4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
42 * In the following, we will distinguish between two kinds of VMX processes -
43 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44 * VMCI page files in the VMX and supporting VM to VM communication and the
45 * newer ones that use the guest memory directly. We will in the following
46 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
49 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50 * removed for readability) - see below for more details on the transtions:
52 * -------------- NEW -------------
55 * CREATED_NO_MEM <-----------------> CREATED_MEM
57 * | o-----------------------o |
60 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM
62 * | o----------------------o |
65 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
68 * -------------> gone <-------------
70 * In more detail. When a VMCI queue pair is first created, it will be in the
71 * VMCIQPB_NEW state. It will then move into one of the following states:
73 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
75 * - the created was performed by a host endpoint, in which case there is
76 * no backing memory yet.
78 * - the create was initiated by an old-style VMX, that uses
79 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80 * a later point in time. This state can be distinguished from the one
81 * above by the context ID of the creator. A host side is not allowed to
82 * attach until the page store has been set.
84 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85 * is created by a VMX using the queue pair device backend that
86 * sets the UVAs of the queue pair immediately and stores the
87 * information for later attachers. At this point, it is ready for
88 * the host side to attach to it.
90 * Once the queue pair is in one of the created states (with the exception of
91 * the case mentioned for older VMX'en above), it is possible to attach to the
92 * queue pair. Again we have two new states possible:
94 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
97 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98 * pair, and attaches to a queue pair previously created by the host side.
100 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101 * already created by a guest.
103 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104 * vmci_qp_broker_set_page_store (see below).
106 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state
112 * From the attached queue pair, the queue pair can enter the shutdown states
113 * when either side of the queue pair detaches. If the guest side detaches
114 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115 * the content of the queue pair will no longer be available. If the host
116 * side detaches first, the queue pair will either enter the
117 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119 * (e.g., the host detaches while a guest is stunned).
121 * New-style VMX'en will also unmap guest memory, if the guest is
122 * quiesced, e.g., during a snapshot operation. In that case, the guest
123 * memory will no longer be available, and the queue pair will transition from
124 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125 * in which case the queue pair will transition from the *_NO_MEM state at that
126 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127 * since the peer may have either attached or detached in the meantime. The
128 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129 * *_MEM state, and vice versa.
132 /* The Kernel specific component of the struct vmci_queue structure. */
133 struct vmci_queue_kern_if
{
134 struct mutex __mutex
; /* Protects the queue. */
135 struct mutex
*mutex
; /* Shared by producer and consumer queues. */
136 size_t num_pages
; /* Number of pages incl. header. */
137 bool host
; /* Host or guest? */
142 } g
; /* Used by the guest. */
145 struct page
**header_page
;
146 } h
; /* Used by the host. */
151 * This structure is opaque to the clients.
154 struct vmci_handle handle
;
155 struct vmci_queue
*produce_q
;
156 struct vmci_queue
*consume_q
;
163 unsigned int blocked
;
164 unsigned int generation
;
165 wait_queue_head_t event
;
168 enum qp_broker_state
{
170 VMCIQPB_CREATED_NO_MEM
,
172 VMCIQPB_ATTACHED_NO_MEM
,
173 VMCIQPB_ATTACHED_MEM
,
174 VMCIQPB_SHUTDOWN_NO_MEM
,
175 VMCIQPB_SHUTDOWN_MEM
,
179 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
180 _qpb->state == VMCIQPB_ATTACHED_MEM || \
181 _qpb->state == VMCIQPB_SHUTDOWN_MEM)
184 * In the queue pair broker, we always use the guest point of view for
185 * the produce and consume queue values and references, e.g., the
186 * produce queue size stored is the guests produce queue size. The
187 * host endpoint will need to swap these around. The only exception is
188 * the local queue pairs on the host, in which case the host endpoint
189 * that creates the queue pair will have the right orientation, and
190 * the attaching host endpoint will need to swap.
193 struct list_head list_item
;
194 struct vmci_handle handle
;
202 struct qp_broker_entry
{
203 struct vmci_resource resource
;
207 enum qp_broker_state state
;
208 bool require_trusted_attach
;
209 bool created_by_trusted
;
210 bool vmci_page_files
; /* Created by VMX using VMCI page files */
211 struct vmci_queue
*produce_q
;
212 struct vmci_queue
*consume_q
;
213 struct vmci_queue_header saved_produce_q
;
214 struct vmci_queue_header saved_consume_q
;
215 vmci_event_release_cb wakeup_cb
;
217 void *local_mem
; /* Kernel memory for local queue pair */
220 struct qp_guest_endpoint
{
221 struct vmci_resource resource
;
226 struct ppn_set ppn_set
;
230 struct list_head head
;
231 struct mutex mutex
; /* Protect queue list. */
234 static struct qp_list qp_broker_list
= {
235 .head
= LIST_HEAD_INIT(qp_broker_list
.head
),
236 .mutex
= __MUTEX_INITIALIZER(qp_broker_list
.mutex
),
239 static struct qp_list qp_guest_endpoints
= {
240 .head
= LIST_HEAD_INIT(qp_guest_endpoints
.head
),
241 .mutex
= __MUTEX_INITIALIZER(qp_guest_endpoints
.mutex
),
244 #define INVALID_VMCI_GUEST_MEM_ID 0
245 #define QPE_NUM_PAGES(_QPE) ((u32) \
246 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
247 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
251 * Frees kernel VA space for a given queue and its queue header, and
252 * frees physical data pages.
254 static void qp_free_queue(void *q
, u64 size
)
256 struct vmci_queue
*queue
= q
;
261 /* Given size does not include header, so add in a page here. */
262 for (i
= 0; i
< DIV_ROUND_UP(size
, PAGE_SIZE
) + 1; i
++) {
263 dma_free_coherent(&vmci_pdev
->dev
, PAGE_SIZE
,
264 queue
->kernel_if
->u
.g
.vas
[i
],
265 queue
->kernel_if
->u
.g
.pas
[i
]);
273 * Allocates kernel queue pages of specified size with IOMMU mappings,
274 * plus space for the queue structure/kernel interface and the queue
277 static void *qp_alloc_queue(u64 size
, u32 flags
)
280 struct vmci_queue
*queue
;
283 size_t queue_size
= sizeof(*queue
) + sizeof(*queue
->kernel_if
);
286 if (size
> SIZE_MAX
- PAGE_SIZE
)
288 num_pages
= DIV_ROUND_UP(size
, PAGE_SIZE
) + 1;
290 (SIZE_MAX
- queue_size
) /
291 (sizeof(*queue
->kernel_if
->u
.g
.pas
) +
292 sizeof(*queue
->kernel_if
->u
.g
.vas
)))
295 pas_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.g
.pas
);
296 vas_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.g
.vas
);
297 queue_size
+= pas_size
+ vas_size
;
299 queue
= vmalloc(queue_size
);
303 queue
->q_header
= NULL
;
304 queue
->saved_header
= NULL
;
305 queue
->kernel_if
= (struct vmci_queue_kern_if
*)(queue
+ 1);
306 queue
->kernel_if
->mutex
= NULL
;
307 queue
->kernel_if
->num_pages
= num_pages
;
308 queue
->kernel_if
->u
.g
.pas
= (dma_addr_t
*)(queue
->kernel_if
+ 1);
309 queue
->kernel_if
->u
.g
.vas
=
310 (void **)((u8
*)queue
->kernel_if
->u
.g
.pas
+ pas_size
);
311 queue
->kernel_if
->host
= false;
313 for (i
= 0; i
< num_pages
; i
++) {
314 queue
->kernel_if
->u
.g
.vas
[i
] =
315 dma_alloc_coherent(&vmci_pdev
->dev
, PAGE_SIZE
,
316 &queue
->kernel_if
->u
.g
.pas
[i
],
318 if (!queue
->kernel_if
->u
.g
.vas
[i
]) {
319 /* Size excl. the header. */
320 qp_free_queue(queue
, i
* PAGE_SIZE
);
325 /* Queue header is the first page. */
326 queue
->q_header
= queue
->kernel_if
->u
.g
.vas
[0];
332 * Copies from a given buffer or iovector to a VMCI Queue. Uses
333 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
334 * by traversing the offset -> page translation structure for the queue.
335 * Assumes that offset + size does not wrap around in the queue.
337 static int qp_memcpy_to_queue_iter(struct vmci_queue
*queue
,
339 struct iov_iter
*from
,
342 struct vmci_queue_kern_if
*kernel_if
= queue
->kernel_if
;
343 size_t bytes_copied
= 0;
345 while (bytes_copied
< size
) {
346 const u64 page_index
=
347 (queue_offset
+ bytes_copied
) / PAGE_SIZE
;
348 const size_t page_offset
=
349 (queue_offset
+ bytes_copied
) & (PAGE_SIZE
- 1);
354 va
= kmap(kernel_if
->u
.h
.page
[page_index
]);
356 va
= kernel_if
->u
.g
.vas
[page_index
+ 1];
359 if (size
- bytes_copied
> PAGE_SIZE
- page_offset
)
360 /* Enough payload to fill up from this page. */
361 to_copy
= PAGE_SIZE
- page_offset
;
363 to_copy
= size
- bytes_copied
;
365 if (!copy_from_iter_full((u8
*)va
+ page_offset
, to_copy
,
368 kunmap(kernel_if
->u
.h
.page
[page_index
]);
369 return VMCI_ERROR_INVALID_ARGS
;
371 bytes_copied
+= to_copy
;
373 kunmap(kernel_if
->u
.h
.page
[page_index
]);
380 * Copies to a given buffer or iovector from a VMCI Queue. Uses
381 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
382 * by traversing the offset -> page translation structure for the queue.
383 * Assumes that offset + size does not wrap around in the queue.
385 static int qp_memcpy_from_queue_iter(struct iov_iter
*to
,
386 const struct vmci_queue
*queue
,
387 u64 queue_offset
, size_t size
)
389 struct vmci_queue_kern_if
*kernel_if
= queue
->kernel_if
;
390 size_t bytes_copied
= 0;
392 while (bytes_copied
< size
) {
393 const u64 page_index
=
394 (queue_offset
+ bytes_copied
) / PAGE_SIZE
;
395 const size_t page_offset
=
396 (queue_offset
+ bytes_copied
) & (PAGE_SIZE
- 1);
402 va
= kmap(kernel_if
->u
.h
.page
[page_index
]);
404 va
= kernel_if
->u
.g
.vas
[page_index
+ 1];
407 if (size
- bytes_copied
> PAGE_SIZE
- page_offset
)
408 /* Enough payload to fill up this page. */
409 to_copy
= PAGE_SIZE
- page_offset
;
411 to_copy
= size
- bytes_copied
;
413 err
= copy_to_iter((u8
*)va
+ page_offset
, to_copy
, to
);
414 if (err
!= to_copy
) {
416 kunmap(kernel_if
->u
.h
.page
[page_index
]);
417 return VMCI_ERROR_INVALID_ARGS
;
419 bytes_copied
+= to_copy
;
421 kunmap(kernel_if
->u
.h
.page
[page_index
]);
428 * Allocates two list of PPNs --- one for the pages in the produce queue,
429 * and the other for the pages in the consume queue. Intializes the list
430 * of PPNs with the page frame numbers of the KVA for the two queues (and
431 * the queue headers).
433 static int qp_alloc_ppn_set(void *prod_q
,
434 u64 num_produce_pages
,
436 u64 num_consume_pages
, struct ppn_set
*ppn_set
)
440 struct vmci_queue
*produce_q
= prod_q
;
441 struct vmci_queue
*consume_q
= cons_q
;
444 if (!produce_q
|| !num_produce_pages
|| !consume_q
||
445 !num_consume_pages
|| !ppn_set
)
446 return VMCI_ERROR_INVALID_ARGS
;
448 if (ppn_set
->initialized
)
449 return VMCI_ERROR_ALREADY_EXISTS
;
452 kmalloc(num_produce_pages
* sizeof(*produce_ppns
), GFP_KERNEL
);
454 return VMCI_ERROR_NO_MEM
;
457 kmalloc(num_consume_pages
* sizeof(*consume_ppns
), GFP_KERNEL
);
460 return VMCI_ERROR_NO_MEM
;
463 for (i
= 0; i
< num_produce_pages
; i
++) {
467 produce_q
->kernel_if
->u
.g
.pas
[i
] >> PAGE_SHIFT
;
468 pfn
= produce_ppns
[i
];
470 /* Fail allocation if PFN isn't supported by hypervisor. */
471 if (sizeof(pfn
) > sizeof(*produce_ppns
)
472 && pfn
!= produce_ppns
[i
])
476 for (i
= 0; i
< num_consume_pages
; i
++) {
480 consume_q
->kernel_if
->u
.g
.pas
[i
] >> PAGE_SHIFT
;
481 pfn
= consume_ppns
[i
];
483 /* Fail allocation if PFN isn't supported by hypervisor. */
484 if (sizeof(pfn
) > sizeof(*consume_ppns
)
485 && pfn
!= consume_ppns
[i
])
489 ppn_set
->num_produce_pages
= num_produce_pages
;
490 ppn_set
->num_consume_pages
= num_consume_pages
;
491 ppn_set
->produce_ppns
= produce_ppns
;
492 ppn_set
->consume_ppns
= consume_ppns
;
493 ppn_set
->initialized
= true;
499 return VMCI_ERROR_INVALID_ARGS
;
503 * Frees the two list of PPNs for a queue pair.
505 static void qp_free_ppn_set(struct ppn_set
*ppn_set
)
507 if (ppn_set
->initialized
) {
508 /* Do not call these functions on NULL inputs. */
509 kfree(ppn_set
->produce_ppns
);
510 kfree(ppn_set
->consume_ppns
);
512 memset(ppn_set
, 0, sizeof(*ppn_set
));
516 * Populates the list of PPNs in the hypercall structure with the PPNS
517 * of the produce queue and the consume queue.
519 static int qp_populate_ppn_set(u8
*call_buf
, const struct ppn_set
*ppn_set
)
521 memcpy(call_buf
, ppn_set
->produce_ppns
,
522 ppn_set
->num_produce_pages
* sizeof(*ppn_set
->produce_ppns
));
524 ppn_set
->num_produce_pages
* sizeof(*ppn_set
->produce_ppns
),
525 ppn_set
->consume_ppns
,
526 ppn_set
->num_consume_pages
* sizeof(*ppn_set
->consume_ppns
));
532 * Allocates kernel VA space of specified size plus space for the queue
533 * and kernel interface. This is different from the guest queue allocator,
534 * because we do not allocate our own queue header/data pages here but
535 * share those of the guest.
537 static struct vmci_queue
*qp_host_alloc_queue(u64 size
)
539 struct vmci_queue
*queue
;
540 size_t queue_page_size
;
542 const size_t queue_size
= sizeof(*queue
) + sizeof(*(queue
->kernel_if
));
544 if (size
> SIZE_MAX
- PAGE_SIZE
)
546 num_pages
= DIV_ROUND_UP(size
, PAGE_SIZE
) + 1;
547 if (num_pages
> (SIZE_MAX
- queue_size
) /
548 sizeof(*queue
->kernel_if
->u
.h
.page
))
551 queue_page_size
= num_pages
* sizeof(*queue
->kernel_if
->u
.h
.page
);
553 queue
= kzalloc(queue_size
+ queue_page_size
, GFP_KERNEL
);
555 queue
->q_header
= NULL
;
556 queue
->saved_header
= NULL
;
557 queue
->kernel_if
= (struct vmci_queue_kern_if
*)(queue
+ 1);
558 queue
->kernel_if
->host
= true;
559 queue
->kernel_if
->mutex
= NULL
;
560 queue
->kernel_if
->num_pages
= num_pages
;
561 queue
->kernel_if
->u
.h
.header_page
=
562 (struct page
**)((u8
*)queue
+ queue_size
);
563 queue
->kernel_if
->u
.h
.page
=
564 &queue
->kernel_if
->u
.h
.header_page
[1];
571 * Frees kernel memory for a given queue (header plus translation
574 static void qp_host_free_queue(struct vmci_queue
*queue
, u64 queue_size
)
580 * Initialize the mutex for the pair of queues. This mutex is used to
581 * protect the q_header and the buffer from changing out from under any
582 * users of either queue. Of course, it's only any good if the mutexes
583 * are actually acquired. Queue structure must lie on non-paged memory
584 * or we cannot guarantee access to the mutex.
586 static void qp_init_queue_mutex(struct vmci_queue
*produce_q
,
587 struct vmci_queue
*consume_q
)
590 * Only the host queue has shared state - the guest queues do not
591 * need to synchronize access using a queue mutex.
594 if (produce_q
->kernel_if
->host
) {
595 produce_q
->kernel_if
->mutex
= &produce_q
->kernel_if
->__mutex
;
596 consume_q
->kernel_if
->mutex
= &produce_q
->kernel_if
->__mutex
;
597 mutex_init(produce_q
->kernel_if
->mutex
);
602 * Cleans up the mutex for the pair of queues.
604 static void qp_cleanup_queue_mutex(struct vmci_queue
*produce_q
,
605 struct vmci_queue
*consume_q
)
607 if (produce_q
->kernel_if
->host
) {
608 produce_q
->kernel_if
->mutex
= NULL
;
609 consume_q
->kernel_if
->mutex
= NULL
;
614 * Acquire the mutex for the queue. Note that the produce_q and
615 * the consume_q share a mutex. So, only one of the two need to
616 * be passed in to this routine. Either will work just fine.
618 static void qp_acquire_queue_mutex(struct vmci_queue
*queue
)
620 if (queue
->kernel_if
->host
)
621 mutex_lock(queue
->kernel_if
->mutex
);
625 * Release the mutex for the queue. Note that the produce_q and
626 * the consume_q share a mutex. So, only one of the two need to
627 * be passed in to this routine. Either will work just fine.
629 static void qp_release_queue_mutex(struct vmci_queue
*queue
)
631 if (queue
->kernel_if
->host
)
632 mutex_unlock(queue
->kernel_if
->mutex
);
636 * Helper function to release pages in the PageStoreAttachInfo
637 * previously obtained using get_user_pages.
639 static void qp_release_pages(struct page
**pages
,
640 u64 num_pages
, bool dirty
)
644 for (i
= 0; i
< num_pages
; i
++) {
646 set_page_dirty(pages
[i
]);
654 * Lock the user pages referenced by the {produce,consume}Buffer
655 * struct into memory and populate the {produce,consume}Pages
656 * arrays in the attach structure with them.
658 static int qp_host_get_user_memory(u64 produce_uva
,
660 struct vmci_queue
*produce_q
,
661 struct vmci_queue
*consume_q
)
664 int err
= VMCI_SUCCESS
;
666 retval
= get_user_pages_fast((uintptr_t) produce_uva
,
667 produce_q
->kernel_if
->num_pages
, 1,
668 produce_q
->kernel_if
->u
.h
.header_page
);
669 if (retval
< produce_q
->kernel_if
->num_pages
) {
670 pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
672 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
674 err
= VMCI_ERROR_NO_MEM
;
678 retval
= get_user_pages_fast((uintptr_t) consume_uva
,
679 consume_q
->kernel_if
->num_pages
, 1,
680 consume_q
->kernel_if
->u
.h
.header_page
);
681 if (retval
< consume_q
->kernel_if
->num_pages
) {
682 pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
684 qp_release_pages(consume_q
->kernel_if
->u
.h
.header_page
,
686 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
687 produce_q
->kernel_if
->num_pages
, false);
688 err
= VMCI_ERROR_NO_MEM
;
696 * Registers the specification of the user pages used for backing a queue
697 * pair. Enough information to map in pages is stored in the OS specific
698 * part of the struct vmci_queue structure.
700 static int qp_host_register_user_memory(struct vmci_qp_page_store
*page_store
,
701 struct vmci_queue
*produce_q
,
702 struct vmci_queue
*consume_q
)
708 * The new style and the old style mapping only differs in
709 * that we either get a single or two UVAs, so we split the
710 * single UVA range at the appropriate spot.
712 produce_uva
= page_store
->pages
;
713 consume_uva
= page_store
->pages
+
714 produce_q
->kernel_if
->num_pages
* PAGE_SIZE
;
715 return qp_host_get_user_memory(produce_uva
, consume_uva
, produce_q
,
720 * Releases and removes the references to user pages stored in the attach
721 * struct. Pages are released from the page cache and may become
724 static void qp_host_unregister_user_memory(struct vmci_queue
*produce_q
,
725 struct vmci_queue
*consume_q
)
727 qp_release_pages(produce_q
->kernel_if
->u
.h
.header_page
,
728 produce_q
->kernel_if
->num_pages
, true);
729 memset(produce_q
->kernel_if
->u
.h
.header_page
, 0,
730 sizeof(*produce_q
->kernel_if
->u
.h
.header_page
) *
731 produce_q
->kernel_if
->num_pages
);
732 qp_release_pages(consume_q
->kernel_if
->u
.h
.header_page
,
733 consume_q
->kernel_if
->num_pages
, true);
734 memset(consume_q
->kernel_if
->u
.h
.header_page
, 0,
735 sizeof(*consume_q
->kernel_if
->u
.h
.header_page
) *
736 consume_q
->kernel_if
->num_pages
);
740 * Once qp_host_register_user_memory has been performed on a
741 * queue, the queue pair headers can be mapped into the
742 * kernel. Once mapped, they must be unmapped with
743 * qp_host_unmap_queues prior to calling
744 * qp_host_unregister_user_memory.
747 static int qp_host_map_queues(struct vmci_queue
*produce_q
,
748 struct vmci_queue
*consume_q
)
752 if (!produce_q
->q_header
|| !consume_q
->q_header
) {
753 struct page
*headers
[2];
755 if (produce_q
->q_header
!= consume_q
->q_header
)
756 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
758 if (produce_q
->kernel_if
->u
.h
.header_page
== NULL
||
759 *produce_q
->kernel_if
->u
.h
.header_page
== NULL
)
760 return VMCI_ERROR_UNAVAILABLE
;
762 headers
[0] = *produce_q
->kernel_if
->u
.h
.header_page
;
763 headers
[1] = *consume_q
->kernel_if
->u
.h
.header_page
;
765 produce_q
->q_header
= vmap(headers
, 2, VM_MAP
, PAGE_KERNEL
);
766 if (produce_q
->q_header
!= NULL
) {
767 consume_q
->q_header
=
768 (struct vmci_queue_header
*)((u8
*)
769 produce_q
->q_header
+
771 result
= VMCI_SUCCESS
;
773 pr_warn("vmap failed\n");
774 result
= VMCI_ERROR_NO_MEM
;
777 result
= VMCI_SUCCESS
;
784 * Unmaps previously mapped queue pair headers from the kernel.
785 * Pages are unpinned.
787 static int qp_host_unmap_queues(u32 gid
,
788 struct vmci_queue
*produce_q
,
789 struct vmci_queue
*consume_q
)
791 if (produce_q
->q_header
) {
792 if (produce_q
->q_header
< consume_q
->q_header
)
793 vunmap(produce_q
->q_header
);
795 vunmap(consume_q
->q_header
);
797 produce_q
->q_header
= NULL
;
798 consume_q
->q_header
= NULL
;
805 * Finds the entry in the list corresponding to a given handle. Assumes
806 * that the list is locked.
808 static struct qp_entry
*qp_list_find(struct qp_list
*qp_list
,
809 struct vmci_handle handle
)
811 struct qp_entry
*entry
;
813 if (vmci_handle_is_invalid(handle
))
816 list_for_each_entry(entry
, &qp_list
->head
, list_item
) {
817 if (vmci_handle_is_equal(entry
->handle
, handle
))
825 * Finds the entry in the list corresponding to a given handle.
827 static struct qp_guest_endpoint
*
828 qp_guest_handle_to_entry(struct vmci_handle handle
)
830 struct qp_guest_endpoint
*entry
;
831 struct qp_entry
*qp
= qp_list_find(&qp_guest_endpoints
, handle
);
833 entry
= qp
? container_of(
834 qp
, struct qp_guest_endpoint
, qp
) : NULL
;
839 * Finds the entry in the list corresponding to a given handle.
841 static struct qp_broker_entry
*
842 qp_broker_handle_to_entry(struct vmci_handle handle
)
844 struct qp_broker_entry
*entry
;
845 struct qp_entry
*qp
= qp_list_find(&qp_broker_list
, handle
);
847 entry
= qp
? container_of(
848 qp
, struct qp_broker_entry
, qp
) : NULL
;
853 * Dispatches a queue pair event message directly into the local event
856 static int qp_notify_peer_local(bool attach
, struct vmci_handle handle
)
858 u32 context_id
= vmci_get_context_id();
859 struct vmci_event_qp ev
;
861 ev
.msg
.hdr
.dst
= vmci_make_handle(context_id
, VMCI_EVENT_HANDLER
);
862 ev
.msg
.hdr
.src
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
863 VMCI_CONTEXT_RESOURCE_ID
);
864 ev
.msg
.hdr
.payload_size
= sizeof(ev
) - sizeof(ev
.msg
.hdr
);
865 ev
.msg
.event_data
.event
=
866 attach
? VMCI_EVENT_QP_PEER_ATTACH
: VMCI_EVENT_QP_PEER_DETACH
;
867 ev
.payload
.peer_id
= context_id
;
868 ev
.payload
.handle
= handle
;
870 return vmci_event_dispatch(&ev
.msg
.hdr
);
874 * Allocates and initializes a qp_guest_endpoint structure.
875 * Allocates a queue_pair rid (and handle) iff the given entry has
876 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX
877 * are reserved handles. Assumes that the QP list mutex is held
880 static struct qp_guest_endpoint
*
881 qp_guest_endpoint_create(struct vmci_handle handle
,
890 struct qp_guest_endpoint
*entry
;
891 /* One page each for the queue headers. */
892 const u64 num_ppns
= DIV_ROUND_UP(produce_size
, PAGE_SIZE
) +
893 DIV_ROUND_UP(consume_size
, PAGE_SIZE
) + 2;
895 if (vmci_handle_is_invalid(handle
)) {
896 u32 context_id
= vmci_get_context_id();
898 handle
= vmci_make_handle(context_id
, VMCI_INVALID_ID
);
901 entry
= kzalloc(sizeof(*entry
), GFP_KERNEL
);
903 entry
->qp
.peer
= peer
;
904 entry
->qp
.flags
= flags
;
905 entry
->qp
.produce_size
= produce_size
;
906 entry
->qp
.consume_size
= consume_size
;
907 entry
->qp
.ref_count
= 0;
908 entry
->num_ppns
= num_ppns
;
909 entry
->produce_q
= produce_q
;
910 entry
->consume_q
= consume_q
;
911 INIT_LIST_HEAD(&entry
->qp
.list_item
);
913 /* Add resource obj */
914 result
= vmci_resource_add(&entry
->resource
,
915 VMCI_RESOURCE_TYPE_QPAIR_GUEST
,
917 entry
->qp
.handle
= vmci_resource_handle(&entry
->resource
);
918 if ((result
!= VMCI_SUCCESS
) ||
919 qp_list_find(&qp_guest_endpoints
, entry
->qp
.handle
)) {
920 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
921 handle
.context
, handle
.resource
, result
);
930 * Frees a qp_guest_endpoint structure.
932 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint
*entry
)
934 qp_free_ppn_set(&entry
->ppn_set
);
935 qp_cleanup_queue_mutex(entry
->produce_q
, entry
->consume_q
);
936 qp_free_queue(entry
->produce_q
, entry
->qp
.produce_size
);
937 qp_free_queue(entry
->consume_q
, entry
->qp
.consume_size
);
938 /* Unlink from resource hash table and free callback */
939 vmci_resource_remove(&entry
->resource
);
945 * Helper to make a queue_pairAlloc hypercall when the driver is
946 * supporting a guest device.
948 static int qp_alloc_hypercall(const struct qp_guest_endpoint
*entry
)
950 struct vmci_qp_alloc_msg
*alloc_msg
;
954 if (!entry
|| entry
->num_ppns
<= 2)
955 return VMCI_ERROR_INVALID_ARGS
;
957 msg_size
= sizeof(*alloc_msg
) +
958 (size_t) entry
->num_ppns
* sizeof(u32
);
959 alloc_msg
= kmalloc(msg_size
, GFP_KERNEL
);
961 return VMCI_ERROR_NO_MEM
;
963 alloc_msg
->hdr
.dst
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
964 VMCI_QUEUEPAIR_ALLOC
);
965 alloc_msg
->hdr
.src
= VMCI_ANON_SRC_HANDLE
;
966 alloc_msg
->hdr
.payload_size
= msg_size
- VMCI_DG_HEADERSIZE
;
967 alloc_msg
->handle
= entry
->qp
.handle
;
968 alloc_msg
->peer
= entry
->qp
.peer
;
969 alloc_msg
->flags
= entry
->qp
.flags
;
970 alloc_msg
->produce_size
= entry
->qp
.produce_size
;
971 alloc_msg
->consume_size
= entry
->qp
.consume_size
;
972 alloc_msg
->num_ppns
= entry
->num_ppns
;
974 result
= qp_populate_ppn_set((u8
*)alloc_msg
+ sizeof(*alloc_msg
),
976 if (result
== VMCI_SUCCESS
)
977 result
= vmci_send_datagram(&alloc_msg
->hdr
);
985 * Helper to make a queue_pairDetach hypercall when the driver is
986 * supporting a guest device.
988 static int qp_detatch_hypercall(struct vmci_handle handle
)
990 struct vmci_qp_detach_msg detach_msg
;
992 detach_msg
.hdr
.dst
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
993 VMCI_QUEUEPAIR_DETACH
);
994 detach_msg
.hdr
.src
= VMCI_ANON_SRC_HANDLE
;
995 detach_msg
.hdr
.payload_size
= sizeof(handle
);
996 detach_msg
.handle
= handle
;
998 return vmci_send_datagram(&detach_msg
.hdr
);
1002 * Adds the given entry to the list. Assumes that the list is locked.
1004 static void qp_list_add_entry(struct qp_list
*qp_list
, struct qp_entry
*entry
)
1007 list_add(&entry
->list_item
, &qp_list
->head
);
1011 * Removes the given entry from the list. Assumes that the list is locked.
1013 static void qp_list_remove_entry(struct qp_list
*qp_list
,
1014 struct qp_entry
*entry
)
1017 list_del(&entry
->list_item
);
1021 * Helper for VMCI queue_pair detach interface. Frees the physical
1022 * pages for the queue pair.
1024 static int qp_detatch_guest_work(struct vmci_handle handle
)
1027 struct qp_guest_endpoint
*entry
;
1028 u32 ref_count
= ~0; /* To avoid compiler warning below */
1030 mutex_lock(&qp_guest_endpoints
.mutex
);
1032 entry
= qp_guest_handle_to_entry(handle
);
1034 mutex_unlock(&qp_guest_endpoints
.mutex
);
1035 return VMCI_ERROR_NOT_FOUND
;
1038 if (entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1039 result
= VMCI_SUCCESS
;
1041 if (entry
->qp
.ref_count
> 1) {
1042 result
= qp_notify_peer_local(false, handle
);
1044 * We can fail to notify a local queuepair
1045 * because we can't allocate. We still want
1046 * to release the entry if that happens, so
1047 * don't bail out yet.
1051 result
= qp_detatch_hypercall(handle
);
1052 if (result
< VMCI_SUCCESS
) {
1054 * We failed to notify a non-local queuepair.
1055 * That other queuepair might still be
1056 * accessing the shared memory, so don't
1057 * release the entry yet. It will get cleaned
1058 * up by VMCIqueue_pair_Exit() if necessary
1059 * (assuming we are going away, otherwise why
1063 mutex_unlock(&qp_guest_endpoints
.mutex
);
1069 * If we get here then we either failed to notify a local queuepair, or
1070 * we succeeded in all cases. Release the entry if required.
1073 entry
->qp
.ref_count
--;
1074 if (entry
->qp
.ref_count
== 0)
1075 qp_list_remove_entry(&qp_guest_endpoints
, &entry
->qp
);
1077 /* If we didn't remove the entry, this could change once we unlock. */
1079 ref_count
= entry
->qp
.ref_count
;
1081 mutex_unlock(&qp_guest_endpoints
.mutex
);
1084 qp_guest_endpoint_destroy(entry
);
1090 * This functions handles the actual allocation of a VMCI queue
1091 * pair guest endpoint. Allocates physical pages for the queue
1092 * pair. It makes OS dependent calls through generic wrappers.
1094 static int qp_alloc_guest_work(struct vmci_handle
*handle
,
1095 struct vmci_queue
**produce_q
,
1097 struct vmci_queue
**consume_q
,
1103 const u64 num_produce_pages
=
1104 DIV_ROUND_UP(produce_size
, PAGE_SIZE
) + 1;
1105 const u64 num_consume_pages
=
1106 DIV_ROUND_UP(consume_size
, PAGE_SIZE
) + 1;
1107 void *my_produce_q
= NULL
;
1108 void *my_consume_q
= NULL
;
1110 struct qp_guest_endpoint
*queue_pair_entry
= NULL
;
1112 if (priv_flags
!= VMCI_NO_PRIVILEGE_FLAGS
)
1113 return VMCI_ERROR_NO_ACCESS
;
1115 mutex_lock(&qp_guest_endpoints
.mutex
);
1117 queue_pair_entry
= qp_guest_handle_to_entry(*handle
);
1118 if (queue_pair_entry
) {
1119 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1120 /* Local attach case. */
1121 if (queue_pair_entry
->qp
.ref_count
> 1) {
1122 pr_devel("Error attempting to attach more than once\n");
1123 result
= VMCI_ERROR_UNAVAILABLE
;
1124 goto error_keep_entry
;
1127 if (queue_pair_entry
->qp
.produce_size
!= consume_size
||
1128 queue_pair_entry
->qp
.consume_size
!=
1130 queue_pair_entry
->qp
.flags
!=
1131 (flags
& ~VMCI_QPFLAG_ATTACH_ONLY
)) {
1132 pr_devel("Error mismatched queue pair in local attach\n");
1133 result
= VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1134 goto error_keep_entry
;
1138 * Do a local attach. We swap the consume and
1139 * produce queues for the attacher and deliver
1142 result
= qp_notify_peer_local(true, *handle
);
1143 if (result
< VMCI_SUCCESS
)
1144 goto error_keep_entry
;
1146 my_produce_q
= queue_pair_entry
->consume_q
;
1147 my_consume_q
= queue_pair_entry
->produce_q
;
1151 result
= VMCI_ERROR_ALREADY_EXISTS
;
1152 goto error_keep_entry
;
1155 my_produce_q
= qp_alloc_queue(produce_size
, flags
);
1156 if (!my_produce_q
) {
1157 pr_warn("Error allocating pages for produce queue\n");
1158 result
= VMCI_ERROR_NO_MEM
;
1162 my_consume_q
= qp_alloc_queue(consume_size
, flags
);
1163 if (!my_consume_q
) {
1164 pr_warn("Error allocating pages for consume queue\n");
1165 result
= VMCI_ERROR_NO_MEM
;
1169 queue_pair_entry
= qp_guest_endpoint_create(*handle
, peer
, flags
,
1170 produce_size
, consume_size
,
1171 my_produce_q
, my_consume_q
);
1172 if (!queue_pair_entry
) {
1173 pr_warn("Error allocating memory in %s\n", __func__
);
1174 result
= VMCI_ERROR_NO_MEM
;
1178 result
= qp_alloc_ppn_set(my_produce_q
, num_produce_pages
, my_consume_q
,
1180 &queue_pair_entry
->ppn_set
);
1181 if (result
< VMCI_SUCCESS
) {
1182 pr_warn("qp_alloc_ppn_set failed\n");
1187 * It's only necessary to notify the host if this queue pair will be
1188 * attached to from another context.
1190 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) {
1191 /* Local create case. */
1192 u32 context_id
= vmci_get_context_id();
1195 * Enforce similar checks on local queue pairs as we
1196 * do for regular ones. The handle's context must
1197 * match the creator or attacher context id (here they
1198 * are both the current context id) and the
1199 * attach-only flag cannot exist during create. We
1200 * also ensure specified peer is this context or an
1203 if (queue_pair_entry
->qp
.handle
.context
!= context_id
||
1204 (queue_pair_entry
->qp
.peer
!= VMCI_INVALID_ID
&&
1205 queue_pair_entry
->qp
.peer
!= context_id
)) {
1206 result
= VMCI_ERROR_NO_ACCESS
;
1210 if (queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_ATTACH_ONLY
) {
1211 result
= VMCI_ERROR_NOT_FOUND
;
1215 result
= qp_alloc_hypercall(queue_pair_entry
);
1216 if (result
< VMCI_SUCCESS
) {
1217 pr_warn("qp_alloc_hypercall result = %d\n", result
);
1222 qp_init_queue_mutex((struct vmci_queue
*)my_produce_q
,
1223 (struct vmci_queue
*)my_consume_q
);
1225 qp_list_add_entry(&qp_guest_endpoints
, &queue_pair_entry
->qp
);
1228 queue_pair_entry
->qp
.ref_count
++;
1229 *handle
= queue_pair_entry
->qp
.handle
;
1230 *produce_q
= (struct vmci_queue
*)my_produce_q
;
1231 *consume_q
= (struct vmci_queue
*)my_consume_q
;
1234 * We should initialize the queue pair header pages on a local
1235 * queue pair create. For non-local queue pairs, the
1236 * hypervisor initializes the header pages in the create step.
1238 if ((queue_pair_entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) &&
1239 queue_pair_entry
->qp
.ref_count
== 1) {
1240 vmci_q_header_init((*produce_q
)->q_header
, *handle
);
1241 vmci_q_header_init((*consume_q
)->q_header
, *handle
);
1244 mutex_unlock(&qp_guest_endpoints
.mutex
);
1246 return VMCI_SUCCESS
;
1249 mutex_unlock(&qp_guest_endpoints
.mutex
);
1250 if (queue_pair_entry
) {
1251 /* The queues will be freed inside the destroy routine. */
1252 qp_guest_endpoint_destroy(queue_pair_entry
);
1254 qp_free_queue(my_produce_q
, produce_size
);
1255 qp_free_queue(my_consume_q
, consume_size
);
1260 /* This path should only be used when an existing entry was found. */
1261 mutex_unlock(&qp_guest_endpoints
.mutex
);
1266 * The first endpoint issuing a queue pair allocation will create the state
1267 * of the queue pair in the queue pair broker.
1269 * If the creator is a guest, it will associate a VMX virtual address range
1270 * with the queue pair as specified by the page_store. For compatibility with
1271 * older VMX'en, that would use a separate step to set the VMX virtual
1272 * address range, the virtual address range can be registered later using
1273 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1276 * If the creator is the host, a page_store of NULL should be used as well,
1277 * since the host is not able to supply a page store for the queue pair.
1279 * For older VMX and host callers, the queue pair will be created in the
1280 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1281 * created in VMCOQPB_CREATED_MEM state.
1283 static int qp_broker_create(struct vmci_handle handle
,
1289 struct vmci_qp_page_store
*page_store
,
1290 struct vmci_ctx
*context
,
1291 vmci_event_release_cb wakeup_cb
,
1292 void *client_data
, struct qp_broker_entry
**ent
)
1294 struct qp_broker_entry
*entry
= NULL
;
1295 const u32 context_id
= vmci_ctx_get_id(context
);
1296 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1298 u64 guest_produce_size
;
1299 u64 guest_consume_size
;
1301 /* Do not create if the caller asked not to. */
1302 if (flags
& VMCI_QPFLAG_ATTACH_ONLY
)
1303 return VMCI_ERROR_NOT_FOUND
;
1306 * Creator's context ID should match handle's context ID or the creator
1307 * must allow the context in handle's context ID as the "peer".
1309 if (handle
.context
!= context_id
&& handle
.context
!= peer
)
1310 return VMCI_ERROR_NO_ACCESS
;
1312 if (VMCI_CONTEXT_IS_VM(context_id
) && VMCI_CONTEXT_IS_VM(peer
))
1313 return VMCI_ERROR_DST_UNREACHABLE
;
1316 * Creator's context ID for local queue pairs should match the
1317 * peer, if a peer is specified.
1319 if (is_local
&& peer
!= VMCI_INVALID_ID
&& context_id
!= peer
)
1320 return VMCI_ERROR_NO_ACCESS
;
1322 entry
= kzalloc(sizeof(*entry
), GFP_ATOMIC
);
1324 return VMCI_ERROR_NO_MEM
;
1326 if (vmci_ctx_get_id(context
) == VMCI_HOST_CONTEXT_ID
&& !is_local
) {
1328 * The queue pair broker entry stores values from the guest
1329 * point of view, so a creating host side endpoint should swap
1330 * produce and consume values -- unless it is a local queue
1331 * pair, in which case no swapping is necessary, since the local
1332 * attacher will swap queues.
1335 guest_produce_size
= consume_size
;
1336 guest_consume_size
= produce_size
;
1338 guest_produce_size
= produce_size
;
1339 guest_consume_size
= consume_size
;
1342 entry
->qp
.handle
= handle
;
1343 entry
->qp
.peer
= peer
;
1344 entry
->qp
.flags
= flags
;
1345 entry
->qp
.produce_size
= guest_produce_size
;
1346 entry
->qp
.consume_size
= guest_consume_size
;
1347 entry
->qp
.ref_count
= 1;
1348 entry
->create_id
= context_id
;
1349 entry
->attach_id
= VMCI_INVALID_ID
;
1350 entry
->state
= VMCIQPB_NEW
;
1351 entry
->require_trusted_attach
=
1352 !!(context
->priv_flags
& VMCI_PRIVILEGE_FLAG_RESTRICTED
);
1353 entry
->created_by_trusted
=
1354 !!(priv_flags
& VMCI_PRIVILEGE_FLAG_TRUSTED
);
1355 entry
->vmci_page_files
= false;
1356 entry
->wakeup_cb
= wakeup_cb
;
1357 entry
->client_data
= client_data
;
1358 entry
->produce_q
= qp_host_alloc_queue(guest_produce_size
);
1359 if (entry
->produce_q
== NULL
) {
1360 result
= VMCI_ERROR_NO_MEM
;
1363 entry
->consume_q
= qp_host_alloc_queue(guest_consume_size
);
1364 if (entry
->consume_q
== NULL
) {
1365 result
= VMCI_ERROR_NO_MEM
;
1369 qp_init_queue_mutex(entry
->produce_q
, entry
->consume_q
);
1371 INIT_LIST_HEAD(&entry
->qp
.list_item
);
1376 entry
->local_mem
= kcalloc(QPE_NUM_PAGES(entry
->qp
),
1377 PAGE_SIZE
, GFP_KERNEL
);
1378 if (entry
->local_mem
== NULL
) {
1379 result
= VMCI_ERROR_NO_MEM
;
1382 entry
->state
= VMCIQPB_CREATED_MEM
;
1383 entry
->produce_q
->q_header
= entry
->local_mem
;
1384 tmp
= (u8
*)entry
->local_mem
+ PAGE_SIZE
*
1385 (DIV_ROUND_UP(entry
->qp
.produce_size
, PAGE_SIZE
) + 1);
1386 entry
->consume_q
->q_header
= (struct vmci_queue_header
*)tmp
;
1387 } else if (page_store
) {
1389 * The VMX already initialized the queue pair headers, so no
1390 * need for the kernel side to do that.
1392 result
= qp_host_register_user_memory(page_store
,
1395 if (result
< VMCI_SUCCESS
)
1398 entry
->state
= VMCIQPB_CREATED_MEM
;
1401 * A create without a page_store may be either a host
1402 * side create (in which case we are waiting for the
1403 * guest side to supply the memory) or an old style
1404 * queue pair create (in which case we will expect a
1405 * set page store call as the next step).
1407 entry
->state
= VMCIQPB_CREATED_NO_MEM
;
1410 qp_list_add_entry(&qp_broker_list
, &entry
->qp
);
1414 /* Add to resource obj */
1415 result
= vmci_resource_add(&entry
->resource
,
1416 VMCI_RESOURCE_TYPE_QPAIR_HOST
,
1418 if (result
!= VMCI_SUCCESS
) {
1419 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1420 handle
.context
, handle
.resource
, result
);
1424 entry
->qp
.handle
= vmci_resource_handle(&entry
->resource
);
1426 vmci_q_header_init(entry
->produce_q
->q_header
,
1428 vmci_q_header_init(entry
->consume_q
->q_header
,
1432 vmci_ctx_qp_create(context
, entry
->qp
.handle
);
1434 return VMCI_SUCCESS
;
1437 if (entry
!= NULL
) {
1438 qp_host_free_queue(entry
->produce_q
, guest_produce_size
);
1439 qp_host_free_queue(entry
->consume_q
, guest_consume_size
);
1447 * Enqueues an event datagram to notify the peer VM attached to
1448 * the given queue pair handle about attach/detach event by the
1449 * given VM. Returns Payload size of datagram enqueued on
1450 * success, error code otherwise.
1452 static int qp_notify_peer(bool attach
,
1453 struct vmci_handle handle
,
1458 struct vmci_event_qp ev
;
1460 if (vmci_handle_is_invalid(handle
) || my_id
== VMCI_INVALID_ID
||
1461 peer_id
== VMCI_INVALID_ID
)
1462 return VMCI_ERROR_INVALID_ARGS
;
1465 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1466 * number of pending events from the hypervisor to a given VM
1467 * otherwise a rogue VM could do an arbitrary number of attach
1468 * and detach operations causing memory pressure in the host
1472 ev
.msg
.hdr
.dst
= vmci_make_handle(peer_id
, VMCI_EVENT_HANDLER
);
1473 ev
.msg
.hdr
.src
= vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID
,
1474 VMCI_CONTEXT_RESOURCE_ID
);
1475 ev
.msg
.hdr
.payload_size
= sizeof(ev
) - sizeof(ev
.msg
.hdr
);
1476 ev
.msg
.event_data
.event
= attach
?
1477 VMCI_EVENT_QP_PEER_ATTACH
: VMCI_EVENT_QP_PEER_DETACH
;
1478 ev
.payload
.handle
= handle
;
1479 ev
.payload
.peer_id
= my_id
;
1481 rv
= vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID
,
1482 &ev
.msg
.hdr
, false);
1483 if (rv
< VMCI_SUCCESS
)
1484 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1485 attach
? "ATTACH" : "DETACH", peer_id
);
1491 * The second endpoint issuing a queue pair allocation will attach to
1492 * the queue pair registered with the queue pair broker.
1494 * If the attacher is a guest, it will associate a VMX virtual address
1495 * range with the queue pair as specified by the page_store. At this
1496 * point, the already attach host endpoint may start using the queue
1497 * pair, and an attach event is sent to it. For compatibility with
1498 * older VMX'en, that used a separate step to set the VMX virtual
1499 * address range, the virtual address range can be registered later
1500 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1501 * NULL should be used, and the attach event will be generated once
1502 * the actual page store has been set.
1504 * If the attacher is the host, a page_store of NULL should be used as
1505 * well, since the page store information is already set by the guest.
1507 * For new VMX and host callers, the queue pair will be moved to the
1508 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1509 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1511 static int qp_broker_attach(struct qp_broker_entry
*entry
,
1517 struct vmci_qp_page_store
*page_store
,
1518 struct vmci_ctx
*context
,
1519 vmci_event_release_cb wakeup_cb
,
1521 struct qp_broker_entry
**ent
)
1523 const u32 context_id
= vmci_ctx_get_id(context
);
1524 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1527 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
&&
1528 entry
->state
!= VMCIQPB_CREATED_MEM
)
1529 return VMCI_ERROR_UNAVAILABLE
;
1532 if (!(entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
) ||
1533 context_id
!= entry
->create_id
) {
1534 return VMCI_ERROR_INVALID_ARGS
;
1536 } else if (context_id
== entry
->create_id
||
1537 context_id
== entry
->attach_id
) {
1538 return VMCI_ERROR_ALREADY_EXISTS
;
1541 if (VMCI_CONTEXT_IS_VM(context_id
) &&
1542 VMCI_CONTEXT_IS_VM(entry
->create_id
))
1543 return VMCI_ERROR_DST_UNREACHABLE
;
1546 * If we are attaching from a restricted context then the queuepair
1547 * must have been created by a trusted endpoint.
1549 if ((context
->priv_flags
& VMCI_PRIVILEGE_FLAG_RESTRICTED
) &&
1550 !entry
->created_by_trusted
)
1551 return VMCI_ERROR_NO_ACCESS
;
1554 * If we are attaching to a queuepair that was created by a restricted
1555 * context then we must be trusted.
1557 if (entry
->require_trusted_attach
&&
1558 (!(priv_flags
& VMCI_PRIVILEGE_FLAG_TRUSTED
)))
1559 return VMCI_ERROR_NO_ACCESS
;
1562 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1563 * control check is not performed.
1565 if (entry
->qp
.peer
!= VMCI_INVALID_ID
&& entry
->qp
.peer
!= context_id
)
1566 return VMCI_ERROR_NO_ACCESS
;
1568 if (entry
->create_id
== VMCI_HOST_CONTEXT_ID
) {
1570 * Do not attach if the caller doesn't support Host Queue Pairs
1571 * and a host created this queue pair.
1574 if (!vmci_ctx_supports_host_qp(context
))
1575 return VMCI_ERROR_INVALID_RESOURCE
;
1577 } else if (context_id
== VMCI_HOST_CONTEXT_ID
) {
1578 struct vmci_ctx
*create_context
;
1579 bool supports_host_qp
;
1582 * Do not attach a host to a user created queue pair if that
1583 * user doesn't support host queue pair end points.
1586 create_context
= vmci_ctx_get(entry
->create_id
);
1587 supports_host_qp
= vmci_ctx_supports_host_qp(create_context
);
1588 vmci_ctx_put(create_context
);
1590 if (!supports_host_qp
)
1591 return VMCI_ERROR_INVALID_RESOURCE
;
1594 if ((entry
->qp
.flags
& ~VMCI_QP_ASYMM
) != (flags
& ~VMCI_QP_ASYMM_PEER
))
1595 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1597 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
1599 * The queue pair broker entry stores values from the guest
1600 * point of view, so an attaching guest should match the values
1601 * stored in the entry.
1604 if (entry
->qp
.produce_size
!= produce_size
||
1605 entry
->qp
.consume_size
!= consume_size
) {
1606 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1608 } else if (entry
->qp
.produce_size
!= consume_size
||
1609 entry
->qp
.consume_size
!= produce_size
) {
1610 return VMCI_ERROR_QUEUEPAIR_MISMATCH
;
1613 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
1615 * If a guest attached to a queue pair, it will supply
1616 * the backing memory. If this is a pre NOVMVM vmx,
1617 * the backing memory will be supplied by calling
1618 * vmci_qp_broker_set_page_store() following the
1619 * return of the vmci_qp_broker_alloc() call. If it is
1620 * a vmx of version NOVMVM or later, the page store
1621 * must be supplied as part of the
1622 * vmci_qp_broker_alloc call. Under all circumstances
1623 * must the initially created queue pair not have any
1624 * memory associated with it already.
1627 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
)
1628 return VMCI_ERROR_INVALID_ARGS
;
1630 if (page_store
!= NULL
) {
1632 * Patch up host state to point to guest
1633 * supplied memory. The VMX already
1634 * initialized the queue pair headers, so no
1635 * need for the kernel side to do that.
1638 result
= qp_host_register_user_memory(page_store
,
1641 if (result
< VMCI_SUCCESS
)
1644 entry
->state
= VMCIQPB_ATTACHED_MEM
;
1646 entry
->state
= VMCIQPB_ATTACHED_NO_MEM
;
1648 } else if (entry
->state
== VMCIQPB_CREATED_NO_MEM
) {
1650 * The host side is attempting to attach to a queue
1651 * pair that doesn't have any memory associated with
1652 * it. This must be a pre NOVMVM vmx that hasn't set
1653 * the page store information yet, or a quiesced VM.
1656 return VMCI_ERROR_UNAVAILABLE
;
1658 /* The host side has successfully attached to a queue pair. */
1659 entry
->state
= VMCIQPB_ATTACHED_MEM
;
1662 if (entry
->state
== VMCIQPB_ATTACHED_MEM
) {
1664 qp_notify_peer(true, entry
->qp
.handle
, context_id
,
1666 if (result
< VMCI_SUCCESS
)
1667 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1668 entry
->create_id
, entry
->qp
.handle
.context
,
1669 entry
->qp
.handle
.resource
);
1672 entry
->attach_id
= context_id
;
1673 entry
->qp
.ref_count
++;
1675 entry
->wakeup_cb
= wakeup_cb
;
1676 entry
->client_data
= client_data
;
1680 * When attaching to local queue pairs, the context already has
1681 * an entry tracking the queue pair, so don't add another one.
1684 vmci_ctx_qp_create(context
, entry
->qp
.handle
);
1689 return VMCI_SUCCESS
;
1693 * queue_pair_Alloc for use when setting up queue pair endpoints
1696 static int qp_broker_alloc(struct vmci_handle handle
,
1702 struct vmci_qp_page_store
*page_store
,
1703 struct vmci_ctx
*context
,
1704 vmci_event_release_cb wakeup_cb
,
1706 struct qp_broker_entry
**ent
,
1709 const u32 context_id
= vmci_ctx_get_id(context
);
1711 struct qp_broker_entry
*entry
= NULL
;
1712 bool is_local
= flags
& VMCI_QPFLAG_LOCAL
;
1715 if (vmci_handle_is_invalid(handle
) ||
1716 (flags
& ~VMCI_QP_ALL_FLAGS
) || is_local
||
1717 !(produce_size
|| consume_size
) ||
1718 !context
|| context_id
== VMCI_INVALID_ID
||
1719 handle
.context
== VMCI_INVALID_ID
) {
1720 return VMCI_ERROR_INVALID_ARGS
;
1723 if (page_store
&& !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store
))
1724 return VMCI_ERROR_INVALID_ARGS
;
1727 * In the initial argument check, we ensure that non-vmkernel hosts
1728 * are not allowed to create local queue pairs.
1731 mutex_lock(&qp_broker_list
.mutex
);
1733 if (!is_local
&& vmci_ctx_qp_exists(context
, handle
)) {
1734 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1735 context_id
, handle
.context
, handle
.resource
);
1736 mutex_unlock(&qp_broker_list
.mutex
);
1737 return VMCI_ERROR_ALREADY_EXISTS
;
1740 if (handle
.resource
!= VMCI_INVALID_ID
)
1741 entry
= qp_broker_handle_to_entry(handle
);
1746 qp_broker_create(handle
, peer
, flags
, priv_flags
,
1747 produce_size
, consume_size
, page_store
,
1748 context
, wakeup_cb
, client_data
, ent
);
1752 qp_broker_attach(entry
, peer
, flags
, priv_flags
,
1753 produce_size
, consume_size
, page_store
,
1754 context
, wakeup_cb
, client_data
, ent
);
1757 mutex_unlock(&qp_broker_list
.mutex
);
1760 *swap
= (context_id
== VMCI_HOST_CONTEXT_ID
) &&
1761 !(create
&& is_local
);
1767 * This function implements the kernel API for allocating a queue
1770 static int qp_alloc_host_work(struct vmci_handle
*handle
,
1771 struct vmci_queue
**produce_q
,
1773 struct vmci_queue
**consume_q
,
1778 vmci_event_release_cb wakeup_cb
,
1781 struct vmci_handle new_handle
;
1782 struct vmci_ctx
*context
;
1783 struct qp_broker_entry
*entry
;
1787 if (vmci_handle_is_invalid(*handle
)) {
1788 new_handle
= vmci_make_handle(
1789 VMCI_HOST_CONTEXT_ID
, VMCI_INVALID_ID
);
1791 new_handle
= *handle
;
1793 context
= vmci_ctx_get(VMCI_HOST_CONTEXT_ID
);
1796 qp_broker_alloc(new_handle
, peer
, flags
, priv_flags
,
1797 produce_size
, consume_size
, NULL
, context
,
1798 wakeup_cb
, client_data
, &entry
, &swap
);
1799 if (result
== VMCI_SUCCESS
) {
1802 * If this is a local queue pair, the attacher
1803 * will swap around produce and consume
1807 *produce_q
= entry
->consume_q
;
1808 *consume_q
= entry
->produce_q
;
1810 *produce_q
= entry
->produce_q
;
1811 *consume_q
= entry
->consume_q
;
1814 *handle
= vmci_resource_handle(&entry
->resource
);
1816 *handle
= VMCI_INVALID_HANDLE
;
1817 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1820 vmci_ctx_put(context
);
1825 * Allocates a VMCI queue_pair. Only checks validity of input
1826 * arguments. The real work is done in the host or guest
1827 * specific function.
1829 int vmci_qp_alloc(struct vmci_handle
*handle
,
1830 struct vmci_queue
**produce_q
,
1832 struct vmci_queue
**consume_q
,
1837 bool guest_endpoint
,
1838 vmci_event_release_cb wakeup_cb
,
1841 if (!handle
|| !produce_q
|| !consume_q
||
1842 (!produce_size
&& !consume_size
) || (flags
& ~VMCI_QP_ALL_FLAGS
))
1843 return VMCI_ERROR_INVALID_ARGS
;
1845 if (guest_endpoint
) {
1846 return qp_alloc_guest_work(handle
, produce_q
,
1847 produce_size
, consume_q
,
1851 return qp_alloc_host_work(handle
, produce_q
,
1852 produce_size
, consume_q
,
1853 consume_size
, peer
, flags
,
1854 priv_flags
, wakeup_cb
, client_data
);
1859 * This function implements the host kernel API for detaching from
1862 static int qp_detatch_host_work(struct vmci_handle handle
)
1865 struct vmci_ctx
*context
;
1867 context
= vmci_ctx_get(VMCI_HOST_CONTEXT_ID
);
1869 result
= vmci_qp_broker_detach(handle
, context
);
1871 vmci_ctx_put(context
);
1876 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1877 * Real work is done in the host or guest specific function.
1879 static int qp_detatch(struct vmci_handle handle
, bool guest_endpoint
)
1881 if (vmci_handle_is_invalid(handle
))
1882 return VMCI_ERROR_INVALID_ARGS
;
1885 return qp_detatch_guest_work(handle
);
1887 return qp_detatch_host_work(handle
);
1891 * Returns the entry from the head of the list. Assumes that the list is
1894 static struct qp_entry
*qp_list_get_head(struct qp_list
*qp_list
)
1896 if (!list_empty(&qp_list
->head
)) {
1897 struct qp_entry
*entry
=
1898 list_first_entry(&qp_list
->head
, struct qp_entry
,
1906 void vmci_qp_broker_exit(void)
1908 struct qp_entry
*entry
;
1909 struct qp_broker_entry
*be
;
1911 mutex_lock(&qp_broker_list
.mutex
);
1913 while ((entry
= qp_list_get_head(&qp_broker_list
))) {
1914 be
= (struct qp_broker_entry
*)entry
;
1916 qp_list_remove_entry(&qp_broker_list
, entry
);
1920 mutex_unlock(&qp_broker_list
.mutex
);
1924 * Requests that a queue pair be allocated with the VMCI queue
1925 * pair broker. Allocates a queue pair entry if one does not
1926 * exist. Attaches to one if it exists, and retrieves the page
1927 * files backing that queue_pair. Assumes that the queue pair
1928 * broker lock is held.
1930 int vmci_qp_broker_alloc(struct vmci_handle handle
,
1936 struct vmci_qp_page_store
*page_store
,
1937 struct vmci_ctx
*context
)
1939 return qp_broker_alloc(handle
, peer
, flags
, priv_flags
,
1940 produce_size
, consume_size
,
1941 page_store
, context
, NULL
, NULL
, NULL
, NULL
);
1945 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1946 * step to add the UVAs of the VMX mapping of the queue pair. This function
1947 * provides backwards compatibility with such VMX'en, and takes care of
1948 * registering the page store for a queue pair previously allocated by the
1949 * VMX during create or attach. This function will move the queue pair state
1950 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1951 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1952 * attached state with memory, the queue pair is ready to be used by the
1953 * host peer, and an attached event will be generated.
1955 * Assumes that the queue pair broker lock is held.
1957 * This function is only used by the hosted platform, since there is no
1958 * issue with backwards compatibility for vmkernel.
1960 int vmci_qp_broker_set_page_store(struct vmci_handle handle
,
1963 struct vmci_ctx
*context
)
1965 struct qp_broker_entry
*entry
;
1967 const u32 context_id
= vmci_ctx_get_id(context
);
1969 if (vmci_handle_is_invalid(handle
) || !context
||
1970 context_id
== VMCI_INVALID_ID
)
1971 return VMCI_ERROR_INVALID_ARGS
;
1974 * We only support guest to host queue pairs, so the VMX must
1975 * supply UVAs for the mapped page files.
1978 if (produce_uva
== 0 || consume_uva
== 0)
1979 return VMCI_ERROR_INVALID_ARGS
;
1981 mutex_lock(&qp_broker_list
.mutex
);
1983 if (!vmci_ctx_qp_exists(context
, handle
)) {
1984 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1985 context_id
, handle
.context
, handle
.resource
);
1986 result
= VMCI_ERROR_NOT_FOUND
;
1990 entry
= qp_broker_handle_to_entry(handle
);
1992 result
= VMCI_ERROR_NOT_FOUND
;
1997 * If I'm the owner then I can set the page store.
1999 * Or, if a host created the queue_pair and I'm the attached peer
2000 * then I can set the page store.
2002 if (entry
->create_id
!= context_id
&&
2003 (entry
->create_id
!= VMCI_HOST_CONTEXT_ID
||
2004 entry
->attach_id
!= context_id
)) {
2005 result
= VMCI_ERROR_QUEUEPAIR_NOTOWNER
;
2009 if (entry
->state
!= VMCIQPB_CREATED_NO_MEM
&&
2010 entry
->state
!= VMCIQPB_ATTACHED_NO_MEM
) {
2011 result
= VMCI_ERROR_UNAVAILABLE
;
2015 result
= qp_host_get_user_memory(produce_uva
, consume_uva
,
2016 entry
->produce_q
, entry
->consume_q
);
2017 if (result
< VMCI_SUCCESS
)
2020 result
= qp_host_map_queues(entry
->produce_q
, entry
->consume_q
);
2021 if (result
< VMCI_SUCCESS
) {
2022 qp_host_unregister_user_memory(entry
->produce_q
,
2027 if (entry
->state
== VMCIQPB_CREATED_NO_MEM
)
2028 entry
->state
= VMCIQPB_CREATED_MEM
;
2030 entry
->state
= VMCIQPB_ATTACHED_MEM
;
2032 entry
->vmci_page_files
= true;
2034 if (entry
->state
== VMCIQPB_ATTACHED_MEM
) {
2036 qp_notify_peer(true, handle
, context_id
, entry
->create_id
);
2037 if (result
< VMCI_SUCCESS
) {
2038 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2039 entry
->create_id
, entry
->qp
.handle
.context
,
2040 entry
->qp
.handle
.resource
);
2044 result
= VMCI_SUCCESS
;
2046 mutex_unlock(&qp_broker_list
.mutex
);
2051 * Resets saved queue headers for the given QP broker
2052 * entry. Should be used when guest memory becomes available
2053 * again, or the guest detaches.
2055 static void qp_reset_saved_headers(struct qp_broker_entry
*entry
)
2057 entry
->produce_q
->saved_header
= NULL
;
2058 entry
->consume_q
->saved_header
= NULL
;
2062 * The main entry point for detaching from a queue pair registered with the
2063 * queue pair broker. If more than one endpoint is attached to the queue
2064 * pair, the first endpoint will mainly decrement a reference count and
2065 * generate a notification to its peer. The last endpoint will clean up
2066 * the queue pair state registered with the broker.
2068 * When a guest endpoint detaches, it will unmap and unregister the guest
2069 * memory backing the queue pair. If the host is still attached, it will
2070 * no longer be able to access the queue pair content.
2072 * If the queue pair is already in a state where there is no memory
2073 * registered for the queue pair (any *_NO_MEM state), it will transition to
2074 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2075 * endpoint is the first of two endpoints to detach. If the host endpoint is
2076 * the first out of two to detach, the queue pair will move to the
2077 * VMCIQPB_SHUTDOWN_MEM state.
2079 int vmci_qp_broker_detach(struct vmci_handle handle
, struct vmci_ctx
*context
)
2081 struct qp_broker_entry
*entry
;
2082 const u32 context_id
= vmci_ctx_get_id(context
);
2084 bool is_local
= false;
2087 if (vmci_handle_is_invalid(handle
) || !context
||
2088 context_id
== VMCI_INVALID_ID
) {
2089 return VMCI_ERROR_INVALID_ARGS
;
2092 mutex_lock(&qp_broker_list
.mutex
);
2094 if (!vmci_ctx_qp_exists(context
, handle
)) {
2095 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2096 context_id
, handle
.context
, handle
.resource
);
2097 result
= VMCI_ERROR_NOT_FOUND
;
2101 entry
= qp_broker_handle_to_entry(handle
);
2103 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2104 context_id
, handle
.context
, handle
.resource
);
2105 result
= VMCI_ERROR_NOT_FOUND
;
2109 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2110 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2114 if (context_id
== entry
->create_id
) {
2115 peer_id
= entry
->attach_id
;
2116 entry
->create_id
= VMCI_INVALID_ID
;
2118 peer_id
= entry
->create_id
;
2119 entry
->attach_id
= VMCI_INVALID_ID
;
2121 entry
->qp
.ref_count
--;
2123 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2125 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2126 bool headers_mapped
;
2129 * Pre NOVMVM vmx'en may detach from a queue pair
2130 * before setting the page store, and in that case
2131 * there is no user memory to detach from. Also, more
2132 * recent VMX'en may detach from a queue pair in the
2136 qp_acquire_queue_mutex(entry
->produce_q
);
2137 headers_mapped
= entry
->produce_q
->q_header
||
2138 entry
->consume_q
->q_header
;
2139 if (QPBROKERSTATE_HAS_MEM(entry
)) {
2141 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID
,
2144 if (result
< VMCI_SUCCESS
)
2145 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2146 handle
.context
, handle
.resource
,
2149 qp_host_unregister_user_memory(entry
->produce_q
,
2154 if (!headers_mapped
)
2155 qp_reset_saved_headers(entry
);
2157 qp_release_queue_mutex(entry
->produce_q
);
2159 if (!headers_mapped
&& entry
->wakeup_cb
)
2160 entry
->wakeup_cb(entry
->client_data
);
2163 if (entry
->wakeup_cb
) {
2164 entry
->wakeup_cb
= NULL
;
2165 entry
->client_data
= NULL
;
2169 if (entry
->qp
.ref_count
== 0) {
2170 qp_list_remove_entry(&qp_broker_list
, &entry
->qp
);
2173 kfree(entry
->local_mem
);
2175 qp_cleanup_queue_mutex(entry
->produce_q
, entry
->consume_q
);
2176 qp_host_free_queue(entry
->produce_q
, entry
->qp
.produce_size
);
2177 qp_host_free_queue(entry
->consume_q
, entry
->qp
.consume_size
);
2178 /* Unlink from resource hash table and free callback */
2179 vmci_resource_remove(&entry
->resource
);
2183 vmci_ctx_qp_destroy(context
, handle
);
2185 qp_notify_peer(false, handle
, context_id
, peer_id
);
2186 if (context_id
== VMCI_HOST_CONTEXT_ID
&&
2187 QPBROKERSTATE_HAS_MEM(entry
)) {
2188 entry
->state
= VMCIQPB_SHUTDOWN_MEM
;
2190 entry
->state
= VMCIQPB_SHUTDOWN_NO_MEM
;
2194 vmci_ctx_qp_destroy(context
, handle
);
2197 result
= VMCI_SUCCESS
;
2199 mutex_unlock(&qp_broker_list
.mutex
);
2204 * Establishes the necessary mappings for a queue pair given a
2205 * reference to the queue pair guest memory. This is usually
2206 * called when a guest is unquiesced and the VMX is allowed to
2207 * map guest memory once again.
2209 int vmci_qp_broker_map(struct vmci_handle handle
,
2210 struct vmci_ctx
*context
,
2213 struct qp_broker_entry
*entry
;
2214 const u32 context_id
= vmci_ctx_get_id(context
);
2215 bool is_local
= false;
2218 if (vmci_handle_is_invalid(handle
) || !context
||
2219 context_id
== VMCI_INVALID_ID
)
2220 return VMCI_ERROR_INVALID_ARGS
;
2222 mutex_lock(&qp_broker_list
.mutex
);
2224 if (!vmci_ctx_qp_exists(context
, handle
)) {
2225 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2226 context_id
, handle
.context
, handle
.resource
);
2227 result
= VMCI_ERROR_NOT_FOUND
;
2231 entry
= qp_broker_handle_to_entry(handle
);
2233 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2234 context_id
, handle
.context
, handle
.resource
);
2235 result
= VMCI_ERROR_NOT_FOUND
;
2239 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2240 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2244 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2245 result
= VMCI_SUCCESS
;
2247 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2248 struct vmci_qp_page_store page_store
;
2250 page_store
.pages
= guest_mem
;
2251 page_store
.len
= QPE_NUM_PAGES(entry
->qp
);
2253 qp_acquire_queue_mutex(entry
->produce_q
);
2254 qp_reset_saved_headers(entry
);
2256 qp_host_register_user_memory(&page_store
,
2259 qp_release_queue_mutex(entry
->produce_q
);
2260 if (result
== VMCI_SUCCESS
) {
2261 /* Move state from *_NO_MEM to *_MEM */
2265 if (entry
->wakeup_cb
)
2266 entry
->wakeup_cb(entry
->client_data
);
2271 mutex_unlock(&qp_broker_list
.mutex
);
2276 * Saves a snapshot of the queue headers for the given QP broker
2277 * entry. Should be used when guest memory is unmapped.
2279 * VMCI_SUCCESS on success, appropriate error code if guest memory
2280 * can't be accessed..
2282 static int qp_save_headers(struct qp_broker_entry
*entry
)
2286 if (entry
->produce_q
->saved_header
!= NULL
&&
2287 entry
->consume_q
->saved_header
!= NULL
) {
2289 * If the headers have already been saved, we don't need to do
2290 * it again, and we don't want to map in the headers
2294 return VMCI_SUCCESS
;
2297 if (NULL
== entry
->produce_q
->q_header
||
2298 NULL
== entry
->consume_q
->q_header
) {
2299 result
= qp_host_map_queues(entry
->produce_q
, entry
->consume_q
);
2300 if (result
< VMCI_SUCCESS
)
2304 memcpy(&entry
->saved_produce_q
, entry
->produce_q
->q_header
,
2305 sizeof(entry
->saved_produce_q
));
2306 entry
->produce_q
->saved_header
= &entry
->saved_produce_q
;
2307 memcpy(&entry
->saved_consume_q
, entry
->consume_q
->q_header
,
2308 sizeof(entry
->saved_consume_q
));
2309 entry
->consume_q
->saved_header
= &entry
->saved_consume_q
;
2311 return VMCI_SUCCESS
;
2315 * Removes all references to the guest memory of a given queue pair, and
2316 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2317 * called when a VM is being quiesced where access to guest memory should
2320 int vmci_qp_broker_unmap(struct vmci_handle handle
,
2321 struct vmci_ctx
*context
,
2324 struct qp_broker_entry
*entry
;
2325 const u32 context_id
= vmci_ctx_get_id(context
);
2326 bool is_local
= false;
2329 if (vmci_handle_is_invalid(handle
) || !context
||
2330 context_id
== VMCI_INVALID_ID
)
2331 return VMCI_ERROR_INVALID_ARGS
;
2333 mutex_lock(&qp_broker_list
.mutex
);
2335 if (!vmci_ctx_qp_exists(context
, handle
)) {
2336 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2337 context_id
, handle
.context
, handle
.resource
);
2338 result
= VMCI_ERROR_NOT_FOUND
;
2342 entry
= qp_broker_handle_to_entry(handle
);
2344 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2345 context_id
, handle
.context
, handle
.resource
);
2346 result
= VMCI_ERROR_NOT_FOUND
;
2350 if (context_id
!= entry
->create_id
&& context_id
!= entry
->attach_id
) {
2351 result
= VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2355 is_local
= entry
->qp
.flags
& VMCI_QPFLAG_LOCAL
;
2357 if (context_id
!= VMCI_HOST_CONTEXT_ID
) {
2358 qp_acquire_queue_mutex(entry
->produce_q
);
2359 result
= qp_save_headers(entry
);
2360 if (result
< VMCI_SUCCESS
)
2361 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2362 handle
.context
, handle
.resource
, result
);
2364 qp_host_unmap_queues(gid
, entry
->produce_q
, entry
->consume_q
);
2367 * On hosted, when we unmap queue pairs, the VMX will also
2368 * unmap the guest memory, so we invalidate the previously
2369 * registered memory. If the queue pair is mapped again at a
2370 * later point in time, we will need to reregister the user
2371 * memory with a possibly new user VA.
2373 qp_host_unregister_user_memory(entry
->produce_q
,
2377 * Move state from *_MEM to *_NO_MEM.
2381 qp_release_queue_mutex(entry
->produce_q
);
2384 result
= VMCI_SUCCESS
;
2387 mutex_unlock(&qp_broker_list
.mutex
);
2392 * Destroys all guest queue pair endpoints. If active guest queue
2393 * pairs still exist, hypercalls to attempt detach from these
2394 * queue pairs will be made. Any failure to detach is silently
2397 void vmci_qp_guest_endpoints_exit(void)
2399 struct qp_entry
*entry
;
2400 struct qp_guest_endpoint
*ep
;
2402 mutex_lock(&qp_guest_endpoints
.mutex
);
2404 while ((entry
= qp_list_get_head(&qp_guest_endpoints
))) {
2405 ep
= (struct qp_guest_endpoint
*)entry
;
2407 /* Don't make a hypercall for local queue_pairs. */
2408 if (!(entry
->flags
& VMCI_QPFLAG_LOCAL
))
2409 qp_detatch_hypercall(entry
->handle
);
2411 /* We cannot fail the exit, so let's reset ref_count. */
2412 entry
->ref_count
= 0;
2413 qp_list_remove_entry(&qp_guest_endpoints
, entry
);
2415 qp_guest_endpoint_destroy(ep
);
2418 mutex_unlock(&qp_guest_endpoints
.mutex
);
2422 * Helper routine that will lock the queue pair before subsequent
2424 * Note: Non-blocking on the host side is currently only implemented in ESX.
2425 * Since non-blocking isn't yet implemented on the host personality we
2426 * have no reason to acquire a spin lock. So to avoid the use of an
2427 * unnecessary lock only acquire the mutex if we can block.
2429 static void qp_lock(const struct vmci_qp
*qpair
)
2431 qp_acquire_queue_mutex(qpair
->produce_q
);
2435 * Helper routine that unlocks the queue pair after calling
2438 static void qp_unlock(const struct vmci_qp
*qpair
)
2440 qp_release_queue_mutex(qpair
->produce_q
);
2444 * The queue headers may not be mapped at all times. If a queue is
2445 * currently not mapped, it will be attempted to do so.
2447 static int qp_map_queue_headers(struct vmci_queue
*produce_q
,
2448 struct vmci_queue
*consume_q
)
2452 if (NULL
== produce_q
->q_header
|| NULL
== consume_q
->q_header
) {
2453 result
= qp_host_map_queues(produce_q
, consume_q
);
2454 if (result
< VMCI_SUCCESS
)
2455 return (produce_q
->saved_header
&&
2456 consume_q
->saved_header
) ?
2457 VMCI_ERROR_QUEUEPAIR_NOT_READY
:
2458 VMCI_ERROR_QUEUEPAIR_NOTATTACHED
;
2461 return VMCI_SUCCESS
;
2465 * Helper routine that will retrieve the produce and consume
2466 * headers of a given queue pair. If the guest memory of the
2467 * queue pair is currently not available, the saved queue headers
2468 * will be returned, if these are available.
2470 static int qp_get_queue_headers(const struct vmci_qp
*qpair
,
2471 struct vmci_queue_header
**produce_q_header
,
2472 struct vmci_queue_header
**consume_q_header
)
2476 result
= qp_map_queue_headers(qpair
->produce_q
, qpair
->consume_q
);
2477 if (result
== VMCI_SUCCESS
) {
2478 *produce_q_header
= qpair
->produce_q
->q_header
;
2479 *consume_q_header
= qpair
->consume_q
->q_header
;
2480 } else if (qpair
->produce_q
->saved_header
&&
2481 qpair
->consume_q
->saved_header
) {
2482 *produce_q_header
= qpair
->produce_q
->saved_header
;
2483 *consume_q_header
= qpair
->consume_q
->saved_header
;
2484 result
= VMCI_SUCCESS
;
2491 * Callback from VMCI queue pair broker indicating that a queue
2492 * pair that was previously not ready, now either is ready or
2495 static int qp_wakeup_cb(void *client_data
)
2497 struct vmci_qp
*qpair
= (struct vmci_qp
*)client_data
;
2500 while (qpair
->blocked
> 0) {
2502 qpair
->generation
++;
2503 wake_up(&qpair
->event
);
2507 return VMCI_SUCCESS
;
2511 * Makes the calling thread wait for the queue pair to become
2512 * ready for host side access. Returns true when thread is
2513 * woken up after queue pair state change, false otherwise.
2515 static bool qp_wait_for_ready_queue(struct vmci_qp
*qpair
)
2517 unsigned int generation
;
2520 generation
= qpair
->generation
;
2522 wait_event(qpair
->event
, generation
!= qpair
->generation
);
2529 * Enqueues a given buffer to the produce queue using the provided
2530 * function. As many bytes as possible (space available in the queue)
2531 * are enqueued. Assumes the queue->mutex has been acquired. Returns
2532 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2533 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2534 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2535 * an error occured when accessing the buffer,
2536 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2537 * available. Otherwise, the number of bytes written to the queue is
2538 * returned. Updates the tail pointer of the produce queue.
2540 static ssize_t
qp_enqueue_locked(struct vmci_queue
*produce_q
,
2541 struct vmci_queue
*consume_q
,
2542 const u64 produce_q_size
,
2543 struct iov_iter
*from
)
2547 size_t buf_size
= iov_iter_count(from
);
2551 result
= qp_map_queue_headers(produce_q
, consume_q
);
2552 if (unlikely(result
!= VMCI_SUCCESS
))
2555 free_space
= vmci_q_header_free_space(produce_q
->q_header
,
2556 consume_q
->q_header
,
2558 if (free_space
== 0)
2559 return VMCI_ERROR_QUEUEPAIR_NOSPACE
;
2561 if (free_space
< VMCI_SUCCESS
)
2562 return (ssize_t
) free_space
;
2564 written
= (size_t) (free_space
> buf_size
? buf_size
: free_space
);
2565 tail
= vmci_q_header_producer_tail(produce_q
->q_header
);
2566 if (likely(tail
+ written
< produce_q_size
)) {
2567 result
= qp_memcpy_to_queue_iter(produce_q
, tail
, from
, written
);
2569 /* Tail pointer wraps around. */
2571 const size_t tmp
= (size_t) (produce_q_size
- tail
);
2573 result
= qp_memcpy_to_queue_iter(produce_q
, tail
, from
, tmp
);
2574 if (result
>= VMCI_SUCCESS
)
2575 result
= qp_memcpy_to_queue_iter(produce_q
, 0, from
,
2579 if (result
< VMCI_SUCCESS
)
2582 vmci_q_header_add_producer_tail(produce_q
->q_header
, written
,
2588 * Dequeues data (if available) from the given consume queue. Writes data
2589 * to the user provided buffer using the provided function.
2590 * Assumes the queue->mutex has been acquired.
2592 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2593 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2594 * (as defined by the queue size).
2595 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2596 * Otherwise the number of bytes dequeued is returned.
2598 * Updates the head pointer of the consume queue.
2600 static ssize_t
qp_dequeue_locked(struct vmci_queue
*produce_q
,
2601 struct vmci_queue
*consume_q
,
2602 const u64 consume_q_size
,
2603 struct iov_iter
*to
,
2604 bool update_consumer
)
2606 size_t buf_size
= iov_iter_count(to
);
2612 result
= qp_map_queue_headers(produce_q
, consume_q
);
2613 if (unlikely(result
!= VMCI_SUCCESS
))
2616 buf_ready
= vmci_q_header_buf_ready(consume_q
->q_header
,
2617 produce_q
->q_header
,
2620 return VMCI_ERROR_QUEUEPAIR_NODATA
;
2622 if (buf_ready
< VMCI_SUCCESS
)
2623 return (ssize_t
) buf_ready
;
2625 read
= (size_t) (buf_ready
> buf_size
? buf_size
: buf_ready
);
2626 head
= vmci_q_header_consumer_head(produce_q
->q_header
);
2627 if (likely(head
+ read
< consume_q_size
)) {
2628 result
= qp_memcpy_from_queue_iter(to
, consume_q
, head
, read
);
2630 /* Head pointer wraps around. */
2632 const size_t tmp
= (size_t) (consume_q_size
- head
);
2634 result
= qp_memcpy_from_queue_iter(to
, consume_q
, head
, tmp
);
2635 if (result
>= VMCI_SUCCESS
)
2636 result
= qp_memcpy_from_queue_iter(to
, consume_q
, 0,
2641 if (result
< VMCI_SUCCESS
)
2644 if (update_consumer
)
2645 vmci_q_header_add_consumer_head(produce_q
->q_header
,
2646 read
, consume_q_size
);
2652 * vmci_qpair_alloc() - Allocates a queue pair.
2653 * @qpair: Pointer for the new vmci_qp struct.
2654 * @handle: Handle to track the resource.
2655 * @produce_qsize: Desired size of the producer queue.
2656 * @consume_qsize: Desired size of the consumer queue.
2657 * @peer: ContextID of the peer.
2658 * @flags: VMCI flags.
2659 * @priv_flags: VMCI priviledge flags.
2661 * This is the client interface for allocating the memory for a
2662 * vmci_qp structure and then attaching to the underlying
2663 * queue. If an error occurs allocating the memory for the
2664 * vmci_qp structure no attempt is made to attach. If an
2665 * error occurs attaching, then the structure is freed.
2667 int vmci_qpair_alloc(struct vmci_qp
**qpair
,
2668 struct vmci_handle
*handle
,
2675 struct vmci_qp
*my_qpair
;
2677 struct vmci_handle src
= VMCI_INVALID_HANDLE
;
2678 struct vmci_handle dst
= vmci_make_handle(peer
, VMCI_INVALID_ID
);
2679 enum vmci_route route
;
2680 vmci_event_release_cb wakeup_cb
;
2684 * Restrict the size of a queuepair. The device already
2685 * enforces a limit on the total amount of memory that can be
2686 * allocated to queuepairs for a guest. However, we try to
2687 * allocate this memory before we make the queuepair
2688 * allocation hypercall. On Linux, we allocate each page
2689 * separately, which means rather than fail, the guest will
2690 * thrash while it tries to allocate, and will become
2691 * increasingly unresponsive to the point where it appears to
2692 * be hung. So we place a limit on the size of an individual
2693 * queuepair here, and leave the device to enforce the
2694 * restriction on total queuepair memory. (Note that this
2695 * doesn't prevent all cases; a user with only this much
2696 * physical memory could still get into trouble.) The error
2697 * used by the device is NO_RESOURCES, so use that here too.
2700 if (produce_qsize
+ consume_qsize
< max(produce_qsize
, consume_qsize
) ||
2701 produce_qsize
+ consume_qsize
> VMCI_MAX_GUEST_QP_MEMORY
)
2702 return VMCI_ERROR_NO_RESOURCES
;
2704 retval
= vmci_route(&src
, &dst
, false, &route
);
2705 if (retval
< VMCI_SUCCESS
)
2706 route
= vmci_guest_code_active() ?
2707 VMCI_ROUTE_AS_GUEST
: VMCI_ROUTE_AS_HOST
;
2709 if (flags
& (VMCI_QPFLAG_NONBLOCK
| VMCI_QPFLAG_PINNED
)) {
2710 pr_devel("NONBLOCK OR PINNED set");
2711 return VMCI_ERROR_INVALID_ARGS
;
2714 my_qpair
= kzalloc(sizeof(*my_qpair
), GFP_KERNEL
);
2716 return VMCI_ERROR_NO_MEM
;
2718 my_qpair
->produce_q_size
= produce_qsize
;
2719 my_qpair
->consume_q_size
= consume_qsize
;
2720 my_qpair
->peer
= peer
;
2721 my_qpair
->flags
= flags
;
2722 my_qpair
->priv_flags
= priv_flags
;
2727 if (VMCI_ROUTE_AS_HOST
== route
) {
2728 my_qpair
->guest_endpoint
= false;
2729 if (!(flags
& VMCI_QPFLAG_LOCAL
)) {
2730 my_qpair
->blocked
= 0;
2731 my_qpair
->generation
= 0;
2732 init_waitqueue_head(&my_qpair
->event
);
2733 wakeup_cb
= qp_wakeup_cb
;
2734 client_data
= (void *)my_qpair
;
2737 my_qpair
->guest_endpoint
= true;
2740 retval
= vmci_qp_alloc(handle
,
2741 &my_qpair
->produce_q
,
2742 my_qpair
->produce_q_size
,
2743 &my_qpair
->consume_q
,
2744 my_qpair
->consume_q_size
,
2747 my_qpair
->priv_flags
,
2748 my_qpair
->guest_endpoint
,
2749 wakeup_cb
, client_data
);
2751 if (retval
< VMCI_SUCCESS
) {
2757 my_qpair
->handle
= *handle
;
2761 EXPORT_SYMBOL_GPL(vmci_qpair_alloc
);
2764 * vmci_qpair_detach() - Detatches the client from a queue pair.
2765 * @qpair: Reference of a pointer to the qpair struct.
2767 * This is the client interface for detaching from a VMCIQPair.
2768 * Note that this routine will free the memory allocated for the
2769 * vmci_qp structure too.
2771 int vmci_qpair_detach(struct vmci_qp
**qpair
)
2774 struct vmci_qp
*old_qpair
;
2776 if (!qpair
|| !(*qpair
))
2777 return VMCI_ERROR_INVALID_ARGS
;
2780 result
= qp_detatch(old_qpair
->handle
, old_qpair
->guest_endpoint
);
2783 * The guest can fail to detach for a number of reasons, and
2784 * if it does so, it will cleanup the entry (if there is one).
2785 * The host can fail too, but it won't cleanup the entry
2786 * immediately, it will do that later when the context is
2787 * freed. Either way, we need to release the qpair struct
2788 * here; there isn't much the caller can do, and we don't want
2792 memset(old_qpair
, 0, sizeof(*old_qpair
));
2793 old_qpair
->handle
= VMCI_INVALID_HANDLE
;
2794 old_qpair
->peer
= VMCI_INVALID_ID
;
2800 EXPORT_SYMBOL_GPL(vmci_qpair_detach
);
2803 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2804 * @qpair: Pointer to the queue pair struct.
2805 * @producer_tail: Reference used for storing producer tail index.
2806 * @consumer_head: Reference used for storing the consumer head index.
2808 * This is the client interface for getting the current indexes of the
2809 * QPair from the point of the view of the caller as the producer.
2811 int vmci_qpair_get_produce_indexes(const struct vmci_qp
*qpair
,
2815 struct vmci_queue_header
*produce_q_header
;
2816 struct vmci_queue_header
*consume_q_header
;
2820 return VMCI_ERROR_INVALID_ARGS
;
2824 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2825 if (result
== VMCI_SUCCESS
)
2826 vmci_q_header_get_pointers(produce_q_header
, consume_q_header
,
2827 producer_tail
, consumer_head
);
2830 if (result
== VMCI_SUCCESS
&&
2831 ((producer_tail
&& *producer_tail
>= qpair
->produce_q_size
) ||
2832 (consumer_head
&& *consumer_head
>= qpair
->produce_q_size
)))
2833 return VMCI_ERROR_INVALID_SIZE
;
2837 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes
);
2840 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2841 * @qpair: Pointer to the queue pair struct.
2842 * @consumer_tail: Reference used for storing consumer tail index.
2843 * @producer_head: Reference used for storing the producer head index.
2845 * This is the client interface for getting the current indexes of the
2846 * QPair from the point of the view of the caller as the consumer.
2848 int vmci_qpair_get_consume_indexes(const struct vmci_qp
*qpair
,
2852 struct vmci_queue_header
*produce_q_header
;
2853 struct vmci_queue_header
*consume_q_header
;
2857 return VMCI_ERROR_INVALID_ARGS
;
2861 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2862 if (result
== VMCI_SUCCESS
)
2863 vmci_q_header_get_pointers(consume_q_header
, produce_q_header
,
2864 consumer_tail
, producer_head
);
2867 if (result
== VMCI_SUCCESS
&&
2868 ((consumer_tail
&& *consumer_tail
>= qpair
->consume_q_size
) ||
2869 (producer_head
&& *producer_head
>= qpair
->consume_q_size
)))
2870 return VMCI_ERROR_INVALID_SIZE
;
2874 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes
);
2877 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2878 * @qpair: Pointer to the queue pair struct.
2880 * This is the client interface for getting the amount of free
2881 * space in the QPair from the point of the view of the caller as
2882 * the producer which is the common case. Returns < 0 if err, else
2883 * available bytes into which data can be enqueued if > 0.
2885 s64
vmci_qpair_produce_free_space(const struct vmci_qp
*qpair
)
2887 struct vmci_queue_header
*produce_q_header
;
2888 struct vmci_queue_header
*consume_q_header
;
2892 return VMCI_ERROR_INVALID_ARGS
;
2896 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2897 if (result
== VMCI_SUCCESS
)
2898 result
= vmci_q_header_free_space(produce_q_header
,
2900 qpair
->produce_q_size
);
2908 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space
);
2911 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2912 * @qpair: Pointer to the queue pair struct.
2914 * This is the client interface for getting the amount of free
2915 * space in the QPair from the point of the view of the caller as
2916 * the consumer which is not the common case. Returns < 0 if err, else
2917 * available bytes into which data can be enqueued if > 0.
2919 s64
vmci_qpair_consume_free_space(const struct vmci_qp
*qpair
)
2921 struct vmci_queue_header
*produce_q_header
;
2922 struct vmci_queue_header
*consume_q_header
;
2926 return VMCI_ERROR_INVALID_ARGS
;
2930 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2931 if (result
== VMCI_SUCCESS
)
2932 result
= vmci_q_header_free_space(consume_q_header
,
2934 qpair
->consume_q_size
);
2942 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space
);
2945 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2947 * @qpair: Pointer to the queue pair struct.
2949 * This is the client interface for getting the amount of
2950 * enqueued data in the QPair from the point of the view of the
2951 * caller as the producer which is not the common case. Returns < 0 if err,
2952 * else available bytes that may be read.
2954 s64
vmci_qpair_produce_buf_ready(const struct vmci_qp
*qpair
)
2956 struct vmci_queue_header
*produce_q_header
;
2957 struct vmci_queue_header
*consume_q_header
;
2961 return VMCI_ERROR_INVALID_ARGS
;
2965 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
2966 if (result
== VMCI_SUCCESS
)
2967 result
= vmci_q_header_buf_ready(produce_q_header
,
2969 qpair
->produce_q_size
);
2977 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready
);
2980 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2982 * @qpair: Pointer to the queue pair struct.
2984 * This is the client interface for getting the amount of
2985 * enqueued data in the QPair from the point of the view of the
2986 * caller as the consumer which is the normal case. Returns < 0 if err,
2987 * else available bytes that may be read.
2989 s64
vmci_qpair_consume_buf_ready(const struct vmci_qp
*qpair
)
2991 struct vmci_queue_header
*produce_q_header
;
2992 struct vmci_queue_header
*consume_q_header
;
2996 return VMCI_ERROR_INVALID_ARGS
;
3000 qp_get_queue_headers(qpair
, &produce_q_header
, &consume_q_header
);
3001 if (result
== VMCI_SUCCESS
)
3002 result
= vmci_q_header_buf_ready(consume_q_header
,
3004 qpair
->consume_q_size
);
3012 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready
);
3015 * vmci_qpair_enqueue() - Throw data on the queue.
3016 * @qpair: Pointer to the queue pair struct.
3017 * @buf: Pointer to buffer containing data
3018 * @buf_size: Length of buffer.
3019 * @buf_type: Buffer type (Unused).
3021 * This is the client interface for enqueueing data into the queue.
3022 * Returns number of bytes enqueued or < 0 on error.
3024 ssize_t
vmci_qpair_enqueue(struct vmci_qp
*qpair
,
3030 struct iov_iter from
;
3031 struct kvec v
= {.iov_base
= (void *)buf
, .iov_len
= buf_size
};
3034 return VMCI_ERROR_INVALID_ARGS
;
3036 iov_iter_kvec(&from
, WRITE
| ITER_KVEC
, &v
, 1, buf_size
);
3041 result
= qp_enqueue_locked(qpair
->produce_q
,
3043 qpair
->produce_q_size
,
3046 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3047 !qp_wait_for_ready_queue(qpair
))
3048 result
= VMCI_ERROR_WOULD_BLOCK
;
3050 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3056 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue
);
3059 * vmci_qpair_dequeue() - Get data from the queue.
3060 * @qpair: Pointer to the queue pair struct.
3061 * @buf: Pointer to buffer for the data
3062 * @buf_size: Length of buffer.
3063 * @buf_type: Buffer type (Unused).
3065 * This is the client interface for dequeueing data from the queue.
3066 * Returns number of bytes dequeued or < 0 on error.
3068 ssize_t
vmci_qpair_dequeue(struct vmci_qp
*qpair
,
3075 struct kvec v
= {.iov_base
= buf
, .iov_len
= buf_size
};
3078 return VMCI_ERROR_INVALID_ARGS
;
3080 iov_iter_kvec(&to
, READ
| ITER_KVEC
, &v
, 1, buf_size
);
3085 result
= qp_dequeue_locked(qpair
->produce_q
,
3087 qpair
->consume_q_size
,
3090 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3091 !qp_wait_for_ready_queue(qpair
))
3092 result
= VMCI_ERROR_WOULD_BLOCK
;
3094 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3100 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue
);
3103 * vmci_qpair_peek() - Peek at the data in the queue.
3104 * @qpair: Pointer to the queue pair struct.
3105 * @buf: Pointer to buffer for the data
3106 * @buf_size: Length of buffer.
3107 * @buf_type: Buffer type (Unused on Linux).
3109 * This is the client interface for peeking into a queue. (I.e.,
3110 * copy data from the queue without updating the head pointer.)
3111 * Returns number of bytes dequeued or < 0 on error.
3113 ssize_t
vmci_qpair_peek(struct vmci_qp
*qpair
,
3119 struct kvec v
= {.iov_base
= buf
, .iov_len
= buf_size
};
3123 return VMCI_ERROR_INVALID_ARGS
;
3125 iov_iter_kvec(&to
, READ
| ITER_KVEC
, &v
, 1, buf_size
);
3130 result
= qp_dequeue_locked(qpair
->produce_q
,
3132 qpair
->consume_q_size
,
3135 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3136 !qp_wait_for_ready_queue(qpair
))
3137 result
= VMCI_ERROR_WOULD_BLOCK
;
3139 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3145 EXPORT_SYMBOL_GPL(vmci_qpair_peek
);
3148 * vmci_qpair_enquev() - Throw data on the queue using iov.
3149 * @qpair: Pointer to the queue pair struct.
3150 * @iov: Pointer to buffer containing data
3151 * @iov_size: Length of buffer.
3152 * @buf_type: Buffer type (Unused).
3154 * This is the client interface for enqueueing data into the queue.
3155 * This function uses IO vectors to handle the work. Returns number
3156 * of bytes enqueued or < 0 on error.
3158 ssize_t
vmci_qpair_enquev(struct vmci_qp
*qpair
,
3166 return VMCI_ERROR_INVALID_ARGS
;
3171 result
= qp_enqueue_locked(qpair
->produce_q
,
3173 qpair
->produce_q_size
,
3176 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3177 !qp_wait_for_ready_queue(qpair
))
3178 result
= VMCI_ERROR_WOULD_BLOCK
;
3180 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3186 EXPORT_SYMBOL_GPL(vmci_qpair_enquev
);
3189 * vmci_qpair_dequev() - Get data from the queue using iov.
3190 * @qpair: Pointer to the queue pair struct.
3191 * @iov: Pointer to buffer for the data
3192 * @iov_size: Length of buffer.
3193 * @buf_type: Buffer type (Unused).
3195 * This is the client interface for dequeueing data from the queue.
3196 * This function uses IO vectors to handle the work. Returns number
3197 * of bytes dequeued or < 0 on error.
3199 ssize_t
vmci_qpair_dequev(struct vmci_qp
*qpair
,
3207 return VMCI_ERROR_INVALID_ARGS
;
3212 result
= qp_dequeue_locked(qpair
->produce_q
,
3214 qpair
->consume_q_size
,
3215 &msg
->msg_iter
, true);
3217 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3218 !qp_wait_for_ready_queue(qpair
))
3219 result
= VMCI_ERROR_WOULD_BLOCK
;
3221 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3227 EXPORT_SYMBOL_GPL(vmci_qpair_dequev
);
3230 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3231 * @qpair: Pointer to the queue pair struct.
3232 * @iov: Pointer to buffer for the data
3233 * @iov_size: Length of buffer.
3234 * @buf_type: Buffer type (Unused on Linux).
3236 * This is the client interface for peeking into a queue. (I.e.,
3237 * copy data from the queue without updating the head pointer.)
3238 * This function uses IO vectors to handle the work. Returns number
3239 * of bytes peeked or < 0 on error.
3241 ssize_t
vmci_qpair_peekv(struct vmci_qp
*qpair
,
3249 return VMCI_ERROR_INVALID_ARGS
;
3254 result
= qp_dequeue_locked(qpair
->produce_q
,
3256 qpair
->consume_q_size
,
3257 &msg
->msg_iter
, false);
3259 if (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
&&
3260 !qp_wait_for_ready_queue(qpair
))
3261 result
= VMCI_ERROR_WOULD_BLOCK
;
3263 } while (result
== VMCI_ERROR_QUEUEPAIR_NOT_READY
);
3268 EXPORT_SYMBOL_GPL(vmci_qpair_peekv
);