
;
1701 struct vc4_dsi
*dsi
= dev_get_drvdata(dev
);
1703 component_del(&pdev
->dev
, &vc4_dsi_ops
);
1704 mipi_dsi_host_unregister(&dsi
->dsi_host
);
1709 struct platform_driver vc4_dsi_driver
= {
1710 .probe
= vc4_dsi_dev_probe
,
1711 .remove
= vc4_dsi_dev_remove
,
1714 .of_match_table
= vc4_dsi_dt_match
,