bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / usb / dwc2 / gadget.c
blob5bcad1d869b5070c628bf3b074ed078a5a9ed0c1
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
11 * S3C USB2.0 High-speed / OtG driver
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
31 #include "core.h"
32 #include "hw.h"
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
37 return container_of(req, struct dwc2_hsotg_req, req);
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
42 return container_of(ep, struct dwc2_hsotg_ep, ep);
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
47 return container_of(gadget, struct dwc2_hsotg, gadget);
50 static inline void __orr32(void __iomem *ptr, u32 val)
52 dwc2_writel(dwc2_readl(ptr) | val, ptr);
55 static inline void __bic32(void __iomem *ptr, u32 val)
57 dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 u32 ep_index, u32 dir_in)
63 if (dir_in)
64 return hsotg->eps_in[ep_index];
65 else
66 return hsotg->eps_out[ep_index];
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
72 /**
73 * using_dma - return the DMA status of the driver.
74 * @hsotg: The driver state.
76 * Return true if we're using DMA.
78 * Currently, we have the DMA support code worked into everywhere
79 * that needs it, but the AMBA DMA implementation in the hardware can
80 * only DMA from 32bit aligned addresses. This means that gadgets such
81 * as the CDC Ethernet cannot work as they often pass packets which are
82 * not 32bit aligned.
84 * Unfortunately the choice to use DMA or not is global to the controller
85 * and seems to be only settable when the controller is being put through
86 * a core reset. This means we either need to fix the gadgets to take
87 * account of DMA alignment, or add bounce buffers (yuerk).
89 * g_using_dma is set depending on dts flag.
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
93 return hsotg->params.g_dma;
97 * using_desc_dma - return the descriptor DMA status of the driver.
98 * @hsotg: The driver state.
100 * Return true if we're using descriptor DMA.
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
104 return hsotg->params.g_dma_desc;
108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109 * @hs_ep: The endpoint
110 * @increment: The value to increment by
112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 hs_ep->target_frame += hs_ep->interval;
118 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
119 hs_ep->frame_overrun = 1;
120 hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
121 } else {
122 hs_ep->frame_overrun = 0;
127 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128 * @hsotg: The device state
129 * @ints: A bitmask of the interrupts to enable
131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
133 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
134 u32 new_gsintmsk;
136 new_gsintmsk = gsintmsk | ints;
138 if (new_gsintmsk != gsintmsk) {
139 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
145 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146 * @hsotg: The device state
147 * @ints: A bitmask of the interrupts to enable
149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
151 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
152 u32 new_gsintmsk;
154 new_gsintmsk = gsintmsk & ~ints;
156 if (new_gsintmsk != gsintmsk)
157 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162 * @hsotg: The device state
163 * @ep: The endpoint index
164 * @dir_in: True if direction is in.
165 * @en: The enable value, true to enable
167 * Set or clear the mask for an individual endpoint's interrupt
168 * request.
170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171 unsigned int ep, unsigned int dir_in,
172 unsigned int en)
174 unsigned long flags;
175 u32 bit = 1 << ep;
176 u32 daint;
178 if (!dir_in)
179 bit <<= 16;
181 local_irq_save(flags);
182 daint = dwc2_readl(hsotg->regs + DAINTMSK);
183 if (en)
184 daint |= bit;
185 else
186 daint &= ~bit;
187 dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 local_irq_restore(flags);
192 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
196 if (hsotg->hw_params.en_multiple_tx_fifo)
197 /* In dedicated FIFO mode we need count of IN EPs */
198 return hsotg->hw_params.num_dev_in_eps;
199 else
200 /* In shared FIFO mode we need count of Periodic IN EPs */
201 return hsotg->hw_params.num_dev_perio_in_ep;
205 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
206 * device mode TX FIFOs
208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
210 int addr;
211 int tx_addr_max;
212 u32 np_tx_fifo_size;
214 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
215 hsotg->params.g_np_tx_fifo_size);
217 /* Get Endpoint Info Control block size in DWORDs. */
218 tx_addr_max = hsotg->hw_params.total_fifo_size;
220 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
221 if (tx_addr_max <= addr)
222 return 0;
224 return tx_addr_max - addr;
228 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
229 * TX FIFOs
231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
233 int tx_fifo_count;
234 int tx_fifo_depth;
236 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
238 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
240 if (!tx_fifo_count)
241 return tx_fifo_depth;
242 else
243 return tx_fifo_depth / tx_fifo_count;
247 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
248 * @hsotg: The device instance.
250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
252 unsigned int ep;
253 unsigned int addr;
254 int timeout;
255 u32 val;
256 u32 *txfsz = hsotg->params.g_tx_fifo_size;
258 /* Reset fifo map if not correctly cleared during previous session */
259 WARN_ON(hsotg->fifo_map);
260 hsotg->fifo_map = 0;
262 /* set RX/NPTX FIFO sizes */
263 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
264 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
265 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
266 hsotg->regs + GNPTXFSIZ);
269 * arange all the rest of the TX FIFOs, as some versions of this
270 * block have overlapping default addresses. This also ensures
271 * that if the settings have been changed, then they are set to
272 * known values.
275 /* start at the end of the GNPTXFSIZ, rounded up */
276 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
279 * Configure fifos sizes from provided configuration and assign
280 * them to endpoints dynamically according to maxpacket size value of
281 * given endpoint.
283 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
284 if (!txfsz[ep])
285 continue;
286 val = addr;
287 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
288 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
289 "insufficient fifo memory");
290 addr += txfsz[ep];
292 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
293 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
296 dwc2_writel(hsotg->hw_params.total_fifo_size |
297 addr << GDFIFOCFG_EPINFOBASE_SHIFT,
298 hsotg->regs + GDFIFOCFG);
300 * according to p428 of the design guide, we need to ensure that
301 * all fifos are flushed before continuing
304 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
305 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
307 /* wait until the fifos are both flushed */
308 timeout = 100;
309 while (1) {
310 val = dwc2_readl(hsotg->regs + GRSTCTL);
312 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
313 break;
315 if (--timeout == 0) {
316 dev_err(hsotg->dev,
317 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
318 __func__, val);
319 break;
322 udelay(1);
325 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
329 * @ep: USB endpoint to allocate request for.
330 * @flags: Allocation flags
332 * Allocate a new USB request structure appropriate for the specified endpoint
334 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
335 gfp_t flags)
337 struct dwc2_hsotg_req *req;
339 req = kzalloc(sizeof(*req), flags);
340 if (!req)
341 return NULL;
343 INIT_LIST_HEAD(&req->queue);
345 return &req->req;
349 * is_ep_periodic - return true if the endpoint is in periodic mode.
350 * @hs_ep: The endpoint to query.
352 * Returns true if the endpoint is in periodic mode, meaning it is being
353 * used for an Interrupt or ISO transfer.
355 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
357 return hs_ep->periodic;
361 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
362 * @hsotg: The device state.
363 * @hs_ep: The endpoint for the request
364 * @hs_req: The request being processed.
366 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
367 * of a request to ensure the buffer is ready for access by the caller.
369 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
370 struct dwc2_hsotg_ep *hs_ep,
371 struct dwc2_hsotg_req *hs_req)
373 struct usb_request *req = &hs_req->req;
375 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
379 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
380 * for Control endpoint
381 * @hsotg: The device state.
383 * This function will allocate 4 descriptor chains for EP 0: 2 for
384 * Setup stage, per one for IN and OUT data/status transactions.
386 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
388 hsotg->setup_desc[0] =
389 dmam_alloc_coherent(hsotg->dev,
390 sizeof(struct dwc2_dma_desc),
391 &hsotg->setup_desc_dma[0],
392 GFP_KERNEL);
393 if (!hsotg->setup_desc[0])
394 goto fail;
396 hsotg->setup_desc[1] =
397 dmam_alloc_coherent(hsotg->dev,
398 sizeof(struct dwc2_dma_desc),
399 &hsotg->setup_desc_dma[1],
400 GFP_KERNEL);
401 if (!hsotg->setup_desc[1])
402 goto fail;
404 hsotg->ctrl_in_desc =
405 dmam_alloc_coherent(hsotg->dev,
406 sizeof(struct dwc2_dma_desc),
407 &hsotg->ctrl_in_desc_dma,
408 GFP_KERNEL);
409 if (!hsotg->ctrl_in_desc)
410 goto fail;
412 hsotg->ctrl_out_desc =
413 dmam_alloc_coherent(hsotg->dev,
414 sizeof(struct dwc2_dma_desc),
415 &hsotg->ctrl_out_desc_dma,
416 GFP_KERNEL);
417 if (!hsotg->ctrl_out_desc)
418 goto fail;
420 return 0;
422 fail:
423 return -ENOMEM;
427 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
428 * @hsotg: The controller state.
429 * @hs_ep: The endpoint we're going to write for.
430 * @hs_req: The request to write data for.
432 * This is called when the TxFIFO has some space in it to hold a new
433 * transmission and we have something to give it. The actual setup of
434 * the data size is done elsewhere, so all we have to do is to actually
435 * write the data.
437 * The return value is zero if there is more space (or nothing was done)
438 * otherwise -ENOSPC is returned if the FIFO space was used up.
440 * This routine is only needed for PIO
442 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
443 struct dwc2_hsotg_ep *hs_ep,
444 struct dwc2_hsotg_req *hs_req)
446 bool periodic = is_ep_periodic(hs_ep);
447 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
448 int buf_pos = hs_req->req.actual;
449 int to_write = hs_ep->size_loaded;
450 void *data;
451 int can_write;
452 int pkt_round;
453 int max_transfer;
455 to_write -= (buf_pos - hs_ep->last_load);
457 /* if there's nothing to write, get out early */
458 if (to_write == 0)
459 return 0;
461 if (periodic && !hsotg->dedicated_fifos) {
462 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
463 int size_left;
464 int size_done;
467 * work out how much data was loaded so we can calculate
468 * how much data is left in the fifo.
471 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
474 * if shared fifo, we cannot write anything until the
475 * previous data has been completely sent.
477 if (hs_ep->fifo_load != 0) {
478 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
479 return -ENOSPC;
482 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
483 __func__, size_left,
484 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
486 /* how much of the data has moved */
487 size_done = hs_ep->size_loaded - size_left;
489 /* how much data is left in the fifo */
490 can_write = hs_ep->fifo_load - size_done;
491 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
492 __func__, can_write);
494 can_write = hs_ep->fifo_size - can_write;
495 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
496 __func__, can_write);
498 if (can_write <= 0) {
499 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
500 return -ENOSPC;
502 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
503 can_write = dwc2_readl(hsotg->regs +
504 DTXFSTS(hs_ep->fifo_index));
506 can_write &= 0xffff;
507 can_write *= 4;
508 } else {
509 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
510 dev_dbg(hsotg->dev,
511 "%s: no queue slots available (0x%08x)\n",
512 __func__, gnptxsts);
514 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
515 return -ENOSPC;
518 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
519 can_write *= 4; /* fifo size is in 32bit quantities. */
522 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
524 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
525 __func__, gnptxsts, can_write, to_write, max_transfer);
528 * limit to 512 bytes of data, it seems at least on the non-periodic
529 * FIFO, requests of >512 cause the endpoint to get stuck with a
530 * fragment of the end of the transfer in it.
532 if (can_write > 512 && !periodic)
533 can_write = 512;
536 * limit the write to one max-packet size worth of data, but allow
537 * the transfer to return that it did not run out of fifo space
538 * doing it.
540 if (to_write > max_transfer) {
541 to_write = max_transfer;
543 /* it's needed only when we do not use dedicated fifos */
544 if (!hsotg->dedicated_fifos)
545 dwc2_hsotg_en_gsint(hsotg,
546 periodic ? GINTSTS_PTXFEMP :
547 GINTSTS_NPTXFEMP);
550 /* see if we can write data */
552 if (to_write > can_write) {
553 to_write = can_write;
554 pkt_round = to_write % max_transfer;
557 * Round the write down to an
558 * exact number of packets.
560 * Note, we do not currently check to see if we can ever
561 * write a full packet or not to the FIFO.
564 if (pkt_round)
565 to_write -= pkt_round;
568 * enable correct FIFO interrupt to alert us when there
569 * is more room left.
572 /* it's needed only when we do not use dedicated fifos */
573 if (!hsotg->dedicated_fifos)
574 dwc2_hsotg_en_gsint(hsotg,
575 periodic ? GINTSTS_PTXFEMP :
576 GINTSTS_NPTXFEMP);
579 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
580 to_write, hs_req->req.length, can_write, buf_pos);
582 if (to_write <= 0)
583 return -ENOSPC;
585 hs_req->req.actual = buf_pos + to_write;
586 hs_ep->total_data += to_write;
588 if (periodic)
589 hs_ep->fifo_load += to_write;
591 to_write = DIV_ROUND_UP(to_write, 4);
592 data = hs_req->req.buf + buf_pos;
594 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
596 return (to_write >= can_write) ? -ENOSPC : 0;
600 * get_ep_limit - get the maximum data legnth for this endpoint
601 * @hs_ep: The endpoint
603 * Return the maximum data that can be queued in one go on a given endpoint
604 * so that transfers that are too long can be split.
606 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
608 int index = hs_ep->index;
609 unsigned int maxsize;
610 unsigned int maxpkt;
612 if (index != 0) {
613 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
614 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
615 } else {
616 maxsize = 64 + 64;
617 if (hs_ep->dir_in)
618 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
619 else
620 maxpkt = 2;
623 /* we made the constant loading easier above by using +1 */
624 maxpkt--;
625 maxsize--;
628 * constrain by packet count if maxpkts*pktsize is greater
629 * than the length register size.
632 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
633 maxsize = maxpkt * hs_ep->ep.maxpacket;
635 return maxsize;
639 * dwc2_hsotg_read_frameno - read current frame number
640 * @hsotg: The device instance
642 * Return the current frame number
644 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
646 u32 dsts;
648 dsts = dwc2_readl(hsotg->regs + DSTS);
649 dsts &= DSTS_SOFFN_MASK;
650 dsts >>= DSTS_SOFFN_SHIFT;
652 return dsts;
656 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
657 * DMA descriptor chain prepared for specific endpoint
658 * @hs_ep: The endpoint
660 * Return the maximum data that can be queued in one go on a given endpoint
661 * depending on its descriptor chain capacity so that transfers that
662 * are too long can be split.
664 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
666 int is_isoc = hs_ep->isochronous;
667 unsigned int maxsize;
669 if (is_isoc)
670 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
671 DEV_DMA_ISOC_RX_NBYTES_LIMIT;
672 else
673 maxsize = DEV_DMA_NBYTES_LIMIT;
675 /* Above size of one descriptor was chosen, multiple it */
676 maxsize *= MAX_DMA_DESC_NUM_GENERIC;
678 return maxsize;
682 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
683 * @hs_ep: The endpoint
684 * @mask: RX/TX bytes mask to be defined
686 * Returns maximum data payload for one descriptor after analyzing endpoint
687 * characteristics.
688 * DMA descriptor transfer bytes limit depends on EP type:
689 * Control out - MPS,
690 * Isochronous - descriptor rx/tx bytes bitfield limit,
691 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
692 * have concatenations from various descriptors within one packet.
694 * Selects corresponding mask for RX/TX bytes as well.
696 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
698 u32 mps = hs_ep->ep.maxpacket;
699 int dir_in = hs_ep->dir_in;
700 u32 desc_size = 0;
702 if (!hs_ep->index && !dir_in) {
703 desc_size = mps;
704 *mask = DEV_DMA_NBYTES_MASK;
705 } else if (hs_ep->isochronous) {
706 if (dir_in) {
707 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
708 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
709 } else {
710 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
711 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
713 } else {
714 desc_size = DEV_DMA_NBYTES_LIMIT;
715 *mask = DEV_DMA_NBYTES_MASK;
717 /* Round down desc_size to be mps multiple */
718 desc_size -= desc_size % mps;
721 return desc_size;
725 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
726 * @hs_ep: The endpoint
727 * @dma_buff: DMA address to use
728 * @len: Length of the transfer
730 * This function will iterate over descriptor chain and fill its entries
731 * with corresponding information based on transfer data.
733 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
734 dma_addr_t dma_buff,
735 unsigned int len)
737 struct dwc2_hsotg *hsotg = hs_ep->parent;
738 int dir_in = hs_ep->dir_in;
739 struct dwc2_dma_desc *desc = hs_ep->desc_list;
740 u32 mps = hs_ep->ep.maxpacket;
741 u32 maxsize = 0;
742 u32 offset = 0;
743 u32 mask = 0;
744 int i;
746 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
748 hs_ep->desc_count = (len / maxsize) +
749 ((len % maxsize) ? 1 : 0);
750 if (len == 0)
751 hs_ep->desc_count = 1;
753 for (i = 0; i < hs_ep->desc_count; ++i) {
754 desc->status = 0;
755 desc->status |= (DEV_DMA_BUFF_STS_HBUSY
756 << DEV_DMA_BUFF_STS_SHIFT);
758 if (len > maxsize) {
759 if (!hs_ep->index && !dir_in)
760 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
762 desc->status |= (maxsize <<
763 DEV_DMA_NBYTES_SHIFT & mask);
764 desc->buf = dma_buff + offset;
766 len -= maxsize;
767 offset += maxsize;
768 } else {
769 desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
771 if (dir_in)
772 desc->status |= (len % mps) ? DEV_DMA_SHORT :
773 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
774 if (len > maxsize)
775 dev_err(hsotg->dev, "wrong len %d\n", len);
777 desc->status |=
778 len << DEV_DMA_NBYTES_SHIFT & mask;
779 desc->buf = dma_buff + offset;
782 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
783 desc->status |= (DEV_DMA_BUFF_STS_HREADY
784 << DEV_DMA_BUFF_STS_SHIFT);
785 desc++;
790 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
791 * @hs_ep: The isochronous endpoint.
792 * @dma_buff: usb requests dma buffer.
793 * @len: usb request transfer length.
795 * Finds out index of first free entry either in the bottom or up half of
796 * descriptor chain depend on which is under SW control and not processed
797 * by HW. Then fills that descriptor with the data of the arrived usb request,
798 * frame info, sets Last and IOC bits increments next_desc. If filled
799 * descriptor is not the first one, removes L bit from the previous descriptor
800 * status.
802 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
803 dma_addr_t dma_buff, unsigned int len)
805 struct dwc2_dma_desc *desc;
806 struct dwc2_hsotg *hsotg = hs_ep->parent;
807 u32 index;
808 u32 maxsize = 0;
809 u32 mask = 0;
811 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
812 if (len > maxsize) {
813 dev_err(hsotg->dev, "wrong len %d\n", len);
814 return -EINVAL;
818 * If SW has already filled half of chain, then return and wait for
819 * the other chain to be processed by HW.
821 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
822 return -EBUSY;
824 /* Increment frame number by interval for IN */
825 if (hs_ep->dir_in)
826 dwc2_gadget_incr_frame_num(hs_ep);
828 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
829 hs_ep->next_desc;
831 /* Sanity check of calculated index */
832 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
833 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
834 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
835 return -EINVAL;
838 desc = &hs_ep->desc_list[index];
840 /* Clear L bit of previous desc if more than one entries in the chain */
841 if (hs_ep->next_desc)
842 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
844 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
845 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
847 desc->status = 0;
848 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT);
850 desc->buf = dma_buff;
851 desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
852 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
854 if (hs_ep->dir_in) {
855 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
856 DEV_DMA_ISOC_PID_MASK) |
857 ((len % hs_ep->ep.maxpacket) ?
858 DEV_DMA_SHORT : 0) |
859 ((hs_ep->target_frame <<
860 DEV_DMA_ISOC_FRNUM_SHIFT) &
861 DEV_DMA_ISOC_FRNUM_MASK);
864 desc->status &= ~DEV_DMA_BUFF_STS_MASK;
865 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
867 /* Update index of last configured entry in the chain */
868 hs_ep->next_desc++;
870 return 0;
874 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
875 * @hs_ep: The isochronous endpoint.
877 * Prepare first descriptor chain for isochronous endpoints. Afterwards
878 * write DMA address to HW and enable the endpoint.
880 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
881 * to prepare second descriptor chain while first one is being processed by HW.
883 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
885 struct dwc2_hsotg *hsotg = hs_ep->parent;
886 struct dwc2_hsotg_req *hs_req, *treq;
887 int index = hs_ep->index;
888 int ret;
889 u32 dma_reg;
890 u32 depctl;
891 u32 ctrl;
893 if (list_empty(&hs_ep->queue)) {
894 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
895 return;
898 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
899 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
900 hs_req->req.length);
901 if (ret) {
902 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
903 break;
907 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
908 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
910 /* write descriptor chain address to control register */
911 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
913 ctrl = dwc2_readl(hsotg->regs + depctl);
914 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
915 dwc2_writel(ctrl, hsotg->regs + depctl);
917 /* Switch ISOC descriptor chain number being processed by SW*/
918 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
919 hs_ep->next_desc = 0;
923 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
924 * @hsotg: The controller state.
925 * @hs_ep: The endpoint to process a request for
926 * @hs_req: The request to start.
927 * @continuing: True if we are doing more for the current request.
929 * Start the given request running by setting the endpoint registers
930 * appropriately, and writing any data to the FIFOs.
932 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
933 struct dwc2_hsotg_ep *hs_ep,
934 struct dwc2_hsotg_req *hs_req,
935 bool continuing)
937 struct usb_request *ureq = &hs_req->req;
938 int index = hs_ep->index;
939 int dir_in = hs_ep->dir_in;
940 u32 epctrl_reg;
941 u32 epsize_reg;
942 u32 epsize;
943 u32 ctrl;
944 unsigned int length;
945 unsigned int packets;
946 unsigned int maxreq;
947 unsigned int dma_reg;
949 if (index != 0) {
950 if (hs_ep->req && !continuing) {
951 dev_err(hsotg->dev, "%s: active request\n", __func__);
952 WARN_ON(1);
953 return;
954 } else if (hs_ep->req != hs_req && continuing) {
955 dev_err(hsotg->dev,
956 "%s: continue different req\n", __func__);
957 WARN_ON(1);
958 return;
962 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
963 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
964 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
966 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
967 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
968 hs_ep->dir_in ? "in" : "out");
970 /* If endpoint is stalled, we will restart request later */
971 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
973 if (index && ctrl & DXEPCTL_STALL) {
974 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
975 return;
978 length = ureq->length - ureq->actual;
979 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
980 ureq->length, ureq->actual);
982 if (!using_desc_dma(hsotg))
983 maxreq = get_ep_limit(hs_ep);
984 else
985 maxreq = dwc2_gadget_get_chain_limit(hs_ep);
987 if (length > maxreq) {
988 int round = maxreq % hs_ep->ep.maxpacket;
990 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
991 __func__, length, maxreq, round);
993 /* round down to multiple of packets */
994 if (round)
995 maxreq -= round;
997 length = maxreq;
1000 if (length)
1001 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1002 else
1003 packets = 1; /* send one packet if length is zero. */
1005 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1006 dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1007 return;
1010 if (dir_in && index != 0)
1011 if (hs_ep->isochronous)
1012 epsize = DXEPTSIZ_MC(packets);
1013 else
1014 epsize = DXEPTSIZ_MC(1);
1015 else
1016 epsize = 0;
1019 * zero length packet should be programmed on its own and should not
1020 * be counted in DIEPTSIZ.PktCnt with other packets.
1022 if (dir_in && ureq->zero && !continuing) {
1023 /* Test if zlp is actually required. */
1024 if ((ureq->length >= hs_ep->ep.maxpacket) &&
1025 !(ureq->length % hs_ep->ep.maxpacket))
1026 hs_ep->send_zlp = 1;
1029 epsize |= DXEPTSIZ_PKTCNT(packets);
1030 epsize |= DXEPTSIZ_XFERSIZE(length);
1032 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1033 __func__, packets, length, ureq->length, epsize, epsize_reg);
1035 /* store the request as the current one we're doing */
1036 hs_ep->req = hs_req;
1038 if (using_desc_dma(hsotg)) {
1039 u32 offset = 0;
1040 u32 mps = hs_ep->ep.maxpacket;
1042 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1043 if (!dir_in) {
1044 if (!index)
1045 length = mps;
1046 else if (length % mps)
1047 length += (mps - (length % mps));
1051 * If more data to send, adjust DMA for EP0 out data stage.
1052 * ureq->dma stays unchanged, hence increment it by already
1053 * passed passed data count before starting new transaction.
1055 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1056 continuing)
1057 offset = ureq->actual;
1059 /* Fill DDMA chain entries */
1060 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1061 length);
1063 /* write descriptor chain address to control register */
1064 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1066 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1067 __func__, (u32)hs_ep->desc_list_dma, dma_reg);
1068 } else {
1069 /* write size / packets */
1070 dwc2_writel(epsize, hsotg->regs + epsize_reg);
1072 if (using_dma(hsotg) && !continuing && (length != 0)) {
1074 * write DMA address to control register, buffer
1075 * already synced by dwc2_hsotg_ep_queue().
1078 dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1080 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1081 __func__, &ureq->dma, dma_reg);
1085 if (hs_ep->isochronous && hs_ep->interval == 1) {
1086 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1087 dwc2_gadget_incr_frame_num(hs_ep);
1089 if (hs_ep->target_frame & 0x1)
1090 ctrl |= DXEPCTL_SETODDFR;
1091 else
1092 ctrl |= DXEPCTL_SETEVENFR;
1095 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1097 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1099 /* For Setup request do not clear NAK */
1100 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1101 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1103 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1104 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1107 * set these, it seems that DMA support increments past the end
1108 * of the packet buffer so we need to calculate the length from
1109 * this information.
1111 hs_ep->size_loaded = length;
1112 hs_ep->last_load = ureq->actual;
1114 if (dir_in && !using_dma(hsotg)) {
1115 /* set these anyway, we may need them for non-periodic in */
1116 hs_ep->fifo_load = 0;
1118 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1122 * Note, trying to clear the NAK here causes problems with transmit
1123 * on the S3C6400 ending up with the TXFIFO becoming full.
1126 /* check ep is enabled */
1127 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1128 dev_dbg(hsotg->dev,
1129 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1130 index, dwc2_readl(hsotg->regs + epctrl_reg));
1132 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1133 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
1135 /* enable ep interrupts */
1136 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1140 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1141 * @hsotg: The device state.
1142 * @hs_ep: The endpoint the request is on.
1143 * @req: The request being processed.
1145 * We've been asked to queue a request, so ensure that the memory buffer
1146 * is correctly setup for DMA. If we've been passed an extant DMA address
1147 * then ensure the buffer has been synced to memory. If our buffer has no
1148 * DMA memory, then we map the memory and mark our request to allow us to
1149 * cleanup on completion.
1151 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1152 struct dwc2_hsotg_ep *hs_ep,
1153 struct usb_request *req)
1155 int ret;
1157 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1158 if (ret)
1159 goto dma_error;
1161 return 0;
1163 dma_error:
1164 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1165 __func__, req->buf, req->length);
1167 return -EIO;
1170 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1171 struct dwc2_hsotg_ep *hs_ep,
1172 struct dwc2_hsotg_req *hs_req)
1174 void *req_buf = hs_req->req.buf;
1176 /* If dma is not being used or buffer is aligned */
1177 if (!using_dma(hsotg) || !((long)req_buf & 3))
1178 return 0;
1180 WARN_ON(hs_req->saved_req_buf);
1182 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1183 hs_ep->ep.name, req_buf, hs_req->req.length);
1185 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1186 if (!hs_req->req.buf) {
1187 hs_req->req.buf = req_buf;
1188 dev_err(hsotg->dev,
1189 "%s: unable to allocate memory for bounce buffer\n",
1190 __func__);
1191 return -ENOMEM;
1194 /* Save actual buffer */
1195 hs_req->saved_req_buf = req_buf;
1197 if (hs_ep->dir_in)
1198 memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1199 return 0;
1202 static void
1203 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1204 struct dwc2_hsotg_ep *hs_ep,
1205 struct dwc2_hsotg_req *hs_req)
1207 /* If dma is not being used or buffer was aligned */
1208 if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1209 return;
1211 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1212 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1214 /* Copy data from bounce buffer on successful out transfer */
1215 if (!hs_ep->dir_in && !hs_req->req.status)
1216 memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1217 hs_req->req.actual);
1219 /* Free bounce buffer */
1220 kfree(hs_req->req.buf);
1222 hs_req->req.buf = hs_req->saved_req_buf;
1223 hs_req->saved_req_buf = NULL;
1227 * dwc2_gadget_target_frame_elapsed - Checks target frame
1228 * @hs_ep: The driver endpoint to check
1230 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1231 * corresponding transfer.
1233 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1235 struct dwc2_hsotg *hsotg = hs_ep->parent;
1236 u32 target_frame = hs_ep->target_frame;
1237 u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1238 bool frame_overrun = hs_ep->frame_overrun;
1240 if (!frame_overrun && current_frame >= target_frame)
1241 return true;
1243 if (frame_overrun && current_frame >= target_frame &&
1244 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1245 return true;
1247 return false;
1251 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1252 * @hsotg: The driver state
1253 * @hs_ep: the ep descriptor chain is for
1255 * Called to update EP0 structure's pointers depend on stage of
1256 * control transfer.
1258 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1259 struct dwc2_hsotg_ep *hs_ep)
1261 switch (hsotg->ep0_state) {
1262 case DWC2_EP0_SETUP:
1263 case DWC2_EP0_STATUS_OUT:
1264 hs_ep->desc_list = hsotg->setup_desc[0];
1265 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1266 break;
1267 case DWC2_EP0_DATA_IN:
1268 case DWC2_EP0_STATUS_IN:
1269 hs_ep->desc_list = hsotg->ctrl_in_desc;
1270 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1271 break;
1272 case DWC2_EP0_DATA_OUT:
1273 hs_ep->desc_list = hsotg->ctrl_out_desc;
1274 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1275 break;
1276 default:
1277 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1278 hsotg->ep0_state);
1279 return -EINVAL;
1282 return 0;
1285 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1286 gfp_t gfp_flags)
1288 struct dwc2_hsotg_req *hs_req = our_req(req);
1289 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1290 struct dwc2_hsotg *hs = hs_ep->parent;
1291 bool first;
1292 int ret;
1294 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1295 ep->name, req, req->length, req->buf, req->no_interrupt,
1296 req->zero, req->short_not_ok);
1298 /* Prevent new request submission when controller is suspended */
1299 if (hs->lx_state == DWC2_L2) {
1300 dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1301 __func__);
1302 return -EAGAIN;
1305 /* initialise status of the request */
1306 INIT_LIST_HEAD(&hs_req->queue);
1307 req->actual = 0;
1308 req->status = -EINPROGRESS;
1310 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1311 if (ret)
1312 return ret;
1314 /* if we're using DMA, sync the buffers as necessary */
1315 if (using_dma(hs)) {
1316 ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1317 if (ret)
1318 return ret;
1320 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1321 if (using_desc_dma(hs) && !hs_ep->index) {
1322 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1323 if (ret)
1324 return ret;
1327 first = list_empty(&hs_ep->queue);
1328 list_add_tail(&hs_req->queue, &hs_ep->queue);
1331 * Handle DDMA isochronous transfers separately - just add new entry
1332 * to the half of descriptor chain that is not processed by HW.
1333 * Transfer will be started once SW gets either one of NAK or
1334 * OutTknEpDis interrupts.
1336 if (using_desc_dma(hs) && hs_ep->isochronous &&
1337 hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1338 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1339 hs_req->req.length);
1340 if (ret)
1341 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1343 return 0;
1346 if (first) {
1347 if (!hs_ep->isochronous) {
1348 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1349 return 0;
1352 while (dwc2_gadget_target_frame_elapsed(hs_ep))
1353 dwc2_gadget_incr_frame_num(hs_ep);
1355 if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1356 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1358 return 0;
1361 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1362 gfp_t gfp_flags)
1364 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1365 struct dwc2_hsotg *hs = hs_ep->parent;
1366 unsigned long flags = 0;
1367 int ret = 0;
1369 spin_lock_irqsave(&hs->lock, flags);
1370 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1371 spin_unlock_irqrestore(&hs->lock, flags);
1373 return ret;
1376 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1377 struct usb_request *req)
1379 struct dwc2_hsotg_req *hs_req = our_req(req);
1381 kfree(hs_req);
1385 * dwc2_hsotg_complete_oursetup - setup completion callback
1386 * @ep: The endpoint the request was on.
1387 * @req: The request completed.
1389 * Called on completion of any requests the driver itself
1390 * submitted that need cleaning up.
1392 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1393 struct usb_request *req)
1395 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1396 struct dwc2_hsotg *hsotg = hs_ep->parent;
1398 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1400 dwc2_hsotg_ep_free_request(ep, req);
1404 * ep_from_windex - convert control wIndex value to endpoint
1405 * @hsotg: The driver state.
1406 * @windex: The control request wIndex field (in host order).
1408 * Convert the given wIndex into a pointer to an driver endpoint
1409 * structure, or return NULL if it is not a valid endpoint.
1411 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1412 u32 windex)
1414 struct dwc2_hsotg_ep *ep;
1415 int dir = (windex & USB_DIR_IN) ? 1 : 0;
1416 int idx = windex & 0x7F;
1418 if (windex >= 0x100)
1419 return NULL;
1421 if (idx > hsotg->num_of_eps)
1422 return NULL;
1424 ep = index_to_ep(hsotg, idx, dir);
1426 if (idx && ep->dir_in != dir)
1427 return NULL;
1429 return ep;
1433 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1434 * @hsotg: The driver state.
1435 * @testmode: requested usb test mode
1436 * Enable usb Test Mode requested by the Host.
1438 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1440 int dctl = dwc2_readl(hsotg->regs + DCTL);
1442 dctl &= ~DCTL_TSTCTL_MASK;
1443 switch (testmode) {
1444 case TEST_J:
1445 case TEST_K:
1446 case TEST_SE0_NAK:
1447 case TEST_PACKET:
1448 case TEST_FORCE_EN:
1449 dctl |= testmode << DCTL_TSTCTL_SHIFT;
1450 break;
1451 default:
1452 return -EINVAL;
1454 dwc2_writel(dctl, hsotg->regs + DCTL);
1455 return 0;
1459 * dwc2_hsotg_send_reply - send reply to control request
1460 * @hsotg: The device state
1461 * @ep: Endpoint 0
1462 * @buff: Buffer for request
1463 * @length: Length of reply.
1465 * Create a request and queue it on the given endpoint. This is useful as
1466 * an internal method of sending replies to certain control requests, etc.
1468 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1469 struct dwc2_hsotg_ep *ep,
1470 void *buff,
1471 int length)
1473 struct usb_request *req;
1474 int ret;
1476 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1478 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1479 hsotg->ep0_reply = req;
1480 if (!req) {
1481 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1482 return -ENOMEM;
1485 req->buf = hsotg->ep0_buff;
1486 req->length = length;
1488 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1489 * STATUS stage.
1491 req->zero = 0;
1492 req->complete = dwc2_hsotg_complete_oursetup;
1494 if (length)
1495 memcpy(req->buf, buff, length);
1497 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1498 if (ret) {
1499 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1500 return ret;
1503 return 0;
1507 * dwc2_hsotg_process_req_status - process request GET_STATUS
1508 * @hsotg: The device state
1509 * @ctrl: USB control request
1511 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1512 struct usb_ctrlrequest *ctrl)
1514 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1515 struct dwc2_hsotg_ep *ep;
1516 __le16 reply;
1517 int ret;
1519 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1521 if (!ep0->dir_in) {
1522 dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1523 return -EINVAL;
1526 switch (ctrl->bRequestType & USB_RECIP_MASK) {
1527 case USB_RECIP_DEVICE:
1529 * bit 0 => self powered
1530 * bit 1 => remote wakeup
1532 reply = cpu_to_le16(0);
1533 break;
1535 case USB_RECIP_INTERFACE:
1536 /* currently, the data result should be zero */
1537 reply = cpu_to_le16(0);
1538 break;
1540 case USB_RECIP_ENDPOINT:
1541 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1542 if (!ep)
1543 return -ENOENT;
1545 reply = cpu_to_le16(ep->halted ? 1 : 0);
1546 break;
1548 default:
1549 return 0;
1552 if (le16_to_cpu(ctrl->wLength) != 2)
1553 return -EINVAL;
1555 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1556 if (ret) {
1557 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1558 return ret;
1561 return 1;
1564 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1567 * get_ep_head - return the first request on the endpoint
1568 * @hs_ep: The controller endpoint to get
1570 * Get the first request on the endpoint.
1572 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1574 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1575 queue);
1579 * dwc2_gadget_start_next_request - Starts next request from ep queue
1580 * @hs_ep: Endpoint structure
1582 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1583 * in its handler. Hence we need to unmask it here to be able to do
1584 * resynchronization.
1586 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1588 u32 mask;
1589 struct dwc2_hsotg *hsotg = hs_ep->parent;
1590 int dir_in = hs_ep->dir_in;
1591 struct dwc2_hsotg_req *hs_req;
1592 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1594 if (!list_empty(&hs_ep->queue)) {
1595 hs_req = get_ep_head(hs_ep);
1596 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1597 return;
1599 if (!hs_ep->isochronous)
1600 return;
1602 if (dir_in) {
1603 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1604 __func__);
1605 } else {
1606 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1607 __func__);
1608 mask = dwc2_readl(hsotg->regs + epmsk_reg);
1609 mask |= DOEPMSK_OUTTKNEPDISMSK;
1610 dwc2_writel(mask, hsotg->regs + epmsk_reg);
1615 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1616 * @hsotg: The device state
1617 * @ctrl: USB control request
1619 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1620 struct usb_ctrlrequest *ctrl)
1622 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1623 struct dwc2_hsotg_req *hs_req;
1624 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1625 struct dwc2_hsotg_ep *ep;
1626 int ret;
1627 bool halted;
1628 u32 recip;
1629 u32 wValue;
1630 u32 wIndex;
1632 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1633 __func__, set ? "SET" : "CLEAR");
1635 wValue = le16_to_cpu(ctrl->wValue);
1636 wIndex = le16_to_cpu(ctrl->wIndex);
1637 recip = ctrl->bRequestType & USB_RECIP_MASK;
1639 switch (recip) {
1640 case USB_RECIP_DEVICE:
1641 switch (wValue) {
1642 case USB_DEVICE_TEST_MODE:
1643 if ((wIndex & 0xff) != 0)
1644 return -EINVAL;
1645 if (!set)
1646 return -EINVAL;
1648 hsotg->test_mode = wIndex >> 8;
1649 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1650 if (ret) {
1651 dev_err(hsotg->dev,
1652 "%s: failed to send reply\n", __func__);
1653 return ret;
1655 break;
1656 default:
1657 return -ENOENT;
1659 break;
1661 case USB_RECIP_ENDPOINT:
1662 ep = ep_from_windex(hsotg, wIndex);
1663 if (!ep) {
1664 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1665 __func__, wIndex);
1666 return -ENOENT;
1669 switch (wValue) {
1670 case USB_ENDPOINT_HALT:
1671 halted = ep->halted;
1673 dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1675 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1676 if (ret) {
1677 dev_err(hsotg->dev,
1678 "%s: failed to send reply\n", __func__);
1679 return ret;
1683 * we have to complete all requests for ep if it was
1684 * halted, and the halt was cleared by CLEAR_FEATURE
1687 if (!set && halted) {
1689 * If we have request in progress,
1690 * then complete it
1692 if (ep->req) {
1693 hs_req = ep->req;
1694 ep->req = NULL;
1695 list_del_init(&hs_req->queue);
1696 if (hs_req->req.complete) {
1697 spin_unlock(&hsotg->lock);
1698 usb_gadget_giveback_request(
1699 &ep->ep, &hs_req->req);
1700 spin_lock(&hsotg->lock);
1704 /* If we have pending request, then start it */
1705 if (!ep->req)
1706 dwc2_gadget_start_next_request(ep);
1709 break;
1711 default:
1712 return -ENOENT;
1714 break;
1715 default:
1716 return -ENOENT;
1718 return 1;
1721 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1724 * dwc2_hsotg_stall_ep0 - stall ep0
1725 * @hsotg: The device state
1727 * Set stall for ep0 as response for setup request.
1729 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1731 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1732 u32 reg;
1733 u32 ctrl;
1735 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1736 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1739 * DxEPCTL_Stall will be cleared by EP once it has
1740 * taken effect, so no need to clear later.
1743 ctrl = dwc2_readl(hsotg->regs + reg);
1744 ctrl |= DXEPCTL_STALL;
1745 ctrl |= DXEPCTL_CNAK;
1746 dwc2_writel(ctrl, hsotg->regs + reg);
1748 dev_dbg(hsotg->dev,
1749 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1750 ctrl, reg, dwc2_readl(hsotg->regs + reg));
1753 * complete won't be called, so we enqueue
1754 * setup request here
1756 dwc2_hsotg_enqueue_setup(hsotg);
1760 * dwc2_hsotg_process_control - process a control request
1761 * @hsotg: The device state
1762 * @ctrl: The control request received
1764 * The controller has received the SETUP phase of a control request, and
1765 * needs to work out what to do next (and whether to pass it on to the
1766 * gadget driver).
1768 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1769 struct usb_ctrlrequest *ctrl)
1771 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1772 int ret = 0;
1773 u32 dcfg;
1775 dev_dbg(hsotg->dev,
1776 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1777 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1778 ctrl->wIndex, ctrl->wLength);
1780 if (ctrl->wLength == 0) {
1781 ep0->dir_in = 1;
1782 hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1783 } else if (ctrl->bRequestType & USB_DIR_IN) {
1784 ep0->dir_in = 1;
1785 hsotg->ep0_state = DWC2_EP0_DATA_IN;
1786 } else {
1787 ep0->dir_in = 0;
1788 hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1791 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1792 switch (ctrl->bRequest) {
1793 case USB_REQ_SET_ADDRESS:
1794 hsotg->connected = 1;
1795 dcfg = dwc2_readl(hsotg->regs + DCFG);
1796 dcfg &= ~DCFG_DEVADDR_MASK;
1797 dcfg |= (le16_to_cpu(ctrl->wValue) <<
1798 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1799 dwc2_writel(dcfg, hsotg->regs + DCFG);
1801 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1803 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1804 return;
1806 case USB_REQ_GET_STATUS:
1807 ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1808 break;
1810 case USB_REQ_CLEAR_FEATURE:
1811 case USB_REQ_SET_FEATURE:
1812 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1813 break;
1817 /* as a fallback, try delivering it to the driver to deal with */
1819 if (ret == 0 && hsotg->driver) {
1820 spin_unlock(&hsotg->lock);
1821 ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1822 spin_lock(&hsotg->lock);
1823 if (ret < 0)
1824 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1828 * the request is either unhandlable, or is not formatted correctly
1829 * so respond with a STALL for the status stage to indicate failure.
1832 if (ret < 0)
1833 dwc2_hsotg_stall_ep0(hsotg);
1837 * dwc2_hsotg_complete_setup - completion of a setup transfer
1838 * @ep: The endpoint the request was on.
1839 * @req: The request completed.
1841 * Called on completion of any requests the driver itself submitted for
1842 * EP0 setup packets
1844 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1845 struct usb_request *req)
1847 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1848 struct dwc2_hsotg *hsotg = hs_ep->parent;
1850 if (req->status < 0) {
1851 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1852 return;
1855 spin_lock(&hsotg->lock);
1856 if (req->actual == 0)
1857 dwc2_hsotg_enqueue_setup(hsotg);
1858 else
1859 dwc2_hsotg_process_control(hsotg, req->buf);
1860 spin_unlock(&hsotg->lock);
1864 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1865 * @hsotg: The device state.
1867 * Enqueue a request on EP0 if necessary to received any SETUP packets
1868 * received from the host.
1870 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1872 struct usb_request *req = hsotg->ctrl_req;
1873 struct dwc2_hsotg_req *hs_req = our_req(req);
1874 int ret;
1876 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1878 req->zero = 0;
1879 req->length = 8;
1880 req->buf = hsotg->ctrl_buff;
1881 req->complete = dwc2_hsotg_complete_setup;
1883 if (!list_empty(&hs_req->queue)) {
1884 dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1885 return;
1888 hsotg->eps_out[0]->dir_in = 0;
1889 hsotg->eps_out[0]->send_zlp = 0;
1890 hsotg->ep0_state = DWC2_EP0_SETUP;
1892 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1893 if (ret < 0) {
1894 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1896 * Don't think there's much we can do other than watch the
1897 * driver fail.
1902 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1903 struct dwc2_hsotg_ep *hs_ep)
1905 u32 ctrl;
1906 u8 index = hs_ep->index;
1907 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1908 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1910 if (hs_ep->dir_in)
1911 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1912 index);
1913 else
1914 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1915 index);
1916 if (using_desc_dma(hsotg)) {
1917 /* Not specific buffer needed for ep0 ZLP */
1918 dma_addr_t dma = hs_ep->desc_list_dma;
1920 if (!index)
1921 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1923 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1924 } else {
1925 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1926 DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1927 epsiz_reg);
1930 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1931 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */
1932 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1933 ctrl |= DXEPCTL_USBACTEP;
1934 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1938 * dwc2_hsotg_complete_request - complete a request given to us
1939 * @hsotg: The device state.
1940 * @hs_ep: The endpoint the request was on.
1941 * @hs_req: The request to complete.
1942 * @result: The result code (0 => Ok, otherwise errno)
1944 * The given request has finished, so call the necessary completion
1945 * if it has one and then look to see if we can start a new request
1946 * on the endpoint.
1948 * Note, expects the ep to already be locked as appropriate.
1950 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1951 struct dwc2_hsotg_ep *hs_ep,
1952 struct dwc2_hsotg_req *hs_req,
1953 int result)
1955 if (!hs_req) {
1956 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1957 return;
1960 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1961 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1964 * only replace the status if we've not already set an error
1965 * from a previous transaction
1968 if (hs_req->req.status == -EINPROGRESS)
1969 hs_req->req.status = result;
1971 if (using_dma(hsotg))
1972 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1974 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1976 hs_ep->req = NULL;
1977 list_del_init(&hs_req->queue);
1980 * call the complete request with the locks off, just in case the
1981 * request tries to queue more work for this endpoint.
1984 if (hs_req->req.complete) {
1985 spin_unlock(&hsotg->lock);
1986 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1987 spin_lock(&hsotg->lock);
1990 /* In DDMA don't need to proceed to starting of next ISOC request */
1991 if (using_desc_dma(hsotg) && hs_ep->isochronous)
1992 return;
1995 * Look to see if there is anything else to do. Note, the completion
1996 * of the previous request may have caused a new request to be started
1997 * so be careful when doing this.
2000 if (!hs_ep->req && result >= 0)
2001 dwc2_gadget_start_next_request(hs_ep);
2005 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2006 * @hs_ep: The endpoint the request was on.
2008 * Get first request from the ep queue, determine descriptor on which complete
2009 * happened. SW based on isoc_chain_num discovers which half of the descriptor
2010 * chain is currently in use by HW, adjusts dma_address and calculates index
2011 * of completed descriptor based on the value of DEPDMA register. Update actual
2012 * length of request, giveback to gadget.
2014 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2016 struct dwc2_hsotg *hsotg = hs_ep->parent;
2017 struct dwc2_hsotg_req *hs_req;
2018 struct usb_request *ureq;
2019 int index;
2020 dma_addr_t dma_addr;
2021 u32 dma_reg;
2022 u32 depdma;
2023 u32 desc_sts;
2024 u32 mask;
2026 hs_req = get_ep_head(hs_ep);
2027 if (!hs_req) {
2028 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2029 return;
2031 ureq = &hs_req->req;
2033 dma_addr = hs_ep->desc_list_dma;
2036 * If lower half of descriptor chain is currently use by SW,
2037 * that means higher half is being processed by HW, so shift
2038 * DMA address to higher half of descriptor chain.
2040 if (!hs_ep->isoc_chain_num)
2041 dma_addr += sizeof(struct dwc2_dma_desc) *
2042 (MAX_DMA_DESC_NUM_GENERIC / 2);
2044 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2045 depdma = dwc2_readl(hsotg->regs + dma_reg);
2047 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2048 desc_sts = hs_ep->desc_list[index].status;
2050 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2051 DEV_DMA_ISOC_RX_NBYTES_MASK;
2052 ureq->actual = ureq->length -
2053 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2055 /* Adjust actual length for ISOC Out if length is not align of 4 */
2056 if (!hs_ep->dir_in && ureq->length & 0x3)
2057 ureq->actual += 4 - (ureq->length & 0x3);
2059 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2063 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2064 * @hs_ep: The isochronous endpoint to be re-enabled.
2066 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2067 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2068 * was under SW control till HW was busy and restart the endpoint if needed.
2070 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2072 struct dwc2_hsotg *hsotg = hs_ep->parent;
2073 u32 depctl;
2074 u32 dma_reg;
2075 u32 ctrl;
2076 u32 dma_addr = hs_ep->desc_list_dma;
2077 unsigned char index = hs_ep->index;
2079 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2080 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2082 ctrl = dwc2_readl(hsotg->regs + depctl);
2085 * EP was disabled if HW has processed last descriptor or BNA was set.
2086 * So restart ep if SW has prepared new descriptor chain in ep_queue
2087 * routine while HW was busy.
2089 if (!(ctrl & DXEPCTL_EPENA)) {
2090 if (!hs_ep->next_desc) {
2091 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2092 __func__);
2093 return;
2096 dma_addr += sizeof(struct dwc2_dma_desc) *
2097 (MAX_DMA_DESC_NUM_GENERIC / 2) *
2098 hs_ep->isoc_chain_num;
2099 dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2101 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2102 dwc2_writel(ctrl, hsotg->regs + depctl);
2104 /* Switch ISOC descriptor chain number being processed by SW*/
2105 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2106 hs_ep->next_desc = 0;
2108 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2109 __func__);
2114 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2115 * @hsotg: The device state.
2116 * @ep_idx: The endpoint index for the data
2117 * @size: The size of data in the fifo, in bytes
2119 * The FIFO status shows there is data to read from the FIFO for a given
2120 * endpoint, so sort out whether we need to read the data into a request
2121 * that has been made for that endpoint.
2123 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2125 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2126 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2127 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2128 int to_read;
2129 int max_req;
2130 int read_ptr;
2132 if (!hs_req) {
2133 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2134 int ptr;
2136 dev_dbg(hsotg->dev,
2137 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2138 __func__, size, ep_idx, epctl);
2140 /* dump the data from the FIFO, we've nothing we can do */
2141 for (ptr = 0; ptr < size; ptr += 4)
2142 (void)dwc2_readl(fifo);
2144 return;
2147 to_read = size;
2148 read_ptr = hs_req->req.actual;
2149 max_req = hs_req->req.length - read_ptr;
2151 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2152 __func__, to_read, max_req, read_ptr, hs_req->req.length);
2154 if (to_read > max_req) {
2156 * more data appeared than we where willing
2157 * to deal with in this request.
2160 /* currently we don't deal this */
2161 WARN_ON_ONCE(1);
2164 hs_ep->total_data += to_read;
2165 hs_req->req.actual += to_read;
2166 to_read = DIV_ROUND_UP(to_read, 4);
2169 * note, we might over-write the buffer end by 3 bytes depending on
2170 * alignment of the data.
2172 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2176 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2177 * @hsotg: The device instance
2178 * @dir_in: If IN zlp
2180 * Generate a zero-length IN packet request for terminating a SETUP
2181 * transaction.
2183 * Note, since we don't write any data to the TxFIFO, then it is
2184 * currently believed that we do not need to wait for any space in
2185 * the TxFIFO.
2187 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2189 /* eps_out[0] is used in both directions */
2190 hsotg->eps_out[0]->dir_in = dir_in;
2191 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2193 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2196 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2197 u32 epctl_reg)
2199 u32 ctrl;
2201 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2202 if (ctrl & DXEPCTL_EOFRNUM)
2203 ctrl |= DXEPCTL_SETEVENFR;
2204 else
2205 ctrl |= DXEPCTL_SETODDFR;
2206 dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2210 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2211 * @hs_ep - The endpoint on which transfer went
2213 * Iterate over endpoints descriptor chain and get info on bytes remained
2214 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2216 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2218 struct dwc2_hsotg *hsotg = hs_ep->parent;
2219 unsigned int bytes_rem = 0;
2220 struct dwc2_dma_desc *desc = hs_ep->desc_list;
2221 int i;
2222 u32 status;
2224 if (!desc)
2225 return -EINVAL;
2227 for (i = 0; i < hs_ep->desc_count; ++i) {
2228 status = desc->status;
2229 bytes_rem += status & DEV_DMA_NBYTES_MASK;
2231 if (status & DEV_DMA_STS_MASK)
2232 dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2233 i, status & DEV_DMA_STS_MASK);
2236 return bytes_rem;
2240 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2241 * @hsotg: The device instance
2242 * @epnum: The endpoint received from
2244 * The RXFIFO has delivered an OutDone event, which means that the data
2245 * transfer for an OUT endpoint has been completed, either by a short
2246 * packet or by the finish of a transfer.
2248 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2250 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2251 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2252 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2253 struct usb_request *req = &hs_req->req;
2254 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2255 int result = 0;
2257 if (!hs_req) {
2258 dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2259 return;
2262 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2263 dev_dbg(hsotg->dev, "zlp packet received\n");
2264 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2265 dwc2_hsotg_enqueue_setup(hsotg);
2266 return;
2269 if (using_desc_dma(hsotg))
2270 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2272 if (using_dma(hsotg)) {
2273 unsigned int size_done;
2276 * Calculate the size of the transfer by checking how much
2277 * is left in the endpoint size register and then working it
2278 * out from the amount we loaded for the transfer.
2280 * We need to do this as DMA pointers are always 32bit aligned
2281 * so may overshoot/undershoot the transfer.
2284 size_done = hs_ep->size_loaded - size_left;
2285 size_done += hs_ep->last_load;
2287 req->actual = size_done;
2290 /* if there is more request to do, schedule new transfer */
2291 if (req->actual < req->length && size_left == 0) {
2292 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2293 return;
2296 if (req->actual < req->length && req->short_not_ok) {
2297 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2298 __func__, req->actual, req->length);
2301 * todo - what should we return here? there's no one else
2302 * even bothering to check the status.
2306 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2307 if (!using_desc_dma(hsotg) && epnum == 0 &&
2308 hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2309 /* Move to STATUS IN */
2310 dwc2_hsotg_ep0_zlp(hsotg, true);
2311 return;
2315 * Slave mode OUT transfers do not go through XferComplete so
2316 * adjust the ISOC parity here.
2318 if (!using_dma(hsotg)) {
2319 if (hs_ep->isochronous && hs_ep->interval == 1)
2320 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2321 else if (hs_ep->isochronous && hs_ep->interval > 1)
2322 dwc2_gadget_incr_frame_num(hs_ep);
2325 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2329 * dwc2_hsotg_handle_rx - RX FIFO has data
2330 * @hsotg: The device instance
2332 * The IRQ handler has detected that the RX FIFO has some data in it
2333 * that requires processing, so find out what is in there and do the
2334 * appropriate read.
2336 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2337 * chunks, so if you have x packets received on an endpoint you'll get x
2338 * FIFO events delivered, each with a packet's worth of data in it.
2340 * When using DMA, we should not be processing events from the RXFIFO
2341 * as the actual data should be sent to the memory directly and we turn
2342 * on the completion interrupts to get notifications of transfer completion.
2344 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2346 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2347 u32 epnum, status, size;
2349 WARN_ON(using_dma(hsotg));
2351 epnum = grxstsr & GRXSTS_EPNUM_MASK;
2352 status = grxstsr & GRXSTS_PKTSTS_MASK;
2354 size = grxstsr & GRXSTS_BYTECNT_MASK;
2355 size >>= GRXSTS_BYTECNT_SHIFT;
2357 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2358 __func__, grxstsr, size, epnum);
2360 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2361 case GRXSTS_PKTSTS_GLOBALOUTNAK:
2362 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2363 break;
2365 case GRXSTS_PKTSTS_OUTDONE:
2366 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2367 dwc2_hsotg_read_frameno(hsotg));
2369 if (!using_dma(hsotg))
2370 dwc2_hsotg_handle_outdone(hsotg, epnum);
2371 break;
2373 case GRXSTS_PKTSTS_SETUPDONE:
2374 dev_dbg(hsotg->dev,
2375 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2376 dwc2_hsotg_read_frameno(hsotg),
2377 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2379 * Call dwc2_hsotg_handle_outdone here if it was not called from
2380 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2381 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2383 if (hsotg->ep0_state == DWC2_EP0_SETUP)
2384 dwc2_hsotg_handle_outdone(hsotg, epnum);
2385 break;
2387 case GRXSTS_PKTSTS_OUTRX:
2388 dwc2_hsotg_rx_data(hsotg, epnum, size);
2389 break;
2391 case GRXSTS_PKTSTS_SETUPRX:
2392 dev_dbg(hsotg->dev,
2393 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2394 dwc2_hsotg_read_frameno(hsotg),
2395 dwc2_readl(hsotg->regs + DOEPCTL(0)));
2397 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2399 dwc2_hsotg_rx_data(hsotg, epnum, size);
2400 break;
2402 default:
2403 dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2404 __func__, grxstsr);
2406 dwc2_hsotg_dump(hsotg);
2407 break;
2412 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2413 * @mps: The maximum packet size in bytes.
2415 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2417 switch (mps) {
2418 case 64:
2419 return D0EPCTL_MPS_64;
2420 case 32:
2421 return D0EPCTL_MPS_32;
2422 case 16:
2423 return D0EPCTL_MPS_16;
2424 case 8:
2425 return D0EPCTL_MPS_8;
2428 /* bad max packet size, warn and return invalid result */
2429 WARN_ON(1);
2430 return (u32)-1;
2434 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2435 * @hsotg: The driver state.
2436 * @ep: The index number of the endpoint
2437 * @mps: The maximum packet size in bytes
2438 * @mc: The multicount value
2440 * Configure the maximum packet size for the given endpoint, updating
2441 * the hardware control registers to reflect this.
2443 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2444 unsigned int ep, unsigned int mps,
2445 unsigned int mc, unsigned int dir_in)
2447 struct dwc2_hsotg_ep *hs_ep;
2448 void __iomem *regs = hsotg->regs;
2449 u32 reg;
2451 hs_ep = index_to_ep(hsotg, ep, dir_in);
2452 if (!hs_ep)
2453 return;
2455 if (ep == 0) {
2456 u32 mps_bytes = mps;
2458 /* EP0 is a special case */
2459 mps = dwc2_hsotg_ep0_mps(mps_bytes);
2460 if (mps > 3)
2461 goto bad_mps;
2462 hs_ep->ep.maxpacket = mps_bytes;
2463 hs_ep->mc = 1;
2464 } else {
2465 if (mps > 1024)
2466 goto bad_mps;
2467 hs_ep->mc = mc;
2468 if (mc > 3)
2469 goto bad_mps;
2470 hs_ep->ep.maxpacket = mps;
2473 if (dir_in) {
2474 reg = dwc2_readl(regs + DIEPCTL(ep));
2475 reg &= ~DXEPCTL_MPS_MASK;
2476 reg |= mps;
2477 dwc2_writel(reg, regs + DIEPCTL(ep));
2478 } else {
2479 reg = dwc2_readl(regs + DOEPCTL(ep));
2480 reg &= ~DXEPCTL_MPS_MASK;
2481 reg |= mps;
2482 dwc2_writel(reg, regs + DOEPCTL(ep));
2485 return;
2487 bad_mps:
2488 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2492 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2493 * @hsotg: The driver state
2494 * @idx: The index for the endpoint (0..15)
2496 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2498 int timeout;
2499 int val;
2501 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2502 hsotg->regs + GRSTCTL);
2504 /* wait until the fifo is flushed */
2505 timeout = 100;
2507 while (1) {
2508 val = dwc2_readl(hsotg->regs + GRSTCTL);
2510 if ((val & (GRSTCTL_TXFFLSH)) == 0)
2511 break;
2513 if (--timeout == 0) {
2514 dev_err(hsotg->dev,
2515 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2516 __func__, val);
2517 break;
2520 udelay(1);
2525 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2526 * @hsotg: The driver state
2527 * @hs_ep: The driver endpoint to check.
2529 * Check to see if there is a request that has data to send, and if so
2530 * make an attempt to write data into the FIFO.
2532 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2533 struct dwc2_hsotg_ep *hs_ep)
2535 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2537 if (!hs_ep->dir_in || !hs_req) {
2539 * if request is not enqueued, we disable interrupts
2540 * for endpoints, excepting ep0
2542 if (hs_ep->index != 0)
2543 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2544 hs_ep->dir_in, 0);
2545 return 0;
2548 if (hs_req->req.actual < hs_req->req.length) {
2549 dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2550 hs_ep->index);
2551 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2554 return 0;
2558 * dwc2_hsotg_complete_in - complete IN transfer
2559 * @hsotg: The device state.
2560 * @hs_ep: The endpoint that has just completed.
2562 * An IN transfer has been completed, update the transfer's state and then
2563 * call the relevant completion routines.
2565 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2566 struct dwc2_hsotg_ep *hs_ep)
2568 struct dwc2_hsotg_req *hs_req = hs_ep->req;
2569 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2570 int size_left, size_done;
2572 if (!hs_req) {
2573 dev_dbg(hsotg->dev, "XferCompl but no req\n");
2574 return;
2577 /* Finish ZLP handling for IN EP0 transactions */
2578 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2579 dev_dbg(hsotg->dev, "zlp packet sent\n");
2582 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2583 * changed to IN. Change back to complete OUT transfer request
2585 hs_ep->dir_in = 0;
2587 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2588 if (hsotg->test_mode) {
2589 int ret;
2591 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2592 if (ret < 0) {
2593 dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2594 hsotg->test_mode);
2595 dwc2_hsotg_stall_ep0(hsotg);
2596 return;
2599 dwc2_hsotg_enqueue_setup(hsotg);
2600 return;
2604 * Calculate the size of the transfer by checking how much is left
2605 * in the endpoint size register and then working it out from
2606 * the amount we loaded for the transfer.
2608 * We do this even for DMA, as the transfer may have incremented
2609 * past the end of the buffer (DMA transfers are always 32bit
2610 * aligned).
2612 if (using_desc_dma(hsotg)) {
2613 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2614 if (size_left < 0)
2615 dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2616 size_left);
2617 } else {
2618 size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2621 size_done = hs_ep->size_loaded - size_left;
2622 size_done += hs_ep->last_load;
2624 if (hs_req->req.actual != size_done)
2625 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2626 __func__, hs_req->req.actual, size_done);
2628 hs_req->req.actual = size_done;
2629 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2630 hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2632 if (!size_left && hs_req->req.actual < hs_req->req.length) {
2633 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2634 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2635 return;
2638 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2639 if (hs_ep->send_zlp) {
2640 dwc2_hsotg_program_zlp(hsotg, hs_ep);
2641 hs_ep->send_zlp = 0;
2642 /* transfer will be completed on next complete interrupt */
2643 return;
2646 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2647 /* Move to STATUS OUT */
2648 dwc2_hsotg_ep0_zlp(hsotg, false);
2649 return;
2652 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2656 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2657 * @hsotg: The device state.
2658 * @idx: Index of ep.
2659 * @dir_in: Endpoint direction 1-in 0-out.
2661 * Reads for endpoint with given index and direction, by masking
2662 * epint_reg with coresponding mask.
2664 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2665 unsigned int idx, int dir_in)
2667 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2668 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2669 u32 ints;
2670 u32 mask;
2671 u32 diepempmsk;
2673 mask = dwc2_readl(hsotg->regs + epmsk_reg);
2674 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2675 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2676 mask |= DXEPINT_SETUP_RCVD;
2678 ints = dwc2_readl(hsotg->regs + epint_reg);
2679 ints &= mask;
2680 return ints;
2684 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2685 * @hs_ep: The endpoint on which interrupt is asserted.
2687 * This interrupt indicates that the endpoint has been disabled per the
2688 * application's request.
2690 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2691 * in case of ISOC completes current request.
2693 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2694 * request starts it.
2696 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2698 struct dwc2_hsotg *hsotg = hs_ep->parent;
2699 struct dwc2_hsotg_req *hs_req;
2700 unsigned char idx = hs_ep->index;
2701 int dir_in = hs_ep->dir_in;
2702 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2703 int dctl = dwc2_readl(hsotg->regs + DCTL);
2705 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2707 if (dir_in) {
2708 int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2710 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2712 if (hs_ep->isochronous) {
2713 dwc2_hsotg_complete_in(hsotg, hs_ep);
2714 return;
2717 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2718 int dctl = dwc2_readl(hsotg->regs + DCTL);
2720 dctl |= DCTL_CGNPINNAK;
2721 dwc2_writel(dctl, hsotg->regs + DCTL);
2723 return;
2726 if (dctl & DCTL_GOUTNAKSTS) {
2727 dctl |= DCTL_CGOUTNAK;
2728 dwc2_writel(dctl, hsotg->regs + DCTL);
2731 if (!hs_ep->isochronous)
2732 return;
2734 if (list_empty(&hs_ep->queue)) {
2735 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2736 __func__, hs_ep);
2737 return;
2740 do {
2741 hs_req = get_ep_head(hs_ep);
2742 if (hs_req)
2743 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2744 -ENODATA);
2745 dwc2_gadget_incr_frame_num(hs_ep);
2746 } while (dwc2_gadget_target_frame_elapsed(hs_ep));
2748 dwc2_gadget_start_next_request(hs_ep);
2752 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2753 * @hs_ep: The endpoint on which interrupt is asserted.
2755 * This is starting point for ISOC-OUT transfer, synchronization done with
2756 * first out token received from host while corresponding EP is disabled.
2758 * Device does not know initial frame in which out token will come. For this
2759 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2760 * getting this interrupt SW starts calculation for next transfer frame.
2762 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2764 struct dwc2_hsotg *hsotg = ep->parent;
2765 int dir_in = ep->dir_in;
2766 u32 doepmsk;
2767 u32 tmp;
2769 if (dir_in || !ep->isochronous)
2770 return;
2773 * Store frame in which irq was asserted here, as
2774 * it can change while completing request below.
2776 tmp = dwc2_hsotg_read_frameno(hsotg);
2778 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2780 if (using_desc_dma(hsotg)) {
2781 if (ep->target_frame == TARGET_FRAME_INITIAL) {
2782 /* Start first ISO Out */
2783 ep->target_frame = tmp;
2784 dwc2_gadget_start_isoc_ddma(ep);
2786 return;
2789 if (ep->interval > 1 &&
2790 ep->target_frame == TARGET_FRAME_INITIAL) {
2791 u32 dsts;
2792 u32 ctrl;
2794 dsts = dwc2_readl(hsotg->regs + DSTS);
2795 ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2796 dwc2_gadget_incr_frame_num(ep);
2798 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2799 if (ep->target_frame & 0x1)
2800 ctrl |= DXEPCTL_SETODDFR;
2801 else
2802 ctrl |= DXEPCTL_SETEVENFR;
2804 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2807 dwc2_gadget_start_next_request(ep);
2808 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2809 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2810 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2814 * dwc2_gadget_handle_nak - handle NAK interrupt
2815 * @hs_ep: The endpoint on which interrupt is asserted.
2817 * This is starting point for ISOC-IN transfer, synchronization done with
2818 * first IN token received from host while corresponding EP is disabled.
2820 * Device does not know when first one token will arrive from host. On first
2821 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2822 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2823 * sent in response to that as there was no data in FIFO. SW is basing on this
2824 * interrupt to obtain frame in which token has come and then based on the
2825 * interval calculates next frame for transfer.
2827 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2829 struct dwc2_hsotg *hsotg = hs_ep->parent;
2830 int dir_in = hs_ep->dir_in;
2832 if (!dir_in || !hs_ep->isochronous)
2833 return;
2835 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2836 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2838 if (using_desc_dma(hsotg)) {
2839 dwc2_gadget_start_isoc_ddma(hs_ep);
2840 return;
2843 if (hs_ep->interval > 1) {
2844 u32 ctrl = dwc2_readl(hsotg->regs +
2845 DIEPCTL(hs_ep->index));
2846 if (hs_ep->target_frame & 0x1)
2847 ctrl |= DXEPCTL_SETODDFR;
2848 else
2849 ctrl |= DXEPCTL_SETEVENFR;
2851 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2854 dwc2_hsotg_complete_request(hsotg, hs_ep,
2855 get_ep_head(hs_ep), 0);
2858 dwc2_gadget_incr_frame_num(hs_ep);
2862 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2863 * @hsotg: The driver state
2864 * @idx: The index for the endpoint (0..15)
2865 * @dir_in: Set if this is an IN endpoint
2867 * Process and clear any interrupt pending for an individual endpoint
2869 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2870 int dir_in)
2872 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2873 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2874 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2875 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2876 u32 ints;
2877 u32 ctrl;
2879 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2880 ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2882 /* Clear endpoint interrupts */
2883 dwc2_writel(ints, hsotg->regs + epint_reg);
2885 if (!hs_ep) {
2886 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2887 __func__, idx, dir_in ? "in" : "out");
2888 return;
2891 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2892 __func__, idx, dir_in ? "in" : "out", ints);
2894 /* Don't process XferCompl interrupt if it is a setup packet */
2895 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2896 ints &= ~DXEPINT_XFERCOMPL;
2899 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2900 * stage and xfercomplete was generated without SETUP phase done
2901 * interrupt. SW should parse received setup packet only after host's
2902 * exit from setup phase of control transfer.
2904 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2905 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2906 ints &= ~DXEPINT_XFERCOMPL;
2908 if (ints & DXEPINT_XFERCOMPL) {
2909 dev_dbg(hsotg->dev,
2910 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2911 __func__, dwc2_readl(hsotg->regs + epctl_reg),
2912 dwc2_readl(hsotg->regs + epsiz_reg));
2914 /* In DDMA handle isochronous requests separately */
2915 if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2916 dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2917 /* Try to start next isoc request */
2918 dwc2_gadget_start_next_isoc_ddma(hs_ep);
2919 } else if (dir_in) {
2921 * We get OutDone from the FIFO, so we only
2922 * need to look at completing IN requests here
2923 * if operating slave mode
2925 if (hs_ep->isochronous && hs_ep->interval > 1)
2926 dwc2_gadget_incr_frame_num(hs_ep);
2928 dwc2_hsotg_complete_in(hsotg, hs_ep);
2929 if (ints & DXEPINT_NAKINTRPT)
2930 ints &= ~DXEPINT_NAKINTRPT;
2932 if (idx == 0 && !hs_ep->req)
2933 dwc2_hsotg_enqueue_setup(hsotg);
2934 } else if (using_dma(hsotg)) {
2936 * We're using DMA, we need to fire an OutDone here
2937 * as we ignore the RXFIFO.
2939 if (hs_ep->isochronous && hs_ep->interval > 1)
2940 dwc2_gadget_incr_frame_num(hs_ep);
2942 dwc2_hsotg_handle_outdone(hsotg, idx);
2946 if (ints & DXEPINT_EPDISBLD)
2947 dwc2_gadget_handle_ep_disabled(hs_ep);
2949 if (ints & DXEPINT_OUTTKNEPDIS)
2950 dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2952 if (ints & DXEPINT_NAKINTRPT)
2953 dwc2_gadget_handle_nak(hs_ep);
2955 if (ints & DXEPINT_AHBERR)
2956 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2958 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */
2959 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
2961 if (using_dma(hsotg) && idx == 0) {
2963 * this is the notification we've received a
2964 * setup packet. In non-DMA mode we'd get this
2965 * from the RXFIFO, instead we need to process
2966 * the setup here.
2969 if (dir_in)
2970 WARN_ON_ONCE(1);
2971 else
2972 dwc2_hsotg_handle_outdone(hsotg, 0);
2976 if (ints & DXEPINT_STSPHSERCVD) {
2977 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2979 /* Safety check EP0 state when STSPHSERCVD asserted */
2980 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2981 /* Move to STATUS IN for DDMA */
2982 if (using_desc_dma(hsotg))
2983 dwc2_hsotg_ep0_zlp(hsotg, true);
2988 if (ints & DXEPINT_BACK2BACKSETUP)
2989 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2991 if (ints & DXEPINT_BNAINTR) {
2992 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2995 * Try to start next isoc request, if any.
2996 * Sometimes the endpoint remains enabled after BNA interrupt
2997 * assertion, which is not expected, hence we can enter here
2998 * couple of times.
3000 if (hs_ep->isochronous)
3001 dwc2_gadget_start_next_isoc_ddma(hs_ep);
3004 if (dir_in && !hs_ep->isochronous) {
3005 /* not sure if this is important, but we'll clear it anyway */
3006 if (ints & DXEPINT_INTKNTXFEMP) {
3007 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3008 __func__, idx);
3011 /* this probably means something bad is happening */
3012 if (ints & DXEPINT_INTKNEPMIS) {
3013 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3014 __func__, idx);
3017 /* FIFO has space or is empty (see GAHBCFG) */
3018 if (hsotg->dedicated_fifos &&
3019 ints & DXEPINT_TXFEMP) {
3020 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3021 __func__, idx);
3022 if (!using_dma(hsotg))
3023 dwc2_hsotg_trytx(hsotg, hs_ep);
3029 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3030 * @hsotg: The device state.
3032 * Handle updating the device settings after the enumeration phase has
3033 * been completed.
3035 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3037 u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3038 int ep0_mps = 0, ep_mps = 8;
3041 * This should signal the finish of the enumeration phase
3042 * of the USB handshaking, so we should now know what rate
3043 * we connected at.
3046 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3049 * note, since we're limited by the size of transfer on EP0, and
3050 * it seems IN transfers must be a even number of packets we do
3051 * not advertise a 64byte MPS on EP0.
3054 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3055 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3056 case DSTS_ENUMSPD_FS:
3057 case DSTS_ENUMSPD_FS48:
3058 hsotg->gadget.speed = USB_SPEED_FULL;
3059 ep0_mps = EP0_MPS_LIMIT;
3060 ep_mps = 1023;
3061 break;
3063 case DSTS_ENUMSPD_HS:
3064 hsotg->gadget.speed = USB_SPEED_HIGH;
3065 ep0_mps = EP0_MPS_LIMIT;
3066 ep_mps = 1024;
3067 break;
3069 case DSTS_ENUMSPD_LS:
3070 hsotg->gadget.speed = USB_SPEED_LOW;
3071 ep0_mps = 8;
3072 ep_mps = 8;
3074 * note, we don't actually support LS in this driver at the
3075 * moment, and the documentation seems to imply that it isn't
3076 * supported by the PHYs on some of the devices.
3078 break;
3080 dev_info(hsotg->dev, "new device is %s\n",
3081 usb_speed_string(hsotg->gadget.speed));
3084 * we should now know the maximum packet size for an
3085 * endpoint, so set the endpoints to a default value.
3088 if (ep0_mps) {
3089 int i;
3090 /* Initialize ep0 for both in and out directions */
3091 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3092 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3093 for (i = 1; i < hsotg->num_of_eps; i++) {
3094 if (hsotg->eps_in[i])
3095 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3096 0, 1);
3097 if (hsotg->eps_out[i])
3098 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3099 0, 0);
3103 /* ensure after enumeration our EP0 is active */
3105 dwc2_hsotg_enqueue_setup(hsotg);
3107 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3108 dwc2_readl(hsotg->regs + DIEPCTL0),
3109 dwc2_readl(hsotg->regs + DOEPCTL0));
3113 * kill_all_requests - remove all requests from the endpoint's queue
3114 * @hsotg: The device state.
3115 * @ep: The endpoint the requests may be on.
3116 * @result: The result code to use.
3118 * Go through the requests on the given endpoint and mark them
3119 * completed with the given result code.
3121 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3122 struct dwc2_hsotg_ep *ep,
3123 int result)
3125 struct dwc2_hsotg_req *req, *treq;
3126 unsigned int size;
3128 ep->req = NULL;
3130 list_for_each_entry_safe(req, treq, &ep->queue, queue)
3131 dwc2_hsotg_complete_request(hsotg, ep, req,
3132 result);
3134 if (!hsotg->dedicated_fifos)
3135 return;
3136 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3137 if (size < ep->fifo_size)
3138 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3142 * dwc2_hsotg_disconnect - disconnect service
3143 * @hsotg: The device state.
3145 * The device has been disconnected. Remove all current
3146 * transactions and signal the gadget driver that this
3147 * has happened.
3149 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3151 unsigned int ep;
3153 if (!hsotg->connected)
3154 return;
3156 hsotg->connected = 0;
3157 hsotg->test_mode = 0;
3159 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3160 if (hsotg->eps_in[ep])
3161 kill_all_requests(hsotg, hsotg->eps_in[ep],
3162 -ESHUTDOWN);
3163 if (hsotg->eps_out[ep])
3164 kill_all_requests(hsotg, hsotg->eps_out[ep],
3165 -ESHUTDOWN);
3168 call_gadget(hsotg, disconnect);
3169 hsotg->lx_state = DWC2_L3;
3171 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3175 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3176 * @hsotg: The device state:
3177 * @periodic: True if this is a periodic FIFO interrupt
3179 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3181 struct dwc2_hsotg_ep *ep;
3182 int epno, ret;
3184 /* look through for any more data to transmit */
3185 for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3186 ep = index_to_ep(hsotg, epno, 1);
3188 if (!ep)
3189 continue;
3191 if (!ep->dir_in)
3192 continue;
3194 if ((periodic && !ep->periodic) ||
3195 (!periodic && ep->periodic))
3196 continue;
3198 ret = dwc2_hsotg_trytx(hsotg, ep);
3199 if (ret < 0)
3200 break;
3204 /* IRQ flags which will trigger a retry around the IRQ loop */
3205 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3206 GINTSTS_PTXFEMP | \
3207 GINTSTS_RXFLVL)
3210 * dwc2_hsotg_core_init - issue softreset to the core
3211 * @hsotg: The device state
3213 * Issue a soft reset to the core, and await the core finishing it.
3215 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3216 bool is_usb_reset)
3218 u32 intmsk;
3219 u32 val;
3220 u32 usbcfg;
3221 u32 dcfg = 0;
3223 /* Kill any ep0 requests as controller will be reinitialized */
3224 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3226 if (!is_usb_reset)
3227 if (dwc2_core_reset(hsotg, true))
3228 return;
3231 * we must now enable ep0 ready for host detection and then
3232 * set configuration.
3235 /* keep other bits untouched (so e.g. forced modes are not lost) */
3236 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3237 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3238 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3240 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3241 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3242 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3243 /* FS/LS Dedicated Transceiver Interface */
3244 usbcfg |= GUSBCFG_PHYSEL;
3245 } else {
3246 /* set the PLL on, remove the HNP/SRP and set the PHY */
3247 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3248 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3249 (val << GUSBCFG_USBTRDTIM_SHIFT);
3251 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3253 dwc2_hsotg_init_fifo(hsotg);
3255 if (!is_usb_reset)
3256 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3258 dcfg |= DCFG_EPMISCNT(1);
3260 switch (hsotg->params.speed) {
3261 case DWC2_SPEED_PARAM_LOW:
3262 dcfg |= DCFG_DEVSPD_LS;
3263 break;
3264 case DWC2_SPEED_PARAM_FULL:
3265 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3266 dcfg |= DCFG_DEVSPD_FS48;
3267 else
3268 dcfg |= DCFG_DEVSPD_FS;
3269 break;
3270 default:
3271 dcfg |= DCFG_DEVSPD_HS;
3274 dwc2_writel(dcfg, hsotg->regs + DCFG);
3276 /* Clear any pending OTG interrupts */
3277 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3279 /* Clear any pending interrupts */
3280 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3281 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3282 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3283 GINTSTS_USBRST | GINTSTS_RESETDET |
3284 GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3285 GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3287 if (!using_desc_dma(hsotg))
3288 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3290 if (!hsotg->params.external_id_pin_ctl)
3291 intmsk |= GINTSTS_CONIDSTSCHNG;
3293 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3295 if (using_dma(hsotg)) {
3296 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3297 (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
3298 hsotg->regs + GAHBCFG);
3300 /* Set DDMA mode support in the core if needed */
3301 if (using_desc_dma(hsotg))
3302 __orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3304 } else {
3305 dwc2_writel(((hsotg->dedicated_fifos) ?
3306 (GAHBCFG_NP_TXF_EMP_LVL |
3307 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3308 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3312 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3313 * when we have no data to transfer. Otherwise we get being flooded by
3314 * interrupts.
3317 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3318 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3319 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3320 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3321 hsotg->regs + DIEPMSK);
3324 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3325 * DMA mode we may need this and StsPhseRcvd.
3327 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3328 DOEPMSK_STSPHSERCVDMSK) : 0) |
3329 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3330 DOEPMSK_SETUPMSK,
3331 hsotg->regs + DOEPMSK);
3333 /* Enable BNA interrupt for DDMA */
3334 if (using_desc_dma(hsotg))
3335 __orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3337 dwc2_writel(0, hsotg->regs + DAINTMSK);
3339 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3340 dwc2_readl(hsotg->regs + DIEPCTL0),
3341 dwc2_readl(hsotg->regs + DOEPCTL0));
3343 /* enable in and out endpoint interrupts */
3344 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3347 * Enable the RXFIFO when in slave mode, as this is how we collect
3348 * the data. In DMA mode, we get events from the FIFO but also
3349 * things we cannot process, so do not use it.
3351 if (!using_dma(hsotg))
3352 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3354 /* Enable interrupts for EP0 in and out */
3355 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3356 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3358 if (!is_usb_reset) {
3359 __orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3360 udelay(10); /* see openiboot */
3361 __bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3364 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3367 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3368 * writing to the EPCTL register..
3371 /* set to read 1 8byte packet */
3372 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3373 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3375 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3376 DXEPCTL_CNAK | DXEPCTL_EPENA |
3377 DXEPCTL_USBACTEP,
3378 hsotg->regs + DOEPCTL0);
3380 /* enable, but don't activate EP0in */
3381 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3382 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3384 /* clear global NAKs */
3385 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3386 if (!is_usb_reset)
3387 val |= DCTL_SFTDISCON;
3388 __orr32(hsotg->regs + DCTL, val);
3390 /* must be at-least 3ms to allow bus to see disconnect */
3391 mdelay(3);
3393 hsotg->lx_state = DWC2_L0;
3395 dwc2_hsotg_enqueue_setup(hsotg);
3397 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3398 dwc2_readl(hsotg->regs + DIEPCTL0),
3399 dwc2_readl(hsotg->regs + DOEPCTL0));
3402 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3404 /* set the soft-disconnect bit */
3405 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3408 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3410 /* remove the soft-disconnect and let's go */
3411 __bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3415 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3416 * @hsotg: The device state:
3418 * This interrupt indicates one of the following conditions occurred while
3419 * transmitting an ISOC transaction.
3420 * - Corrupted IN Token for ISOC EP.
3421 * - Packet not complete in FIFO.
3423 * The following actions will be taken:
3424 * - Determine the EP
3425 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3427 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3429 struct dwc2_hsotg_ep *hs_ep;
3430 u32 epctrl;
3431 u32 idx;
3433 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3435 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3436 hs_ep = hsotg->eps_in[idx];
3437 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3438 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3439 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3440 epctrl |= DXEPCTL_SNAK;
3441 epctrl |= DXEPCTL_EPDIS;
3442 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3446 /* Clear interrupt */
3447 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3451 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3452 * @hsotg: The device state:
3454 * This interrupt indicates one of the following conditions occurred while
3455 * transmitting an ISOC transaction.
3456 * - Corrupted OUT Token for ISOC EP.
3457 * - Packet not complete in FIFO.
3459 * The following actions will be taken:
3460 * - Determine the EP
3461 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3463 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3465 u32 gintsts;
3466 u32 gintmsk;
3467 u32 epctrl;
3468 struct dwc2_hsotg_ep *hs_ep;
3469 int idx;
3471 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3473 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3474 hs_ep = hsotg->eps_out[idx];
3475 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3476 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
3477 dwc2_gadget_target_frame_elapsed(hs_ep)) {
3478 /* Unmask GOUTNAKEFF interrupt */
3479 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3480 gintmsk |= GINTSTS_GOUTNAKEFF;
3481 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3483 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3484 if (!(gintsts & GINTSTS_GOUTNAKEFF))
3485 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3489 /* Clear interrupt */
3490 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3494 * dwc2_hsotg_irq - handle device interrupt
3495 * @irq: The IRQ number triggered
3496 * @pw: The pw value when registered the handler.
3498 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3500 struct dwc2_hsotg *hsotg = pw;
3501 int retry_count = 8;
3502 u32 gintsts;
3503 u32 gintmsk;
3505 if (!dwc2_is_device_mode(hsotg))
3506 return IRQ_NONE;
3508 spin_lock(&hsotg->lock);
3509 irq_retry:
3510 gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3511 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3513 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3514 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3516 gintsts &= gintmsk;
3518 if (gintsts & GINTSTS_RESETDET) {
3519 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3521 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3523 /* This event must be used only if controller is suspended */
3524 if (hsotg->lx_state == DWC2_L2) {
3525 dwc2_exit_hibernation(hsotg, true);
3526 hsotg->lx_state = DWC2_L0;
3530 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3531 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3532 u32 connected = hsotg->connected;
3534 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3535 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3536 dwc2_readl(hsotg->regs + GNPTXSTS));
3538 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3540 /* Report disconnection if it is not already done. */
3541 dwc2_hsotg_disconnect(hsotg);
3543 /* Reset device address to zero */
3544 __bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3546 if (usb_status & GOTGCTL_BSESVLD && connected)
3547 dwc2_hsotg_core_init_disconnected(hsotg, true);
3550 if (gintsts & GINTSTS_ENUMDONE) {
3551 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3553 dwc2_hsotg_irq_enumdone(hsotg);
3556 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3557 u32 daint = dwc2_readl(hsotg->regs + DAINT);
3558 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3559 u32 daint_out, daint_in;
3560 int ep;
3562 daint &= daintmsk;
3563 daint_out = daint >> DAINT_OUTEP_SHIFT;
3564 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3566 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3568 for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3569 ep++, daint_out >>= 1) {
3570 if (daint_out & 1)
3571 dwc2_hsotg_epint(hsotg, ep, 0);
3574 for (ep = 0; ep < hsotg->num_of_eps && daint_in;
3575 ep++, daint_in >>= 1) {
3576 if (daint_in & 1)
3577 dwc2_hsotg_epint(hsotg, ep, 1);
3581 /* check both FIFOs */
3583 if (gintsts & GINTSTS_NPTXFEMP) {
3584 dev_dbg(hsotg->dev, "NPTxFEmp\n");
3587 * Disable the interrupt to stop it happening again
3588 * unless one of these endpoint routines decides that
3589 * it needs re-enabling
3592 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3593 dwc2_hsotg_irq_fifoempty(hsotg, false);
3596 if (gintsts & GINTSTS_PTXFEMP) {
3597 dev_dbg(hsotg->dev, "PTxFEmp\n");
3599 /* See note in GINTSTS_NPTxFEmp */
3601 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3602 dwc2_hsotg_irq_fifoempty(hsotg, true);
3605 if (gintsts & GINTSTS_RXFLVL) {
3607 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3608 * we need to retry dwc2_hsotg_handle_rx if this is still
3609 * set.
3612 dwc2_hsotg_handle_rx(hsotg);
3615 if (gintsts & GINTSTS_ERLYSUSP) {
3616 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3617 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3621 * these next two seem to crop-up occasionally causing the core
3622 * to shutdown the USB transfer, so try clearing them and logging
3623 * the occurrence.
3626 if (gintsts & GINTSTS_GOUTNAKEFF) {
3627 u8 idx;
3628 u32 epctrl;
3629 u32 gintmsk;
3630 struct dwc2_hsotg_ep *hs_ep;
3632 /* Mask this interrupt */
3633 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3634 gintmsk &= ~GINTSTS_GOUTNAKEFF;
3635 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3637 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3638 for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3639 hs_ep = hsotg->eps_out[idx];
3640 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3642 if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3643 epctrl |= DXEPCTL_SNAK;
3644 epctrl |= DXEPCTL_EPDIS;
3645 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3649 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3652 if (gintsts & GINTSTS_GINNAKEFF) {
3653 dev_info(hsotg->dev, "GINNakEff triggered\n");
3655 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3657 dwc2_hsotg_dump(hsotg);
3660 if (gintsts & GINTSTS_INCOMPL_SOIN)
3661 dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3663 if (gintsts & GINTSTS_INCOMPL_SOOUT)
3664 dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3667 * if we've had fifo events, we should try and go around the
3668 * loop again to see if there's any point in returning yet.
3671 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3672 goto irq_retry;
3674 spin_unlock(&hsotg->lock);
3676 return IRQ_HANDLED;
3679 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
3680 u32 bit, u32 timeout)
3682 u32 i;
3684 for (i = 0; i < timeout; i++) {
3685 if (dwc2_readl(hs_otg->regs + reg) & bit)
3686 return 0;
3687 udelay(1);
3690 return -ETIMEDOUT;
3693 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3694 struct dwc2_hsotg_ep *hs_ep)
3696 u32 epctrl_reg;
3697 u32 epint_reg;
3699 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3700 DOEPCTL(hs_ep->index);
3701 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3702 DOEPINT(hs_ep->index);
3704 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3705 hs_ep->name);
3707 if (hs_ep->dir_in) {
3708 if (hsotg->dedicated_fifos || hs_ep->periodic) {
3709 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3710 /* Wait for Nak effect */
3711 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3712 DXEPINT_INEPNAKEFF, 100))
3713 dev_warn(hsotg->dev,
3714 "%s: timeout DIEPINT.NAKEFF\n",
3715 __func__);
3716 } else {
3717 __orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3718 /* Wait for Nak effect */
3719 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3720 GINTSTS_GINNAKEFF, 100))
3721 dev_warn(hsotg->dev,
3722 "%s: timeout GINTSTS.GINNAKEFF\n",
3723 __func__);
3725 } else {
3726 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3727 __orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3729 /* Wait for global nak to take effect */
3730 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3731 GINTSTS_GOUTNAKEFF, 100))
3732 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3733 __func__);
3736 /* Disable ep */
3737 __orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3739 /* Wait for ep to be disabled */
3740 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3741 dev_warn(hsotg->dev,
3742 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3744 /* Clear EPDISBLD interrupt */
3745 __orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3747 if (hs_ep->dir_in) {
3748 unsigned short fifo_index;
3750 if (hsotg->dedicated_fifos || hs_ep->periodic)
3751 fifo_index = hs_ep->fifo_index;
3752 else
3753 fifo_index = 0;
3755 /* Flush TX FIFO */
3756 dwc2_flush_tx_fifo(hsotg, fifo_index);
3758 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3759 if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3760 __orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3762 } else {
3763 /* Remove global NAKs */
3764 __orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3769 * dwc2_hsotg_ep_enable - enable the given endpoint
3770 * @ep: The USB endpint to configure
3771 * @desc: The USB endpoint descriptor to configure with.
3773 * This is called from the USB gadget code's usb_ep_enable().
3775 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3776 const struct usb_endpoint_descriptor *desc)
3778 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3779 struct dwc2_hsotg *hsotg = hs_ep->parent;
3780 unsigned long flags;
3781 unsigned int index = hs_ep->index;
3782 u32 epctrl_reg;
3783 u32 epctrl;
3784 u32 mps;
3785 u32 mc;
3786 u32 mask;
3787 unsigned int dir_in;
3788 unsigned int i, val, size;
3789 int ret = 0;
3791 dev_dbg(hsotg->dev,
3792 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3793 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3794 desc->wMaxPacketSize, desc->bInterval);
3796 /* not to be called for EP0 */
3797 if (index == 0) {
3798 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3799 return -EINVAL;
3802 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3803 if (dir_in != hs_ep->dir_in) {
3804 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3805 return -EINVAL;
3808 mps = usb_endpoint_maxp(desc);
3809 mc = usb_endpoint_maxp_mult(desc);
3811 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3813 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3814 epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3816 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3817 __func__, epctrl, epctrl_reg);
3819 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3820 if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3821 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3822 MAX_DMA_DESC_NUM_GENERIC *
3823 sizeof(struct dwc2_dma_desc),
3824 &hs_ep->desc_list_dma, GFP_ATOMIC);
3825 if (!hs_ep->desc_list) {
3826 ret = -ENOMEM;
3827 goto error2;
3831 spin_lock_irqsave(&hsotg->lock, flags);
3833 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3834 epctrl |= DXEPCTL_MPS(mps);
3837 * mark the endpoint as active, otherwise the core may ignore
3838 * transactions entirely for this endpoint
3840 epctrl |= DXEPCTL_USBACTEP;
3842 /* update the endpoint state */
3843 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3845 /* default, set to non-periodic */
3846 hs_ep->isochronous = 0;
3847 hs_ep->periodic = 0;
3848 hs_ep->halted = 0;
3849 hs_ep->interval = desc->bInterval;
3851 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3852 case USB_ENDPOINT_XFER_ISOC:
3853 epctrl |= DXEPCTL_EPTYPE_ISO;
3854 epctrl |= DXEPCTL_SETEVENFR;
3855 hs_ep->isochronous = 1;
3856 hs_ep->interval = 1 << (desc->bInterval - 1);
3857 hs_ep->target_frame = TARGET_FRAME_INITIAL;
3858 hs_ep->isoc_chain_num = 0;
3859 hs_ep->next_desc = 0;
3860 if (dir_in) {
3861 hs_ep->periodic = 1;
3862 mask = dwc2_readl(hsotg->regs + DIEPMSK);
3863 mask |= DIEPMSK_NAKMSK;
3864 dwc2_writel(mask, hsotg->regs + DIEPMSK);
3865 } else {
3866 mask = dwc2_readl(hsotg->regs + DOEPMSK);
3867 mask |= DOEPMSK_OUTTKNEPDISMSK;
3868 dwc2_writel(mask, hsotg->regs + DOEPMSK);
3870 break;
3872 case USB_ENDPOINT_XFER_BULK:
3873 epctrl |= DXEPCTL_EPTYPE_BULK;
3874 break;
3876 case USB_ENDPOINT_XFER_INT:
3877 if (dir_in)
3878 hs_ep->periodic = 1;
3880 if (hsotg->gadget.speed == USB_SPEED_HIGH)
3881 hs_ep->interval = 1 << (desc->bInterval - 1);
3883 epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3884 break;
3886 case USB_ENDPOINT_XFER_CONTROL:
3887 epctrl |= DXEPCTL_EPTYPE_CONTROL;
3888 break;
3892 * if the hardware has dedicated fifos, we must give each IN EP
3893 * a unique tx-fifo even if it is non-periodic.
3895 if (dir_in && hsotg->dedicated_fifos) {
3896 u32 fifo_index = 0;
3897 u32 fifo_size = UINT_MAX;
3899 size = hs_ep->ep.maxpacket * hs_ep->mc;
3900 for (i = 1; i < hsotg->num_of_eps; ++i) {
3901 if (hsotg->fifo_map & (1 << i))
3902 continue;
3903 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3904 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3905 if (val < size)
3906 continue;
3907 /* Search for smallest acceptable fifo */
3908 if (val < fifo_size) {
3909 fifo_size = val;
3910 fifo_index = i;
3913 if (!fifo_index) {
3914 dev_err(hsotg->dev,
3915 "%s: No suitable fifo found\n", __func__);
3916 ret = -ENOMEM;
3917 goto error1;
3919 hsotg->fifo_map |= 1 << fifo_index;
3920 epctrl |= DXEPCTL_TXFNUM(fifo_index);
3921 hs_ep->fifo_index = fifo_index;
3922 hs_ep->fifo_size = fifo_size;
3925 /* for non control endpoints, set PID to D0 */
3926 if (index && !hs_ep->isochronous)
3927 epctrl |= DXEPCTL_SETD0PID;
3929 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3930 __func__, epctrl);
3932 dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3933 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3934 __func__, dwc2_readl(hsotg->regs + epctrl_reg));
3936 /* enable the endpoint interrupt */
3937 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3939 error1:
3940 spin_unlock_irqrestore(&hsotg->lock, flags);
3942 error2:
3943 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3944 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3945 sizeof(struct dwc2_dma_desc),
3946 hs_ep->desc_list, hs_ep->desc_list_dma);
3947 hs_ep->desc_list = NULL;
3950 return ret;
3954 * dwc2_hsotg_ep_disable - disable given endpoint
3955 * @ep: The endpoint to disable.
3957 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3959 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3960 struct dwc2_hsotg *hsotg = hs_ep->parent;
3961 int dir_in = hs_ep->dir_in;
3962 int index = hs_ep->index;
3963 unsigned long flags;
3964 u32 epctrl_reg;
3965 u32 ctrl;
3967 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3969 if (ep == &hsotg->eps_out[0]->ep) {
3970 dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3971 return -EINVAL;
3974 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3975 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
3976 return -EINVAL;
3979 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3981 spin_lock_irqsave(&hsotg->lock, flags);
3983 ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3985 if (ctrl & DXEPCTL_EPENA)
3986 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3988 ctrl &= ~DXEPCTL_EPENA;
3989 ctrl &= ~DXEPCTL_USBACTEP;
3990 ctrl |= DXEPCTL_SNAK;
3992 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3993 dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3995 /* disable endpoint interrupts */
3996 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3998 /* terminate all requests with shutdown */
3999 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4001 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4002 hs_ep->fifo_index = 0;
4003 hs_ep->fifo_size = 0;
4005 spin_unlock_irqrestore(&hsotg->lock, flags);
4006 return 0;
4010 * on_list - check request is on the given endpoint
4011 * @ep: The endpoint to check.
4012 * @test: The request to test if it is on the endpoint.
4014 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4016 struct dwc2_hsotg_req *req, *treq;
4018 list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4019 if (req == test)
4020 return true;
4023 return false;
4027 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4028 * @ep: The endpoint to dequeue.
4029 * @req: The request to be removed from a queue.
4031 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4033 struct dwc2_hsotg_req *hs_req = our_req(req);
4034 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4035 struct dwc2_hsotg *hs = hs_ep->parent;
4036 unsigned long flags;
4038 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4040 spin_lock_irqsave(&hs->lock, flags);
4042 if (!on_list(hs_ep, hs_req)) {
4043 spin_unlock_irqrestore(&hs->lock, flags);
4044 return -EINVAL;
4047 /* Dequeue already started request */
4048 if (req == &hs_ep->req->req)
4049 dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4051 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4052 spin_unlock_irqrestore(&hs->lock, flags);
4054 return 0;
4058 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4059 * @ep: The endpoint to set halt.
4060 * @value: Set or unset the halt.
4061 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4062 * the endpoint is busy processing requests.
4064 * We need to stall the endpoint immediately if request comes from set_feature
4065 * protocol command handler.
4067 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4069 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4070 struct dwc2_hsotg *hs = hs_ep->parent;
4071 int index = hs_ep->index;
4072 u32 epreg;
4073 u32 epctl;
4074 u32 xfertype;
4076 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4078 if (index == 0) {
4079 if (value)
4080 dwc2_hsotg_stall_ep0(hs);
4081 else
4082 dev_warn(hs->dev,
4083 "%s: can't clear halt on ep0\n", __func__);
4084 return 0;
4087 if (hs_ep->isochronous) {
4088 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4089 return -EINVAL;
4092 if (!now && value && !list_empty(&hs_ep->queue)) {
4093 dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4094 ep->name);
4095 return -EAGAIN;
4098 if (hs_ep->dir_in) {
4099 epreg = DIEPCTL(index);
4100 epctl = dwc2_readl(hs->regs + epreg);
4102 if (value) {
4103 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4104 if (epctl & DXEPCTL_EPENA)
4105 epctl |= DXEPCTL_EPDIS;
4106 } else {
4107 epctl &= ~DXEPCTL_STALL;
4108 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4109 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4110 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4111 epctl |= DXEPCTL_SETD0PID;
4113 dwc2_writel(epctl, hs->regs + epreg);
4114 } else {
4115 epreg = DOEPCTL(index);
4116 epctl = dwc2_readl(hs->regs + epreg);
4118 if (value) {
4119 epctl |= DXEPCTL_STALL;
4120 } else {
4121 epctl &= ~DXEPCTL_STALL;
4122 xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4123 if (xfertype == DXEPCTL_EPTYPE_BULK ||
4124 xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4125 epctl |= DXEPCTL_SETD0PID;
4127 dwc2_writel(epctl, hs->regs + epreg);
4130 hs_ep->halted = value;
4132 return 0;
4136 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4137 * @ep: The endpoint to set halt.
4138 * @value: Set or unset the halt.
4140 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4142 struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4143 struct dwc2_hsotg *hs = hs_ep->parent;
4144 unsigned long flags = 0;
4145 int ret = 0;
4147 spin_lock_irqsave(&hs->lock, flags);
4148 ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4149 spin_unlock_irqrestore(&hs->lock, flags);
4151 return ret;
4154 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4155 .enable = dwc2_hsotg_ep_enable,
4156 .disable = dwc2_hsotg_ep_disable,
4157 .alloc_request = dwc2_hsotg_ep_alloc_request,
4158 .free_request = dwc2_hsotg_ep_free_request,
4159 .queue = dwc2_hsotg_ep_queue_lock,
4160 .dequeue = dwc2_hsotg_ep_dequeue,
4161 .set_halt = dwc2_hsotg_ep_sethalt_lock,
4162 /* note, don't believe we have any call for the fifo routines */
4166 * dwc2_hsotg_init - initialize the usb core
4167 * @hsotg: The driver state
4169 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4171 u32 trdtim;
4172 u32 usbcfg;
4173 /* unmask subset of endpoint interrupts */
4175 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4176 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4177 hsotg->regs + DIEPMSK);
4179 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4180 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4181 hsotg->regs + DOEPMSK);
4183 dwc2_writel(0, hsotg->regs + DAINTMSK);
4185 /* Be in disconnected state until gadget is registered */
4186 __orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4188 /* setup fifos */
4190 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4191 dwc2_readl(hsotg->regs + GRXFSIZ),
4192 dwc2_readl(hsotg->regs + GNPTXFSIZ));
4194 dwc2_hsotg_init_fifo(hsotg);
4196 /* keep other bits untouched (so e.g. forced modes are not lost) */
4197 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4198 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4199 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4201 /* set the PLL on, remove the HNP/SRP and set the PHY */
4202 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4203 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4204 (trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4205 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4207 if (using_dma(hsotg))
4208 __orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4212 * dwc2_hsotg_udc_start - prepare the udc for work
4213 * @gadget: The usb gadget state
4214 * @driver: The usb gadget driver
4216 * Perform initialization to prepare udc device and driver
4217 * to work.
4219 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4220 struct usb_gadget_driver *driver)
4222 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4223 unsigned long flags;
4224 int ret;
4226 if (!hsotg) {
4227 pr_err("%s: called with no device\n", __func__);
4228 return -ENODEV;
4231 if (!driver) {
4232 dev_err(hsotg->dev, "%s: no driver\n", __func__);
4233 return -EINVAL;
4236 if (driver->max_speed < USB_SPEED_FULL)
4237 dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4239 if (!driver->setup) {
4240 dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4241 return -EINVAL;
4244 WARN_ON(hsotg->driver);
4246 driver->driver.bus = NULL;
4247 hsotg->driver = driver;
4248 hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4249 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4251 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4252 ret = dwc2_lowlevel_hw_enable(hsotg);
4253 if (ret)
4254 goto err;
4257 if (!IS_ERR_OR_NULL(hsotg->uphy))
4258 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4260 spin_lock_irqsave(&hsotg->lock, flags);
4261 if (dwc2_hw_is_device(hsotg)) {
4262 dwc2_hsotg_init(hsotg);
4263 dwc2_hsotg_core_init_disconnected(hsotg, false);
4266 hsotg->enabled = 0;
4267 spin_unlock_irqrestore(&hsotg->lock, flags);
4269 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4271 return 0;
4273 err:
4274 hsotg->driver = NULL;
4275 return ret;
4279 * dwc2_hsotg_udc_stop - stop the udc
4280 * @gadget: The usb gadget state
4281 * @driver: The usb gadget driver
4283 * Stop udc hw block and stay tunned for future transmissions
4285 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4287 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4288 unsigned long flags = 0;
4289 int ep;
4291 if (!hsotg)
4292 return -ENODEV;
4294 /* all endpoints should be shutdown */
4295 for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4296 if (hsotg->eps_in[ep])
4297 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4298 if (hsotg->eps_out[ep])
4299 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4302 spin_lock_irqsave(&hsotg->lock, flags);
4304 hsotg->driver = NULL;
4305 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4306 hsotg->enabled = 0;
4308 spin_unlock_irqrestore(&hsotg->lock, flags);
4310 if (!IS_ERR_OR_NULL(hsotg->uphy))
4311 otg_set_peripheral(hsotg->uphy->otg, NULL);
4313 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4314 dwc2_lowlevel_hw_disable(hsotg);
4316 return 0;
4320 * dwc2_hsotg_gadget_getframe - read the frame number
4321 * @gadget: The usb gadget state
4323 * Read the {micro} frame number
4325 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4327 return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4331 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4332 * @gadget: The usb gadget state
4333 * @is_on: Current state of the USB PHY
4335 * Connect/Disconnect the USB PHY pullup
4337 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4339 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4340 unsigned long flags = 0;
4342 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4343 hsotg->op_state);
4345 /* Don't modify pullup state while in host mode */
4346 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4347 hsotg->enabled = is_on;
4348 return 0;
4351 spin_lock_irqsave(&hsotg->lock, flags);
4352 if (is_on) {
4353 hsotg->enabled = 1;
4354 dwc2_hsotg_core_init_disconnected(hsotg, false);
4355 dwc2_hsotg_core_connect(hsotg);
4356 } else {
4357 dwc2_hsotg_core_disconnect(hsotg);
4358 dwc2_hsotg_disconnect(hsotg);
4359 hsotg->enabled = 0;
4362 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4363 spin_unlock_irqrestore(&hsotg->lock, flags);
4365 return 0;
4368 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4370 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4371 unsigned long flags;
4373 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4374 spin_lock_irqsave(&hsotg->lock, flags);
4377 * If controller is hibernated, it must exit from hibernation
4378 * before being initialized / de-initialized
4380 if (hsotg->lx_state == DWC2_L2)
4381 dwc2_exit_hibernation(hsotg, false);
4383 if (is_active) {
4384 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4386 dwc2_hsotg_core_init_disconnected(hsotg, false);
4387 if (hsotg->enabled)
4388 dwc2_hsotg_core_connect(hsotg);
4389 } else {
4390 dwc2_hsotg_core_disconnect(hsotg);
4391 dwc2_hsotg_disconnect(hsotg);
4394 spin_unlock_irqrestore(&hsotg->lock, flags);
4395 return 0;
4399 * dwc2_hsotg_vbus_draw - report bMaxPower field
4400 * @gadget: The usb gadget state
4401 * @mA: Amount of current
4403 * Report how much power the device may consume to the phy.
4405 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4407 struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4409 if (IS_ERR_OR_NULL(hsotg->uphy))
4410 return -ENOTSUPP;
4411 return usb_phy_set_power(hsotg->uphy, mA);
4414 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4415 .get_frame = dwc2_hsotg_gadget_getframe,
4416 .udc_start = dwc2_hsotg_udc_start,
4417 .udc_stop = dwc2_hsotg_udc_stop,
4418 .pullup = dwc2_hsotg_pullup,
4419 .vbus_session = dwc2_hsotg_vbus_session,
4420 .vbus_draw = dwc2_hsotg_vbus_draw,
4424 * dwc2_hsotg_initep - initialise a single endpoint
4425 * @hsotg: The device state.
4426 * @hs_ep: The endpoint to be initialised.
4427 * @epnum: The endpoint number
4429 * Initialise the given endpoint (as part of the probe and device state
4430 * creation) to give to the gadget driver. Setup the endpoint name, any
4431 * direction information and other state that may be required.
4433 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4434 struct dwc2_hsotg_ep *hs_ep,
4435 int epnum,
4436 bool dir_in)
4438 char *dir;
4440 if (epnum == 0)
4441 dir = "";
4442 else if (dir_in)
4443 dir = "in";
4444 else
4445 dir = "out";
4447 hs_ep->dir_in = dir_in;
4448 hs_ep->index = epnum;
4450 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4452 INIT_LIST_HEAD(&hs_ep->queue);
4453 INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4455 /* add to the list of endpoints known by the gadget driver */
4456 if (epnum)
4457 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4459 hs_ep->parent = hsotg;
4460 hs_ep->ep.name = hs_ep->name;
4462 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4463 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4464 else
4465 usb_ep_set_maxpacket_limit(&hs_ep->ep,
4466 epnum ? 1024 : EP0_MPS_LIMIT);
4467 hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4469 if (epnum == 0) {
4470 hs_ep->ep.caps.type_control = true;
4471 } else {
4472 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4473 hs_ep->ep.caps.type_iso = true;
4474 hs_ep->ep.caps.type_bulk = true;
4476 hs_ep->ep.caps.type_int = true;
4479 if (dir_in)
4480 hs_ep->ep.caps.dir_in = true;
4481 else
4482 hs_ep->ep.caps.dir_out = true;
4485 * if we're using dma, we need to set the next-endpoint pointer
4486 * to be something valid.
4489 if (using_dma(hsotg)) {
4490 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4492 if (dir_in)
4493 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4494 else
4495 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4500 * dwc2_hsotg_hw_cfg - read HW configuration registers
4501 * @param: The device state
4503 * Read the USB core HW configuration registers
4505 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4507 u32 cfg;
4508 u32 ep_type;
4509 u32 i;
4511 /* check hardware configuration */
4513 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4515 /* Add ep0 */
4516 hsotg->num_of_eps++;
4518 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4519 sizeof(struct dwc2_hsotg_ep),
4520 GFP_KERNEL);
4521 if (!hsotg->eps_in[0])
4522 return -ENOMEM;
4523 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4524 hsotg->eps_out[0] = hsotg->eps_in[0];
4526 cfg = hsotg->hw_params.dev_ep_dirs;
4527 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4528 ep_type = cfg & 3;
4529 /* Direction in or both */
4530 if (!(ep_type & 2)) {
4531 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4532 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4533 if (!hsotg->eps_in[i])
4534 return -ENOMEM;
4536 /* Direction out or both */
4537 if (!(ep_type & 1)) {
4538 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4539 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4540 if (!hsotg->eps_out[i])
4541 return -ENOMEM;
4545 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4546 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4548 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4549 hsotg->num_of_eps,
4550 hsotg->dedicated_fifos ? "dedicated" : "shared",
4551 hsotg->fifo_mem);
4552 return 0;
4556 * dwc2_hsotg_dump - dump state of the udc
4557 * @param: The device state
4559 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4561 #ifdef DEBUG
4562 struct device *dev = hsotg->dev;
4563 void __iomem *regs = hsotg->regs;
4564 u32 val;
4565 int idx;
4567 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4568 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4569 dwc2_readl(regs + DIEPMSK));
4571 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4572 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4574 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4575 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4577 /* show periodic fifo settings */
4579 for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4580 val = dwc2_readl(regs + DPTXFSIZN(idx));
4581 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4582 val >> FIFOSIZE_DEPTH_SHIFT,
4583 val & FIFOSIZE_STARTADDR_MASK);
4586 for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4587 dev_info(dev,
4588 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4589 dwc2_readl(regs + DIEPCTL(idx)),
4590 dwc2_readl(regs + DIEPTSIZ(idx)),
4591 dwc2_readl(regs + DIEPDMA(idx)));
4593 val = dwc2_readl(regs + DOEPCTL(idx));
4594 dev_info(dev,
4595 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4596 idx, dwc2_readl(regs + DOEPCTL(idx)),
4597 dwc2_readl(regs + DOEPTSIZ(idx)),
4598 dwc2_readl(regs + DOEPDMA(idx)));
4601 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4602 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4603 #endif
4607 * dwc2_gadget_init - init function for gadget
4608 * @dwc2: The data structure for the DWC2 driver.
4609 * @irq: The IRQ number for the controller.
4611 int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4613 struct device *dev = hsotg->dev;
4614 int epnum;
4615 int ret;
4617 /* Dump fifo information */
4618 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4619 hsotg->params.g_np_tx_fifo_size);
4620 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4622 hsotg->gadget.max_speed = USB_SPEED_HIGH;
4623 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4624 hsotg->gadget.name = dev_name(dev);
4625 if (hsotg->dr_mode == USB_DR_MODE_OTG)
4626 hsotg->gadget.is_otg = 1;
4627 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4628 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4630 ret = dwc2_hsotg_hw_cfg(hsotg);
4631 if (ret) {
4632 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4633 return ret;
4636 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4637 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4638 if (!hsotg->ctrl_buff)
4639 return -ENOMEM;
4641 hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4642 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4643 if (!hsotg->ep0_buff)
4644 return -ENOMEM;
4646 if (using_desc_dma(hsotg)) {
4647 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4648 if (ret < 0)
4649 return ret;
4652 ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4653 dev_name(hsotg->dev), hsotg);
4654 if (ret < 0) {
4655 dev_err(dev, "cannot claim IRQ for gadget\n");
4656 return ret;
4659 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4661 if (hsotg->num_of_eps == 0) {
4662 dev_err(dev, "wrong number of EPs (zero)\n");
4663 return -EINVAL;
4666 /* setup endpoint information */
4668 INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4669 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4671 /* allocate EP0 request */
4673 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4674 GFP_KERNEL);
4675 if (!hsotg->ctrl_req) {
4676 dev_err(dev, "failed to allocate ctrl req\n");
4677 return -ENOMEM;
4680 /* initialise the endpoints now the core has been initialised */
4681 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4682 if (hsotg->eps_in[epnum])
4683 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4684 epnum, 1);
4685 if (hsotg->eps_out[epnum])
4686 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4687 epnum, 0);
4690 ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4691 if (ret)
4692 return ret;
4694 dwc2_hsotg_dump(hsotg);
4696 return 0;
4700 * dwc2_hsotg_remove - remove function for hsotg driver
4701 * @pdev: The platform information for the driver
4703 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4705 usb_del_gadget_udc(&hsotg->gadget);
4707 return 0;
4710 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4712 unsigned long flags;
4714 if (hsotg->lx_state != DWC2_L0)
4715 return 0;
4717 if (hsotg->driver) {
4718 int ep;
4720 dev_info(hsotg->dev, "suspending usb gadget %s\n",
4721 hsotg->driver->driver.name);
4723 spin_lock_irqsave(&hsotg->lock, flags);
4724 if (hsotg->enabled)
4725 dwc2_hsotg_core_disconnect(hsotg);
4726 dwc2_hsotg_disconnect(hsotg);
4727 hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4728 spin_unlock_irqrestore(&hsotg->lock, flags);
4730 for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4731 if (hsotg->eps_in[ep])
4732 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4733 if (hsotg->eps_out[ep])
4734 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4738 return 0;
4741 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4743 unsigned long flags;
4745 if (hsotg->lx_state == DWC2_L2)
4746 return 0;
4748 if (hsotg->driver) {
4749 dev_info(hsotg->dev, "resuming usb gadget %s\n",
4750 hsotg->driver->driver.name);
4752 spin_lock_irqsave(&hsotg->lock, flags);
4753 dwc2_hsotg_core_init_disconnected(hsotg, false);
4754 if (hsotg->enabled)
4755 dwc2_hsotg_core_connect(hsotg);
4756 spin_unlock_irqrestore(&hsotg->lock, flags);
4759 return 0;
4763 * dwc2_backup_device_registers() - Backup controller device registers.
4764 * When suspending usb bus, registers needs to be backuped
4765 * if controller power is disabled once suspended.
4767 * @hsotg: Programming view of the DWC_otg controller
4769 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4771 struct dwc2_dregs_backup *dr;
4772 int i;
4774 dev_dbg(hsotg->dev, "%s\n", __func__);
4776 /* Backup dev regs */
4777 dr = &hsotg->dr_backup;
4779 dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4780 dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4781 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4782 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4783 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4785 for (i = 0; i < hsotg->num_of_eps; i++) {
4786 /* Backup IN EPs */
4787 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4789 /* Ensure DATA PID is correctly configured */
4790 if (dr->diepctl[i] & DXEPCTL_DPID)
4791 dr->diepctl[i] |= DXEPCTL_SETD1PID;
4792 else
4793 dr->diepctl[i] |= DXEPCTL_SETD0PID;
4795 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4796 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4798 /* Backup OUT EPs */
4799 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4801 /* Ensure DATA PID is correctly configured */
4802 if (dr->doepctl[i] & DXEPCTL_DPID)
4803 dr->doepctl[i] |= DXEPCTL_SETD1PID;
4804 else
4805 dr->doepctl[i] |= DXEPCTL_SETD0PID;
4807 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4808 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4810 dr->valid = true;
4811 return 0;
4815 * dwc2_restore_device_registers() - Restore controller device registers.
4816 * When resuming usb bus, device registers needs to be restored
4817 * if controller power were disabled.
4819 * @hsotg: Programming view of the DWC_otg controller
4821 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4823 struct dwc2_dregs_backup *dr;
4824 u32 dctl;
4825 int i;
4827 dev_dbg(hsotg->dev, "%s\n", __func__);
4829 /* Restore dev regs */
4830 dr = &hsotg->dr_backup;
4831 if (!dr->valid) {
4832 dev_err(hsotg->dev, "%s: no device registers to restore\n",
4833 __func__);
4834 return -EINVAL;
4836 dr->valid = false;
4838 dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4839 dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4840 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4841 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4842 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4844 for (i = 0; i < hsotg->num_of_eps; i++) {
4845 /* Restore IN EPs */
4846 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4847 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4848 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4850 /* Restore OUT EPs */
4851 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4852 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4853 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4856 /* Set the Power-On Programming done bit */
4857 dctl = dwc2_readl(hsotg->regs + DCTL);
4858 dctl |= DCTL_PWRONPRGDONE;
4859 dwc2_writel(dctl, hsotg->regs + DCTL);
4861 return 0;