bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / i2c / busses / i2c-bcm-iproc.c
blob4c8c3bc4669c8b690ce78d7762a6364dc62e0ee5
1 /*
2 * Copyright (C) 2014 Broadcom Corporation
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation version 2.
8 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
9 * kind, whether express or implied; without even the implied warranty
10 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
14 #include <linux/delay.h>
15 #include <linux/i2c.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
23 #define CFG_OFFSET 0x00
24 #define CFG_RESET_SHIFT 31
25 #define CFG_EN_SHIFT 30
26 #define CFG_M_RETRY_CNT_SHIFT 16
27 #define CFG_M_RETRY_CNT_MASK 0x0f
29 #define TIM_CFG_OFFSET 0x04
30 #define TIM_CFG_MODE_400_SHIFT 31
32 #define M_FIFO_CTRL_OFFSET 0x0c
33 #define M_FIFO_RX_FLUSH_SHIFT 31
34 #define M_FIFO_TX_FLUSH_SHIFT 30
35 #define M_FIFO_RX_CNT_SHIFT 16
36 #define M_FIFO_RX_CNT_MASK 0x7f
37 #define M_FIFO_RX_THLD_SHIFT 8
38 #define M_FIFO_RX_THLD_MASK 0x3f
40 #define M_CMD_OFFSET 0x30
41 #define M_CMD_START_BUSY_SHIFT 31
42 #define M_CMD_STATUS_SHIFT 25
43 #define M_CMD_STATUS_MASK 0x07
44 #define M_CMD_STATUS_SUCCESS 0x0
45 #define M_CMD_STATUS_LOST_ARB 0x1
46 #define M_CMD_STATUS_NACK_ADDR 0x2
47 #define M_CMD_STATUS_NACK_DATA 0x3
48 #define M_CMD_STATUS_TIMEOUT 0x4
49 #define M_CMD_PROTOCOL_SHIFT 9
50 #define M_CMD_PROTOCOL_MASK 0xf
51 #define M_CMD_PROTOCOL_BLK_WR 0x7
52 #define M_CMD_PROTOCOL_BLK_RD 0x8
53 #define M_CMD_PEC_SHIFT 8
54 #define M_CMD_RD_CNT_SHIFT 0
55 #define M_CMD_RD_CNT_MASK 0xff
57 #define IE_OFFSET 0x38
58 #define IE_M_RX_FIFO_FULL_SHIFT 31
59 #define IE_M_RX_THLD_SHIFT 30
60 #define IE_M_START_BUSY_SHIFT 28
61 #define IE_M_TX_UNDERRUN_SHIFT 27
63 #define IS_OFFSET 0x3c
64 #define IS_M_RX_FIFO_FULL_SHIFT 31
65 #define IS_M_RX_THLD_SHIFT 30
66 #define IS_M_START_BUSY_SHIFT 28
67 #define IS_M_TX_UNDERRUN_SHIFT 27
69 #define M_TX_OFFSET 0x40
70 #define M_TX_WR_STATUS_SHIFT 31
71 #define M_TX_DATA_SHIFT 0
72 #define M_TX_DATA_MASK 0xff
74 #define M_RX_OFFSET 0x44
75 #define M_RX_STATUS_SHIFT 30
76 #define M_RX_STATUS_MASK 0x03
77 #define M_RX_PEC_ERR_SHIFT 29
78 #define M_RX_DATA_SHIFT 0
79 #define M_RX_DATA_MASK 0xff
81 #define I2C_TIMEOUT_MSEC 50000
82 #define M_TX_RX_FIFO_SIZE 64
84 enum bus_speed_index {
85 I2C_SPD_100K = 0,
86 I2C_SPD_400K,
89 struct bcm_iproc_i2c_dev {
90 struct device *device;
91 int irq;
93 void __iomem *base;
95 struct i2c_adapter adapter;
96 unsigned int bus_speed;
98 struct completion done;
99 int xfer_is_done;
101 struct i2c_msg *msg;
103 /* bytes that have been transferred */
104 unsigned int tx_bytes;
108 * Can be expanded in the future if more interrupt status bits are utilized
110 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT))
112 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
114 struct bcm_iproc_i2c_dev *iproc_i2c = data;
115 u32 status = readl(iproc_i2c->base + IS_OFFSET);
117 status &= ISR_MASK;
119 if (!status)
120 return IRQ_NONE;
122 /* TX FIFO is empty and we have more data to send */
123 if (status & BIT(IS_M_TX_UNDERRUN_SHIFT)) {
124 struct i2c_msg *msg = iproc_i2c->msg;
125 unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
126 unsigned int i;
127 u32 val;
129 /* can only fill up to the FIFO size */
130 tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
131 for (i = 0; i < tx_bytes; i++) {
132 /* start from where we left over */
133 unsigned int idx = iproc_i2c->tx_bytes + i;
135 val = msg->buf[idx];
137 /* mark the last byte */
138 if (idx == msg->len - 1) {
139 u32 tmp;
141 val |= BIT(M_TX_WR_STATUS_SHIFT);
144 * Since this is the last byte, we should
145 * now disable TX FIFO underrun interrupt
147 tmp = readl(iproc_i2c->base + IE_OFFSET);
148 tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
149 writel(tmp, iproc_i2c->base + IE_OFFSET);
152 /* load data into TX FIFO */
153 writel(val, iproc_i2c->base + M_TX_OFFSET);
155 /* update number of transferred bytes */
156 iproc_i2c->tx_bytes += tx_bytes;
159 if (status & BIT(IS_M_START_BUSY_SHIFT)) {
160 iproc_i2c->xfer_is_done = 1;
161 complete(&iproc_i2c->done);
164 writel(status, iproc_i2c->base + IS_OFFSET);
166 return IRQ_HANDLED;
169 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
171 u32 val;
173 /* put controller in reset */
174 val = readl(iproc_i2c->base + CFG_OFFSET);
175 val |= 1 << CFG_RESET_SHIFT;
176 val &= ~(1 << CFG_EN_SHIFT);
177 writel(val, iproc_i2c->base + CFG_OFFSET);
179 /* wait 100 usec per spec */
180 udelay(100);
182 /* bring controller out of reset */
183 val &= ~(1 << CFG_RESET_SHIFT);
184 writel(val, iproc_i2c->base + CFG_OFFSET);
186 /* flush TX/RX FIFOs and set RX FIFO threshold to zero */
187 val = (1 << M_FIFO_RX_FLUSH_SHIFT) | (1 << M_FIFO_TX_FLUSH_SHIFT);
188 writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
189 /* disable all interrupts */
190 writel(0, iproc_i2c->base + IE_OFFSET);
192 /* clear all pending interrupts */
193 writel(0xffffffff, iproc_i2c->base + IS_OFFSET);
195 return 0;
198 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
199 bool enable)
201 u32 val;
203 val = readl(iproc_i2c->base + CFG_OFFSET);
204 if (enable)
205 val |= BIT(CFG_EN_SHIFT);
206 else
207 val &= ~BIT(CFG_EN_SHIFT);
208 writel(val, iproc_i2c->base + CFG_OFFSET);
211 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
212 struct i2c_msg *msg)
214 u32 val;
216 val = readl(iproc_i2c->base + M_CMD_OFFSET);
217 val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
219 switch (val) {
220 case M_CMD_STATUS_SUCCESS:
221 return 0;
223 case M_CMD_STATUS_LOST_ARB:
224 dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
225 return -EAGAIN;
227 case M_CMD_STATUS_NACK_ADDR:
228 dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
229 return -ENXIO;
231 case M_CMD_STATUS_NACK_DATA:
232 dev_dbg(iproc_i2c->device, "NAK data\n");
233 return -ENXIO;
235 case M_CMD_STATUS_TIMEOUT:
236 dev_dbg(iproc_i2c->device, "bus timeout\n");
237 return -ETIMEDOUT;
239 default:
240 dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
242 /* re-initialize i2c for recovery */
243 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
244 bcm_iproc_i2c_init(iproc_i2c);
245 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
247 return -EIO;
251 static int bcm_iproc_i2c_xfer_single_msg(struct bcm_iproc_i2c_dev *iproc_i2c,
252 struct i2c_msg *msg)
254 int ret, i;
255 u8 addr;
256 u32 val;
257 unsigned int tx_bytes;
258 unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
260 /* check if bus is busy */
261 if (!!(readl(iproc_i2c->base + M_CMD_OFFSET) &
262 BIT(M_CMD_START_BUSY_SHIFT))) {
263 dev_warn(iproc_i2c->device, "bus is busy\n");
264 return -EBUSY;
267 iproc_i2c->msg = msg;
269 /* format and load slave address into the TX FIFO */
270 addr = i2c_8bit_addr_from_msg(msg);
271 writel(addr, iproc_i2c->base + M_TX_OFFSET);
274 * For a write transaction, load data into the TX FIFO. Only allow
275 * loading up to TX FIFO size - 1 bytes of data since the first byte
276 * has been used up by the slave address
278 tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
279 if (!(msg->flags & I2C_M_RD)) {
280 for (i = 0; i < tx_bytes; i++) {
281 val = msg->buf[i];
283 /* mark the last byte */
284 if (i == msg->len - 1)
285 val |= 1 << M_TX_WR_STATUS_SHIFT;
287 writel(val, iproc_i2c->base + M_TX_OFFSET);
289 iproc_i2c->tx_bytes = tx_bytes;
292 /* mark as incomplete before starting the transaction */
293 reinit_completion(&iproc_i2c->done);
294 iproc_i2c->xfer_is_done = 0;
297 * Enable the "start busy" interrupt, which will be triggered after the
298 * transaction is done, i.e., the internal start_busy bit, transitions
299 * from 1 to 0.
301 val = BIT(IE_M_START_BUSY_SHIFT);
304 * If TX data size is larger than the TX FIFO, need to enable TX
305 * underrun interrupt, which will be triggerred when the TX FIFO is
306 * empty. When that happens we can then pump more data into the FIFO
308 if (!(msg->flags & I2C_M_RD) &&
309 msg->len > iproc_i2c->tx_bytes)
310 val |= BIT(IE_M_TX_UNDERRUN_SHIFT);
312 writel(val, iproc_i2c->base + IE_OFFSET);
315 * Now we can activate the transfer. For a read operation, specify the
316 * number of bytes to read
318 val = BIT(M_CMD_START_BUSY_SHIFT);
319 if (msg->flags & I2C_M_RD) {
320 val |= (M_CMD_PROTOCOL_BLK_RD << M_CMD_PROTOCOL_SHIFT) |
321 (msg->len << M_CMD_RD_CNT_SHIFT);
322 } else {
323 val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
325 writel(val, iproc_i2c->base + M_CMD_OFFSET);
327 time_left = wait_for_completion_timeout(&iproc_i2c->done, time_left);
329 /* disable all interrupts */
330 writel(0, iproc_i2c->base + IE_OFFSET);
331 /* read it back to flush the write */
332 readl(iproc_i2c->base + IE_OFFSET);
334 /* make sure the interrupt handler isn't running */
335 synchronize_irq(iproc_i2c->irq);
337 if (!time_left && !iproc_i2c->xfer_is_done) {
338 dev_err(iproc_i2c->device, "transaction timed out\n");
340 /* flush FIFOs */
341 val = (1 << M_FIFO_RX_FLUSH_SHIFT) |
342 (1 << M_FIFO_TX_FLUSH_SHIFT);
343 writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
344 return -ETIMEDOUT;
347 ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
348 if (ret) {
349 /* flush both TX/RX FIFOs */
350 val = (1 << M_FIFO_RX_FLUSH_SHIFT) |
351 (1 << M_FIFO_TX_FLUSH_SHIFT);
352 writel(val, iproc_i2c->base + M_FIFO_CTRL_OFFSET);
353 return ret;
357 * For a read operation, we now need to load the data from FIFO
358 * into the memory buffer
360 if (msg->flags & I2C_M_RD) {
361 for (i = 0; i < msg->len; i++) {
362 msg->buf[i] = (readl(iproc_i2c->base + M_RX_OFFSET) >>
363 M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
367 return 0;
370 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
371 struct i2c_msg msgs[], int num)
373 struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
374 int ret, i;
376 /* go through all messages */
377 for (i = 0; i < num; i++) {
378 ret = bcm_iproc_i2c_xfer_single_msg(iproc_i2c, &msgs[i]);
379 if (ret) {
380 dev_dbg(iproc_i2c->device, "xfer failed\n");
381 return ret;
385 return num;
388 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
390 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
393 static const struct i2c_algorithm bcm_iproc_algo = {
394 .master_xfer = bcm_iproc_i2c_xfer,
395 .functionality = bcm_iproc_i2c_functionality,
398 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
399 /* need to reserve one byte in the FIFO for the slave address */
400 .max_read_len = M_TX_RX_FIFO_SIZE - 1,
403 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
405 unsigned int bus_speed;
406 u32 val;
407 int ret = of_property_read_u32(iproc_i2c->device->of_node,
408 "clock-frequency", &bus_speed);
409 if (ret < 0) {
410 dev_info(iproc_i2c->device,
411 "unable to interpret clock-frequency DT property\n");
412 bus_speed = 100000;
415 if (bus_speed < 100000) {
416 dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
417 bus_speed);
418 dev_err(iproc_i2c->device,
419 "valid speeds are 100khz and 400khz\n");
420 return -EINVAL;
421 } else if (bus_speed < 400000) {
422 bus_speed = 100000;
423 } else {
424 bus_speed = 400000;
427 iproc_i2c->bus_speed = bus_speed;
428 val = readl(iproc_i2c->base + TIM_CFG_OFFSET);
429 val &= ~(1 << TIM_CFG_MODE_400_SHIFT);
430 val |= (bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
431 writel(val, iproc_i2c->base + TIM_CFG_OFFSET);
433 dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
435 return 0;
438 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
440 int irq, ret = 0;
441 struct bcm_iproc_i2c_dev *iproc_i2c;
442 struct i2c_adapter *adap;
443 struct resource *res;
445 iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
446 GFP_KERNEL);
447 if (!iproc_i2c)
448 return -ENOMEM;
450 platform_set_drvdata(pdev, iproc_i2c);
451 iproc_i2c->device = &pdev->dev;
452 init_completion(&iproc_i2c->done);
454 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
455 iproc_i2c->base = devm_ioremap_resource(iproc_i2c->device, res);
456 if (IS_ERR(iproc_i2c->base))
457 return PTR_ERR(iproc_i2c->base);
459 ret = bcm_iproc_i2c_init(iproc_i2c);
460 if (ret)
461 return ret;
463 ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
464 if (ret)
465 return ret;
467 irq = platform_get_irq(pdev, 0);
468 if (irq <= 0) {
469 dev_err(iproc_i2c->device, "no irq resource\n");
470 return irq;
472 iproc_i2c->irq = irq;
474 ret = devm_request_irq(iproc_i2c->device, irq, bcm_iproc_i2c_isr, 0,
475 pdev->name, iproc_i2c);
476 if (ret < 0) {
477 dev_err(iproc_i2c->device, "unable to request irq %i\n", irq);
478 return ret;
481 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
483 adap = &iproc_i2c->adapter;
484 i2c_set_adapdata(adap, iproc_i2c);
485 strlcpy(adap->name, "Broadcom iProc I2C adapter", sizeof(adap->name));
486 adap->algo = &bcm_iproc_algo;
487 adap->quirks = &bcm_iproc_i2c_quirks;
488 adap->dev.parent = &pdev->dev;
489 adap->dev.of_node = pdev->dev.of_node;
491 return i2c_add_adapter(adap);
494 static int bcm_iproc_i2c_remove(struct platform_device *pdev)
496 struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
498 /* make sure there's no pending interrupt when we remove the adapter */
499 writel(0, iproc_i2c->base + IE_OFFSET);
500 readl(iproc_i2c->base + IE_OFFSET);
501 synchronize_irq(iproc_i2c->irq);
503 i2c_del_adapter(&iproc_i2c->adapter);
504 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
506 return 0;
509 #ifdef CONFIG_PM_SLEEP
511 static int bcm_iproc_i2c_suspend(struct device *dev)
513 struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
515 /* make sure there's no pending interrupt when we go into suspend */
516 writel(0, iproc_i2c->base + IE_OFFSET);
517 readl(iproc_i2c->base + IE_OFFSET);
518 synchronize_irq(iproc_i2c->irq);
520 /* now disable the controller */
521 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
523 return 0;
526 static int bcm_iproc_i2c_resume(struct device *dev)
528 struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
529 int ret;
530 u32 val;
533 * Power domain could have been shut off completely in system deep
534 * sleep, so re-initialize the block here
536 ret = bcm_iproc_i2c_init(iproc_i2c);
537 if (ret)
538 return ret;
540 /* configure to the desired bus speed */
541 val = readl(iproc_i2c->base + TIM_CFG_OFFSET);
542 val &= ~(1 << TIM_CFG_MODE_400_SHIFT);
543 val |= (iproc_i2c->bus_speed == 400000) << TIM_CFG_MODE_400_SHIFT;
544 writel(val, iproc_i2c->base + TIM_CFG_OFFSET);
546 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
548 return 0;
551 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
552 .suspend_late = &bcm_iproc_i2c_suspend,
553 .resume_early = &bcm_iproc_i2c_resume
556 #define BCM_IPROC_I2C_PM_OPS (&bcm_iproc_i2c_pm_ops)
557 #else
558 #define BCM_IPROC_I2C_PM_OPS NULL
559 #endif /* CONFIG_PM_SLEEP */
561 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
562 { .compatible = "brcm,iproc-i2c" },
563 { /* sentinel */ }
565 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
567 static struct platform_driver bcm_iproc_i2c_driver = {
568 .driver = {
569 .name = "bcm-iproc-i2c",
570 .of_match_table = bcm_iproc_i2c_of_match,
571 .pm = BCM_IPROC_I2C_PM_OPS,
573 .probe = bcm_iproc_i2c_probe,
574 .remove = bcm_iproc_i2c_remove,
576 module_platform_driver(bcm_iproc_i2c_driver);
578 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
579 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
580 MODULE_LICENSE("GPL v2");