2 * Copyright (c) 2016 Avago Technologies. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful.
9 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
10 * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
11 * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
12 * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
13 * See the GNU General Public License for more details, a copy of which
14 * can be found in the file COPYING included with this package
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/blk-mq.h>
21 #include <linux/parser.h>
22 #include <linux/random.h>
23 #include <uapi/scsi/fc/fc_fs.h>
24 #include <uapi/scsi/fc/fc_els.h>
27 #include <linux/nvme-fc-driver.h>
28 #include <linux/nvme-fc.h>
31 /* *************************** Data Structures/Defines ****************** */
34 #define NVMET_LS_CTX_COUNT 4
36 /* for this implementation, assume small single frame rqst/rsp */
37 #define NVME_FC_MAX_LS_BUFFER_SIZE 2048
39 struct nvmet_fc_tgtport
;
40 struct nvmet_fc_tgt_assoc
;
42 struct nvmet_fc_ls_iod
{
43 struct nvmefc_tgt_ls_req
*lsreq
;
44 struct nvmefc_tgt_fcp_req
*fcpreq
; /* only if RS */
46 struct list_head ls_list
; /* tgtport->ls_list */
48 struct nvmet_fc_tgtport
*tgtport
;
49 struct nvmet_fc_tgt_assoc
*assoc
;
56 struct scatterlist sg
[2];
58 struct work_struct work
;
59 } __aligned(sizeof(unsigned long long));
61 #define NVMET_FC_MAX_SEQ_LENGTH (256 * 1024)
62 #define NVMET_FC_MAX_XFR_SGENTS (NVMET_FC_MAX_SEQ_LENGTH / PAGE_SIZE)
64 enum nvmet_fcp_datadir
{
71 struct nvmet_fc_fcp_iod
{
72 struct nvmefc_tgt_fcp_req
*fcpreq
;
74 struct nvme_fc_cmd_iu cmdiubuf
;
75 struct nvme_fc_ersp_iu rspiubuf
;
77 struct scatterlist
*data_sg
;
80 enum nvmet_fcp_datadir io_dir
;
88 struct work_struct work
;
89 struct work_struct done_work
;
91 struct nvmet_fc_tgtport
*tgtport
;
92 struct nvmet_fc_tgt_queue
*queue
;
94 struct list_head fcp_list
; /* tgtport->fcp_list */
97 struct nvmet_fc_tgtport
{
99 struct nvmet_fc_target_port fc_target_port
;
101 struct list_head tgt_list
; /* nvmet_fc_target_list */
102 struct device
*dev
; /* dev for dma mapping */
103 struct nvmet_fc_target_template
*ops
;
105 struct nvmet_fc_ls_iod
*iod
;
107 struct list_head ls_list
;
108 struct list_head ls_busylist
;
109 struct list_head assoc_list
;
110 struct ida assoc_cnt
;
111 struct nvmet_port
*port
;
116 struct nvmet_fc_defer_fcp_req
{
117 struct list_head req_list
;
118 struct nvmefc_tgt_fcp_req
*fcp_req
;
121 struct nvmet_fc_tgt_queue
{
133 struct nvmet_port
*port
;
134 struct nvmet_cq nvme_cq
;
135 struct nvmet_sq nvme_sq
;
136 struct nvmet_fc_tgt_assoc
*assoc
;
137 struct nvmet_fc_fcp_iod
*fod
; /* array of fcp_iods */
138 struct list_head fod_list
;
139 struct list_head pending_cmd_list
;
140 struct list_head avail_defer_list
;
141 struct workqueue_struct
*work_q
;
143 } __aligned(sizeof(unsigned long long));
145 struct nvmet_fc_tgt_assoc
{
148 struct nvmet_fc_tgtport
*tgtport
;
149 struct list_head a_list
;
150 struct nvmet_fc_tgt_queue
*queues
[NVMET_NR_QUEUES
+ 1];
152 struct work_struct del_work
;
157 nvmet_fc_iodnum(struct nvmet_fc_ls_iod
*iodptr
)
159 return (iodptr
- iodptr
->tgtport
->iod
);
163 nvmet_fc_fodnum(struct nvmet_fc_fcp_iod
*fodptr
)
165 return (fodptr
- fodptr
->queue
->fod
);
170 * Association and Connection IDs:
172 * Association ID will have random number in upper 6 bytes and zero
175 * Connection IDs will be Association ID with QID or'd in lower 2 bytes
177 * note: Association ID = Connection ID for queue 0
179 #define BYTES_FOR_QID sizeof(u16)
180 #define BYTES_FOR_QID_SHIFT (BYTES_FOR_QID * 8)
181 #define NVMET_FC_QUEUEID_MASK ((u64)((1 << BYTES_FOR_QID_SHIFT) - 1))
184 nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc
*assoc
, u16 qid
)
186 return (assoc
->association_id
| qid
);
190 nvmet_fc_getassociationid(u64 connectionid
)
192 return connectionid
& ~NVMET_FC_QUEUEID_MASK
;
196 nvmet_fc_getqueueid(u64 connectionid
)
198 return (u16
)(connectionid
& NVMET_FC_QUEUEID_MASK
);
201 static inline struct nvmet_fc_tgtport
*
202 targetport_to_tgtport(struct nvmet_fc_target_port
*targetport
)
204 return container_of(targetport
, struct nvmet_fc_tgtport
,
208 static inline struct nvmet_fc_fcp_iod
*
209 nvmet_req_to_fod(struct nvmet_req
*nvme_req
)
211 return container_of(nvme_req
, struct nvmet_fc_fcp_iod
, req
);
215 /* *************************** Globals **************************** */
218 static DEFINE_SPINLOCK(nvmet_fc_tgtlock
);
220 static LIST_HEAD(nvmet_fc_target_list
);
221 static DEFINE_IDA(nvmet_fc_tgtport_cnt
);
224 static void nvmet_fc_handle_ls_rqst_work(struct work_struct
*work
);
225 static void nvmet_fc_handle_fcp_rqst_work(struct work_struct
*work
);
226 static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct
*work
);
227 static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc
*assoc
);
228 static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc
*assoc
);
229 static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue
*queue
);
230 static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue
*queue
);
231 static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport
*tgtport
);
232 static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport
*tgtport
);
233 static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport
*tgtport
,
234 struct nvmet_fc_fcp_iod
*fod
);
235 static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc
*assoc
);
238 /* *********************** FC-NVME DMA Handling **************************** */
241 * The fcloop device passes in a NULL device pointer. Real LLD's will
242 * pass in a valid device pointer. If NULL is passed to the dma mapping
243 * routines, depending on the platform, it may or may not succeed, and
247 * Wrapper all the dma routines and check the dev pointer.
249 * If simple mappings (return just a dma address, we'll noop them,
250 * returning a dma address of 0.
252 * On more complex mappings (dma_map_sg), a pseudo routine fills
253 * in the scatter list, setting all dma addresses to 0.
256 static inline dma_addr_t
257 fc_dma_map_single(struct device
*dev
, void *ptr
, size_t size
,
258 enum dma_data_direction dir
)
260 return dev
? dma_map_single(dev
, ptr
, size
, dir
) : (dma_addr_t
)0L;
264 fc_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
266 return dev
? dma_mapping_error(dev
, dma_addr
) : 0;
270 fc_dma_unmap_single(struct device
*dev
, dma_addr_t addr
, size_t size
,
271 enum dma_data_direction dir
)
274 dma_unmap_single(dev
, addr
, size
, dir
);
278 fc_dma_sync_single_for_cpu(struct device
*dev
, dma_addr_t addr
, size_t size
,
279 enum dma_data_direction dir
)
282 dma_sync_single_for_cpu(dev
, addr
, size
, dir
);
286 fc_dma_sync_single_for_device(struct device
*dev
, dma_addr_t addr
, size_t size
,
287 enum dma_data_direction dir
)
290 dma_sync_single_for_device(dev
, addr
, size
, dir
);
293 /* pseudo dma_map_sg call */
295 fc_map_sg(struct scatterlist
*sg
, int nents
)
297 struct scatterlist
*s
;
300 WARN_ON(nents
== 0 || sg
[0].length
== 0);
302 for_each_sg(sg
, s
, nents
, i
) {
304 #ifdef CONFIG_NEED_SG_DMA_LENGTH
305 s
->dma_length
= s
->length
;
312 fc_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
313 enum dma_data_direction dir
)
315 return dev
? dma_map_sg(dev
, sg
, nents
, dir
) : fc_map_sg(sg
, nents
);
319 fc_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
320 enum dma_data_direction dir
)
323 dma_unmap_sg(dev
, sg
, nents
, dir
);
327 /* *********************** FC-NVME Port Management ************************ */
331 nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport
*tgtport
)
333 struct nvmet_fc_ls_iod
*iod
;
336 iod
= kcalloc(NVMET_LS_CTX_COUNT
, sizeof(struct nvmet_fc_ls_iod
),
343 for (i
= 0; i
< NVMET_LS_CTX_COUNT
; iod
++, i
++) {
344 INIT_WORK(&iod
->work
, nvmet_fc_handle_ls_rqst_work
);
345 iod
->tgtport
= tgtport
;
346 list_add_tail(&iod
->ls_list
, &tgtport
->ls_list
);
348 iod
->rqstbuf
= kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE
,
353 iod
->rspbuf
= iod
->rqstbuf
+ NVME_FC_MAX_LS_BUFFER_SIZE
;
355 iod
->rspdma
= fc_dma_map_single(tgtport
->dev
, iod
->rspbuf
,
356 NVME_FC_MAX_LS_BUFFER_SIZE
,
358 if (fc_dma_mapping_error(tgtport
->dev
, iod
->rspdma
))
366 list_del(&iod
->ls_list
);
367 for (iod
--, i
--; i
>= 0; iod
--, i
--) {
368 fc_dma_unmap_single(tgtport
->dev
, iod
->rspdma
,
369 NVME_FC_MAX_LS_BUFFER_SIZE
, DMA_TO_DEVICE
);
371 list_del(&iod
->ls_list
);
380 nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport
*tgtport
)
382 struct nvmet_fc_ls_iod
*iod
= tgtport
->iod
;
385 for (i
= 0; i
< NVMET_LS_CTX_COUNT
; iod
++, i
++) {
386 fc_dma_unmap_single(tgtport
->dev
,
387 iod
->rspdma
, NVME_FC_MAX_LS_BUFFER_SIZE
,
390 list_del(&iod
->ls_list
);
395 static struct nvmet_fc_ls_iod
*
396 nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport
*tgtport
)
398 struct nvmet_fc_ls_iod
*iod
;
401 spin_lock_irqsave(&tgtport
->lock
, flags
);
402 iod
= list_first_entry_or_null(&tgtport
->ls_list
,
403 struct nvmet_fc_ls_iod
, ls_list
);
405 list_move_tail(&iod
->ls_list
, &tgtport
->ls_busylist
);
406 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
412 nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport
*tgtport
,
413 struct nvmet_fc_ls_iod
*iod
)
417 spin_lock_irqsave(&tgtport
->lock
, flags
);
418 list_move(&iod
->ls_list
, &tgtport
->ls_list
);
419 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
423 nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport
*tgtport
,
424 struct nvmet_fc_tgt_queue
*queue
)
426 struct nvmet_fc_fcp_iod
*fod
= queue
->fod
;
429 for (i
= 0; i
< queue
->sqsize
; fod
++, i
++) {
430 INIT_WORK(&fod
->work
, nvmet_fc_handle_fcp_rqst_work
);
431 INIT_WORK(&fod
->done_work
, nvmet_fc_fcp_rqst_op_done_work
);
432 fod
->tgtport
= tgtport
;
436 fod
->aborted
= false;
438 list_add_tail(&fod
->fcp_list
, &queue
->fod_list
);
439 spin_lock_init(&fod
->flock
);
441 fod
->rspdma
= fc_dma_map_single(tgtport
->dev
, &fod
->rspiubuf
,
442 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
443 if (fc_dma_mapping_error(tgtport
->dev
, fod
->rspdma
)) {
444 list_del(&fod
->fcp_list
);
445 for (fod
--, i
--; i
>= 0; fod
--, i
--) {
446 fc_dma_unmap_single(tgtport
->dev
, fod
->rspdma
,
447 sizeof(fod
->rspiubuf
),
450 list_del(&fod
->fcp_list
);
459 nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport
*tgtport
,
460 struct nvmet_fc_tgt_queue
*queue
)
462 struct nvmet_fc_fcp_iod
*fod
= queue
->fod
;
465 for (i
= 0; i
< queue
->sqsize
; fod
++, i
++) {
467 fc_dma_unmap_single(tgtport
->dev
, fod
->rspdma
,
468 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
472 static struct nvmet_fc_fcp_iod
*
473 nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue
*queue
)
475 struct nvmet_fc_fcp_iod
*fod
;
477 lockdep_assert_held(&queue
->qlock
);
479 fod
= list_first_entry_or_null(&queue
->fod_list
,
480 struct nvmet_fc_fcp_iod
, fcp_list
);
482 list_del(&fod
->fcp_list
);
485 * no queue reference is taken, as it was taken by the
486 * queue lookup just prior to the allocation. The iod
487 * will "inherit" that reference.
495 nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport
*tgtport
,
496 struct nvmet_fc_tgt_queue
*queue
,
497 struct nvmefc_tgt_fcp_req
*fcpreq
)
499 struct nvmet_fc_fcp_iod
*fod
= fcpreq
->nvmet_fc_private
;
502 * put all admin cmds on hw queue id 0. All io commands go to
503 * the respective hw queue based on a modulo basis
505 fcpreq
->hwqid
= queue
->qid
?
506 ((queue
->qid
- 1) % tgtport
->ops
->max_hw_queues
) : 0;
508 if (tgtport
->ops
->target_features
& NVMET_FCTGTFEAT_CMD_IN_ISR
)
509 queue_work_on(queue
->cpu
, queue
->work_q
, &fod
->work
);
511 nvmet_fc_handle_fcp_rqst(tgtport
, fod
);
515 nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue
*queue
,
516 struct nvmet_fc_fcp_iod
*fod
)
518 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
519 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
520 struct nvmet_fc_defer_fcp_req
*deferfcp
;
523 fc_dma_sync_single_for_cpu(tgtport
->dev
, fod
->rspdma
,
524 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
526 fcpreq
->nvmet_fc_private
= NULL
;
530 fod
->aborted
= false;
531 fod
->writedataactive
= false;
534 tgtport
->ops
->fcp_req_release(&tgtport
->fc_target_port
, fcpreq
);
536 /* release the queue lookup reference on the completed IO */
537 nvmet_fc_tgt_q_put(queue
);
539 spin_lock_irqsave(&queue
->qlock
, flags
);
540 deferfcp
= list_first_entry_or_null(&queue
->pending_cmd_list
,
541 struct nvmet_fc_defer_fcp_req
, req_list
);
543 list_add_tail(&fod
->fcp_list
, &fod
->queue
->fod_list
);
544 spin_unlock_irqrestore(&queue
->qlock
, flags
);
548 /* Re-use the fod for the next pending cmd that was deferred */
549 list_del(&deferfcp
->req_list
);
551 fcpreq
= deferfcp
->fcp_req
;
553 /* deferfcp can be reused for another IO at a later date */
554 list_add_tail(&deferfcp
->req_list
, &queue
->avail_defer_list
);
556 spin_unlock_irqrestore(&queue
->qlock
, flags
);
558 /* Save NVME CMD IO in fod */
559 memcpy(&fod
->cmdiubuf
, fcpreq
->rspaddr
, fcpreq
->rsplen
);
561 /* Setup new fcpreq to be processed */
562 fcpreq
->rspaddr
= NULL
;
564 fcpreq
->nvmet_fc_private
= fod
;
565 fod
->fcpreq
= fcpreq
;
568 /* inform LLDD IO is now being processed */
569 tgtport
->ops
->defer_rcv(&tgtport
->fc_target_port
, fcpreq
);
571 /* Submit deferred IO for processing */
572 nvmet_fc_queue_fcp_req(tgtport
, queue
, fcpreq
);
575 * Leave the queue lookup get reference taken when
576 * fod was originally allocated.
581 nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport
*tgtport
, int qid
)
585 if (tgtport
->ops
->max_hw_queues
== 1)
586 return WORK_CPU_UNBOUND
;
588 /* Simple cpu selection based on qid modulo active cpu count */
589 idx
= !qid
? 0 : (qid
- 1) % num_active_cpus();
591 /* find the n'th active cpu */
592 for (cpu
= 0, cnt
= 0; ; ) {
593 if (cpu_active(cpu
)) {
598 cpu
= (cpu
+ 1) % num_possible_cpus();
604 static struct nvmet_fc_tgt_queue
*
605 nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc
*assoc
,
608 struct nvmet_fc_tgt_queue
*queue
;
612 if (qid
> NVMET_NR_QUEUES
)
615 queue
= kzalloc((sizeof(*queue
) +
616 (sizeof(struct nvmet_fc_fcp_iod
) * sqsize
)),
621 if (!nvmet_fc_tgt_a_get(assoc
))
624 queue
->work_q
= alloc_workqueue("ntfc%d.%d.%d", 0, 0,
625 assoc
->tgtport
->fc_target_port
.port_num
,
630 queue
->fod
= (struct nvmet_fc_fcp_iod
*)&queue
[1];
632 queue
->sqsize
= sqsize
;
633 queue
->assoc
= assoc
;
634 queue
->port
= assoc
->tgtport
->port
;
635 queue
->cpu
= nvmet_fc_queue_to_cpu(assoc
->tgtport
, qid
);
636 INIT_LIST_HEAD(&queue
->fod_list
);
637 INIT_LIST_HEAD(&queue
->avail_defer_list
);
638 INIT_LIST_HEAD(&queue
->pending_cmd_list
);
639 atomic_set(&queue
->connected
, 0);
640 atomic_set(&queue
->sqtail
, 0);
641 atomic_set(&queue
->rsn
, 1);
642 atomic_set(&queue
->zrspcnt
, 0);
643 spin_lock_init(&queue
->qlock
);
644 kref_init(&queue
->ref
);
646 nvmet_fc_prep_fcp_iodlist(assoc
->tgtport
, queue
);
648 ret
= nvmet_sq_init(&queue
->nvme_sq
);
650 goto out_fail_iodlist
;
652 WARN_ON(assoc
->queues
[qid
]);
653 spin_lock_irqsave(&assoc
->tgtport
->lock
, flags
);
654 assoc
->queues
[qid
] = queue
;
655 spin_unlock_irqrestore(&assoc
->tgtport
->lock
, flags
);
660 nvmet_fc_destroy_fcp_iodlist(assoc
->tgtport
, queue
);
661 destroy_workqueue(queue
->work_q
);
663 nvmet_fc_tgt_a_put(assoc
);
671 nvmet_fc_tgt_queue_free(struct kref
*ref
)
673 struct nvmet_fc_tgt_queue
*queue
=
674 container_of(ref
, struct nvmet_fc_tgt_queue
, ref
);
677 spin_lock_irqsave(&queue
->assoc
->tgtport
->lock
, flags
);
678 queue
->assoc
->queues
[queue
->qid
] = NULL
;
679 spin_unlock_irqrestore(&queue
->assoc
->tgtport
->lock
, flags
);
681 nvmet_fc_destroy_fcp_iodlist(queue
->assoc
->tgtport
, queue
);
683 nvmet_fc_tgt_a_put(queue
->assoc
);
685 destroy_workqueue(queue
->work_q
);
691 nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue
*queue
)
693 kref_put(&queue
->ref
, nvmet_fc_tgt_queue_free
);
697 nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue
*queue
)
699 return kref_get_unless_zero(&queue
->ref
);
704 nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue
*queue
)
706 struct nvmet_fc_tgtport
*tgtport
= queue
->assoc
->tgtport
;
707 struct nvmet_fc_fcp_iod
*fod
= queue
->fod
;
708 struct nvmet_fc_defer_fcp_req
*deferfcp
, *tempptr
;
710 int i
, writedataactive
;
713 disconnect
= atomic_xchg(&queue
->connected
, 0);
715 spin_lock_irqsave(&queue
->qlock
, flags
);
716 /* about outstanding io's */
717 for (i
= 0; i
< queue
->sqsize
; fod
++, i
++) {
719 spin_lock(&fod
->flock
);
721 writedataactive
= fod
->writedataactive
;
722 spin_unlock(&fod
->flock
);
724 * only call lldd abort routine if waiting for
725 * writedata. other outstanding ops should finish
728 if (writedataactive
) {
729 spin_lock(&fod
->flock
);
731 spin_unlock(&fod
->flock
);
732 tgtport
->ops
->fcp_abort(
733 &tgtport
->fc_target_port
, fod
->fcpreq
);
738 /* Cleanup defer'ed IOs in queue */
739 list_for_each_entry_safe(deferfcp
, tempptr
, &queue
->avail_defer_list
,
741 list_del(&deferfcp
->req_list
);
746 deferfcp
= list_first_entry_or_null(&queue
->pending_cmd_list
,
747 struct nvmet_fc_defer_fcp_req
, req_list
);
751 list_del(&deferfcp
->req_list
);
752 spin_unlock_irqrestore(&queue
->qlock
, flags
);
754 tgtport
->ops
->defer_rcv(&tgtport
->fc_target_port
,
757 tgtport
->ops
->fcp_abort(&tgtport
->fc_target_port
,
760 tgtport
->ops
->fcp_req_release(&tgtport
->fc_target_port
,
763 /* release the queue lookup reference */
764 nvmet_fc_tgt_q_put(queue
);
768 spin_lock_irqsave(&queue
->qlock
, flags
);
770 spin_unlock_irqrestore(&queue
->qlock
, flags
);
772 flush_workqueue(queue
->work_q
);
775 nvmet_sq_destroy(&queue
->nvme_sq
);
777 nvmet_fc_tgt_q_put(queue
);
780 static struct nvmet_fc_tgt_queue
*
781 nvmet_fc_find_target_queue(struct nvmet_fc_tgtport
*tgtport
,
784 struct nvmet_fc_tgt_assoc
*assoc
;
785 struct nvmet_fc_tgt_queue
*queue
;
786 u64 association_id
= nvmet_fc_getassociationid(connection_id
);
787 u16 qid
= nvmet_fc_getqueueid(connection_id
);
790 if (qid
> NVMET_NR_QUEUES
)
793 spin_lock_irqsave(&tgtport
->lock
, flags
);
794 list_for_each_entry(assoc
, &tgtport
->assoc_list
, a_list
) {
795 if (association_id
== assoc
->association_id
) {
796 queue
= assoc
->queues
[qid
];
798 (!atomic_read(&queue
->connected
) ||
799 !nvmet_fc_tgt_q_get(queue
)))
801 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
805 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
810 nvmet_fc_delete_assoc(struct work_struct
*work
)
812 struct nvmet_fc_tgt_assoc
*assoc
=
813 container_of(work
, struct nvmet_fc_tgt_assoc
, del_work
);
815 nvmet_fc_delete_target_assoc(assoc
);
816 nvmet_fc_tgt_a_put(assoc
);
819 static struct nvmet_fc_tgt_assoc
*
820 nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport
*tgtport
)
822 struct nvmet_fc_tgt_assoc
*assoc
, *tmpassoc
;
826 bool needrandom
= true;
828 assoc
= kzalloc(sizeof(*assoc
), GFP_KERNEL
);
832 idx
= ida_simple_get(&tgtport
->assoc_cnt
, 0, 0, GFP_KERNEL
);
836 if (!nvmet_fc_tgtport_get(tgtport
))
839 assoc
->tgtport
= tgtport
;
841 INIT_LIST_HEAD(&assoc
->a_list
);
842 kref_init(&assoc
->ref
);
843 INIT_WORK(&assoc
->del_work
, nvmet_fc_delete_assoc
);
846 get_random_bytes(&ran
, sizeof(ran
) - BYTES_FOR_QID
);
847 ran
= ran
<< BYTES_FOR_QID_SHIFT
;
849 spin_lock_irqsave(&tgtport
->lock
, flags
);
851 list_for_each_entry(tmpassoc
, &tgtport
->assoc_list
, a_list
)
852 if (ran
== tmpassoc
->association_id
) {
857 assoc
->association_id
= ran
;
858 list_add_tail(&assoc
->a_list
, &tgtport
->assoc_list
);
860 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
866 ida_simple_remove(&tgtport
->assoc_cnt
, idx
);
873 nvmet_fc_target_assoc_free(struct kref
*ref
)
875 struct nvmet_fc_tgt_assoc
*assoc
=
876 container_of(ref
, struct nvmet_fc_tgt_assoc
, ref
);
877 struct nvmet_fc_tgtport
*tgtport
= assoc
->tgtport
;
880 spin_lock_irqsave(&tgtport
->lock
, flags
);
881 list_del(&assoc
->a_list
);
882 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
883 ida_simple_remove(&tgtport
->assoc_cnt
, assoc
->a_id
);
885 nvmet_fc_tgtport_put(tgtport
);
889 nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc
*assoc
)
891 kref_put(&assoc
->ref
, nvmet_fc_target_assoc_free
);
895 nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc
*assoc
)
897 return kref_get_unless_zero(&assoc
->ref
);
901 nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc
*assoc
)
903 struct nvmet_fc_tgtport
*tgtport
= assoc
->tgtport
;
904 struct nvmet_fc_tgt_queue
*queue
;
908 spin_lock_irqsave(&tgtport
->lock
, flags
);
909 for (i
= NVMET_NR_QUEUES
; i
>= 0; i
--) {
910 queue
= assoc
->queues
[i
];
912 if (!nvmet_fc_tgt_q_get(queue
))
914 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
915 nvmet_fc_delete_target_queue(queue
);
916 nvmet_fc_tgt_q_put(queue
);
917 spin_lock_irqsave(&tgtport
->lock
, flags
);
920 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
922 nvmet_fc_tgt_a_put(assoc
);
925 static struct nvmet_fc_tgt_assoc
*
926 nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport
*tgtport
,
929 struct nvmet_fc_tgt_assoc
*assoc
;
930 struct nvmet_fc_tgt_assoc
*ret
= NULL
;
933 spin_lock_irqsave(&tgtport
->lock
, flags
);
934 list_for_each_entry(assoc
, &tgtport
->assoc_list
, a_list
) {
935 if (association_id
== assoc
->association_id
) {
937 nvmet_fc_tgt_a_get(assoc
);
941 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
948 * nvme_fc_register_targetport - transport entry point called by an
949 * LLDD to register the existence of a local
950 * NVME subystem FC port.
951 * @pinfo: pointer to information about the port to be registered
952 * @template: LLDD entrypoints and operational parameters for the port
953 * @dev: physical hardware device node port corresponds to. Will be
954 * used for DMA mappings
955 * @portptr: pointer to a local port pointer. Upon success, the routine
956 * will allocate a nvme_fc_local_port structure and place its
957 * address in the local port pointer. Upon failure, local port
958 * pointer will be set to NULL.
961 * a completion status. Must be 0 upon success; a negative errno
962 * (ex: -ENXIO) upon failure.
965 nvmet_fc_register_targetport(struct nvmet_fc_port_info
*pinfo
,
966 struct nvmet_fc_target_template
*template,
968 struct nvmet_fc_target_port
**portptr
)
970 struct nvmet_fc_tgtport
*newrec
;
974 if (!template->xmt_ls_rsp
|| !template->fcp_op
||
975 !template->fcp_abort
||
976 !template->fcp_req_release
|| !template->targetport_delete
||
977 !template->max_hw_queues
|| !template->max_sgl_segments
||
978 !template->max_dif_sgl_segments
|| !template->dma_boundary
) {
980 goto out_regtgt_failed
;
983 newrec
= kzalloc((sizeof(*newrec
) + template->target_priv_sz
),
987 goto out_regtgt_failed
;
990 idx
= ida_simple_get(&nvmet_fc_tgtport_cnt
, 0, 0, GFP_KERNEL
);
996 if (!get_device(dev
) && dev
) {
1001 newrec
->fc_target_port
.node_name
= pinfo
->node_name
;
1002 newrec
->fc_target_port
.port_name
= pinfo
->port_name
;
1003 newrec
->fc_target_port
.private = &newrec
[1];
1004 newrec
->fc_target_port
.port_id
= pinfo
->port_id
;
1005 newrec
->fc_target_port
.port_num
= idx
;
1006 INIT_LIST_HEAD(&newrec
->tgt_list
);
1008 newrec
->ops
= template;
1009 spin_lock_init(&newrec
->lock
);
1010 INIT_LIST_HEAD(&newrec
->ls_list
);
1011 INIT_LIST_HEAD(&newrec
->ls_busylist
);
1012 INIT_LIST_HEAD(&newrec
->assoc_list
);
1013 kref_init(&newrec
->ref
);
1014 ida_init(&newrec
->assoc_cnt
);
1015 newrec
->max_sg_cnt
= min_t(u32
, NVMET_FC_MAX_XFR_SGENTS
,
1016 template->max_sgl_segments
);
1018 ret
= nvmet_fc_alloc_ls_iodlist(newrec
);
1021 goto out_free_newrec
;
1024 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1025 list_add_tail(&newrec
->tgt_list
, &nvmet_fc_target_list
);
1026 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1028 *portptr
= &newrec
->fc_target_port
;
1034 ida_simple_remove(&nvmet_fc_tgtport_cnt
, idx
);
1041 EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport
);
1045 nvmet_fc_free_tgtport(struct kref
*ref
)
1047 struct nvmet_fc_tgtport
*tgtport
=
1048 container_of(ref
, struct nvmet_fc_tgtport
, ref
);
1049 struct device
*dev
= tgtport
->dev
;
1050 unsigned long flags
;
1052 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1053 list_del(&tgtport
->tgt_list
);
1054 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1056 nvmet_fc_free_ls_iodlist(tgtport
);
1058 /* let the LLDD know we've finished tearing it down */
1059 tgtport
->ops
->targetport_delete(&tgtport
->fc_target_port
);
1061 ida_simple_remove(&nvmet_fc_tgtport_cnt
,
1062 tgtport
->fc_target_port
.port_num
);
1064 ida_destroy(&tgtport
->assoc_cnt
);
1072 nvmet_fc_tgtport_put(struct nvmet_fc_tgtport
*tgtport
)
1074 kref_put(&tgtport
->ref
, nvmet_fc_free_tgtport
);
1078 nvmet_fc_tgtport_get(struct nvmet_fc_tgtport
*tgtport
)
1080 return kref_get_unless_zero(&tgtport
->ref
);
1084 __nvmet_fc_free_assocs(struct nvmet_fc_tgtport
*tgtport
)
1086 struct nvmet_fc_tgt_assoc
*assoc
, *next
;
1087 unsigned long flags
;
1089 spin_lock_irqsave(&tgtport
->lock
, flags
);
1090 list_for_each_entry_safe(assoc
, next
,
1091 &tgtport
->assoc_list
, a_list
) {
1092 if (!nvmet_fc_tgt_a_get(assoc
))
1094 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1095 nvmet_fc_delete_target_assoc(assoc
);
1096 nvmet_fc_tgt_a_put(assoc
);
1097 spin_lock_irqsave(&tgtport
->lock
, flags
);
1099 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1103 * nvmet layer has called to terminate an association
1106 nvmet_fc_delete_ctrl(struct nvmet_ctrl
*ctrl
)
1108 struct nvmet_fc_tgtport
*tgtport
, *next
;
1109 struct nvmet_fc_tgt_assoc
*assoc
;
1110 struct nvmet_fc_tgt_queue
*queue
;
1111 unsigned long flags
;
1112 bool found_ctrl
= false;
1114 /* this is a bit ugly, but don't want to make locks layered */
1115 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1116 list_for_each_entry_safe(tgtport
, next
, &nvmet_fc_target_list
,
1118 if (!nvmet_fc_tgtport_get(tgtport
))
1120 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1122 spin_lock_irqsave(&tgtport
->lock
, flags
);
1123 list_for_each_entry(assoc
, &tgtport
->assoc_list
, a_list
) {
1124 queue
= assoc
->queues
[0];
1125 if (queue
&& queue
->nvme_sq
.ctrl
== ctrl
) {
1126 if (nvmet_fc_tgt_a_get(assoc
))
1131 spin_unlock_irqrestore(&tgtport
->lock
, flags
);
1133 nvmet_fc_tgtport_put(tgtport
);
1136 schedule_work(&assoc
->del_work
);
1140 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
1142 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
1146 * nvme_fc_unregister_targetport - transport entry point called by an
1147 * LLDD to deregister/remove a previously
1148 * registered a local NVME subsystem FC port.
1149 * @tgtport: pointer to the (registered) target port that is to be
1153 * a completion status. Must be 0 upon success; a negative errno
1154 * (ex: -ENXIO) upon failure.
1157 nvmet_fc_unregister_targetport(struct nvmet_fc_target_port
*target_port
)
1159 struct nvmet_fc_tgtport
*tgtport
= targetport_to_tgtport(target_port
);
1161 /* terminate any outstanding associations */
1162 __nvmet_fc_free_assocs(tgtport
);
1164 nvmet_fc_tgtport_put(tgtport
);
1168 EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport
);
1171 /* *********************** FC-NVME LS Handling **************************** */
1175 nvmet_fc_format_rsp_hdr(void *buf
, u8 ls_cmd
, __be32 desc_len
, u8 rqst_ls_cmd
)
1177 struct fcnvme_ls_acc_hdr
*acc
= buf
;
1179 acc
->w0
.ls_cmd
= ls_cmd
;
1180 acc
->desc_list_len
= desc_len
;
1181 acc
->rqst
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_RQST
);
1182 acc
->rqst
.desc_len
=
1183 fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst
));
1184 acc
->rqst
.w0
.ls_cmd
= rqst_ls_cmd
;
1188 nvmet_fc_format_rjt(void *buf
, u16 buflen
, u8 ls_cmd
,
1189 u8 reason
, u8 explanation
, u8 vendor
)
1191 struct fcnvme_ls_rjt
*rjt
= buf
;
1193 nvmet_fc_format_rsp_hdr(buf
, FCNVME_LSDESC_RQST
,
1194 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt
)),
1196 rjt
->rjt
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_RJT
);
1197 rjt
->rjt
.desc_len
= fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt
));
1198 rjt
->rjt
.reason_code
= reason
;
1199 rjt
->rjt
.reason_explanation
= explanation
;
1200 rjt
->rjt
.vendor
= vendor
;
1202 return sizeof(struct fcnvme_ls_rjt
);
1205 /* Validation Error indexes into the string table below */
1208 VERR_CR_ASSOC_LEN
= 1,
1209 VERR_CR_ASSOC_RQST_LEN
= 2,
1210 VERR_CR_ASSOC_CMD
= 3,
1211 VERR_CR_ASSOC_CMD_LEN
= 4,
1212 VERR_ERSP_RATIO
= 5,
1213 VERR_ASSOC_ALLOC_FAIL
= 6,
1214 VERR_QUEUE_ALLOC_FAIL
= 7,
1215 VERR_CR_CONN_LEN
= 8,
1216 VERR_CR_CONN_RQST_LEN
= 9,
1218 VERR_ASSOC_ID_LEN
= 11,
1221 VERR_CONN_ID_LEN
= 14,
1223 VERR_CR_CONN_CMD
= 16,
1224 VERR_CR_CONN_CMD_LEN
= 17,
1225 VERR_DISCONN_LEN
= 18,
1226 VERR_DISCONN_RQST_LEN
= 19,
1227 VERR_DISCONN_CMD
= 20,
1228 VERR_DISCONN_CMD_LEN
= 21,
1229 VERR_DISCONN_SCOPE
= 22,
1231 VERR_RS_RQST_LEN
= 24,
1233 VERR_RS_CMD_LEN
= 26,
1238 static char *validation_errors
[] = {
1240 "Bad CR_ASSOC Length",
1241 "Bad CR_ASSOC Rqst Length",
1243 "Bad CR_ASSOC Cmd Length",
1245 "Association Allocation Failed",
1246 "Queue Allocation Failed",
1247 "Bad CR_CONN Length",
1248 "Bad CR_CONN Rqst Length",
1249 "Not Association ID",
1250 "Bad Association ID Length",
1252 "Not Connection ID",
1253 "Bad Connection ID Length",
1256 "Bad CR_CONN Cmd Length",
1257 "Bad DISCONN Length",
1258 "Bad DISCONN Rqst Length",
1260 "Bad DISCONN Cmd Length",
1261 "Bad Disconnect Scope",
1263 "Bad RS Rqst Length",
1265 "Bad RS Cmd Length",
1267 "Bad RS Relative Offset",
1271 nvmet_fc_ls_create_association(struct nvmet_fc_tgtport
*tgtport
,
1272 struct nvmet_fc_ls_iod
*iod
)
1274 struct fcnvme_ls_cr_assoc_rqst
*rqst
=
1275 (struct fcnvme_ls_cr_assoc_rqst
*)iod
->rqstbuf
;
1276 struct fcnvme_ls_cr_assoc_acc
*acc
=
1277 (struct fcnvme_ls_cr_assoc_acc
*)iod
->rspbuf
;
1278 struct nvmet_fc_tgt_queue
*queue
;
1281 memset(acc
, 0, sizeof(*acc
));
1284 * FC-NVME spec changes. There are initiators sending different
1285 * lengths as padding sizes for Create Association Cmd descriptor
1287 * Accept anything of "minimum" length. Assume format per 1.15
1288 * spec (with HOSTID reduced to 16 bytes), ignore how long the
1289 * trailing pad length is.
1291 if (iod
->rqstdatalen
< FCNVME_LSDESC_CRA_RQST_MINLEN
)
1292 ret
= VERR_CR_ASSOC_LEN
;
1293 else if (be32_to_cpu(rqst
->desc_list_len
) <
1294 FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN
)
1295 ret
= VERR_CR_ASSOC_RQST_LEN
;
1296 else if (rqst
->assoc_cmd
.desc_tag
!=
1297 cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD
))
1298 ret
= VERR_CR_ASSOC_CMD
;
1299 else if (be32_to_cpu(rqst
->assoc_cmd
.desc_len
) <
1300 FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN
)
1301 ret
= VERR_CR_ASSOC_CMD_LEN
;
1302 else if (!rqst
->assoc_cmd
.ersp_ratio
||
1303 (be16_to_cpu(rqst
->assoc_cmd
.ersp_ratio
) >=
1304 be16_to_cpu(rqst
->assoc_cmd
.sqsize
)))
1305 ret
= VERR_ERSP_RATIO
;
1308 /* new association w/ admin queue */
1309 iod
->assoc
= nvmet_fc_alloc_target_assoc(tgtport
);
1311 ret
= VERR_ASSOC_ALLOC_FAIL
;
1313 queue
= nvmet_fc_alloc_target_queue(iod
->assoc
, 0,
1314 be16_to_cpu(rqst
->assoc_cmd
.sqsize
));
1316 ret
= VERR_QUEUE_ALLOC_FAIL
;
1321 dev_err(tgtport
->dev
,
1322 "Create Association LS failed: %s\n",
1323 validation_errors
[ret
]);
1324 iod
->lsreq
->rsplen
= nvmet_fc_format_rjt(acc
,
1325 NVME_FC_MAX_LS_BUFFER_SIZE
, rqst
->w0
.ls_cmd
,
1326 FCNVME_RJT_RC_LOGIC
,
1327 FCNVME_RJT_EXP_NONE
, 0);
1331 queue
->ersp_ratio
= be16_to_cpu(rqst
->assoc_cmd
.ersp_ratio
);
1332 atomic_set(&queue
->connected
, 1);
1333 queue
->sqhd
= 0; /* best place to init value */
1335 /* format a response */
1337 iod
->lsreq
->rsplen
= sizeof(*acc
);
1339 nvmet_fc_format_rsp_hdr(acc
, FCNVME_LS_ACC
,
1341 sizeof(struct fcnvme_ls_cr_assoc_acc
)),
1342 FCNVME_LS_CREATE_ASSOCIATION
);
1343 acc
->associd
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
);
1344 acc
->associd
.desc_len
=
1346 sizeof(struct fcnvme_lsdesc_assoc_id
));
1347 acc
->associd
.association_id
=
1348 cpu_to_be64(nvmet_fc_makeconnid(iod
->assoc
, 0));
1349 acc
->connectid
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_CONN_ID
);
1350 acc
->connectid
.desc_len
=
1352 sizeof(struct fcnvme_lsdesc_conn_id
));
1353 acc
->connectid
.connection_id
= acc
->associd
.association_id
;
1357 nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport
*tgtport
,
1358 struct nvmet_fc_ls_iod
*iod
)
1360 struct fcnvme_ls_cr_conn_rqst
*rqst
=
1361 (struct fcnvme_ls_cr_conn_rqst
*)iod
->rqstbuf
;
1362 struct fcnvme_ls_cr_conn_acc
*acc
=
1363 (struct fcnvme_ls_cr_conn_acc
*)iod
->rspbuf
;
1364 struct nvmet_fc_tgt_queue
*queue
;
1367 memset(acc
, 0, sizeof(*acc
));
1369 if (iod
->rqstdatalen
< sizeof(struct fcnvme_ls_cr_conn_rqst
))
1370 ret
= VERR_CR_CONN_LEN
;
1371 else if (rqst
->desc_list_len
!=
1373 sizeof(struct fcnvme_ls_cr_conn_rqst
)))
1374 ret
= VERR_CR_CONN_RQST_LEN
;
1375 else if (rqst
->associd
.desc_tag
!= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
))
1376 ret
= VERR_ASSOC_ID
;
1377 else if (rqst
->associd
.desc_len
!=
1379 sizeof(struct fcnvme_lsdesc_assoc_id
)))
1380 ret
= VERR_ASSOC_ID_LEN
;
1381 else if (rqst
->connect_cmd
.desc_tag
!=
1382 cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD
))
1383 ret
= VERR_CR_CONN_CMD
;
1384 else if (rqst
->connect_cmd
.desc_len
!=
1386 sizeof(struct fcnvme_lsdesc_cr_conn_cmd
)))
1387 ret
= VERR_CR_CONN_CMD_LEN
;
1388 else if (!rqst
->connect_cmd
.ersp_ratio
||
1389 (be16_to_cpu(rqst
->connect_cmd
.ersp_ratio
) >=
1390 be16_to_cpu(rqst
->connect_cmd
.sqsize
)))
1391 ret
= VERR_ERSP_RATIO
;
1395 iod
->assoc
= nvmet_fc_find_target_assoc(tgtport
,
1396 be64_to_cpu(rqst
->associd
.association_id
));
1398 ret
= VERR_NO_ASSOC
;
1400 queue
= nvmet_fc_alloc_target_queue(iod
->assoc
,
1401 be16_to_cpu(rqst
->connect_cmd
.qid
),
1402 be16_to_cpu(rqst
->connect_cmd
.sqsize
));
1404 ret
= VERR_QUEUE_ALLOC_FAIL
;
1406 /* release get taken in nvmet_fc_find_target_assoc */
1407 nvmet_fc_tgt_a_put(iod
->assoc
);
1412 dev_err(tgtport
->dev
,
1413 "Create Connection LS failed: %s\n",
1414 validation_errors
[ret
]);
1415 iod
->lsreq
->rsplen
= nvmet_fc_format_rjt(acc
,
1416 NVME_FC_MAX_LS_BUFFER_SIZE
, rqst
->w0
.ls_cmd
,
1417 (ret
== VERR_NO_ASSOC
) ?
1418 FCNVME_RJT_RC_INV_ASSOC
:
1419 FCNVME_RJT_RC_LOGIC
,
1420 FCNVME_RJT_EXP_NONE
, 0);
1424 queue
->ersp_ratio
= be16_to_cpu(rqst
->connect_cmd
.ersp_ratio
);
1425 atomic_set(&queue
->connected
, 1);
1426 queue
->sqhd
= 0; /* best place to init value */
1428 /* format a response */
1430 iod
->lsreq
->rsplen
= sizeof(*acc
);
1432 nvmet_fc_format_rsp_hdr(acc
, FCNVME_LS_ACC
,
1433 fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc
)),
1434 FCNVME_LS_CREATE_CONNECTION
);
1435 acc
->connectid
.desc_tag
= cpu_to_be32(FCNVME_LSDESC_CONN_ID
);
1436 acc
->connectid
.desc_len
=
1438 sizeof(struct fcnvme_lsdesc_conn_id
));
1439 acc
->connectid
.connection_id
=
1440 cpu_to_be64(nvmet_fc_makeconnid(iod
->assoc
,
1441 be16_to_cpu(rqst
->connect_cmd
.qid
)));
1445 nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport
*tgtport
,
1446 struct nvmet_fc_ls_iod
*iod
)
1448 struct fcnvme_ls_disconnect_rqst
*rqst
=
1449 (struct fcnvme_ls_disconnect_rqst
*)iod
->rqstbuf
;
1450 struct fcnvme_ls_disconnect_acc
*acc
=
1451 (struct fcnvme_ls_disconnect_acc
*)iod
->rspbuf
;
1452 struct nvmet_fc_tgt_queue
*queue
= NULL
;
1453 struct nvmet_fc_tgt_assoc
*assoc
;
1455 bool del_assoc
= false;
1457 memset(acc
, 0, sizeof(*acc
));
1459 if (iod
->rqstdatalen
< sizeof(struct fcnvme_ls_disconnect_rqst
))
1460 ret
= VERR_DISCONN_LEN
;
1461 else if (rqst
->desc_list_len
!=
1463 sizeof(struct fcnvme_ls_disconnect_rqst
)))
1464 ret
= VERR_DISCONN_RQST_LEN
;
1465 else if (rqst
->associd
.desc_tag
!= cpu_to_be32(FCNVME_LSDESC_ASSOC_ID
))
1466 ret
= VERR_ASSOC_ID
;
1467 else if (rqst
->associd
.desc_len
!=
1469 sizeof(struct fcnvme_lsdesc_assoc_id
)))
1470 ret
= VERR_ASSOC_ID_LEN
;
1471 else if (rqst
->discon_cmd
.desc_tag
!=
1472 cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD
))
1473 ret
= VERR_DISCONN_CMD
;
1474 else if (rqst
->discon_cmd
.desc_len
!=
1476 sizeof(struct fcnvme_lsdesc_disconn_cmd
)))
1477 ret
= VERR_DISCONN_CMD_LEN
;
1478 else if ((rqst
->discon_cmd
.scope
!= FCNVME_DISCONN_ASSOCIATION
) &&
1479 (rqst
->discon_cmd
.scope
!= FCNVME_DISCONN_CONNECTION
))
1480 ret
= VERR_DISCONN_SCOPE
;
1482 /* match an active association */
1483 assoc
= nvmet_fc_find_target_assoc(tgtport
,
1484 be64_to_cpu(rqst
->associd
.association_id
));
1487 if (rqst
->discon_cmd
.scope
==
1488 FCNVME_DISCONN_CONNECTION
) {
1489 queue
= nvmet_fc_find_target_queue(tgtport
,
1491 rqst
->discon_cmd
.id
));
1493 nvmet_fc_tgt_a_put(assoc
);
1498 ret
= VERR_NO_ASSOC
;
1502 dev_err(tgtport
->dev
,
1503 "Disconnect LS failed: %s\n",
1504 validation_errors
[ret
]);
1505 iod
->lsreq
->rsplen
= nvmet_fc_format_rjt(acc
,
1506 NVME_FC_MAX_LS_BUFFER_SIZE
, rqst
->w0
.ls_cmd
,
1507 (ret
== VERR_NO_ASSOC
) ?
1508 FCNVME_RJT_RC_INV_ASSOC
:
1509 (ret
== VERR_NO_CONN
) ?
1510 FCNVME_RJT_RC_INV_CONN
:
1511 FCNVME_RJT_RC_LOGIC
,
1512 FCNVME_RJT_EXP_NONE
, 0);
1516 /* format a response */
1518 iod
->lsreq
->rsplen
= sizeof(*acc
);
1520 nvmet_fc_format_rsp_hdr(acc
, FCNVME_LS_ACC
,
1522 sizeof(struct fcnvme_ls_disconnect_acc
)),
1523 FCNVME_LS_DISCONNECT
);
1526 /* are we to delete a Connection ID (queue) */
1528 int qid
= queue
->qid
;
1530 nvmet_fc_delete_target_queue(queue
);
1532 /* release the get taken by find_target_queue */
1533 nvmet_fc_tgt_q_put(queue
);
1535 /* tear association down if io queue terminated */
1540 /* release get taken in nvmet_fc_find_target_assoc */
1541 nvmet_fc_tgt_a_put(iod
->assoc
);
1544 nvmet_fc_delete_target_assoc(iod
->assoc
);
1548 /* *********************** NVME Ctrl Routines **************************** */
1551 static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req
*nvme_req
);
1553 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops
;
1556 nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req
*lsreq
)
1558 struct nvmet_fc_ls_iod
*iod
= lsreq
->nvmet_fc_private
;
1559 struct nvmet_fc_tgtport
*tgtport
= iod
->tgtport
;
1561 fc_dma_sync_single_for_cpu(tgtport
->dev
, iod
->rspdma
,
1562 NVME_FC_MAX_LS_BUFFER_SIZE
, DMA_TO_DEVICE
);
1563 nvmet_fc_free_ls_iod(tgtport
, iod
);
1564 nvmet_fc_tgtport_put(tgtport
);
1568 nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport
*tgtport
,
1569 struct nvmet_fc_ls_iod
*iod
)
1573 fc_dma_sync_single_for_device(tgtport
->dev
, iod
->rspdma
,
1574 NVME_FC_MAX_LS_BUFFER_SIZE
, DMA_TO_DEVICE
);
1576 ret
= tgtport
->ops
->xmt_ls_rsp(&tgtport
->fc_target_port
, iod
->lsreq
);
1578 nvmet_fc_xmt_ls_rsp_done(iod
->lsreq
);
1582 * Actual processing routine for received FC-NVME LS Requests from the LLD
1585 nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport
*tgtport
,
1586 struct nvmet_fc_ls_iod
*iod
)
1588 struct fcnvme_ls_rqst_w0
*w0
=
1589 (struct fcnvme_ls_rqst_w0
*)iod
->rqstbuf
;
1591 iod
->lsreq
->nvmet_fc_private
= iod
;
1592 iod
->lsreq
->rspbuf
= iod
->rspbuf
;
1593 iod
->lsreq
->rspdma
= iod
->rspdma
;
1594 iod
->lsreq
->done
= nvmet_fc_xmt_ls_rsp_done
;
1595 /* Be preventative. handlers will later set to valid length */
1596 iod
->lsreq
->rsplen
= 0;
1602 * parse request input, execute the request, and format the
1605 switch (w0
->ls_cmd
) {
1606 case FCNVME_LS_CREATE_ASSOCIATION
:
1607 /* Creates Association and initial Admin Queue/Connection */
1608 nvmet_fc_ls_create_association(tgtport
, iod
);
1610 case FCNVME_LS_CREATE_CONNECTION
:
1611 /* Creates an IO Queue/Connection */
1612 nvmet_fc_ls_create_connection(tgtport
, iod
);
1614 case FCNVME_LS_DISCONNECT
:
1615 /* Terminate a Queue/Connection or the Association */
1616 nvmet_fc_ls_disconnect(tgtport
, iod
);
1619 iod
->lsreq
->rsplen
= nvmet_fc_format_rjt(iod
->rspbuf
,
1620 NVME_FC_MAX_LS_BUFFER_SIZE
, w0
->ls_cmd
,
1621 FCNVME_RJT_RC_INVAL
, FCNVME_RJT_EXP_NONE
, 0);
1624 nvmet_fc_xmt_ls_rsp(tgtport
, iod
);
1628 * Actual processing routine for received FC-NVME LS Requests from the LLD
1631 nvmet_fc_handle_ls_rqst_work(struct work_struct
*work
)
1633 struct nvmet_fc_ls_iod
*iod
=
1634 container_of(work
, struct nvmet_fc_ls_iod
, work
);
1635 struct nvmet_fc_tgtport
*tgtport
= iod
->tgtport
;
1637 nvmet_fc_handle_ls_rqst(tgtport
, iod
);
1642 * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD
1643 * upon the reception of a NVME LS request.
1645 * The nvmet-fc layer will copy payload to an internal structure for
1646 * processing. As such, upon completion of the routine, the LLDD may
1647 * immediately free/reuse the LS request buffer passed in the call.
1649 * If this routine returns error, the LLDD should abort the exchange.
1651 * @tgtport: pointer to the (registered) target port the LS was
1653 * @lsreq: pointer to a lsreq request structure to be used to reference
1654 * the exchange corresponding to the LS.
1655 * @lsreqbuf: pointer to the buffer containing the LS Request
1656 * @lsreqbuf_len: length, in bytes, of the received LS request
1659 nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port
*target_port
,
1660 struct nvmefc_tgt_ls_req
*lsreq
,
1661 void *lsreqbuf
, u32 lsreqbuf_len
)
1663 struct nvmet_fc_tgtport
*tgtport
= targetport_to_tgtport(target_port
);
1664 struct nvmet_fc_ls_iod
*iod
;
1666 if (lsreqbuf_len
> NVME_FC_MAX_LS_BUFFER_SIZE
)
1669 if (!nvmet_fc_tgtport_get(tgtport
))
1672 iod
= nvmet_fc_alloc_ls_iod(tgtport
);
1674 nvmet_fc_tgtport_put(tgtport
);
1680 memcpy(iod
->rqstbuf
, lsreqbuf
, lsreqbuf_len
);
1681 iod
->rqstdatalen
= lsreqbuf_len
;
1683 schedule_work(&iod
->work
);
1687 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req
);
1691 * **********************
1692 * Start of FCP handling
1693 * **********************
1697 nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod
*fod
)
1699 struct scatterlist
*sg
;
1702 sg
= sgl_alloc(fod
->req
.transfer_len
, GFP_KERNEL
, &nent
);
1707 fod
->data_sg_cnt
= nent
;
1708 fod
->data_sg_cnt
= fc_dma_map_sg(fod
->tgtport
->dev
, sg
, nent
,
1709 ((fod
->io_dir
== NVMET_FCP_WRITE
) ?
1710 DMA_FROM_DEVICE
: DMA_TO_DEVICE
));
1711 /* note: write from initiator perspective */
1716 return NVME_SC_INTERNAL
;
1720 nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod
*fod
)
1722 if (!fod
->data_sg
|| !fod
->data_sg_cnt
)
1725 fc_dma_unmap_sg(fod
->tgtport
->dev
, fod
->data_sg
, fod
->data_sg_cnt
,
1726 ((fod
->io_dir
== NVMET_FCP_WRITE
) ?
1727 DMA_FROM_DEVICE
: DMA_TO_DEVICE
));
1728 sgl_free(fod
->data_sg
);
1729 fod
->data_sg
= NULL
;
1730 fod
->data_sg_cnt
= 0;
1735 queue_90percent_full(struct nvmet_fc_tgt_queue
*q
, u32 sqhd
)
1739 /* egad, this is ugly. And sqtail is just a best guess */
1740 sqtail
= atomic_read(&q
->sqtail
) % q
->sqsize
;
1742 used
= (sqtail
< sqhd
) ? (sqtail
+ q
->sqsize
- sqhd
) : (sqtail
- sqhd
);
1743 return ((used
* 10) >= (((u32
)(q
->sqsize
- 1) * 9)));
1748 * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op
1751 nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport
*tgtport
,
1752 struct nvmet_fc_fcp_iod
*fod
)
1754 struct nvme_fc_ersp_iu
*ersp
= &fod
->rspiubuf
;
1755 struct nvme_common_command
*sqe
= &fod
->cmdiubuf
.sqe
.common
;
1756 struct nvme_completion
*cqe
= &ersp
->cqe
;
1757 u32
*cqewd
= (u32
*)cqe
;
1758 bool send_ersp
= false;
1759 u32 rsn
, rspcnt
, xfr_length
;
1761 if (fod
->fcpreq
->op
== NVMET_FCOP_READDATA_RSP
)
1762 xfr_length
= fod
->req
.transfer_len
;
1764 xfr_length
= fod
->offset
;
1767 * check to see if we can send a 0's rsp.
1768 * Note: to send a 0's response, the NVME-FC host transport will
1769 * recreate the CQE. The host transport knows: sq id, SQHD (last
1770 * seen in an ersp), and command_id. Thus it will create a
1771 * zero-filled CQE with those known fields filled in. Transport
1772 * must send an ersp for any condition where the cqe won't match
1775 * Here are the FC-NVME mandated cases where we must send an ersp:
1776 * every N responses, where N=ersp_ratio
1777 * force fabric commands to send ersp's (not in FC-NVME but good
1779 * normal cmds: any time status is non-zero, or status is zero
1780 * but words 0 or 1 are non-zero.
1781 * the SQ is 90% or more full
1782 * the cmd is a fused command
1783 * transferred data length not equal to cmd iu length
1785 rspcnt
= atomic_inc_return(&fod
->queue
->zrspcnt
);
1786 if (!(rspcnt
% fod
->queue
->ersp_ratio
) ||
1787 sqe
->opcode
== nvme_fabrics_command
||
1788 xfr_length
!= fod
->req
.transfer_len
||
1789 (le16_to_cpu(cqe
->status
) & 0xFFFE) || cqewd
[0] || cqewd
[1] ||
1790 (sqe
->flags
& (NVME_CMD_FUSE_FIRST
| NVME_CMD_FUSE_SECOND
)) ||
1791 queue_90percent_full(fod
->queue
, le16_to_cpu(cqe
->sq_head
)))
1794 /* re-set the fields */
1795 fod
->fcpreq
->rspaddr
= ersp
;
1796 fod
->fcpreq
->rspdma
= fod
->rspdma
;
1799 memset(ersp
, 0, NVME_FC_SIZEOF_ZEROS_RSP
);
1800 fod
->fcpreq
->rsplen
= NVME_FC_SIZEOF_ZEROS_RSP
;
1802 ersp
->iu_len
= cpu_to_be16(sizeof(*ersp
)/sizeof(u32
));
1803 rsn
= atomic_inc_return(&fod
->queue
->rsn
);
1804 ersp
->rsn
= cpu_to_be32(rsn
);
1805 ersp
->xfrd_len
= cpu_to_be32(xfr_length
);
1806 fod
->fcpreq
->rsplen
= sizeof(*ersp
);
1809 fc_dma_sync_single_for_device(tgtport
->dev
, fod
->rspdma
,
1810 sizeof(fod
->rspiubuf
), DMA_TO_DEVICE
);
1813 static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req
*fcpreq
);
1816 nvmet_fc_abort_op(struct nvmet_fc_tgtport
*tgtport
,
1817 struct nvmet_fc_fcp_iod
*fod
)
1819 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
1821 /* data no longer needed */
1822 nvmet_fc_free_tgt_pgs(fod
);
1825 * if an ABTS was received or we issued the fcp_abort early
1826 * don't call abort routine again.
1828 /* no need to take lock - lock was taken earlier to get here */
1830 tgtport
->ops
->fcp_abort(&tgtport
->fc_target_port
, fcpreq
);
1832 nvmet_fc_free_fcp_iod(fod
->queue
, fod
);
1836 nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport
*tgtport
,
1837 struct nvmet_fc_fcp_iod
*fod
)
1841 fod
->fcpreq
->op
= NVMET_FCOP_RSP
;
1842 fod
->fcpreq
->timeout
= 0;
1844 nvmet_fc_prep_fcp_rsp(tgtport
, fod
);
1846 ret
= tgtport
->ops
->fcp_op(&tgtport
->fc_target_port
, fod
->fcpreq
);
1848 nvmet_fc_abort_op(tgtport
, fod
);
1852 nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport
*tgtport
,
1853 struct nvmet_fc_fcp_iod
*fod
, u8 op
)
1855 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
1856 unsigned long flags
;
1861 fcpreq
->offset
= fod
->offset
;
1862 fcpreq
->timeout
= NVME_FC_TGTOP_TIMEOUT_SEC
;
1864 tlen
= min_t(u32
, tgtport
->max_sg_cnt
* PAGE_SIZE
,
1865 (fod
->req
.transfer_len
- fod
->offset
));
1866 fcpreq
->transfer_length
= tlen
;
1867 fcpreq
->transferred_length
= 0;
1868 fcpreq
->fcp_error
= 0;
1871 fcpreq
->sg
= &fod
->data_sg
[fod
->offset
/ PAGE_SIZE
];
1872 fcpreq
->sg_cnt
= DIV_ROUND_UP(tlen
, PAGE_SIZE
);
1875 * If the last READDATA request: check if LLDD supports
1876 * combined xfr with response.
1878 if ((op
== NVMET_FCOP_READDATA
) &&
1879 ((fod
->offset
+ fcpreq
->transfer_length
) == fod
->req
.transfer_len
) &&
1880 (tgtport
->ops
->target_features
& NVMET_FCTGTFEAT_READDATA_RSP
)) {
1881 fcpreq
->op
= NVMET_FCOP_READDATA_RSP
;
1882 nvmet_fc_prep_fcp_rsp(tgtport
, fod
);
1885 ret
= tgtport
->ops
->fcp_op(&tgtport
->fc_target_port
, fod
->fcpreq
);
1888 * should be ok to set w/o lock as its in the thread of
1889 * execution (not an async timer routine) and doesn't
1890 * contend with any clearing action
1894 if (op
== NVMET_FCOP_WRITEDATA
) {
1895 spin_lock_irqsave(&fod
->flock
, flags
);
1896 fod
->writedataactive
= false;
1897 spin_unlock_irqrestore(&fod
->flock
, flags
);
1898 nvmet_req_complete(&fod
->req
, NVME_SC_INTERNAL
);
1899 } else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ {
1900 fcpreq
->fcp_error
= ret
;
1901 fcpreq
->transferred_length
= 0;
1902 nvmet_fc_xmt_fcp_op_done(fod
->fcpreq
);
1908 __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod
*fod
, bool abort
)
1910 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
1911 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
1913 /* if in the middle of an io and we need to tear down */
1915 if (fcpreq
->op
== NVMET_FCOP_WRITEDATA
) {
1916 nvmet_req_complete(&fod
->req
, NVME_SC_INTERNAL
);
1920 nvmet_fc_abort_op(tgtport
, fod
);
1928 * actual done handler for FCP operations when completed by the lldd
1931 nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod
*fod
)
1933 struct nvmefc_tgt_fcp_req
*fcpreq
= fod
->fcpreq
;
1934 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
1935 unsigned long flags
;
1938 spin_lock_irqsave(&fod
->flock
, flags
);
1940 fod
->writedataactive
= false;
1941 spin_unlock_irqrestore(&fod
->flock
, flags
);
1943 switch (fcpreq
->op
) {
1945 case NVMET_FCOP_WRITEDATA
:
1946 if (__nvmet_fc_fod_op_abort(fod
, abort
))
1948 if (fcpreq
->fcp_error
||
1949 fcpreq
->transferred_length
!= fcpreq
->transfer_length
) {
1950 spin_lock(&fod
->flock
);
1952 spin_unlock(&fod
->flock
);
1954 nvmet_req_complete(&fod
->req
, NVME_SC_INTERNAL
);
1958 fod
->offset
+= fcpreq
->transferred_length
;
1959 if (fod
->offset
!= fod
->req
.transfer_len
) {
1960 spin_lock_irqsave(&fod
->flock
, flags
);
1961 fod
->writedataactive
= true;
1962 spin_unlock_irqrestore(&fod
->flock
, flags
);
1964 /* transfer the next chunk */
1965 nvmet_fc_transfer_fcp_data(tgtport
, fod
,
1966 NVMET_FCOP_WRITEDATA
);
1970 /* data transfer complete, resume with nvmet layer */
1971 nvmet_req_execute(&fod
->req
);
1974 case NVMET_FCOP_READDATA
:
1975 case NVMET_FCOP_READDATA_RSP
:
1976 if (__nvmet_fc_fod_op_abort(fod
, abort
))
1978 if (fcpreq
->fcp_error
||
1979 fcpreq
->transferred_length
!= fcpreq
->transfer_length
) {
1980 nvmet_fc_abort_op(tgtport
, fod
);
1986 if (fcpreq
->op
== NVMET_FCOP_READDATA_RSP
) {
1987 /* data no longer needed */
1988 nvmet_fc_free_tgt_pgs(fod
);
1989 nvmet_fc_free_fcp_iod(fod
->queue
, fod
);
1993 fod
->offset
+= fcpreq
->transferred_length
;
1994 if (fod
->offset
!= fod
->req
.transfer_len
) {
1995 /* transfer the next chunk */
1996 nvmet_fc_transfer_fcp_data(tgtport
, fod
,
1997 NVMET_FCOP_READDATA
);
2001 /* data transfer complete, send response */
2003 /* data no longer needed */
2004 nvmet_fc_free_tgt_pgs(fod
);
2006 nvmet_fc_xmt_fcp_rsp(tgtport
, fod
);
2010 case NVMET_FCOP_RSP
:
2011 if (__nvmet_fc_fod_op_abort(fod
, abort
))
2013 nvmet_fc_free_fcp_iod(fod
->queue
, fod
);
2022 nvmet_fc_fcp_rqst_op_done_work(struct work_struct
*work
)
2024 struct nvmet_fc_fcp_iod
*fod
=
2025 container_of(work
, struct nvmet_fc_fcp_iod
, done_work
);
2027 nvmet_fc_fod_op_done(fod
);
2031 nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req
*fcpreq
)
2033 struct nvmet_fc_fcp_iod
*fod
= fcpreq
->nvmet_fc_private
;
2034 struct nvmet_fc_tgt_queue
*queue
= fod
->queue
;
2036 if (fod
->tgtport
->ops
->target_features
& NVMET_FCTGTFEAT_OPDONE_IN_ISR
)
2037 /* context switch so completion is not in ISR context */
2038 queue_work_on(queue
->cpu
, queue
->work_q
, &fod
->done_work
);
2040 nvmet_fc_fod_op_done(fod
);
2044 * actual completion handler after execution by the nvmet layer
2047 __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport
*tgtport
,
2048 struct nvmet_fc_fcp_iod
*fod
, int status
)
2050 struct nvme_common_command
*sqe
= &fod
->cmdiubuf
.sqe
.common
;
2051 struct nvme_completion
*cqe
= &fod
->rspiubuf
.cqe
;
2052 unsigned long flags
;
2055 spin_lock_irqsave(&fod
->flock
, flags
);
2057 spin_unlock_irqrestore(&fod
->flock
, flags
);
2059 /* if we have a CQE, snoop the last sq_head value */
2061 fod
->queue
->sqhd
= cqe
->sq_head
;
2064 nvmet_fc_abort_op(tgtport
, fod
);
2068 /* if an error handling the cmd post initial parsing */
2070 /* fudge up a failed CQE status for our transport error */
2071 memset(cqe
, 0, sizeof(*cqe
));
2072 cqe
->sq_head
= fod
->queue
->sqhd
; /* echo last cqe sqhd */
2073 cqe
->sq_id
= cpu_to_le16(fod
->queue
->qid
);
2074 cqe
->command_id
= sqe
->command_id
;
2075 cqe
->status
= cpu_to_le16(status
);
2079 * try to push the data even if the SQE status is non-zero.
2080 * There may be a status where data still was intended to
2083 if ((fod
->io_dir
== NVMET_FCP_READ
) && (fod
->data_sg_cnt
)) {
2084 /* push the data over before sending rsp */
2085 nvmet_fc_transfer_fcp_data(tgtport
, fod
,
2086 NVMET_FCOP_READDATA
);
2090 /* writes & no data - fall thru */
2093 /* data no longer needed */
2094 nvmet_fc_free_tgt_pgs(fod
);
2096 nvmet_fc_xmt_fcp_rsp(tgtport
, fod
);
2101 nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req
*nvme_req
)
2103 struct nvmet_fc_fcp_iod
*fod
= nvmet_req_to_fod(nvme_req
);
2104 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
2106 __nvmet_fc_fcp_nvme_cmd_done(tgtport
, fod
, 0);
2111 * Actual processing routine for received FC-NVME LS Requests from the LLD
2114 nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport
*tgtport
,
2115 struct nvmet_fc_fcp_iod
*fod
)
2117 struct nvme_fc_cmd_iu
*cmdiu
= &fod
->cmdiubuf
;
2118 u32 xfrlen
= be32_to_cpu(cmdiu
->data_len
);
2122 * Fused commands are currently not supported in the linux
2125 * As such, the implementation of the FC transport does not
2126 * look at the fused commands and order delivery to the upper
2127 * layer until we have both based on csn.
2130 fod
->fcpreq
->done
= nvmet_fc_xmt_fcp_op_done
;
2132 if (cmdiu
->flags
& FCNVME_CMD_FLAGS_WRITE
) {
2133 fod
->io_dir
= NVMET_FCP_WRITE
;
2134 if (!nvme_is_write(&cmdiu
->sqe
))
2135 goto transport_error
;
2136 } else if (cmdiu
->flags
& FCNVME_CMD_FLAGS_READ
) {
2137 fod
->io_dir
= NVMET_FCP_READ
;
2138 if (nvme_is_write(&cmdiu
->sqe
))
2139 goto transport_error
;
2141 fod
->io_dir
= NVMET_FCP_NODATA
;
2143 goto transport_error
;
2146 fod
->req
.cmd
= &fod
->cmdiubuf
.sqe
;
2147 fod
->req
.rsp
= &fod
->rspiubuf
.cqe
;
2148 fod
->req
.port
= fod
->queue
->port
;
2150 /* clear any response payload */
2151 memset(&fod
->rspiubuf
, 0, sizeof(fod
->rspiubuf
));
2153 fod
->data_sg
= NULL
;
2154 fod
->data_sg_cnt
= 0;
2156 ret
= nvmet_req_init(&fod
->req
,
2157 &fod
->queue
->nvme_cq
,
2158 &fod
->queue
->nvme_sq
,
2159 &nvmet_fc_tgt_fcp_ops
);
2161 /* bad SQE content or invalid ctrl state */
2162 /* nvmet layer has already called op done to send rsp. */
2166 fod
->req
.transfer_len
= xfrlen
;
2168 /* keep a running counter of tail position */
2169 atomic_inc(&fod
->queue
->sqtail
);
2171 if (fod
->req
.transfer_len
) {
2172 ret
= nvmet_fc_alloc_tgt_pgs(fod
);
2174 nvmet_req_complete(&fod
->req
, ret
);
2178 fod
->req
.sg
= fod
->data_sg
;
2179 fod
->req
.sg_cnt
= fod
->data_sg_cnt
;
2182 if (fod
->io_dir
== NVMET_FCP_WRITE
) {
2183 /* pull the data over before invoking nvmet layer */
2184 nvmet_fc_transfer_fcp_data(tgtport
, fod
, NVMET_FCOP_WRITEDATA
);
2191 * can invoke the nvmet_layer now. If read data, cmd completion will
2194 nvmet_req_execute(&fod
->req
);
2198 nvmet_fc_abort_op(tgtport
, fod
);
2202 * Actual processing routine for received FC-NVME LS Requests from the LLD
2205 nvmet_fc_handle_fcp_rqst_work(struct work_struct
*work
)
2207 struct nvmet_fc_fcp_iod
*fod
=
2208 container_of(work
, struct nvmet_fc_fcp_iod
, work
);
2209 struct nvmet_fc_tgtport
*tgtport
= fod
->tgtport
;
2211 nvmet_fc_handle_fcp_rqst(tgtport
, fod
);
2215 * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD
2216 * upon the reception of a NVME FCP CMD IU.
2218 * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc
2219 * layer for processing.
2221 * The nvmet_fc layer allocates a local job structure (struct
2222 * nvmet_fc_fcp_iod) from the queue for the io and copies the
2223 * CMD IU buffer to the job structure. As such, on a successful
2224 * completion (returns 0), the LLDD may immediately free/reuse
2225 * the CMD IU buffer passed in the call.
2227 * However, in some circumstances, due to the packetized nature of FC
2228 * and the api of the FC LLDD which may issue a hw command to send the
2229 * response, but the LLDD may not get the hw completion for that command
2230 * and upcall the nvmet_fc layer before a new command may be
2231 * asynchronously received - its possible for a command to be received
2232 * before the LLDD and nvmet_fc have recycled the job structure. It gives
2233 * the appearance of more commands received than fits in the sq.
2234 * To alleviate this scenario, a temporary queue is maintained in the
2235 * transport for pending LLDD requests waiting for a queue job structure.
2236 * In these "overrun" cases, a temporary queue element is allocated
2237 * the LLDD request and CMD iu buffer information remembered, and the
2238 * routine returns a -EOVERFLOW status. Subsequently, when a queue job
2239 * structure is freed, it is immediately reallocated for anything on the
2240 * pending request list. The LLDDs defer_rcv() callback is called,
2241 * informing the LLDD that it may reuse the CMD IU buffer, and the io
2242 * is then started normally with the transport.
2244 * The LLDD, when receiving an -EOVERFLOW completion status, is to treat
2245 * the completion as successful but must not reuse the CMD IU buffer
2246 * until the LLDD's defer_rcv() callback has been called for the
2247 * corresponding struct nvmefc_tgt_fcp_req pointer.
2249 * If there is any other condition in which an error occurs, the
2250 * transport will return a non-zero status indicating the error.
2251 * In all cases other than -EOVERFLOW, the transport has not accepted the
2252 * request and the LLDD should abort the exchange.
2254 * @target_port: pointer to the (registered) target port the FCP CMD IU
2256 * @fcpreq: pointer to a fcpreq request structure to be used to reference
2257 * the exchange corresponding to the FCP Exchange.
2258 * @cmdiubuf: pointer to the buffer containing the FCP CMD IU
2259 * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU
2262 nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port
*target_port
,
2263 struct nvmefc_tgt_fcp_req
*fcpreq
,
2264 void *cmdiubuf
, u32 cmdiubuf_len
)
2266 struct nvmet_fc_tgtport
*tgtport
= targetport_to_tgtport(target_port
);
2267 struct nvme_fc_cmd_iu
*cmdiu
= cmdiubuf
;
2268 struct nvmet_fc_tgt_queue
*queue
;
2269 struct nvmet_fc_fcp_iod
*fod
;
2270 struct nvmet_fc_defer_fcp_req
*deferfcp
;
2271 unsigned long flags
;
2273 /* validate iu, so the connection id can be used to find the queue */
2274 if ((cmdiubuf_len
!= sizeof(*cmdiu
)) ||
2275 (cmdiu
->scsi_id
!= NVME_CMD_SCSI_ID
) ||
2276 (cmdiu
->fc_id
!= NVME_CMD_FC_ID
) ||
2277 (be16_to_cpu(cmdiu
->iu_len
) != (sizeof(*cmdiu
)/4)))
2280 queue
= nvmet_fc_find_target_queue(tgtport
,
2281 be64_to_cpu(cmdiu
->connection_id
));
2286 * note: reference taken by find_target_queue
2287 * After successful fod allocation, the fod will inherit the
2288 * ownership of that reference and will remove the reference
2289 * when the fod is freed.
2292 spin_lock_irqsave(&queue
->qlock
, flags
);
2294 fod
= nvmet_fc_alloc_fcp_iod(queue
);
2296 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2298 fcpreq
->nvmet_fc_private
= fod
;
2299 fod
->fcpreq
= fcpreq
;
2301 memcpy(&fod
->cmdiubuf
, cmdiubuf
, cmdiubuf_len
);
2303 nvmet_fc_queue_fcp_req(tgtport
, queue
, fcpreq
);
2308 if (!tgtport
->ops
->defer_rcv
) {
2309 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2310 /* release the queue lookup reference */
2311 nvmet_fc_tgt_q_put(queue
);
2315 deferfcp
= list_first_entry_or_null(&queue
->avail_defer_list
,
2316 struct nvmet_fc_defer_fcp_req
, req_list
);
2318 /* Just re-use one that was previously allocated */
2319 list_del(&deferfcp
->req_list
);
2321 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2323 /* Now we need to dynamically allocate one */
2324 deferfcp
= kmalloc(sizeof(*deferfcp
), GFP_KERNEL
);
2326 /* release the queue lookup reference */
2327 nvmet_fc_tgt_q_put(queue
);
2330 spin_lock_irqsave(&queue
->qlock
, flags
);
2333 /* For now, use rspaddr / rsplen to save payload information */
2334 fcpreq
->rspaddr
= cmdiubuf
;
2335 fcpreq
->rsplen
= cmdiubuf_len
;
2336 deferfcp
->fcp_req
= fcpreq
;
2338 /* defer processing till a fod becomes available */
2339 list_add_tail(&deferfcp
->req_list
, &queue
->pending_cmd_list
);
2341 /* NOTE: the queue lookup reference is still valid */
2343 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2347 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req
);
2350 * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD
2351 * upon the reception of an ABTS for a FCP command
2353 * Notify the transport that an ABTS has been received for a FCP command
2354 * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The
2355 * LLDD believes the command is still being worked on
2356 * (template_ops->fcp_req_release() has not been called).
2358 * The transport will wait for any outstanding work (an op to the LLDD,
2359 * which the lldd should complete with error due to the ABTS; or the
2360 * completion from the nvmet layer of the nvme command), then will
2361 * stop processing and call the nvmet_fc_rcv_fcp_req() callback to
2362 * return the i/o context to the LLDD. The LLDD may send the BA_ACC
2363 * to the ABTS either after return from this function (assuming any
2364 * outstanding op work has been terminated) or upon the callback being
2367 * @target_port: pointer to the (registered) target port the FCP CMD IU
2369 * @fcpreq: pointer to the fcpreq request structure that corresponds
2370 * to the exchange that received the ABTS.
2373 nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port
*target_port
,
2374 struct nvmefc_tgt_fcp_req
*fcpreq
)
2376 struct nvmet_fc_fcp_iod
*fod
= fcpreq
->nvmet_fc_private
;
2377 struct nvmet_fc_tgt_queue
*queue
;
2378 unsigned long flags
;
2380 if (!fod
|| fod
->fcpreq
!= fcpreq
)
2381 /* job appears to have already completed, ignore abort */
2386 spin_lock_irqsave(&queue
->qlock
, flags
);
2389 * mark as abort. The abort handler, invoked upon completion
2390 * of any work, will detect the aborted status and do the
2393 spin_lock(&fod
->flock
);
2395 fod
->aborted
= true;
2396 spin_unlock(&fod
->flock
);
2398 spin_unlock_irqrestore(&queue
->qlock
, flags
);
2400 EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort
);
2403 struct nvmet_fc_traddr
{
2409 __nvme_fc_parse_u64(substring_t
*sstr
, u64
*val
)
2413 if (match_u64(sstr
, &token64
))
2421 * This routine validates and extracts the WWN's from the TRADDR string.
2422 * As kernel parsers need the 0x to determine number base, universally
2423 * build string to parse with 0x prefix before parsing name strings.
2426 nvme_fc_parse_traddr(struct nvmet_fc_traddr
*traddr
, char *buf
, size_t blen
)
2428 char name
[2 + NVME_FC_TRADDR_HEXNAMELEN
+ 1];
2429 substring_t wwn
= { name
, &name
[sizeof(name
)-1] };
2430 int nnoffset
, pnoffset
;
2432 /* validate it string one of the 2 allowed formats */
2433 if (strnlen(buf
, blen
) == NVME_FC_TRADDR_MAXLENGTH
&&
2434 !strncmp(buf
, "nn-0x", NVME_FC_TRADDR_OXNNLEN
) &&
2435 !strncmp(&buf
[NVME_FC_TRADDR_MAX_PN_OFFSET
],
2436 "pn-0x", NVME_FC_TRADDR_OXNNLEN
)) {
2437 nnoffset
= NVME_FC_TRADDR_OXNNLEN
;
2438 pnoffset
= NVME_FC_TRADDR_MAX_PN_OFFSET
+
2439 NVME_FC_TRADDR_OXNNLEN
;
2440 } else if ((strnlen(buf
, blen
) == NVME_FC_TRADDR_MINLENGTH
&&
2441 !strncmp(buf
, "nn-", NVME_FC_TRADDR_NNLEN
) &&
2442 !strncmp(&buf
[NVME_FC_TRADDR_MIN_PN_OFFSET
],
2443 "pn-", NVME_FC_TRADDR_NNLEN
))) {
2444 nnoffset
= NVME_FC_TRADDR_NNLEN
;
2445 pnoffset
= NVME_FC_TRADDR_MIN_PN_OFFSET
+ NVME_FC_TRADDR_NNLEN
;
2451 name
[2 + NVME_FC_TRADDR_HEXNAMELEN
] = 0;
2453 memcpy(&name
[2], &buf
[nnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
2454 if (__nvme_fc_parse_u64(&wwn
, &traddr
->nn
))
2457 memcpy(&name
[2], &buf
[pnoffset
], NVME_FC_TRADDR_HEXNAMELEN
);
2458 if (__nvme_fc_parse_u64(&wwn
, &traddr
->pn
))
2464 pr_warn("%s: bad traddr string\n", __func__
);
2469 nvmet_fc_add_port(struct nvmet_port
*port
)
2471 struct nvmet_fc_tgtport
*tgtport
;
2472 struct nvmet_fc_traddr traddr
= { 0L, 0L };
2473 unsigned long flags
;
2476 /* validate the address info */
2477 if ((port
->disc_addr
.trtype
!= NVMF_TRTYPE_FC
) ||
2478 (port
->disc_addr
.adrfam
!= NVMF_ADDR_FAMILY_FC
))
2481 /* map the traddr address info to a target port */
2483 ret
= nvme_fc_parse_traddr(&traddr
, port
->disc_addr
.traddr
,
2484 sizeof(port
->disc_addr
.traddr
));
2489 spin_lock_irqsave(&nvmet_fc_tgtlock
, flags
);
2490 list_for_each_entry(tgtport
, &nvmet_fc_target_list
, tgt_list
) {
2491 if ((tgtport
->fc_target_port
.node_name
== traddr
.nn
) &&
2492 (tgtport
->fc_target_port
.port_name
== traddr
.pn
)) {
2493 tgtport
->port
= port
;
2498 spin_unlock_irqrestore(&nvmet_fc_tgtlock
, flags
);
2503 nvmet_fc_remove_port(struct nvmet_port
*port
)
2508 static struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops
= {
2509 .owner
= THIS_MODULE
,
2510 .type
= NVMF_TRTYPE_FC
,
2512 .add_port
= nvmet_fc_add_port
,
2513 .remove_port
= nvmet_fc_remove_port
,
2514 .queue_response
= nvmet_fc_fcp_nvme_cmd_done
,
2515 .delete_ctrl
= nvmet_fc_delete_ctrl
,
2518 static int __init
nvmet_fc_init_module(void)
2520 return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops
);
2523 static void __exit
nvmet_fc_exit_module(void)
2525 /* sanity check - all lports should be removed */
2526 if (!list_empty(&nvmet_fc_target_list
))
2527 pr_warn("%s: targetport list not empty\n", __func__
);
2529 nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops
);
2531 ida_destroy(&nvmet_fc_tgtport_cnt
);
2534 module_init(nvmet_fc_init_module
);
2535 module_exit(nvmet_fc_exit_module
);
2537 MODULE_LICENSE("GPL v2");