1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4 * http://www.samsung.com
6 * Copyright 2008 Openmoko, Inc.
7 * Copyright 2008 Simtec Electronics
8 * Ben Dooks <ben@simtec.co.uk>
9 * http://armlinux.simtec.co.uk/
11 * S3C USB2.0 High-speed / OtG driver
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req
*our_req(struct usb_request
*req
)
37 return container_of(req
, struct dwc2_hsotg_req
, req
);
40 static inline struct dwc2_hsotg_ep
*our_ep(struct usb_ep
*ep
)
42 return container_of(ep
, struct dwc2_hsotg_ep
, ep
);
45 static inline struct dwc2_hsotg
*to_hsotg(struct usb_gadget
*gadget
)
47 return container_of(gadget
, struct dwc2_hsotg
, gadget
);
50 static inline void __orr32(void __iomem
*ptr
, u32 val
)
52 dwc2_writel(dwc2_readl(ptr
) | val
, ptr
);
55 static inline void __bic32(void __iomem
*ptr
, u32 val
)
57 dwc2_writel(dwc2_readl(ptr
) & ~val
, ptr
);
60 static inline struct dwc2_hsotg_ep
*index_to_ep(struct dwc2_hsotg
*hsotg
,
61 u32 ep_index
, u32 dir_in
)
64 return hsotg
->eps_in
[ep_index
];
66 return hsotg
->eps_out
[ep_index
];
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg
*hsotg
);
73 * using_dma - return the DMA status of the driver.
74 * @hsotg: The driver state.
76 * Return true if we're using DMA.
78 * Currently, we have the DMA support code worked into everywhere
79 * that needs it, but the AMBA DMA implementation in the hardware can
80 * only DMA from 32bit aligned addresses. This means that gadgets such
81 * as the CDC Ethernet cannot work as they often pass packets which are
84 * Unfortunately the choice to use DMA or not is global to the controller
85 * and seems to be only settable when the controller is being put through
86 * a core reset. This means we either need to fix the gadgets to take
87 * account of DMA alignment, or add bounce buffers (yuerk).
89 * g_using_dma is set depending on dts flag.
91 static inline bool using_dma(struct dwc2_hsotg
*hsotg
)
93 return hsotg
->params
.g_dma
;
97 * using_desc_dma - return the descriptor DMA status of the driver.
98 * @hsotg: The driver state.
100 * Return true if we're using descriptor DMA.
102 static inline bool using_desc_dma(struct dwc2_hsotg
*hsotg
)
104 return hsotg
->params
.g_dma_desc
;
108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109 * @hs_ep: The endpoint
110 * @increment: The value to increment by
112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep
*hs_ep
)
117 hs_ep
->target_frame
+= hs_ep
->interval
;
118 if (hs_ep
->target_frame
> DSTS_SOFFN_LIMIT
) {
119 hs_ep
->frame_overrun
= 1;
120 hs_ep
->target_frame
&= DSTS_SOFFN_LIMIT
;
122 hs_ep
->frame_overrun
= 0;
127 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128 * @hsotg: The device state
129 * @ints: A bitmask of the interrupts to enable
131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg
*hsotg
, u32 ints
)
133 u32 gsintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
136 new_gsintmsk
= gsintmsk
| ints
;
138 if (new_gsintmsk
!= gsintmsk
) {
139 dev_dbg(hsotg
->dev
, "gsintmsk now 0x%08x\n", new_gsintmsk
);
140 dwc2_writel(new_gsintmsk
, hsotg
->regs
+ GINTMSK
);
145 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146 * @hsotg: The device state
147 * @ints: A bitmask of the interrupts to enable
149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg
*hsotg
, u32 ints
)
151 u32 gsintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
154 new_gsintmsk
= gsintmsk
& ~ints
;
156 if (new_gsintmsk
!= gsintmsk
)
157 dwc2_writel(new_gsintmsk
, hsotg
->regs
+ GINTMSK
);
161 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162 * @hsotg: The device state
163 * @ep: The endpoint index
164 * @dir_in: True if direction is in.
165 * @en: The enable value, true to enable
167 * Set or clear the mask for an individual endpoint's interrupt
170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg
*hsotg
,
171 unsigned int ep
, unsigned int dir_in
,
181 local_irq_save(flags
);
182 daint
= dwc2_readl(hsotg
->regs
+ DAINTMSK
);
187 dwc2_writel(daint
, hsotg
->regs
+ DAINTMSK
);
188 local_irq_restore(flags
);
192 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg
*hsotg
)
196 if (hsotg
->hw_params
.en_multiple_tx_fifo
)
197 /* In dedicated FIFO mode we need count of IN EPs */
198 return hsotg
->hw_params
.num_dev_in_eps
;
200 /* In shared FIFO mode we need count of Periodic IN EPs */
201 return hsotg
->hw_params
.num_dev_perio_in_ep
;
205 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
206 * device mode TX FIFOs
208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg
*hsotg
)
214 np_tx_fifo_size
= min_t(u32
, hsotg
->hw_params
.dev_nperio_tx_fifo_size
,
215 hsotg
->params
.g_np_tx_fifo_size
);
217 /* Get Endpoint Info Control block size in DWORDs. */
218 tx_addr_max
= hsotg
->hw_params
.total_fifo_size
;
220 addr
= hsotg
->params
.g_rx_fifo_size
+ np_tx_fifo_size
;
221 if (tx_addr_max
<= addr
)
224 return tx_addr_max
- addr
;
228 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg
*hsotg
)
236 tx_fifo_depth
= dwc2_hsotg_tx_fifo_total_depth(hsotg
);
238 tx_fifo_count
= dwc2_hsotg_tx_fifo_count(hsotg
);
241 return tx_fifo_depth
;
243 return tx_fifo_depth
/ tx_fifo_count
;
247 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
248 * @hsotg: The device instance.
250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg
*hsotg
)
256 u32
*txfsz
= hsotg
->params
.g_tx_fifo_size
;
258 /* Reset fifo map if not correctly cleared during previous session */
259 WARN_ON(hsotg
->fifo_map
);
262 /* set RX/NPTX FIFO sizes */
263 dwc2_writel(hsotg
->params
.g_rx_fifo_size
, hsotg
->regs
+ GRXFSIZ
);
264 dwc2_writel((hsotg
->params
.g_rx_fifo_size
<< FIFOSIZE_STARTADDR_SHIFT
) |
265 (hsotg
->params
.g_np_tx_fifo_size
<< FIFOSIZE_DEPTH_SHIFT
),
266 hsotg
->regs
+ GNPTXFSIZ
);
269 * arange all the rest of the TX FIFOs, as some versions of this
270 * block have overlapping default addresses. This also ensures
271 * that if the settings have been changed, then they are set to
275 /* start at the end of the GNPTXFSIZ, rounded up */
276 addr
= hsotg
->params
.g_rx_fifo_size
+ hsotg
->params
.g_np_tx_fifo_size
;
279 * Configure fifos sizes from provided configuration and assign
280 * them to endpoints dynamically according to maxpacket size value of
283 for (ep
= 1; ep
< MAX_EPS_CHANNELS
; ep
++) {
287 val
|= txfsz
[ep
] << FIFOSIZE_DEPTH_SHIFT
;
288 WARN_ONCE(addr
+ txfsz
[ep
] > hsotg
->fifo_mem
,
289 "insufficient fifo memory");
292 dwc2_writel(val
, hsotg
->regs
+ DPTXFSIZN(ep
));
293 val
= dwc2_readl(hsotg
->regs
+ DPTXFSIZN(ep
));
296 dwc2_writel(hsotg
->hw_params
.total_fifo_size
|
297 addr
<< GDFIFOCFG_EPINFOBASE_SHIFT
,
298 hsotg
->regs
+ GDFIFOCFG
);
300 * according to p428 of the design guide, we need to ensure that
301 * all fifos are flushed before continuing
304 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH
|
305 GRSTCTL_RXFFLSH
, hsotg
->regs
+ GRSTCTL
);
307 /* wait until the fifos are both flushed */
310 val
= dwc2_readl(hsotg
->regs
+ GRSTCTL
);
312 if ((val
& (GRSTCTL_TXFFLSH
| GRSTCTL_RXFFLSH
)) == 0)
315 if (--timeout
== 0) {
317 "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
325 dev_dbg(hsotg
->dev
, "FIFOs reset, timeout at %d\n", timeout
);
329 * @ep: USB endpoint to allocate request for.
330 * @flags: Allocation flags
332 * Allocate a new USB request structure appropriate for the specified endpoint
334 static struct usb_request
*dwc2_hsotg_ep_alloc_request(struct usb_ep
*ep
,
337 struct dwc2_hsotg_req
*req
;
339 req
= kzalloc(sizeof(*req
), flags
);
343 INIT_LIST_HEAD(&req
->queue
);
349 * is_ep_periodic - return true if the endpoint is in periodic mode.
350 * @hs_ep: The endpoint to query.
352 * Returns true if the endpoint is in periodic mode, meaning it is being
353 * used for an Interrupt or ISO transfer.
355 static inline int is_ep_periodic(struct dwc2_hsotg_ep
*hs_ep
)
357 return hs_ep
->periodic
;
361 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
362 * @hsotg: The device state.
363 * @hs_ep: The endpoint for the request
364 * @hs_req: The request being processed.
366 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
367 * of a request to ensure the buffer is ready for access by the caller.
369 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg
*hsotg
,
370 struct dwc2_hsotg_ep
*hs_ep
,
371 struct dwc2_hsotg_req
*hs_req
)
373 struct usb_request
*req
= &hs_req
->req
;
375 usb_gadget_unmap_request(&hsotg
->gadget
, req
, hs_ep
->dir_in
);
379 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
380 * for Control endpoint
381 * @hsotg: The device state.
383 * This function will allocate 4 descriptor chains for EP 0: 2 for
384 * Setup stage, per one for IN and OUT data/status transactions.
386 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg
*hsotg
)
388 hsotg
->setup_desc
[0] =
389 dmam_alloc_coherent(hsotg
->dev
,
390 sizeof(struct dwc2_dma_desc
),
391 &hsotg
->setup_desc_dma
[0],
393 if (!hsotg
->setup_desc
[0])
396 hsotg
->setup_desc
[1] =
397 dmam_alloc_coherent(hsotg
->dev
,
398 sizeof(struct dwc2_dma_desc
),
399 &hsotg
->setup_desc_dma
[1],
401 if (!hsotg
->setup_desc
[1])
404 hsotg
->ctrl_in_desc
=
405 dmam_alloc_coherent(hsotg
->dev
,
406 sizeof(struct dwc2_dma_desc
),
407 &hsotg
->ctrl_in_desc_dma
,
409 if (!hsotg
->ctrl_in_desc
)
412 hsotg
->ctrl_out_desc
=
413 dmam_alloc_coherent(hsotg
->dev
,
414 sizeof(struct dwc2_dma_desc
),
415 &hsotg
->ctrl_out_desc_dma
,
417 if (!hsotg
->ctrl_out_desc
)
427 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
428 * @hsotg: The controller state.
429 * @hs_ep: The endpoint we're going to write for.
430 * @hs_req: The request to write data for.
432 * This is called when the TxFIFO has some space in it to hold a new
433 * transmission and we have something to give it. The actual setup of
434 * the data size is done elsewhere, so all we have to do is to actually
437 * The return value is zero if there is more space (or nothing was done)
438 * otherwise -ENOSPC is returned if the FIFO space was used up.
440 * This routine is only needed for PIO
442 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg
*hsotg
,
443 struct dwc2_hsotg_ep
*hs_ep
,
444 struct dwc2_hsotg_req
*hs_req
)
446 bool periodic
= is_ep_periodic(hs_ep
);
447 u32 gnptxsts
= dwc2_readl(hsotg
->regs
+ GNPTXSTS
);
448 int buf_pos
= hs_req
->req
.actual
;
449 int to_write
= hs_ep
->size_loaded
;
455 to_write
-= (buf_pos
- hs_ep
->last_load
);
457 /* if there's nothing to write, get out early */
461 if (periodic
&& !hsotg
->dedicated_fifos
) {
462 u32 epsize
= dwc2_readl(hsotg
->regs
+ DIEPTSIZ(hs_ep
->index
));
467 * work out how much data was loaded so we can calculate
468 * how much data is left in the fifo.
471 size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
474 * if shared fifo, we cannot write anything until the
475 * previous data has been completely sent.
477 if (hs_ep
->fifo_load
!= 0) {
478 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_PTXFEMP
);
482 dev_dbg(hsotg
->dev
, "%s: left=%d, load=%d, fifo=%d, size %d\n",
484 hs_ep
->size_loaded
, hs_ep
->fifo_load
, hs_ep
->fifo_size
);
486 /* how much of the data has moved */
487 size_done
= hs_ep
->size_loaded
- size_left
;
489 /* how much data is left in the fifo */
490 can_write
= hs_ep
->fifo_load
- size_done
;
491 dev_dbg(hsotg
->dev
, "%s: => can_write1=%d\n",
492 __func__
, can_write
);
494 can_write
= hs_ep
->fifo_size
- can_write
;
495 dev_dbg(hsotg
->dev
, "%s: => can_write2=%d\n",
496 __func__
, can_write
);
498 if (can_write
<= 0) {
499 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_PTXFEMP
);
502 } else if (hsotg
->dedicated_fifos
&& hs_ep
->index
!= 0) {
503 can_write
= dwc2_readl(hsotg
->regs
+
504 DTXFSTS(hs_ep
->fifo_index
));
509 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts
) == 0) {
511 "%s: no queue slots available (0x%08x)\n",
514 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_NPTXFEMP
);
518 can_write
= GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts
);
519 can_write
*= 4; /* fifo size is in 32bit quantities. */
522 max_transfer
= hs_ep
->ep
.maxpacket
* hs_ep
->mc
;
524 dev_dbg(hsotg
->dev
, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
525 __func__
, gnptxsts
, can_write
, to_write
, max_transfer
);
528 * limit to 512 bytes of data, it seems at least on the non-periodic
529 * FIFO, requests of >512 cause the endpoint to get stuck with a
530 * fragment of the end of the transfer in it.
532 if (can_write
> 512 && !periodic
)
536 * limit the write to one max-packet size worth of data, but allow
537 * the transfer to return that it did not run out of fifo space
540 if (to_write
> max_transfer
) {
541 to_write
= max_transfer
;
543 /* it's needed only when we do not use dedicated fifos */
544 if (!hsotg
->dedicated_fifos
)
545 dwc2_hsotg_en_gsint(hsotg
,
546 periodic
? GINTSTS_PTXFEMP
:
550 /* see if we can write data */
552 if (to_write
> can_write
) {
553 to_write
= can_write
;
554 pkt_round
= to_write
% max_transfer
;
557 * Round the write down to an
558 * exact number of packets.
560 * Note, we do not currently check to see if we can ever
561 * write a full packet or not to the FIFO.
565 to_write
-= pkt_round
;
568 * enable correct FIFO interrupt to alert us when there
572 /* it's needed only when we do not use dedicated fifos */
573 if (!hsotg
->dedicated_fifos
)
574 dwc2_hsotg_en_gsint(hsotg
,
575 periodic
? GINTSTS_PTXFEMP
:
579 dev_dbg(hsotg
->dev
, "write %d/%d, can_write %d, done %d\n",
580 to_write
, hs_req
->req
.length
, can_write
, buf_pos
);
585 hs_req
->req
.actual
= buf_pos
+ to_write
;
586 hs_ep
->total_data
+= to_write
;
589 hs_ep
->fifo_load
+= to_write
;
591 to_write
= DIV_ROUND_UP(to_write
, 4);
592 data
= hs_req
->req
.buf
+ buf_pos
;
594 iowrite32_rep(hsotg
->regs
+ EPFIFO(hs_ep
->index
), data
, to_write
);
596 return (to_write
>= can_write
) ? -ENOSPC
: 0;
600 * get_ep_limit - get the maximum data legnth for this endpoint
601 * @hs_ep: The endpoint
603 * Return the maximum data that can be queued in one go on a given endpoint
604 * so that transfers that are too long can be split.
606 static unsigned int get_ep_limit(struct dwc2_hsotg_ep
*hs_ep
)
608 int index
= hs_ep
->index
;
609 unsigned int maxsize
;
613 maxsize
= DXEPTSIZ_XFERSIZE_LIMIT
+ 1;
614 maxpkt
= DXEPTSIZ_PKTCNT_LIMIT
+ 1;
618 maxpkt
= DIEPTSIZ0_PKTCNT_LIMIT
+ 1;
623 /* we made the constant loading easier above by using +1 */
628 * constrain by packet count if maxpkts*pktsize is greater
629 * than the length register size.
632 if ((maxpkt
* hs_ep
->ep
.maxpacket
) < maxsize
)
633 maxsize
= maxpkt
* hs_ep
->ep
.maxpacket
;
639 * dwc2_hsotg_read_frameno - read current frame number
640 * @hsotg: The device instance
642 * Return the current frame number
644 static u32
dwc2_hsotg_read_frameno(struct dwc2_hsotg
*hsotg
)
648 dsts
= dwc2_readl(hsotg
->regs
+ DSTS
);
649 dsts
&= DSTS_SOFFN_MASK
;
650 dsts
>>= DSTS_SOFFN_SHIFT
;
656 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
657 * DMA descriptor chain prepared for specific endpoint
658 * @hs_ep: The endpoint
660 * Return the maximum data that can be queued in one go on a given endpoint
661 * depending on its descriptor chain capacity so that transfers that
662 * are too long can be split.
664 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep
*hs_ep
)
666 int is_isoc
= hs_ep
->isochronous
;
667 unsigned int maxsize
;
670 maxsize
= hs_ep
->dir_in
? DEV_DMA_ISOC_TX_NBYTES_LIMIT
:
671 DEV_DMA_ISOC_RX_NBYTES_LIMIT
;
673 maxsize
= DEV_DMA_NBYTES_LIMIT
;
675 /* Above size of one descriptor was chosen, multiple it */
676 maxsize
*= MAX_DMA_DESC_NUM_GENERIC
;
682 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
683 * @hs_ep: The endpoint
684 * @mask: RX/TX bytes mask to be defined
686 * Returns maximum data payload for one descriptor after analyzing endpoint
688 * DMA descriptor transfer bytes limit depends on EP type:
690 * Isochronous - descriptor rx/tx bytes bitfield limit,
691 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
692 * have concatenations from various descriptors within one packet.
694 * Selects corresponding mask for RX/TX bytes as well.
696 static u32
dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep
*hs_ep
, u32
*mask
)
698 u32 mps
= hs_ep
->ep
.maxpacket
;
699 int dir_in
= hs_ep
->dir_in
;
702 if (!hs_ep
->index
&& !dir_in
) {
704 *mask
= DEV_DMA_NBYTES_MASK
;
705 } else if (hs_ep
->isochronous
) {
707 desc_size
= DEV_DMA_ISOC_TX_NBYTES_LIMIT
;
708 *mask
= DEV_DMA_ISOC_TX_NBYTES_MASK
;
710 desc_size
= DEV_DMA_ISOC_RX_NBYTES_LIMIT
;
711 *mask
= DEV_DMA_ISOC_RX_NBYTES_MASK
;
714 desc_size
= DEV_DMA_NBYTES_LIMIT
;
715 *mask
= DEV_DMA_NBYTES_MASK
;
717 /* Round down desc_size to be mps multiple */
718 desc_size
-= desc_size
% mps
;
725 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
726 * @hs_ep: The endpoint
727 * @dma_buff: DMA address to use
728 * @len: Length of the transfer
730 * This function will iterate over descriptor chain and fill its entries
731 * with corresponding information based on transfer data.
733 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep
*hs_ep
,
737 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
738 int dir_in
= hs_ep
->dir_in
;
739 struct dwc2_dma_desc
*desc
= hs_ep
->desc_list
;
740 u32 mps
= hs_ep
->ep
.maxpacket
;
746 maxsize
= dwc2_gadget_get_desc_params(hs_ep
, &mask
);
748 hs_ep
->desc_count
= (len
/ maxsize
) +
749 ((len
% maxsize
) ? 1 : 0);
751 hs_ep
->desc_count
= 1;
753 for (i
= 0; i
< hs_ep
->desc_count
; ++i
) {
755 desc
->status
|= (DEV_DMA_BUFF_STS_HBUSY
756 << DEV_DMA_BUFF_STS_SHIFT
);
759 if (!hs_ep
->index
&& !dir_in
)
760 desc
->status
|= (DEV_DMA_L
| DEV_DMA_IOC
);
762 desc
->status
|= (maxsize
<<
763 DEV_DMA_NBYTES_SHIFT
& mask
);
764 desc
->buf
= dma_buff
+ offset
;
769 desc
->status
|= (DEV_DMA_L
| DEV_DMA_IOC
);
772 desc
->status
|= (len
% mps
) ? DEV_DMA_SHORT
:
773 ((hs_ep
->send_zlp
) ? DEV_DMA_SHORT
: 0);
775 dev_err(hsotg
->dev
, "wrong len %d\n", len
);
778 len
<< DEV_DMA_NBYTES_SHIFT
& mask
;
779 desc
->buf
= dma_buff
+ offset
;
782 desc
->status
&= ~DEV_DMA_BUFF_STS_MASK
;
783 desc
->status
|= (DEV_DMA_BUFF_STS_HREADY
784 << DEV_DMA_BUFF_STS_SHIFT
);
790 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
791 * @hs_ep: The isochronous endpoint.
792 * @dma_buff: usb requests dma buffer.
793 * @len: usb request transfer length.
795 * Finds out index of first free entry either in the bottom or up half of
796 * descriptor chain depend on which is under SW control and not processed
797 * by HW. Then fills that descriptor with the data of the arrived usb request,
798 * frame info, sets Last and IOC bits increments next_desc. If filled
799 * descriptor is not the first one, removes L bit from the previous descriptor
802 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep
*hs_ep
,
803 dma_addr_t dma_buff
, unsigned int len
)
805 struct dwc2_dma_desc
*desc
;
806 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
811 maxsize
= dwc2_gadget_get_desc_params(hs_ep
, &mask
);
813 dev_err(hsotg
->dev
, "wrong len %d\n", len
);
818 * If SW has already filled half of chain, then return and wait for
819 * the other chain to be processed by HW.
821 if (hs_ep
->next_desc
== MAX_DMA_DESC_NUM_GENERIC
/ 2)
824 /* Increment frame number by interval for IN */
826 dwc2_gadget_incr_frame_num(hs_ep
);
828 index
= (MAX_DMA_DESC_NUM_GENERIC
/ 2) * hs_ep
->isoc_chain_num
+
831 /* Sanity check of calculated index */
832 if ((hs_ep
->isoc_chain_num
&& index
> MAX_DMA_DESC_NUM_GENERIC
) ||
833 (!hs_ep
->isoc_chain_num
&& index
> MAX_DMA_DESC_NUM_GENERIC
/ 2)) {
834 dev_err(hsotg
->dev
, "wrong index %d for iso chain\n", index
);
838 desc
= &hs_ep
->desc_list
[index
];
840 /* Clear L bit of previous desc if more than one entries in the chain */
841 if (hs_ep
->next_desc
)
842 hs_ep
->desc_list
[index
- 1].status
&= ~DEV_DMA_L
;
844 dev_dbg(hsotg
->dev
, "%s: Filling ep %d, dir %s isoc desc # %d\n",
845 __func__
, hs_ep
->index
, hs_ep
->dir_in
? "in" : "out", index
);
848 desc
->status
|= (DEV_DMA_BUFF_STS_HBUSY
<< DEV_DMA_BUFF_STS_SHIFT
);
850 desc
->buf
= dma_buff
;
851 desc
->status
|= (DEV_DMA_L
| DEV_DMA_IOC
|
852 ((len
<< DEV_DMA_NBYTES_SHIFT
) & mask
));
855 desc
->status
|= ((hs_ep
->mc
<< DEV_DMA_ISOC_PID_SHIFT
) &
856 DEV_DMA_ISOC_PID_MASK
) |
857 ((len
% hs_ep
->ep
.maxpacket
) ?
859 ((hs_ep
->target_frame
<<
860 DEV_DMA_ISOC_FRNUM_SHIFT
) &
861 DEV_DMA_ISOC_FRNUM_MASK
);
864 desc
->status
&= ~DEV_DMA_BUFF_STS_MASK
;
865 desc
->status
|= (DEV_DMA_BUFF_STS_HREADY
<< DEV_DMA_BUFF_STS_SHIFT
);
867 /* Update index of last configured entry in the chain */
874 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
875 * @hs_ep: The isochronous endpoint.
877 * Prepare first descriptor chain for isochronous endpoints. Afterwards
878 * write DMA address to HW and enable the endpoint.
880 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
881 * to prepare second descriptor chain while first one is being processed by HW.
883 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep
*hs_ep
)
885 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
886 struct dwc2_hsotg_req
*hs_req
, *treq
;
887 int index
= hs_ep
->index
;
893 if (list_empty(&hs_ep
->queue
)) {
894 dev_dbg(hsotg
->dev
, "%s: No requests in queue\n", __func__
);
898 list_for_each_entry_safe(hs_req
, treq
, &hs_ep
->queue
, queue
) {
899 ret
= dwc2_gadget_fill_isoc_desc(hs_ep
, hs_req
->req
.dma
,
902 dev_dbg(hsotg
->dev
, "%s: desc chain full\n", __func__
);
907 depctl
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
908 dma_reg
= hs_ep
->dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
910 /* write descriptor chain address to control register */
911 dwc2_writel(hs_ep
->desc_list_dma
, hsotg
->regs
+ dma_reg
);
913 ctrl
= dwc2_readl(hsotg
->regs
+ depctl
);
914 ctrl
|= DXEPCTL_EPENA
| DXEPCTL_CNAK
;
915 dwc2_writel(ctrl
, hsotg
->regs
+ depctl
);
917 /* Switch ISOC descriptor chain number being processed by SW*/
918 hs_ep
->isoc_chain_num
= (hs_ep
->isoc_chain_num
^ 1) & 0x1;
919 hs_ep
->next_desc
= 0;
923 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
924 * @hsotg: The controller state.
925 * @hs_ep: The endpoint to process a request for
926 * @hs_req: The request to start.
927 * @continuing: True if we are doing more for the current request.
929 * Start the given request running by setting the endpoint registers
930 * appropriately, and writing any data to the FIFOs.
932 static void dwc2_hsotg_start_req(struct dwc2_hsotg
*hsotg
,
933 struct dwc2_hsotg_ep
*hs_ep
,
934 struct dwc2_hsotg_req
*hs_req
,
937 struct usb_request
*ureq
= &hs_req
->req
;
938 int index
= hs_ep
->index
;
939 int dir_in
= hs_ep
->dir_in
;
945 unsigned int packets
;
947 unsigned int dma_reg
;
950 if (hs_ep
->req
&& !continuing
) {
951 dev_err(hsotg
->dev
, "%s: active request\n", __func__
);
954 } else if (hs_ep
->req
!= hs_req
&& continuing
) {
956 "%s: continue different req\n", __func__
);
962 dma_reg
= dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
963 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
964 epsize_reg
= dir_in
? DIEPTSIZ(index
) : DOEPTSIZ(index
);
966 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
967 __func__
, dwc2_readl(hsotg
->regs
+ epctrl_reg
), index
,
968 hs_ep
->dir_in
? "in" : "out");
970 /* If endpoint is stalled, we will restart request later */
971 ctrl
= dwc2_readl(hsotg
->regs
+ epctrl_reg
);
973 if (index
&& ctrl
& DXEPCTL_STALL
) {
974 dev_warn(hsotg
->dev
, "%s: ep%d is stalled\n", __func__
, index
);
978 length
= ureq
->length
- ureq
->actual
;
979 dev_dbg(hsotg
->dev
, "ureq->length:%d ureq->actual:%d\n",
980 ureq
->length
, ureq
->actual
);
982 if (!using_desc_dma(hsotg
))
983 maxreq
= get_ep_limit(hs_ep
);
985 maxreq
= dwc2_gadget_get_chain_limit(hs_ep
);
987 if (length
> maxreq
) {
988 int round
= maxreq
% hs_ep
->ep
.maxpacket
;
990 dev_dbg(hsotg
->dev
, "%s: length %d, max-req %d, r %d\n",
991 __func__
, length
, maxreq
, round
);
993 /* round down to multiple of packets */
1001 packets
= DIV_ROUND_UP(length
, hs_ep
->ep
.maxpacket
);
1003 packets
= 1; /* send one packet if length is zero. */
1005 if (hs_ep
->isochronous
&& length
> (hs_ep
->mc
* hs_ep
->ep
.maxpacket
)) {
1006 dev_err(hsotg
->dev
, "req length > maxpacket*mc\n");
1010 if (dir_in
&& index
!= 0)
1011 if (hs_ep
->isochronous
)
1012 epsize
= DXEPTSIZ_MC(packets
);
1014 epsize
= DXEPTSIZ_MC(1);
1019 * zero length packet should be programmed on its own and should not
1020 * be counted in DIEPTSIZ.PktCnt with other packets.
1022 if (dir_in
&& ureq
->zero
&& !continuing
) {
1023 /* Test if zlp is actually required. */
1024 if ((ureq
->length
>= hs_ep
->ep
.maxpacket
) &&
1025 !(ureq
->length
% hs_ep
->ep
.maxpacket
))
1026 hs_ep
->send_zlp
= 1;
1029 epsize
|= DXEPTSIZ_PKTCNT(packets
);
1030 epsize
|= DXEPTSIZ_XFERSIZE(length
);
1032 dev_dbg(hsotg
->dev
, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1033 __func__
, packets
, length
, ureq
->length
, epsize
, epsize_reg
);
1035 /* store the request as the current one we're doing */
1036 hs_ep
->req
= hs_req
;
1038 if (using_desc_dma(hsotg
)) {
1040 u32 mps
= hs_ep
->ep
.maxpacket
;
1042 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1046 else if (length
% mps
)
1047 length
+= (mps
- (length
% mps
));
1051 * If more data to send, adjust DMA for EP0 out data stage.
1052 * ureq->dma stays unchanged, hence increment it by already
1053 * passed passed data count before starting new transaction.
1055 if (!index
&& hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
&&
1057 offset
= ureq
->actual
;
1059 /* Fill DDMA chain entries */
1060 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep
, ureq
->dma
+ offset
,
1063 /* write descriptor chain address to control register */
1064 dwc2_writel(hs_ep
->desc_list_dma
, hsotg
->regs
+ dma_reg
);
1066 dev_dbg(hsotg
->dev
, "%s: %08x pad => 0x%08x\n",
1067 __func__
, (u32
)hs_ep
->desc_list_dma
, dma_reg
);
1069 /* write size / packets */
1070 dwc2_writel(epsize
, hsotg
->regs
+ epsize_reg
);
1072 if (using_dma(hsotg
) && !continuing
&& (length
!= 0)) {
1074 * write DMA address to control register, buffer
1075 * already synced by dwc2_hsotg_ep_queue().
1078 dwc2_writel(ureq
->dma
, hsotg
->regs
+ dma_reg
);
1080 dev_dbg(hsotg
->dev
, "%s: %pad => 0x%08x\n",
1081 __func__
, &ureq
->dma
, dma_reg
);
1085 if (hs_ep
->isochronous
&& hs_ep
->interval
== 1) {
1086 hs_ep
->target_frame
= dwc2_hsotg_read_frameno(hsotg
);
1087 dwc2_gadget_incr_frame_num(hs_ep
);
1089 if (hs_ep
->target_frame
& 0x1)
1090 ctrl
|= DXEPCTL_SETODDFR
;
1092 ctrl
|= DXEPCTL_SETEVENFR
;
1095 ctrl
|= DXEPCTL_EPENA
; /* ensure ep enabled */
1097 dev_dbg(hsotg
->dev
, "ep0 state:%d\n", hsotg
->ep0_state
);
1099 /* For Setup request do not clear NAK */
1100 if (!(index
== 0 && hsotg
->ep0_state
== DWC2_EP0_SETUP
))
1101 ctrl
|= DXEPCTL_CNAK
; /* clear NAK set by core */
1103 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
1104 dwc2_writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
1107 * set these, it seems that DMA support increments past the end
1108 * of the packet buffer so we need to calculate the length from
1111 hs_ep
->size_loaded
= length
;
1112 hs_ep
->last_load
= ureq
->actual
;
1114 if (dir_in
&& !using_dma(hsotg
)) {
1115 /* set these anyway, we may need them for non-periodic in */
1116 hs_ep
->fifo_load
= 0;
1118 dwc2_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
1122 * Note, trying to clear the NAK here causes problems with transmit
1123 * on the S3C6400 ending up with the TXFIFO becoming full.
1126 /* check ep is enabled */
1127 if (!(dwc2_readl(hsotg
->regs
+ epctrl_reg
) & DXEPCTL_EPENA
))
1129 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1130 index
, dwc2_readl(hsotg
->regs
+ epctrl_reg
));
1132 dev_dbg(hsotg
->dev
, "%s: DXEPCTL=0x%08x\n",
1133 __func__
, dwc2_readl(hsotg
->regs
+ epctrl_reg
));
1135 /* enable ep interrupts */
1136 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 1);
1140 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1141 * @hsotg: The device state.
1142 * @hs_ep: The endpoint the request is on.
1143 * @req: The request being processed.
1145 * We've been asked to queue a request, so ensure that the memory buffer
1146 * is correctly setup for DMA. If we've been passed an extant DMA address
1147 * then ensure the buffer has been synced to memory. If our buffer has no
1148 * DMA memory, then we map the memory and mark our request to allow us to
1149 * cleanup on completion.
1151 static int dwc2_hsotg_map_dma(struct dwc2_hsotg
*hsotg
,
1152 struct dwc2_hsotg_ep
*hs_ep
,
1153 struct usb_request
*req
)
1157 ret
= usb_gadget_map_request(&hsotg
->gadget
, req
, hs_ep
->dir_in
);
1164 dev_err(hsotg
->dev
, "%s: failed to map buffer %p, %d bytes\n",
1165 __func__
, req
->buf
, req
->length
);
1170 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg
*hsotg
,
1171 struct dwc2_hsotg_ep
*hs_ep
,
1172 struct dwc2_hsotg_req
*hs_req
)
1174 void *req_buf
= hs_req
->req
.buf
;
1176 /* If dma is not being used or buffer is aligned */
1177 if (!using_dma(hsotg
) || !((long)req_buf
& 3))
1180 WARN_ON(hs_req
->saved_req_buf
);
1182 dev_dbg(hsotg
->dev
, "%s: %s: buf=%p length=%d\n", __func__
,
1183 hs_ep
->ep
.name
, req_buf
, hs_req
->req
.length
);
1185 hs_req
->req
.buf
= kmalloc(hs_req
->req
.length
, GFP_ATOMIC
);
1186 if (!hs_req
->req
.buf
) {
1187 hs_req
->req
.buf
= req_buf
;
1189 "%s: unable to allocate memory for bounce buffer\n",
1194 /* Save actual buffer */
1195 hs_req
->saved_req_buf
= req_buf
;
1198 memcpy(hs_req
->req
.buf
, req_buf
, hs_req
->req
.length
);
1203 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg
*hsotg
,
1204 struct dwc2_hsotg_ep
*hs_ep
,
1205 struct dwc2_hsotg_req
*hs_req
)
1207 /* If dma is not being used or buffer was aligned */
1208 if (!using_dma(hsotg
) || !hs_req
->saved_req_buf
)
1211 dev_dbg(hsotg
->dev
, "%s: %s: status=%d actual-length=%d\n", __func__
,
1212 hs_ep
->ep
.name
, hs_req
->req
.status
, hs_req
->req
.actual
);
1214 /* Copy data from bounce buffer on successful out transfer */
1215 if (!hs_ep
->dir_in
&& !hs_req
->req
.status
)
1216 memcpy(hs_req
->saved_req_buf
, hs_req
->req
.buf
,
1217 hs_req
->req
.actual
);
1219 /* Free bounce buffer */
1220 kfree(hs_req
->req
.buf
);
1222 hs_req
->req
.buf
= hs_req
->saved_req_buf
;
1223 hs_req
->saved_req_buf
= NULL
;
1227 * dwc2_gadget_target_frame_elapsed - Checks target frame
1228 * @hs_ep: The driver endpoint to check
1230 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1231 * corresponding transfer.
1233 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep
*hs_ep
)
1235 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1236 u32 target_frame
= hs_ep
->target_frame
;
1237 u32 current_frame
= dwc2_hsotg_read_frameno(hsotg
);
1238 bool frame_overrun
= hs_ep
->frame_overrun
;
1240 if (!frame_overrun
&& current_frame
>= target_frame
)
1243 if (frame_overrun
&& current_frame
>= target_frame
&&
1244 ((current_frame
- target_frame
) < DSTS_SOFFN_LIMIT
/ 2))
1251 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1252 * @hsotg: The driver state
1253 * @hs_ep: the ep descriptor chain is for
1255 * Called to update EP0 structure's pointers depend on stage of
1258 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg
*hsotg
,
1259 struct dwc2_hsotg_ep
*hs_ep
)
1261 switch (hsotg
->ep0_state
) {
1262 case DWC2_EP0_SETUP
:
1263 case DWC2_EP0_STATUS_OUT
:
1264 hs_ep
->desc_list
= hsotg
->setup_desc
[0];
1265 hs_ep
->desc_list_dma
= hsotg
->setup_desc_dma
[0];
1267 case DWC2_EP0_DATA_IN
:
1268 case DWC2_EP0_STATUS_IN
:
1269 hs_ep
->desc_list
= hsotg
->ctrl_in_desc
;
1270 hs_ep
->desc_list_dma
= hsotg
->ctrl_in_desc_dma
;
1272 case DWC2_EP0_DATA_OUT
:
1273 hs_ep
->desc_list
= hsotg
->ctrl_out_desc
;
1274 hs_ep
->desc_list_dma
= hsotg
->ctrl_out_desc_dma
;
1277 dev_err(hsotg
->dev
, "invalid EP 0 state in queue %d\n",
1285 static int dwc2_hsotg_ep_queue(struct usb_ep
*ep
, struct usb_request
*req
,
1288 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1289 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1290 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
1294 dev_dbg(hs
->dev
, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1295 ep
->name
, req
, req
->length
, req
->buf
, req
->no_interrupt
,
1296 req
->zero
, req
->short_not_ok
);
1298 /* Prevent new request submission when controller is suspended */
1299 if (hs
->lx_state
== DWC2_L2
) {
1300 dev_dbg(hs
->dev
, "%s: don't submit request while suspended\n",
1305 /* initialise status of the request */
1306 INIT_LIST_HEAD(&hs_req
->queue
);
1308 req
->status
= -EINPROGRESS
;
1310 ret
= dwc2_hsotg_handle_unaligned_buf_start(hs
, hs_ep
, hs_req
);
1314 /* if we're using DMA, sync the buffers as necessary */
1315 if (using_dma(hs
)) {
1316 ret
= dwc2_hsotg_map_dma(hs
, hs_ep
, req
);
1320 /* If using descriptor DMA configure EP0 descriptor chain pointers */
1321 if (using_desc_dma(hs
) && !hs_ep
->index
) {
1322 ret
= dwc2_gadget_set_ep0_desc_chain(hs
, hs_ep
);
1327 first
= list_empty(&hs_ep
->queue
);
1328 list_add_tail(&hs_req
->queue
, &hs_ep
->queue
);
1331 * Handle DDMA isochronous transfers separately - just add new entry
1332 * to the half of descriptor chain that is not processed by HW.
1333 * Transfer will be started once SW gets either one of NAK or
1334 * OutTknEpDis interrupts.
1336 if (using_desc_dma(hs
) && hs_ep
->isochronous
&&
1337 hs_ep
->target_frame
!= TARGET_FRAME_INITIAL
) {
1338 ret
= dwc2_gadget_fill_isoc_desc(hs_ep
, hs_req
->req
.dma
,
1339 hs_req
->req
.length
);
1341 dev_dbg(hs
->dev
, "%s: ISO desc chain full\n", __func__
);
1347 if (!hs_ep
->isochronous
) {
1348 dwc2_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
1352 while (dwc2_gadget_target_frame_elapsed(hs_ep
))
1353 dwc2_gadget_incr_frame_num(hs_ep
);
1355 if (hs_ep
->target_frame
!= TARGET_FRAME_INITIAL
)
1356 dwc2_hsotg_start_req(hs
, hs_ep
, hs_req
, false);
1361 static int dwc2_hsotg_ep_queue_lock(struct usb_ep
*ep
, struct usb_request
*req
,
1364 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1365 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
1366 unsigned long flags
= 0;
1369 spin_lock_irqsave(&hs
->lock
, flags
);
1370 ret
= dwc2_hsotg_ep_queue(ep
, req
, gfp_flags
);
1371 spin_unlock_irqrestore(&hs
->lock
, flags
);
1376 static void dwc2_hsotg_ep_free_request(struct usb_ep
*ep
,
1377 struct usb_request
*req
)
1379 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1385 * dwc2_hsotg_complete_oursetup - setup completion callback
1386 * @ep: The endpoint the request was on.
1387 * @req: The request completed.
1389 * Called on completion of any requests the driver itself
1390 * submitted that need cleaning up.
1392 static void dwc2_hsotg_complete_oursetup(struct usb_ep
*ep
,
1393 struct usb_request
*req
)
1395 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1396 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1398 dev_dbg(hsotg
->dev
, "%s: ep %p, req %p\n", __func__
, ep
, req
);
1400 dwc2_hsotg_ep_free_request(ep
, req
);
1404 * ep_from_windex - convert control wIndex value to endpoint
1405 * @hsotg: The driver state.
1406 * @windex: The control request wIndex field (in host order).
1408 * Convert the given wIndex into a pointer to an driver endpoint
1409 * structure, or return NULL if it is not a valid endpoint.
1411 static struct dwc2_hsotg_ep
*ep_from_windex(struct dwc2_hsotg
*hsotg
,
1414 struct dwc2_hsotg_ep
*ep
;
1415 int dir
= (windex
& USB_DIR_IN
) ? 1 : 0;
1416 int idx
= windex
& 0x7F;
1418 if (windex
>= 0x100)
1421 if (idx
> hsotg
->num_of_eps
)
1424 ep
= index_to_ep(hsotg
, idx
, dir
);
1426 if (idx
&& ep
->dir_in
!= dir
)
1433 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1434 * @hsotg: The driver state.
1435 * @testmode: requested usb test mode
1436 * Enable usb Test Mode requested by the Host.
1438 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg
*hsotg
, int testmode
)
1440 int dctl
= dwc2_readl(hsotg
->regs
+ DCTL
);
1442 dctl
&= ~DCTL_TSTCTL_MASK
;
1449 dctl
|= testmode
<< DCTL_TSTCTL_SHIFT
;
1454 dwc2_writel(dctl
, hsotg
->regs
+ DCTL
);
1459 * dwc2_hsotg_send_reply - send reply to control request
1460 * @hsotg: The device state
1462 * @buff: Buffer for request
1463 * @length: Length of reply.
1465 * Create a request and queue it on the given endpoint. This is useful as
1466 * an internal method of sending replies to certain control requests, etc.
1468 static int dwc2_hsotg_send_reply(struct dwc2_hsotg
*hsotg
,
1469 struct dwc2_hsotg_ep
*ep
,
1473 struct usb_request
*req
;
1476 dev_dbg(hsotg
->dev
, "%s: buff %p, len %d\n", __func__
, buff
, length
);
1478 req
= dwc2_hsotg_ep_alloc_request(&ep
->ep
, GFP_ATOMIC
);
1479 hsotg
->ep0_reply
= req
;
1481 dev_warn(hsotg
->dev
, "%s: cannot alloc req\n", __func__
);
1485 req
->buf
= hsotg
->ep0_buff
;
1486 req
->length
= length
;
1488 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1492 req
->complete
= dwc2_hsotg_complete_oursetup
;
1495 memcpy(req
->buf
, buff
, length
);
1497 ret
= dwc2_hsotg_ep_queue(&ep
->ep
, req
, GFP_ATOMIC
);
1499 dev_warn(hsotg
->dev
, "%s: cannot queue req\n", __func__
);
1507 * dwc2_hsotg_process_req_status - process request GET_STATUS
1508 * @hsotg: The device state
1509 * @ctrl: USB control request
1511 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg
*hsotg
,
1512 struct usb_ctrlrequest
*ctrl
)
1514 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1515 struct dwc2_hsotg_ep
*ep
;
1519 dev_dbg(hsotg
->dev
, "%s: USB_REQ_GET_STATUS\n", __func__
);
1522 dev_warn(hsotg
->dev
, "%s: direction out?\n", __func__
);
1526 switch (ctrl
->bRequestType
& USB_RECIP_MASK
) {
1527 case USB_RECIP_DEVICE
:
1529 * bit 0 => self powered
1530 * bit 1 => remote wakeup
1532 reply
= cpu_to_le16(0);
1535 case USB_RECIP_INTERFACE
:
1536 /* currently, the data result should be zero */
1537 reply
= cpu_to_le16(0);
1540 case USB_RECIP_ENDPOINT
:
1541 ep
= ep_from_windex(hsotg
, le16_to_cpu(ctrl
->wIndex
));
1545 reply
= cpu_to_le16(ep
->halted
? 1 : 0);
1552 if (le16_to_cpu(ctrl
->wLength
) != 2)
1555 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, &reply
, 2);
1557 dev_err(hsotg
->dev
, "%s: failed to send reply\n", __func__
);
1564 static int dwc2_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
, bool now
);
1567 * get_ep_head - return the first request on the endpoint
1568 * @hs_ep: The controller endpoint to get
1570 * Get the first request on the endpoint.
1572 static struct dwc2_hsotg_req
*get_ep_head(struct dwc2_hsotg_ep
*hs_ep
)
1574 return list_first_entry_or_null(&hs_ep
->queue
, struct dwc2_hsotg_req
,
1579 * dwc2_gadget_start_next_request - Starts next request from ep queue
1580 * @hs_ep: Endpoint structure
1582 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1583 * in its handler. Hence we need to unmask it here to be able to do
1584 * resynchronization.
1586 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep
*hs_ep
)
1589 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1590 int dir_in
= hs_ep
->dir_in
;
1591 struct dwc2_hsotg_req
*hs_req
;
1592 u32 epmsk_reg
= dir_in
? DIEPMSK
: DOEPMSK
;
1594 if (!list_empty(&hs_ep
->queue
)) {
1595 hs_req
= get_ep_head(hs_ep
);
1596 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, false);
1599 if (!hs_ep
->isochronous
)
1603 dev_dbg(hsotg
->dev
, "%s: No more ISOC-IN requests\n",
1606 dev_dbg(hsotg
->dev
, "%s: No more ISOC-OUT requests\n",
1608 mask
= dwc2_readl(hsotg
->regs
+ epmsk_reg
);
1609 mask
|= DOEPMSK_OUTTKNEPDISMSK
;
1610 dwc2_writel(mask
, hsotg
->regs
+ epmsk_reg
);
1615 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1616 * @hsotg: The device state
1617 * @ctrl: USB control request
1619 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg
*hsotg
,
1620 struct usb_ctrlrequest
*ctrl
)
1622 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1623 struct dwc2_hsotg_req
*hs_req
;
1624 bool set
= (ctrl
->bRequest
== USB_REQ_SET_FEATURE
);
1625 struct dwc2_hsotg_ep
*ep
;
1632 dev_dbg(hsotg
->dev
, "%s: %s_FEATURE\n",
1633 __func__
, set
? "SET" : "CLEAR");
1635 wValue
= le16_to_cpu(ctrl
->wValue
);
1636 wIndex
= le16_to_cpu(ctrl
->wIndex
);
1637 recip
= ctrl
->bRequestType
& USB_RECIP_MASK
;
1640 case USB_RECIP_DEVICE
:
1642 case USB_DEVICE_TEST_MODE
:
1643 if ((wIndex
& 0xff) != 0)
1648 hsotg
->test_mode
= wIndex
>> 8;
1649 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1652 "%s: failed to send reply\n", __func__
);
1661 case USB_RECIP_ENDPOINT
:
1662 ep
= ep_from_windex(hsotg
, wIndex
);
1664 dev_dbg(hsotg
->dev
, "%s: no endpoint for 0x%04x\n",
1670 case USB_ENDPOINT_HALT
:
1671 halted
= ep
->halted
;
1673 dwc2_hsotg_ep_sethalt(&ep
->ep
, set
, true);
1675 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1678 "%s: failed to send reply\n", __func__
);
1683 * we have to complete all requests for ep if it was
1684 * halted, and the halt was cleared by CLEAR_FEATURE
1687 if (!set
&& halted
) {
1689 * If we have request in progress,
1695 list_del_init(&hs_req
->queue
);
1696 if (hs_req
->req
.complete
) {
1697 spin_unlock(&hsotg
->lock
);
1698 usb_gadget_giveback_request(
1699 &ep
->ep
, &hs_req
->req
);
1700 spin_lock(&hsotg
->lock
);
1704 /* If we have pending request, then start it */
1706 dwc2_gadget_start_next_request(ep
);
1721 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg
*hsotg
);
1724 * dwc2_hsotg_stall_ep0 - stall ep0
1725 * @hsotg: The device state
1727 * Set stall for ep0 as response for setup request.
1729 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg
*hsotg
)
1731 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1735 dev_dbg(hsotg
->dev
, "ep0 stall (dir=%d)\n", ep0
->dir_in
);
1736 reg
= (ep0
->dir_in
) ? DIEPCTL0
: DOEPCTL0
;
1739 * DxEPCTL_Stall will be cleared by EP once it has
1740 * taken effect, so no need to clear later.
1743 ctrl
= dwc2_readl(hsotg
->regs
+ reg
);
1744 ctrl
|= DXEPCTL_STALL
;
1745 ctrl
|= DXEPCTL_CNAK
;
1746 dwc2_writel(ctrl
, hsotg
->regs
+ reg
);
1749 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1750 ctrl
, reg
, dwc2_readl(hsotg
->regs
+ reg
));
1753 * complete won't be called, so we enqueue
1754 * setup request here
1756 dwc2_hsotg_enqueue_setup(hsotg
);
1760 * dwc2_hsotg_process_control - process a control request
1761 * @hsotg: The device state
1762 * @ctrl: The control request received
1764 * The controller has received the SETUP phase of a control request, and
1765 * needs to work out what to do next (and whether to pass it on to the
1768 static void dwc2_hsotg_process_control(struct dwc2_hsotg
*hsotg
,
1769 struct usb_ctrlrequest
*ctrl
)
1771 struct dwc2_hsotg_ep
*ep0
= hsotg
->eps_out
[0];
1776 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1777 ctrl
->bRequestType
, ctrl
->bRequest
, ctrl
->wValue
,
1778 ctrl
->wIndex
, ctrl
->wLength
);
1780 if (ctrl
->wLength
== 0) {
1782 hsotg
->ep0_state
= DWC2_EP0_STATUS_IN
;
1783 } else if (ctrl
->bRequestType
& USB_DIR_IN
) {
1785 hsotg
->ep0_state
= DWC2_EP0_DATA_IN
;
1788 hsotg
->ep0_state
= DWC2_EP0_DATA_OUT
;
1791 if ((ctrl
->bRequestType
& USB_TYPE_MASK
) == USB_TYPE_STANDARD
) {
1792 switch (ctrl
->bRequest
) {
1793 case USB_REQ_SET_ADDRESS
:
1794 hsotg
->connected
= 1;
1795 dcfg
= dwc2_readl(hsotg
->regs
+ DCFG
);
1796 dcfg
&= ~DCFG_DEVADDR_MASK
;
1797 dcfg
|= (le16_to_cpu(ctrl
->wValue
) <<
1798 DCFG_DEVADDR_SHIFT
) & DCFG_DEVADDR_MASK
;
1799 dwc2_writel(dcfg
, hsotg
->regs
+ DCFG
);
1801 dev_info(hsotg
->dev
, "new address %d\n", ctrl
->wValue
);
1803 ret
= dwc2_hsotg_send_reply(hsotg
, ep0
, NULL
, 0);
1806 case USB_REQ_GET_STATUS
:
1807 ret
= dwc2_hsotg_process_req_status(hsotg
, ctrl
);
1810 case USB_REQ_CLEAR_FEATURE
:
1811 case USB_REQ_SET_FEATURE
:
1812 ret
= dwc2_hsotg_process_req_feature(hsotg
, ctrl
);
1817 /* as a fallback, try delivering it to the driver to deal with */
1819 if (ret
== 0 && hsotg
->driver
) {
1820 spin_unlock(&hsotg
->lock
);
1821 ret
= hsotg
->driver
->setup(&hsotg
->gadget
, ctrl
);
1822 spin_lock(&hsotg
->lock
);
1824 dev_dbg(hsotg
->dev
, "driver->setup() ret %d\n", ret
);
1828 * the request is either unhandlable, or is not formatted correctly
1829 * so respond with a STALL for the status stage to indicate failure.
1833 dwc2_hsotg_stall_ep0(hsotg
);
1837 * dwc2_hsotg_complete_setup - completion of a setup transfer
1838 * @ep: The endpoint the request was on.
1839 * @req: The request completed.
1841 * Called on completion of any requests the driver itself submitted for
1844 static void dwc2_hsotg_complete_setup(struct usb_ep
*ep
,
1845 struct usb_request
*req
)
1847 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
1848 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
1850 if (req
->status
< 0) {
1851 dev_dbg(hsotg
->dev
, "%s: failed %d\n", __func__
, req
->status
);
1855 spin_lock(&hsotg
->lock
);
1856 if (req
->actual
== 0)
1857 dwc2_hsotg_enqueue_setup(hsotg
);
1859 dwc2_hsotg_process_control(hsotg
, req
->buf
);
1860 spin_unlock(&hsotg
->lock
);
1864 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1865 * @hsotg: The device state.
1867 * Enqueue a request on EP0 if necessary to received any SETUP packets
1868 * received from the host.
1870 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg
*hsotg
)
1872 struct usb_request
*req
= hsotg
->ctrl_req
;
1873 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
1876 dev_dbg(hsotg
->dev
, "%s: queueing setup request\n", __func__
);
1880 req
->buf
= hsotg
->ctrl_buff
;
1881 req
->complete
= dwc2_hsotg_complete_setup
;
1883 if (!list_empty(&hs_req
->queue
)) {
1884 dev_dbg(hsotg
->dev
, "%s already queued???\n", __func__
);
1888 hsotg
->eps_out
[0]->dir_in
= 0;
1889 hsotg
->eps_out
[0]->send_zlp
= 0;
1890 hsotg
->ep0_state
= DWC2_EP0_SETUP
;
1892 ret
= dwc2_hsotg_ep_queue(&hsotg
->eps_out
[0]->ep
, req
, GFP_ATOMIC
);
1894 dev_err(hsotg
->dev
, "%s: failed queue (%d)\n", __func__
, ret
);
1896 * Don't think there's much we can do other than watch the
1902 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg
*hsotg
,
1903 struct dwc2_hsotg_ep
*hs_ep
)
1906 u8 index
= hs_ep
->index
;
1907 u32 epctl_reg
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
1908 u32 epsiz_reg
= hs_ep
->dir_in
? DIEPTSIZ(index
) : DOEPTSIZ(index
);
1911 dev_dbg(hsotg
->dev
, "Sending zero-length packet on ep%d\n",
1914 dev_dbg(hsotg
->dev
, "Receiving zero-length packet on ep%d\n",
1916 if (using_desc_dma(hsotg
)) {
1917 /* Not specific buffer needed for ep0 ZLP */
1918 dma_addr_t dma
= hs_ep
->desc_list_dma
;
1921 dwc2_gadget_set_ep0_desc_chain(hsotg
, hs_ep
);
1923 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep
, dma
, 0);
1925 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1926 DXEPTSIZ_XFERSIZE(0), hsotg
->regs
+
1930 ctrl
= dwc2_readl(hsotg
->regs
+ epctl_reg
);
1931 ctrl
|= DXEPCTL_CNAK
; /* clear NAK set by core */
1932 ctrl
|= DXEPCTL_EPENA
; /* ensure ep enabled */
1933 ctrl
|= DXEPCTL_USBACTEP
;
1934 dwc2_writel(ctrl
, hsotg
->regs
+ epctl_reg
);
1938 * dwc2_hsotg_complete_request - complete a request given to us
1939 * @hsotg: The device state.
1940 * @hs_ep: The endpoint the request was on.
1941 * @hs_req: The request to complete.
1942 * @result: The result code (0 => Ok, otherwise errno)
1944 * The given request has finished, so call the necessary completion
1945 * if it has one and then look to see if we can start a new request
1948 * Note, expects the ep to already be locked as appropriate.
1950 static void dwc2_hsotg_complete_request(struct dwc2_hsotg
*hsotg
,
1951 struct dwc2_hsotg_ep
*hs_ep
,
1952 struct dwc2_hsotg_req
*hs_req
,
1956 dev_dbg(hsotg
->dev
, "%s: nothing to complete?\n", __func__
);
1960 dev_dbg(hsotg
->dev
, "complete: ep %p %s, req %p, %d => %p\n",
1961 hs_ep
, hs_ep
->ep
.name
, hs_req
, result
, hs_req
->req
.complete
);
1964 * only replace the status if we've not already set an error
1965 * from a previous transaction
1968 if (hs_req
->req
.status
== -EINPROGRESS
)
1969 hs_req
->req
.status
= result
;
1971 if (using_dma(hsotg
))
1972 dwc2_hsotg_unmap_dma(hsotg
, hs_ep
, hs_req
);
1974 dwc2_hsotg_handle_unaligned_buf_complete(hsotg
, hs_ep
, hs_req
);
1977 list_del_init(&hs_req
->queue
);
1980 * call the complete request with the locks off, just in case the
1981 * request tries to queue more work for this endpoint.
1984 if (hs_req
->req
.complete
) {
1985 spin_unlock(&hsotg
->lock
);
1986 usb_gadget_giveback_request(&hs_ep
->ep
, &hs_req
->req
);
1987 spin_lock(&hsotg
->lock
);
1990 /* In DDMA don't need to proceed to starting of next ISOC request */
1991 if (using_desc_dma(hsotg
) && hs_ep
->isochronous
)
1995 * Look to see if there is anything else to do. Note, the completion
1996 * of the previous request may have caused a new request to be started
1997 * so be careful when doing this.
2000 if (!hs_ep
->req
&& result
>= 0)
2001 dwc2_gadget_start_next_request(hs_ep
);
2005 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2006 * @hs_ep: The endpoint the request was on.
2008 * Get first request from the ep queue, determine descriptor on which complete
2009 * happened. SW based on isoc_chain_num discovers which half of the descriptor
2010 * chain is currently in use by HW, adjusts dma_address and calculates index
2011 * of completed descriptor based on the value of DEPDMA register. Update actual
2012 * length of request, giveback to gadget.
2014 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2016 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2017 struct dwc2_hsotg_req
*hs_req
;
2018 struct usb_request
*ureq
;
2020 dma_addr_t dma_addr
;
2026 hs_req
= get_ep_head(hs_ep
);
2028 dev_warn(hsotg
->dev
, "%s: ISOC EP queue empty\n", __func__
);
2031 ureq
= &hs_req
->req
;
2033 dma_addr
= hs_ep
->desc_list_dma
;
2036 * If lower half of descriptor chain is currently use by SW,
2037 * that means higher half is being processed by HW, so shift
2038 * DMA address to higher half of descriptor chain.
2040 if (!hs_ep
->isoc_chain_num
)
2041 dma_addr
+= sizeof(struct dwc2_dma_desc
) *
2042 (MAX_DMA_DESC_NUM_GENERIC
/ 2);
2044 dma_reg
= hs_ep
->dir_in
? DIEPDMA(hs_ep
->index
) : DOEPDMA(hs_ep
->index
);
2045 depdma
= dwc2_readl(hsotg
->regs
+ dma_reg
);
2047 index
= (depdma
- dma_addr
) / sizeof(struct dwc2_dma_desc
) - 1;
2048 desc_sts
= hs_ep
->desc_list
[index
].status
;
2050 mask
= hs_ep
->dir_in
? DEV_DMA_ISOC_TX_NBYTES_MASK
:
2051 DEV_DMA_ISOC_RX_NBYTES_MASK
;
2052 ureq
->actual
= ureq
->length
-
2053 ((desc_sts
& mask
) >> DEV_DMA_ISOC_NBYTES_SHIFT
);
2055 /* Adjust actual length for ISOC Out if length is not align of 4 */
2056 if (!hs_ep
->dir_in
&& ureq
->length
& 0x3)
2057 ureq
->actual
+= 4 - (ureq
->length
& 0x3);
2059 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2063 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2064 * @hs_ep: The isochronous endpoint to be re-enabled.
2066 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2067 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2068 * was under SW control till HW was busy and restart the endpoint if needed.
2070 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2072 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2076 u32 dma_addr
= hs_ep
->desc_list_dma
;
2077 unsigned char index
= hs_ep
->index
;
2079 dma_reg
= hs_ep
->dir_in
? DIEPDMA(index
) : DOEPDMA(index
);
2080 depctl
= hs_ep
->dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
2082 ctrl
= dwc2_readl(hsotg
->regs
+ depctl
);
2085 * EP was disabled if HW has processed last descriptor or BNA was set.
2086 * So restart ep if SW has prepared new descriptor chain in ep_queue
2087 * routine while HW was busy.
2089 if (!(ctrl
& DXEPCTL_EPENA
)) {
2090 if (!hs_ep
->next_desc
) {
2091 dev_dbg(hsotg
->dev
, "%s: No more ISOC requests\n",
2096 dma_addr
+= sizeof(struct dwc2_dma_desc
) *
2097 (MAX_DMA_DESC_NUM_GENERIC
/ 2) *
2098 hs_ep
->isoc_chain_num
;
2099 dwc2_writel(dma_addr
, hsotg
->regs
+ dma_reg
);
2101 ctrl
|= DXEPCTL_EPENA
| DXEPCTL_CNAK
;
2102 dwc2_writel(ctrl
, hsotg
->regs
+ depctl
);
2104 /* Switch ISOC descriptor chain number being processed by SW*/
2105 hs_ep
->isoc_chain_num
= (hs_ep
->isoc_chain_num
^ 1) & 0x1;
2106 hs_ep
->next_desc
= 0;
2108 dev_dbg(hsotg
->dev
, "%s: Restarted isochronous endpoint\n",
2114 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2115 * @hsotg: The device state.
2116 * @ep_idx: The endpoint index for the data
2117 * @size: The size of data in the fifo, in bytes
2119 * The FIFO status shows there is data to read from the FIFO for a given
2120 * endpoint, so sort out whether we need to read the data into a request
2121 * that has been made for that endpoint.
2123 static void dwc2_hsotg_rx_data(struct dwc2_hsotg
*hsotg
, int ep_idx
, int size
)
2125 struct dwc2_hsotg_ep
*hs_ep
= hsotg
->eps_out
[ep_idx
];
2126 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2127 void __iomem
*fifo
= hsotg
->regs
+ EPFIFO(ep_idx
);
2133 u32 epctl
= dwc2_readl(hsotg
->regs
+ DOEPCTL(ep_idx
));
2137 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2138 __func__
, size
, ep_idx
, epctl
);
2140 /* dump the data from the FIFO, we've nothing we can do */
2141 for (ptr
= 0; ptr
< size
; ptr
+= 4)
2142 (void)dwc2_readl(fifo
);
2148 read_ptr
= hs_req
->req
.actual
;
2149 max_req
= hs_req
->req
.length
- read_ptr
;
2151 dev_dbg(hsotg
->dev
, "%s: read %d/%d, done %d/%d\n",
2152 __func__
, to_read
, max_req
, read_ptr
, hs_req
->req
.length
);
2154 if (to_read
> max_req
) {
2156 * more data appeared than we where willing
2157 * to deal with in this request.
2160 /* currently we don't deal this */
2164 hs_ep
->total_data
+= to_read
;
2165 hs_req
->req
.actual
+= to_read
;
2166 to_read
= DIV_ROUND_UP(to_read
, 4);
2169 * note, we might over-write the buffer end by 3 bytes depending on
2170 * alignment of the data.
2172 ioread32_rep(fifo
, hs_req
->req
.buf
+ read_ptr
, to_read
);
2176 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2177 * @hsotg: The device instance
2178 * @dir_in: If IN zlp
2180 * Generate a zero-length IN packet request for terminating a SETUP
2183 * Note, since we don't write any data to the TxFIFO, then it is
2184 * currently believed that we do not need to wait for any space in
2187 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg
*hsotg
, bool dir_in
)
2189 /* eps_out[0] is used in both directions */
2190 hsotg
->eps_out
[0]->dir_in
= dir_in
;
2191 hsotg
->ep0_state
= dir_in
? DWC2_EP0_STATUS_IN
: DWC2_EP0_STATUS_OUT
;
2193 dwc2_hsotg_program_zlp(hsotg
, hsotg
->eps_out
[0]);
2196 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg
*hsotg
,
2201 ctrl
= dwc2_readl(hsotg
->regs
+ epctl_reg
);
2202 if (ctrl
& DXEPCTL_EOFRNUM
)
2203 ctrl
|= DXEPCTL_SETEVENFR
;
2205 ctrl
|= DXEPCTL_SETODDFR
;
2206 dwc2_writel(ctrl
, hsotg
->regs
+ epctl_reg
);
2210 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2211 * @hs_ep - The endpoint on which transfer went
2213 * Iterate over endpoints descriptor chain and get info on bytes remained
2214 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2216 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep
*hs_ep
)
2218 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2219 unsigned int bytes_rem
= 0;
2220 struct dwc2_dma_desc
*desc
= hs_ep
->desc_list
;
2227 for (i
= 0; i
< hs_ep
->desc_count
; ++i
) {
2228 status
= desc
->status
;
2229 bytes_rem
+= status
& DEV_DMA_NBYTES_MASK
;
2231 if (status
& DEV_DMA_STS_MASK
)
2232 dev_err(hsotg
->dev
, "descriptor %d closed with %x\n",
2233 i
, status
& DEV_DMA_STS_MASK
);
2240 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2241 * @hsotg: The device instance
2242 * @epnum: The endpoint received from
2244 * The RXFIFO has delivered an OutDone event, which means that the data
2245 * transfer for an OUT endpoint has been completed, either by a short
2246 * packet or by the finish of a transfer.
2248 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg
*hsotg
, int epnum
)
2250 u32 epsize
= dwc2_readl(hsotg
->regs
+ DOEPTSIZ(epnum
));
2251 struct dwc2_hsotg_ep
*hs_ep
= hsotg
->eps_out
[epnum
];
2252 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2253 struct usb_request
*req
= &hs_req
->req
;
2254 unsigned int size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
2258 dev_dbg(hsotg
->dev
, "%s: no request active\n", __func__
);
2262 if (epnum
== 0 && hsotg
->ep0_state
== DWC2_EP0_STATUS_OUT
) {
2263 dev_dbg(hsotg
->dev
, "zlp packet received\n");
2264 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2265 dwc2_hsotg_enqueue_setup(hsotg
);
2269 if (using_desc_dma(hsotg
))
2270 size_left
= dwc2_gadget_get_xfersize_ddma(hs_ep
);
2272 if (using_dma(hsotg
)) {
2273 unsigned int size_done
;
2276 * Calculate the size of the transfer by checking how much
2277 * is left in the endpoint size register and then working it
2278 * out from the amount we loaded for the transfer.
2280 * We need to do this as DMA pointers are always 32bit aligned
2281 * so may overshoot/undershoot the transfer.
2284 size_done
= hs_ep
->size_loaded
- size_left
;
2285 size_done
+= hs_ep
->last_load
;
2287 req
->actual
= size_done
;
2290 /* if there is more request to do, schedule new transfer */
2291 if (req
->actual
< req
->length
&& size_left
== 0) {
2292 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
2296 if (req
->actual
< req
->length
&& req
->short_not_ok
) {
2297 dev_dbg(hsotg
->dev
, "%s: got %d/%d (short not ok) => error\n",
2298 __func__
, req
->actual
, req
->length
);
2301 * todo - what should we return here? there's no one else
2302 * even bothering to check the status.
2306 /* DDMA IN status phase will start from StsPhseRcvd interrupt */
2307 if (!using_desc_dma(hsotg
) && epnum
== 0 &&
2308 hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
) {
2309 /* Move to STATUS IN */
2310 dwc2_hsotg_ep0_zlp(hsotg
, true);
2315 * Slave mode OUT transfers do not go through XferComplete so
2316 * adjust the ISOC parity here.
2318 if (!using_dma(hsotg
)) {
2319 if (hs_ep
->isochronous
&& hs_ep
->interval
== 1)
2320 dwc2_hsotg_change_ep_iso_parity(hsotg
, DOEPCTL(epnum
));
2321 else if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
2322 dwc2_gadget_incr_frame_num(hs_ep
);
2325 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, result
);
2329 * dwc2_hsotg_handle_rx - RX FIFO has data
2330 * @hsotg: The device instance
2332 * The IRQ handler has detected that the RX FIFO has some data in it
2333 * that requires processing, so find out what is in there and do the
2336 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2337 * chunks, so if you have x packets received on an endpoint you'll get x
2338 * FIFO events delivered, each with a packet's worth of data in it.
2340 * When using DMA, we should not be processing events from the RXFIFO
2341 * as the actual data should be sent to the memory directly and we turn
2342 * on the completion interrupts to get notifications of transfer completion.
2344 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg
*hsotg
)
2346 u32 grxstsr
= dwc2_readl(hsotg
->regs
+ GRXSTSP
);
2347 u32 epnum
, status
, size
;
2349 WARN_ON(using_dma(hsotg
));
2351 epnum
= grxstsr
& GRXSTS_EPNUM_MASK
;
2352 status
= grxstsr
& GRXSTS_PKTSTS_MASK
;
2354 size
= grxstsr
& GRXSTS_BYTECNT_MASK
;
2355 size
>>= GRXSTS_BYTECNT_SHIFT
;
2357 dev_dbg(hsotg
->dev
, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2358 __func__
, grxstsr
, size
, epnum
);
2360 switch ((status
& GRXSTS_PKTSTS_MASK
) >> GRXSTS_PKTSTS_SHIFT
) {
2361 case GRXSTS_PKTSTS_GLOBALOUTNAK
:
2362 dev_dbg(hsotg
->dev
, "GLOBALOUTNAK\n");
2365 case GRXSTS_PKTSTS_OUTDONE
:
2366 dev_dbg(hsotg
->dev
, "OutDone (Frame=0x%08x)\n",
2367 dwc2_hsotg_read_frameno(hsotg
));
2369 if (!using_dma(hsotg
))
2370 dwc2_hsotg_handle_outdone(hsotg
, epnum
);
2373 case GRXSTS_PKTSTS_SETUPDONE
:
2375 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2376 dwc2_hsotg_read_frameno(hsotg
),
2377 dwc2_readl(hsotg
->regs
+ DOEPCTL(0)));
2379 * Call dwc2_hsotg_handle_outdone here if it was not called from
2380 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2381 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2383 if (hsotg
->ep0_state
== DWC2_EP0_SETUP
)
2384 dwc2_hsotg_handle_outdone(hsotg
, epnum
);
2387 case GRXSTS_PKTSTS_OUTRX
:
2388 dwc2_hsotg_rx_data(hsotg
, epnum
, size
);
2391 case GRXSTS_PKTSTS_SETUPRX
:
2393 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2394 dwc2_hsotg_read_frameno(hsotg
),
2395 dwc2_readl(hsotg
->regs
+ DOEPCTL(0)));
2397 WARN_ON(hsotg
->ep0_state
!= DWC2_EP0_SETUP
);
2399 dwc2_hsotg_rx_data(hsotg
, epnum
, size
);
2403 dev_warn(hsotg
->dev
, "%s: unknown status %08x\n",
2406 dwc2_hsotg_dump(hsotg
);
2412 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2413 * @mps: The maximum packet size in bytes.
2415 static u32
dwc2_hsotg_ep0_mps(unsigned int mps
)
2419 return D0EPCTL_MPS_64
;
2421 return D0EPCTL_MPS_32
;
2423 return D0EPCTL_MPS_16
;
2425 return D0EPCTL_MPS_8
;
2428 /* bad max packet size, warn and return invalid result */
2434 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2435 * @hsotg: The driver state.
2436 * @ep: The index number of the endpoint
2437 * @mps: The maximum packet size in bytes
2438 * @mc: The multicount value
2440 * Configure the maximum packet size for the given endpoint, updating
2441 * the hardware control registers to reflect this.
2443 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg
*hsotg
,
2444 unsigned int ep
, unsigned int mps
,
2445 unsigned int mc
, unsigned int dir_in
)
2447 struct dwc2_hsotg_ep
*hs_ep
;
2448 void __iomem
*regs
= hsotg
->regs
;
2451 hs_ep
= index_to_ep(hsotg
, ep
, dir_in
);
2456 u32 mps_bytes
= mps
;
2458 /* EP0 is a special case */
2459 mps
= dwc2_hsotg_ep0_mps(mps_bytes
);
2462 hs_ep
->ep
.maxpacket
= mps_bytes
;
2470 hs_ep
->ep
.maxpacket
= mps
;
2474 reg
= dwc2_readl(regs
+ DIEPCTL(ep
));
2475 reg
&= ~DXEPCTL_MPS_MASK
;
2477 dwc2_writel(reg
, regs
+ DIEPCTL(ep
));
2479 reg
= dwc2_readl(regs
+ DOEPCTL(ep
));
2480 reg
&= ~DXEPCTL_MPS_MASK
;
2482 dwc2_writel(reg
, regs
+ DOEPCTL(ep
));
2488 dev_err(hsotg
->dev
, "ep%d: bad mps of %d\n", ep
, mps
);
2492 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2493 * @hsotg: The driver state
2494 * @idx: The index for the endpoint (0..15)
2496 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg
*hsotg
, unsigned int idx
)
2501 dwc2_writel(GRSTCTL_TXFNUM(idx
) | GRSTCTL_TXFFLSH
,
2502 hsotg
->regs
+ GRSTCTL
);
2504 /* wait until the fifo is flushed */
2508 val
= dwc2_readl(hsotg
->regs
+ GRSTCTL
);
2510 if ((val
& (GRSTCTL_TXFFLSH
)) == 0)
2513 if (--timeout
== 0) {
2515 "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
2525 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2526 * @hsotg: The driver state
2527 * @hs_ep: The driver endpoint to check.
2529 * Check to see if there is a request that has data to send, and if so
2530 * make an attempt to write data into the FIFO.
2532 static int dwc2_hsotg_trytx(struct dwc2_hsotg
*hsotg
,
2533 struct dwc2_hsotg_ep
*hs_ep
)
2535 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2537 if (!hs_ep
->dir_in
|| !hs_req
) {
2539 * if request is not enqueued, we disable interrupts
2540 * for endpoints, excepting ep0
2542 if (hs_ep
->index
!= 0)
2543 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
,
2548 if (hs_req
->req
.actual
< hs_req
->req
.length
) {
2549 dev_dbg(hsotg
->dev
, "trying to write more for ep%d\n",
2551 return dwc2_hsotg_write_fifo(hsotg
, hs_ep
, hs_req
);
2558 * dwc2_hsotg_complete_in - complete IN transfer
2559 * @hsotg: The device state.
2560 * @hs_ep: The endpoint that has just completed.
2562 * An IN transfer has been completed, update the transfer's state and then
2563 * call the relevant completion routines.
2565 static void dwc2_hsotg_complete_in(struct dwc2_hsotg
*hsotg
,
2566 struct dwc2_hsotg_ep
*hs_ep
)
2568 struct dwc2_hsotg_req
*hs_req
= hs_ep
->req
;
2569 u32 epsize
= dwc2_readl(hsotg
->regs
+ DIEPTSIZ(hs_ep
->index
));
2570 int size_left
, size_done
;
2573 dev_dbg(hsotg
->dev
, "XferCompl but no req\n");
2577 /* Finish ZLP handling for IN EP0 transactions */
2578 if (hs_ep
->index
== 0 && hsotg
->ep0_state
== DWC2_EP0_STATUS_IN
) {
2579 dev_dbg(hsotg
->dev
, "zlp packet sent\n");
2582 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2583 * changed to IN. Change back to complete OUT transfer request
2587 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2588 if (hsotg
->test_mode
) {
2591 ret
= dwc2_hsotg_set_test_mode(hsotg
, hsotg
->test_mode
);
2593 dev_dbg(hsotg
->dev
, "Invalid Test #%d\n",
2595 dwc2_hsotg_stall_ep0(hsotg
);
2599 dwc2_hsotg_enqueue_setup(hsotg
);
2604 * Calculate the size of the transfer by checking how much is left
2605 * in the endpoint size register and then working it out from
2606 * the amount we loaded for the transfer.
2608 * We do this even for DMA, as the transfer may have incremented
2609 * past the end of the buffer (DMA transfers are always 32bit
2612 if (using_desc_dma(hsotg
)) {
2613 size_left
= dwc2_gadget_get_xfersize_ddma(hs_ep
);
2615 dev_err(hsotg
->dev
, "error parsing DDMA results %d\n",
2618 size_left
= DXEPTSIZ_XFERSIZE_GET(epsize
);
2621 size_done
= hs_ep
->size_loaded
- size_left
;
2622 size_done
+= hs_ep
->last_load
;
2624 if (hs_req
->req
.actual
!= size_done
)
2625 dev_dbg(hsotg
->dev
, "%s: adjusting size done %d => %d\n",
2626 __func__
, hs_req
->req
.actual
, size_done
);
2628 hs_req
->req
.actual
= size_done
;
2629 dev_dbg(hsotg
->dev
, "req->length:%d req->actual:%d req->zero:%d\n",
2630 hs_req
->req
.length
, hs_req
->req
.actual
, hs_req
->req
.zero
);
2632 if (!size_left
&& hs_req
->req
.actual
< hs_req
->req
.length
) {
2633 dev_dbg(hsotg
->dev
, "%s trying more for req...\n", __func__
);
2634 dwc2_hsotg_start_req(hsotg
, hs_ep
, hs_req
, true);
2638 /* Zlp for all endpoints, for ep0 only in DATA IN stage */
2639 if (hs_ep
->send_zlp
) {
2640 dwc2_hsotg_program_zlp(hsotg
, hs_ep
);
2641 hs_ep
->send_zlp
= 0;
2642 /* transfer will be completed on next complete interrupt */
2646 if (hs_ep
->index
== 0 && hsotg
->ep0_state
== DWC2_EP0_DATA_IN
) {
2647 /* Move to STATUS OUT */
2648 dwc2_hsotg_ep0_zlp(hsotg
, false);
2652 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
, 0);
2656 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2657 * @hsotg: The device state.
2658 * @idx: Index of ep.
2659 * @dir_in: Endpoint direction 1-in 0-out.
2661 * Reads for endpoint with given index and direction, by masking
2662 * epint_reg with coresponding mask.
2664 static u32
dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg
*hsotg
,
2665 unsigned int idx
, int dir_in
)
2667 u32 epmsk_reg
= dir_in
? DIEPMSK
: DOEPMSK
;
2668 u32 epint_reg
= dir_in
? DIEPINT(idx
) : DOEPINT(idx
);
2673 mask
= dwc2_readl(hsotg
->regs
+ epmsk_reg
);
2674 diepempmsk
= dwc2_readl(hsotg
->regs
+ DIEPEMPMSK
);
2675 mask
|= ((diepempmsk
>> idx
) & 0x1) ? DIEPMSK_TXFIFOEMPTY
: 0;
2676 mask
|= DXEPINT_SETUP_RCVD
;
2678 ints
= dwc2_readl(hsotg
->regs
+ epint_reg
);
2684 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2685 * @hs_ep: The endpoint on which interrupt is asserted.
2687 * This interrupt indicates that the endpoint has been disabled per the
2688 * application's request.
2690 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2691 * in case of ISOC completes current request.
2693 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2694 * request starts it.
2696 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep
*hs_ep
)
2698 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2699 struct dwc2_hsotg_req
*hs_req
;
2700 unsigned char idx
= hs_ep
->index
;
2701 int dir_in
= hs_ep
->dir_in
;
2702 u32 epctl_reg
= dir_in
? DIEPCTL(idx
) : DOEPCTL(idx
);
2703 int dctl
= dwc2_readl(hsotg
->regs
+ DCTL
);
2705 dev_dbg(hsotg
->dev
, "%s: EPDisbld\n", __func__
);
2708 int epctl
= dwc2_readl(hsotg
->regs
+ epctl_reg
);
2710 dwc2_hsotg_txfifo_flush(hsotg
, hs_ep
->fifo_index
);
2712 if (hs_ep
->isochronous
) {
2713 dwc2_hsotg_complete_in(hsotg
, hs_ep
);
2717 if ((epctl
& DXEPCTL_STALL
) && (epctl
& DXEPCTL_EPTYPE_BULK
)) {
2718 int dctl
= dwc2_readl(hsotg
->regs
+ DCTL
);
2720 dctl
|= DCTL_CGNPINNAK
;
2721 dwc2_writel(dctl
, hsotg
->regs
+ DCTL
);
2726 if (dctl
& DCTL_GOUTNAKSTS
) {
2727 dctl
|= DCTL_CGOUTNAK
;
2728 dwc2_writel(dctl
, hsotg
->regs
+ DCTL
);
2731 if (!hs_ep
->isochronous
)
2734 if (list_empty(&hs_ep
->queue
)) {
2735 dev_dbg(hsotg
->dev
, "%s: complete_ep 0x%p, ep->queue empty!\n",
2741 hs_req
= get_ep_head(hs_ep
);
2743 dwc2_hsotg_complete_request(hsotg
, hs_ep
, hs_req
,
2745 dwc2_gadget_incr_frame_num(hs_ep
);
2746 } while (dwc2_gadget_target_frame_elapsed(hs_ep
));
2748 dwc2_gadget_start_next_request(hs_ep
);
2752 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2753 * @hs_ep: The endpoint on which interrupt is asserted.
2755 * This is starting point for ISOC-OUT transfer, synchronization done with
2756 * first out token received from host while corresponding EP is disabled.
2758 * Device does not know initial frame in which out token will come. For this
2759 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2760 * getting this interrupt SW starts calculation for next transfer frame.
2762 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep
*ep
)
2764 struct dwc2_hsotg
*hsotg
= ep
->parent
;
2765 int dir_in
= ep
->dir_in
;
2769 if (dir_in
|| !ep
->isochronous
)
2773 * Store frame in which irq was asserted here, as
2774 * it can change while completing request below.
2776 tmp
= dwc2_hsotg_read_frameno(hsotg
);
2778 dwc2_hsotg_complete_request(hsotg
, ep
, get_ep_head(ep
), -ENODATA
);
2780 if (using_desc_dma(hsotg
)) {
2781 if (ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2782 /* Start first ISO Out */
2783 ep
->target_frame
= tmp
;
2784 dwc2_gadget_start_isoc_ddma(ep
);
2789 if (ep
->interval
> 1 &&
2790 ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2794 dsts
= dwc2_readl(hsotg
->regs
+ DSTS
);
2795 ep
->target_frame
= dwc2_hsotg_read_frameno(hsotg
);
2796 dwc2_gadget_incr_frame_num(ep
);
2798 ctrl
= dwc2_readl(hsotg
->regs
+ DOEPCTL(ep
->index
));
2799 if (ep
->target_frame
& 0x1)
2800 ctrl
|= DXEPCTL_SETODDFR
;
2802 ctrl
|= DXEPCTL_SETEVENFR
;
2804 dwc2_writel(ctrl
, hsotg
->regs
+ DOEPCTL(ep
->index
));
2807 dwc2_gadget_start_next_request(ep
);
2808 doepmsk
= dwc2_readl(hsotg
->regs
+ DOEPMSK
);
2809 doepmsk
&= ~DOEPMSK_OUTTKNEPDISMSK
;
2810 dwc2_writel(doepmsk
, hsotg
->regs
+ DOEPMSK
);
2814 * dwc2_gadget_handle_nak - handle NAK interrupt
2815 * @hs_ep: The endpoint on which interrupt is asserted.
2817 * This is starting point for ISOC-IN transfer, synchronization done with
2818 * first IN token received from host while corresponding EP is disabled.
2820 * Device does not know when first one token will arrive from host. On first
2821 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2822 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2823 * sent in response to that as there was no data in FIFO. SW is basing on this
2824 * interrupt to obtain frame in which token has come and then based on the
2825 * interval calculates next frame for transfer.
2827 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep
*hs_ep
)
2829 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
2830 int dir_in
= hs_ep
->dir_in
;
2832 if (!dir_in
|| !hs_ep
->isochronous
)
2835 if (hs_ep
->target_frame
== TARGET_FRAME_INITIAL
) {
2836 hs_ep
->target_frame
= dwc2_hsotg_read_frameno(hsotg
);
2838 if (using_desc_dma(hsotg
)) {
2839 dwc2_gadget_start_isoc_ddma(hs_ep
);
2843 if (hs_ep
->interval
> 1) {
2844 u32 ctrl
= dwc2_readl(hsotg
->regs
+
2845 DIEPCTL(hs_ep
->index
));
2846 if (hs_ep
->target_frame
& 0x1)
2847 ctrl
|= DXEPCTL_SETODDFR
;
2849 ctrl
|= DXEPCTL_SETEVENFR
;
2851 dwc2_writel(ctrl
, hsotg
->regs
+ DIEPCTL(hs_ep
->index
));
2854 dwc2_hsotg_complete_request(hsotg
, hs_ep
,
2855 get_ep_head(hs_ep
), 0);
2858 dwc2_gadget_incr_frame_num(hs_ep
);
2862 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2863 * @hsotg: The driver state
2864 * @idx: The index for the endpoint (0..15)
2865 * @dir_in: Set if this is an IN endpoint
2867 * Process and clear any interrupt pending for an individual endpoint
2869 static void dwc2_hsotg_epint(struct dwc2_hsotg
*hsotg
, unsigned int idx
,
2872 struct dwc2_hsotg_ep
*hs_ep
= index_to_ep(hsotg
, idx
, dir_in
);
2873 u32 epint_reg
= dir_in
? DIEPINT(idx
) : DOEPINT(idx
);
2874 u32 epctl_reg
= dir_in
? DIEPCTL(idx
) : DOEPCTL(idx
);
2875 u32 epsiz_reg
= dir_in
? DIEPTSIZ(idx
) : DOEPTSIZ(idx
);
2879 ints
= dwc2_gadget_read_ep_interrupts(hsotg
, idx
, dir_in
);
2880 ctrl
= dwc2_readl(hsotg
->regs
+ epctl_reg
);
2882 /* Clear endpoint interrupts */
2883 dwc2_writel(ints
, hsotg
->regs
+ epint_reg
);
2886 dev_err(hsotg
->dev
, "%s:Interrupt for unconfigured ep%d(%s)\n",
2887 __func__
, idx
, dir_in
? "in" : "out");
2891 dev_dbg(hsotg
->dev
, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2892 __func__
, idx
, dir_in
? "in" : "out", ints
);
2894 /* Don't process XferCompl interrupt if it is a setup packet */
2895 if (idx
== 0 && (ints
& (DXEPINT_SETUP
| DXEPINT_SETUP_RCVD
)))
2896 ints
&= ~DXEPINT_XFERCOMPL
;
2899 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2900 * stage and xfercomplete was generated without SETUP phase done
2901 * interrupt. SW should parse received setup packet only after host's
2902 * exit from setup phase of control transfer.
2904 if (using_desc_dma(hsotg
) && idx
== 0 && !hs_ep
->dir_in
&&
2905 hsotg
->ep0_state
== DWC2_EP0_SETUP
&& !(ints
& DXEPINT_SETUP
))
2906 ints
&= ~DXEPINT_XFERCOMPL
;
2908 if (ints
& DXEPINT_XFERCOMPL
) {
2910 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2911 __func__
, dwc2_readl(hsotg
->regs
+ epctl_reg
),
2912 dwc2_readl(hsotg
->regs
+ epsiz_reg
));
2914 /* In DDMA handle isochronous requests separately */
2915 if (using_desc_dma(hsotg
) && hs_ep
->isochronous
) {
2916 dwc2_gadget_complete_isoc_request_ddma(hs_ep
);
2917 /* Try to start next isoc request */
2918 dwc2_gadget_start_next_isoc_ddma(hs_ep
);
2919 } else if (dir_in
) {
2921 * We get OutDone from the FIFO, so we only
2922 * need to look at completing IN requests here
2923 * if operating slave mode
2925 if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
2926 dwc2_gadget_incr_frame_num(hs_ep
);
2928 dwc2_hsotg_complete_in(hsotg
, hs_ep
);
2929 if (ints
& DXEPINT_NAKINTRPT
)
2930 ints
&= ~DXEPINT_NAKINTRPT
;
2932 if (idx
== 0 && !hs_ep
->req
)
2933 dwc2_hsotg_enqueue_setup(hsotg
);
2934 } else if (using_dma(hsotg
)) {
2936 * We're using DMA, we need to fire an OutDone here
2937 * as we ignore the RXFIFO.
2939 if (hs_ep
->isochronous
&& hs_ep
->interval
> 1)
2940 dwc2_gadget_incr_frame_num(hs_ep
);
2942 dwc2_hsotg_handle_outdone(hsotg
, idx
);
2946 if (ints
& DXEPINT_EPDISBLD
)
2947 dwc2_gadget_handle_ep_disabled(hs_ep
);
2949 if (ints
& DXEPINT_OUTTKNEPDIS
)
2950 dwc2_gadget_handle_out_token_ep_disabled(hs_ep
);
2952 if (ints
& DXEPINT_NAKINTRPT
)
2953 dwc2_gadget_handle_nak(hs_ep
);
2955 if (ints
& DXEPINT_AHBERR
)
2956 dev_dbg(hsotg
->dev
, "%s: AHBErr\n", __func__
);
2958 if (ints
& DXEPINT_SETUP
) { /* Setup or Timeout */
2959 dev_dbg(hsotg
->dev
, "%s: Setup/Timeout\n", __func__
);
2961 if (using_dma(hsotg
) && idx
== 0) {
2963 * this is the notification we've received a
2964 * setup packet. In non-DMA mode we'd get this
2965 * from the RXFIFO, instead we need to process
2972 dwc2_hsotg_handle_outdone(hsotg
, 0);
2976 if (ints
& DXEPINT_STSPHSERCVD
) {
2977 dev_dbg(hsotg
->dev
, "%s: StsPhseRcvd\n", __func__
);
2979 /* Safety check EP0 state when STSPHSERCVD asserted */
2980 if (hsotg
->ep0_state
== DWC2_EP0_DATA_OUT
) {
2981 /* Move to STATUS IN for DDMA */
2982 if (using_desc_dma(hsotg
))
2983 dwc2_hsotg_ep0_zlp(hsotg
, true);
2988 if (ints
& DXEPINT_BACK2BACKSETUP
)
2989 dev_dbg(hsotg
->dev
, "%s: B2BSetup/INEPNakEff\n", __func__
);
2991 if (ints
& DXEPINT_BNAINTR
) {
2992 dev_dbg(hsotg
->dev
, "%s: BNA interrupt\n", __func__
);
2995 * Try to start next isoc request, if any.
2996 * Sometimes the endpoint remains enabled after BNA interrupt
2997 * assertion, which is not expected, hence we can enter here
3000 if (hs_ep
->isochronous
)
3001 dwc2_gadget_start_next_isoc_ddma(hs_ep
);
3004 if (dir_in
&& !hs_ep
->isochronous
) {
3005 /* not sure if this is important, but we'll clear it anyway */
3006 if (ints
& DXEPINT_INTKNTXFEMP
) {
3007 dev_dbg(hsotg
->dev
, "%s: ep%d: INTknTXFEmpMsk\n",
3011 /* this probably means something bad is happening */
3012 if (ints
& DXEPINT_INTKNEPMIS
) {
3013 dev_warn(hsotg
->dev
, "%s: ep%d: INTknEP\n",
3017 /* FIFO has space or is empty (see GAHBCFG) */
3018 if (hsotg
->dedicated_fifos
&&
3019 ints
& DXEPINT_TXFEMP
) {
3020 dev_dbg(hsotg
->dev
, "%s: ep%d: TxFIFOEmpty\n",
3022 if (!using_dma(hsotg
))
3023 dwc2_hsotg_trytx(hsotg
, hs_ep
);
3029 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3030 * @hsotg: The device state.
3032 * Handle updating the device settings after the enumeration phase has
3035 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg
*hsotg
)
3037 u32 dsts
= dwc2_readl(hsotg
->regs
+ DSTS
);
3038 int ep0_mps
= 0, ep_mps
= 8;
3041 * This should signal the finish of the enumeration phase
3042 * of the USB handshaking, so we should now know what rate
3046 dev_dbg(hsotg
->dev
, "EnumDone (DSTS=0x%08x)\n", dsts
);
3049 * note, since we're limited by the size of transfer on EP0, and
3050 * it seems IN transfers must be a even number of packets we do
3051 * not advertise a 64byte MPS on EP0.
3054 /* catch both EnumSpd_FS and EnumSpd_FS48 */
3055 switch ((dsts
& DSTS_ENUMSPD_MASK
) >> DSTS_ENUMSPD_SHIFT
) {
3056 case DSTS_ENUMSPD_FS
:
3057 case DSTS_ENUMSPD_FS48
:
3058 hsotg
->gadget
.speed
= USB_SPEED_FULL
;
3059 ep0_mps
= EP0_MPS_LIMIT
;
3063 case DSTS_ENUMSPD_HS
:
3064 hsotg
->gadget
.speed
= USB_SPEED_HIGH
;
3065 ep0_mps
= EP0_MPS_LIMIT
;
3069 case DSTS_ENUMSPD_LS
:
3070 hsotg
->gadget
.speed
= USB_SPEED_LOW
;
3074 * note, we don't actually support LS in this driver at the
3075 * moment, and the documentation seems to imply that it isn't
3076 * supported by the PHYs on some of the devices.
3080 dev_info(hsotg
->dev
, "new device is %s\n",
3081 usb_speed_string(hsotg
->gadget
.speed
));
3084 * we should now know the maximum packet size for an
3085 * endpoint, so set the endpoints to a default value.
3090 /* Initialize ep0 for both in and out directions */
3091 dwc2_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
, 0, 1);
3092 dwc2_hsotg_set_ep_maxpacket(hsotg
, 0, ep0_mps
, 0, 0);
3093 for (i
= 1; i
< hsotg
->num_of_eps
; i
++) {
3094 if (hsotg
->eps_in
[i
])
3095 dwc2_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
,
3097 if (hsotg
->eps_out
[i
])
3098 dwc2_hsotg_set_ep_maxpacket(hsotg
, i
, ep_mps
,
3103 /* ensure after enumeration our EP0 is active */
3105 dwc2_hsotg_enqueue_setup(hsotg
);
3107 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3108 dwc2_readl(hsotg
->regs
+ DIEPCTL0
),
3109 dwc2_readl(hsotg
->regs
+ DOEPCTL0
));
3113 * kill_all_requests - remove all requests from the endpoint's queue
3114 * @hsotg: The device state.
3115 * @ep: The endpoint the requests may be on.
3116 * @result: The result code to use.
3118 * Go through the requests on the given endpoint and mark them
3119 * completed with the given result code.
3121 static void kill_all_requests(struct dwc2_hsotg
*hsotg
,
3122 struct dwc2_hsotg_ep
*ep
,
3125 struct dwc2_hsotg_req
*req
, *treq
;
3130 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
)
3131 dwc2_hsotg_complete_request(hsotg
, ep
, req
,
3134 if (!hsotg
->dedicated_fifos
)
3136 size
= (dwc2_readl(hsotg
->regs
+ DTXFSTS(ep
->fifo_index
)) & 0xffff) * 4;
3137 if (size
< ep
->fifo_size
)
3138 dwc2_hsotg_txfifo_flush(hsotg
, ep
->fifo_index
);
3142 * dwc2_hsotg_disconnect - disconnect service
3143 * @hsotg: The device state.
3145 * The device has been disconnected. Remove all current
3146 * transactions and signal the gadget driver that this
3149 void dwc2_hsotg_disconnect(struct dwc2_hsotg
*hsotg
)
3153 if (!hsotg
->connected
)
3156 hsotg
->connected
= 0;
3157 hsotg
->test_mode
= 0;
3159 for (ep
= 0; ep
< hsotg
->num_of_eps
; ep
++) {
3160 if (hsotg
->eps_in
[ep
])
3161 kill_all_requests(hsotg
, hsotg
->eps_in
[ep
],
3163 if (hsotg
->eps_out
[ep
])
3164 kill_all_requests(hsotg
, hsotg
->eps_out
[ep
],
3168 call_gadget(hsotg
, disconnect
);
3169 hsotg
->lx_state
= DWC2_L3
;
3171 usb_gadget_set_state(&hsotg
->gadget
, USB_STATE_NOTATTACHED
);
3175 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3176 * @hsotg: The device state:
3177 * @periodic: True if this is a periodic FIFO interrupt
3179 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg
*hsotg
, bool periodic
)
3181 struct dwc2_hsotg_ep
*ep
;
3184 /* look through for any more data to transmit */
3185 for (epno
= 0; epno
< hsotg
->num_of_eps
; epno
++) {
3186 ep
= index_to_ep(hsotg
, epno
, 1);
3194 if ((periodic
&& !ep
->periodic
) ||
3195 (!periodic
&& ep
->periodic
))
3198 ret
= dwc2_hsotg_trytx(hsotg
, ep
);
3204 /* IRQ flags which will trigger a retry around the IRQ loop */
3205 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3210 * dwc2_hsotg_core_init - issue softreset to the core
3211 * @hsotg: The device state
3213 * Issue a soft reset to the core, and await the core finishing it.
3215 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg
*hsotg
,
3223 /* Kill any ep0 requests as controller will be reinitialized */
3224 kill_all_requests(hsotg
, hsotg
->eps_out
[0], -ECONNRESET
);
3227 if (dwc2_core_reset(hsotg
, true))
3231 * we must now enable ep0 ready for host detection and then
3232 * set configuration.
3235 /* keep other bits untouched (so e.g. forced modes are not lost) */
3236 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
3237 usbcfg
&= ~(GUSBCFG_TOUTCAL_MASK
| GUSBCFG_PHYIF16
| GUSBCFG_SRPCAP
|
3238 GUSBCFG_HNPCAP
| GUSBCFG_USBTRDTIM_MASK
);
3240 if (hsotg
->params
.phy_type
== DWC2_PHY_TYPE_PARAM_FS
&&
3241 (hsotg
->params
.speed
== DWC2_SPEED_PARAM_FULL
||
3242 hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
)) {
3243 /* FS/LS Dedicated Transceiver Interface */
3244 usbcfg
|= GUSBCFG_PHYSEL
;
3246 /* set the PLL on, remove the HNP/SRP and set the PHY */
3247 val
= (hsotg
->phyif
== GUSBCFG_PHYIF8
) ? 9 : 5;
3248 usbcfg
|= hsotg
->phyif
| GUSBCFG_TOUTCAL(7) |
3249 (val
<< GUSBCFG_USBTRDTIM_SHIFT
);
3251 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
3253 dwc2_hsotg_init_fifo(hsotg
);
3256 __orr32(hsotg
->regs
+ DCTL
, DCTL_SFTDISCON
);
3258 dcfg
|= DCFG_EPMISCNT(1);
3260 switch (hsotg
->params
.speed
) {
3261 case DWC2_SPEED_PARAM_LOW
:
3262 dcfg
|= DCFG_DEVSPD_LS
;
3264 case DWC2_SPEED_PARAM_FULL
:
3265 if (hsotg
->params
.phy_type
== DWC2_PHY_TYPE_PARAM_FS
)
3266 dcfg
|= DCFG_DEVSPD_FS48
;
3268 dcfg
|= DCFG_DEVSPD_FS
;
3271 dcfg
|= DCFG_DEVSPD_HS
;
3274 dwc2_writel(dcfg
, hsotg
->regs
+ DCFG
);
3276 /* Clear any pending OTG interrupts */
3277 dwc2_writel(0xffffffff, hsotg
->regs
+ GOTGINT
);
3279 /* Clear any pending interrupts */
3280 dwc2_writel(0xffffffff, hsotg
->regs
+ GINTSTS
);
3281 intmsk
= GINTSTS_ERLYSUSP
| GINTSTS_SESSREQINT
|
3282 GINTSTS_GOUTNAKEFF
| GINTSTS_GINNAKEFF
|
3283 GINTSTS_USBRST
| GINTSTS_RESETDET
|
3284 GINTSTS_ENUMDONE
| GINTSTS_OTGINT
|
3285 GINTSTS_USBSUSP
| GINTSTS_WKUPINT
;
3287 if (!using_desc_dma(hsotg
))
3288 intmsk
|= GINTSTS_INCOMPL_SOIN
| GINTSTS_INCOMPL_SOOUT
;
3290 if (!hsotg
->params
.external_id_pin_ctl
)
3291 intmsk
|= GINTSTS_CONIDSTSCHNG
;
3293 dwc2_writel(intmsk
, hsotg
->regs
+ GINTMSK
);
3295 if (using_dma(hsotg
)) {
3296 dwc2_writel(GAHBCFG_GLBL_INTR_EN
| GAHBCFG_DMA_EN
|
3297 (GAHBCFG_HBSTLEN_INCR4
<< GAHBCFG_HBSTLEN_SHIFT
),
3298 hsotg
->regs
+ GAHBCFG
);
3300 /* Set DDMA mode support in the core if needed */
3301 if (using_desc_dma(hsotg
))
3302 __orr32(hsotg
->regs
+ DCFG
, DCFG_DESCDMA_EN
);
3305 dwc2_writel(((hsotg
->dedicated_fifos
) ?
3306 (GAHBCFG_NP_TXF_EMP_LVL
|
3307 GAHBCFG_P_TXF_EMP_LVL
) : 0) |
3308 GAHBCFG_GLBL_INTR_EN
, hsotg
->regs
+ GAHBCFG
);
3312 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3313 * when we have no data to transfer. Otherwise we get being flooded by
3317 dwc2_writel(((hsotg
->dedicated_fifos
&& !using_dma(hsotg
)) ?
3318 DIEPMSK_TXFIFOEMPTY
| DIEPMSK_INTKNTXFEMPMSK
: 0) |
3319 DIEPMSK_EPDISBLDMSK
| DIEPMSK_XFERCOMPLMSK
|
3320 DIEPMSK_TIMEOUTMSK
| DIEPMSK_AHBERRMSK
,
3321 hsotg
->regs
+ DIEPMSK
);
3324 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3325 * DMA mode we may need this and StsPhseRcvd.
3327 dwc2_writel((using_dma(hsotg
) ? (DIEPMSK_XFERCOMPLMSK
|
3328 DOEPMSK_STSPHSERCVDMSK
) : 0) |
3329 DOEPMSK_EPDISBLDMSK
| DOEPMSK_AHBERRMSK
|
3331 hsotg
->regs
+ DOEPMSK
);
3333 /* Enable BNA interrupt for DDMA */
3334 if (using_desc_dma(hsotg
))
3335 __orr32(hsotg
->regs
+ DOEPMSK
, DOEPMSK_BNAMSK
);
3337 dwc2_writel(0, hsotg
->regs
+ DAINTMSK
);
3339 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3340 dwc2_readl(hsotg
->regs
+ DIEPCTL0
),
3341 dwc2_readl(hsotg
->regs
+ DOEPCTL0
));
3343 /* enable in and out endpoint interrupts */
3344 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_OEPINT
| GINTSTS_IEPINT
);
3347 * Enable the RXFIFO when in slave mode, as this is how we collect
3348 * the data. In DMA mode, we get events from the FIFO but also
3349 * things we cannot process, so do not use it.
3351 if (!using_dma(hsotg
))
3352 dwc2_hsotg_en_gsint(hsotg
, GINTSTS_RXFLVL
);
3354 /* Enable interrupts for EP0 in and out */
3355 dwc2_hsotg_ctrl_epint(hsotg
, 0, 0, 1);
3356 dwc2_hsotg_ctrl_epint(hsotg
, 0, 1, 1);
3358 if (!is_usb_reset
) {
3359 __orr32(hsotg
->regs
+ DCTL
, DCTL_PWRONPRGDONE
);
3360 udelay(10); /* see openiboot */
3361 __bic32(hsotg
->regs
+ DCTL
, DCTL_PWRONPRGDONE
);
3364 dev_dbg(hsotg
->dev
, "DCTL=0x%08x\n", dwc2_readl(hsotg
->regs
+ DCTL
));
3367 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3368 * writing to the EPCTL register..
3371 /* set to read 1 8byte packet */
3372 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3373 DXEPTSIZ_XFERSIZE(8), hsotg
->regs
+ DOEPTSIZ0
);
3375 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg
->eps_out
[0]->ep
.maxpacket
) |
3376 DXEPCTL_CNAK
| DXEPCTL_EPENA
|
3378 hsotg
->regs
+ DOEPCTL0
);
3380 /* enable, but don't activate EP0in */
3381 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg
->eps_out
[0]->ep
.maxpacket
) |
3382 DXEPCTL_USBACTEP
, hsotg
->regs
+ DIEPCTL0
);
3384 /* clear global NAKs */
3385 val
= DCTL_CGOUTNAK
| DCTL_CGNPINNAK
;
3387 val
|= DCTL_SFTDISCON
;
3388 __orr32(hsotg
->regs
+ DCTL
, val
);
3390 /* must be at-least 3ms to allow bus to see disconnect */
3393 hsotg
->lx_state
= DWC2_L0
;
3395 dwc2_hsotg_enqueue_setup(hsotg
);
3397 dev_dbg(hsotg
->dev
, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3398 dwc2_readl(hsotg
->regs
+ DIEPCTL0
),
3399 dwc2_readl(hsotg
->regs
+ DOEPCTL0
));
3402 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg
*hsotg
)
3404 /* set the soft-disconnect bit */
3405 __orr32(hsotg
->regs
+ DCTL
, DCTL_SFTDISCON
);
3408 void dwc2_hsotg_core_connect(struct dwc2_hsotg
*hsotg
)
3410 /* remove the soft-disconnect and let's go */
3411 __bic32(hsotg
->regs
+ DCTL
, DCTL_SFTDISCON
);
3415 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3416 * @hsotg: The device state:
3418 * This interrupt indicates one of the following conditions occurred while
3419 * transmitting an ISOC transaction.
3420 * - Corrupted IN Token for ISOC EP.
3421 * - Packet not complete in FIFO.
3423 * The following actions will be taken:
3424 * - Determine the EP
3425 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3427 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg
*hsotg
)
3429 struct dwc2_hsotg_ep
*hs_ep
;
3433 dev_dbg(hsotg
->dev
, "Incomplete isoc in interrupt received:\n");
3435 for (idx
= 1; idx
<= hsotg
->num_of_eps
; idx
++) {
3436 hs_ep
= hsotg
->eps_in
[idx
];
3437 epctrl
= dwc2_readl(hsotg
->regs
+ DIEPCTL(idx
));
3438 if ((epctrl
& DXEPCTL_EPENA
) && hs_ep
->isochronous
&&
3439 dwc2_gadget_target_frame_elapsed(hs_ep
)) {
3440 epctrl
|= DXEPCTL_SNAK
;
3441 epctrl
|= DXEPCTL_EPDIS
;
3442 dwc2_writel(epctrl
, hsotg
->regs
+ DIEPCTL(idx
));
3446 /* Clear interrupt */
3447 dwc2_writel(GINTSTS_INCOMPL_SOIN
, hsotg
->regs
+ GINTSTS
);
3451 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3452 * @hsotg: The device state:
3454 * This interrupt indicates one of the following conditions occurred while
3455 * transmitting an ISOC transaction.
3456 * - Corrupted OUT Token for ISOC EP.
3457 * - Packet not complete in FIFO.
3459 * The following actions will be taken:
3460 * - Determine the EP
3461 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3463 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg
*hsotg
)
3468 struct dwc2_hsotg_ep
*hs_ep
;
3471 dev_dbg(hsotg
->dev
, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__
);
3473 for (idx
= 1; idx
<= hsotg
->num_of_eps
; idx
++) {
3474 hs_ep
= hsotg
->eps_out
[idx
];
3475 epctrl
= dwc2_readl(hsotg
->regs
+ DOEPCTL(idx
));
3476 if ((epctrl
& DXEPCTL_EPENA
) && hs_ep
->isochronous
&&
3477 dwc2_gadget_target_frame_elapsed(hs_ep
)) {
3478 /* Unmask GOUTNAKEFF interrupt */
3479 gintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
3480 gintmsk
|= GINTSTS_GOUTNAKEFF
;
3481 dwc2_writel(gintmsk
, hsotg
->regs
+ GINTMSK
);
3483 gintsts
= dwc2_readl(hsotg
->regs
+ GINTSTS
);
3484 if (!(gintsts
& GINTSTS_GOUTNAKEFF
))
3485 __orr32(hsotg
->regs
+ DCTL
, DCTL_SGOUTNAK
);
3489 /* Clear interrupt */
3490 dwc2_writel(GINTSTS_INCOMPL_SOOUT
, hsotg
->regs
+ GINTSTS
);
3494 * dwc2_hsotg_irq - handle device interrupt
3495 * @irq: The IRQ number triggered
3496 * @pw: The pw value when registered the handler.
3498 static irqreturn_t
dwc2_hsotg_irq(int irq
, void *pw
)
3500 struct dwc2_hsotg
*hsotg
= pw
;
3501 int retry_count
= 8;
3505 if (!dwc2_is_device_mode(hsotg
))
3508 spin_lock(&hsotg
->lock
);
3510 gintsts
= dwc2_readl(hsotg
->regs
+ GINTSTS
);
3511 gintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
3513 dev_dbg(hsotg
->dev
, "%s: %08x %08x (%08x) retry %d\n",
3514 __func__
, gintsts
, gintsts
& gintmsk
, gintmsk
, retry_count
);
3518 if (gintsts
& GINTSTS_RESETDET
) {
3519 dev_dbg(hsotg
->dev
, "%s: USBRstDet\n", __func__
);
3521 dwc2_writel(GINTSTS_RESETDET
, hsotg
->regs
+ GINTSTS
);
3523 /* This event must be used only if controller is suspended */
3524 if (hsotg
->lx_state
== DWC2_L2
) {
3525 dwc2_exit_hibernation(hsotg
, true);
3526 hsotg
->lx_state
= DWC2_L0
;
3530 if (gintsts
& (GINTSTS_USBRST
| GINTSTS_RESETDET
)) {
3531 u32 usb_status
= dwc2_readl(hsotg
->regs
+ GOTGCTL
);
3532 u32 connected
= hsotg
->connected
;
3534 dev_dbg(hsotg
->dev
, "%s: USBRst\n", __func__
);
3535 dev_dbg(hsotg
->dev
, "GNPTXSTS=%08x\n",
3536 dwc2_readl(hsotg
->regs
+ GNPTXSTS
));
3538 dwc2_writel(GINTSTS_USBRST
, hsotg
->regs
+ GINTSTS
);
3540 /* Report disconnection if it is not already done. */
3541 dwc2_hsotg_disconnect(hsotg
);
3543 /* Reset device address to zero */
3544 __bic32(hsotg
->regs
+ DCFG
, DCFG_DEVADDR_MASK
);
3546 if (usb_status
& GOTGCTL_BSESVLD
&& connected
)
3547 dwc2_hsotg_core_init_disconnected(hsotg
, true);
3550 if (gintsts
& GINTSTS_ENUMDONE
) {
3551 dwc2_writel(GINTSTS_ENUMDONE
, hsotg
->regs
+ GINTSTS
);
3553 dwc2_hsotg_irq_enumdone(hsotg
);
3556 if (gintsts
& (GINTSTS_OEPINT
| GINTSTS_IEPINT
)) {
3557 u32 daint
= dwc2_readl(hsotg
->regs
+ DAINT
);
3558 u32 daintmsk
= dwc2_readl(hsotg
->regs
+ DAINTMSK
);
3559 u32 daint_out
, daint_in
;
3563 daint_out
= daint
>> DAINT_OUTEP_SHIFT
;
3564 daint_in
= daint
& ~(daint_out
<< DAINT_OUTEP_SHIFT
);
3566 dev_dbg(hsotg
->dev
, "%s: daint=%08x\n", __func__
, daint
);
3568 for (ep
= 0; ep
< hsotg
->num_of_eps
&& daint_out
;
3569 ep
++, daint_out
>>= 1) {
3571 dwc2_hsotg_epint(hsotg
, ep
, 0);
3574 for (ep
= 0; ep
< hsotg
->num_of_eps
&& daint_in
;
3575 ep
++, daint_in
>>= 1) {
3577 dwc2_hsotg_epint(hsotg
, ep
, 1);
3581 /* check both FIFOs */
3583 if (gintsts
& GINTSTS_NPTXFEMP
) {
3584 dev_dbg(hsotg
->dev
, "NPTxFEmp\n");
3587 * Disable the interrupt to stop it happening again
3588 * unless one of these endpoint routines decides that
3589 * it needs re-enabling
3592 dwc2_hsotg_disable_gsint(hsotg
, GINTSTS_NPTXFEMP
);
3593 dwc2_hsotg_irq_fifoempty(hsotg
, false);
3596 if (gintsts
& GINTSTS_PTXFEMP
) {
3597 dev_dbg(hsotg
->dev
, "PTxFEmp\n");
3599 /* See note in GINTSTS_NPTxFEmp */
3601 dwc2_hsotg_disable_gsint(hsotg
, GINTSTS_PTXFEMP
);
3602 dwc2_hsotg_irq_fifoempty(hsotg
, true);
3605 if (gintsts
& GINTSTS_RXFLVL
) {
3607 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3608 * we need to retry dwc2_hsotg_handle_rx if this is still
3612 dwc2_hsotg_handle_rx(hsotg
);
3615 if (gintsts
& GINTSTS_ERLYSUSP
) {
3616 dev_dbg(hsotg
->dev
, "GINTSTS_ErlySusp\n");
3617 dwc2_writel(GINTSTS_ERLYSUSP
, hsotg
->regs
+ GINTSTS
);
3621 * these next two seem to crop-up occasionally causing the core
3622 * to shutdown the USB transfer, so try clearing them and logging
3626 if (gintsts
& GINTSTS_GOUTNAKEFF
) {
3630 struct dwc2_hsotg_ep
*hs_ep
;
3632 /* Mask this interrupt */
3633 gintmsk
= dwc2_readl(hsotg
->regs
+ GINTMSK
);
3634 gintmsk
&= ~GINTSTS_GOUTNAKEFF
;
3635 dwc2_writel(gintmsk
, hsotg
->regs
+ GINTMSK
);
3637 dev_dbg(hsotg
->dev
, "GOUTNakEff triggered\n");
3638 for (idx
= 1; idx
<= hsotg
->num_of_eps
; idx
++) {
3639 hs_ep
= hsotg
->eps_out
[idx
];
3640 epctrl
= dwc2_readl(hsotg
->regs
+ DOEPCTL(idx
));
3642 if ((epctrl
& DXEPCTL_EPENA
) && hs_ep
->isochronous
) {
3643 epctrl
|= DXEPCTL_SNAK
;
3644 epctrl
|= DXEPCTL_EPDIS
;
3645 dwc2_writel(epctrl
, hsotg
->regs
+ DOEPCTL(idx
));
3649 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3652 if (gintsts
& GINTSTS_GINNAKEFF
) {
3653 dev_info(hsotg
->dev
, "GINNakEff triggered\n");
3655 __orr32(hsotg
->regs
+ DCTL
, DCTL_CGNPINNAK
);
3657 dwc2_hsotg_dump(hsotg
);
3660 if (gintsts
& GINTSTS_INCOMPL_SOIN
)
3661 dwc2_gadget_handle_incomplete_isoc_in(hsotg
);
3663 if (gintsts
& GINTSTS_INCOMPL_SOOUT
)
3664 dwc2_gadget_handle_incomplete_isoc_out(hsotg
);
3667 * if we've had fifo events, we should try and go around the
3668 * loop again to see if there's any point in returning yet.
3671 if (gintsts
& IRQ_RETRY_MASK
&& --retry_count
> 0)
3674 spin_unlock(&hsotg
->lock
);
3679 static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg
*hs_otg
, u32 reg
,
3680 u32 bit
, u32 timeout
)
3684 for (i
= 0; i
< timeout
; i
++) {
3685 if (dwc2_readl(hs_otg
->regs
+ reg
) & bit
)
3693 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg
*hsotg
,
3694 struct dwc2_hsotg_ep
*hs_ep
)
3699 epctrl_reg
= hs_ep
->dir_in
? DIEPCTL(hs_ep
->index
) :
3700 DOEPCTL(hs_ep
->index
);
3701 epint_reg
= hs_ep
->dir_in
? DIEPINT(hs_ep
->index
) :
3702 DOEPINT(hs_ep
->index
);
3704 dev_dbg(hsotg
->dev
, "%s: stopping transfer on %s\n", __func__
,
3707 if (hs_ep
->dir_in
) {
3708 if (hsotg
->dedicated_fifos
|| hs_ep
->periodic
) {
3709 __orr32(hsotg
->regs
+ epctrl_reg
, DXEPCTL_SNAK
);
3710 /* Wait for Nak effect */
3711 if (dwc2_hsotg_wait_bit_set(hsotg
, epint_reg
,
3712 DXEPINT_INEPNAKEFF
, 100))
3713 dev_warn(hsotg
->dev
,
3714 "%s: timeout DIEPINT.NAKEFF\n",
3717 __orr32(hsotg
->regs
+ DCTL
, DCTL_SGNPINNAK
);
3718 /* Wait for Nak effect */
3719 if (dwc2_hsotg_wait_bit_set(hsotg
, GINTSTS
,
3720 GINTSTS_GINNAKEFF
, 100))
3721 dev_warn(hsotg
->dev
,
3722 "%s: timeout GINTSTS.GINNAKEFF\n",
3726 if (!(dwc2_readl(hsotg
->regs
+ GINTSTS
) & GINTSTS_GOUTNAKEFF
))
3727 __orr32(hsotg
->regs
+ DCTL
, DCTL_SGOUTNAK
);
3729 /* Wait for global nak to take effect */
3730 if (dwc2_hsotg_wait_bit_set(hsotg
, GINTSTS
,
3731 GINTSTS_GOUTNAKEFF
, 100))
3732 dev_warn(hsotg
->dev
, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3737 __orr32(hsotg
->regs
+ epctrl_reg
, DXEPCTL_EPDIS
| DXEPCTL_SNAK
);
3739 /* Wait for ep to be disabled */
3740 if (dwc2_hsotg_wait_bit_set(hsotg
, epint_reg
, DXEPINT_EPDISBLD
, 100))
3741 dev_warn(hsotg
->dev
,
3742 "%s: timeout DOEPCTL.EPDisable\n", __func__
);
3744 /* Clear EPDISBLD interrupt */
3745 __orr32(hsotg
->regs
+ epint_reg
, DXEPINT_EPDISBLD
);
3747 if (hs_ep
->dir_in
) {
3748 unsigned short fifo_index
;
3750 if (hsotg
->dedicated_fifos
|| hs_ep
->periodic
)
3751 fifo_index
= hs_ep
->fifo_index
;
3756 dwc2_flush_tx_fifo(hsotg
, fifo_index
);
3758 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3759 if (!hsotg
->dedicated_fifos
&& !hs_ep
->periodic
)
3760 __orr32(hsotg
->regs
+ DCTL
, DCTL_CGNPINNAK
);
3763 /* Remove global NAKs */
3764 __orr32(hsotg
->regs
+ DCTL
, DCTL_CGOUTNAK
);
3769 * dwc2_hsotg_ep_enable - enable the given endpoint
3770 * @ep: The USB endpint to configure
3771 * @desc: The USB endpoint descriptor to configure with.
3773 * This is called from the USB gadget code's usb_ep_enable().
3775 static int dwc2_hsotg_ep_enable(struct usb_ep
*ep
,
3776 const struct usb_endpoint_descriptor
*desc
)
3778 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
3779 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
3780 unsigned long flags
;
3781 unsigned int index
= hs_ep
->index
;
3787 unsigned int dir_in
;
3788 unsigned int i
, val
, size
;
3792 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3793 __func__
, ep
->name
, desc
->bEndpointAddress
, desc
->bmAttributes
,
3794 desc
->wMaxPacketSize
, desc
->bInterval
);
3796 /* not to be called for EP0 */
3798 dev_err(hsotg
->dev
, "%s: called for EP 0\n", __func__
);
3802 dir_in
= (desc
->bEndpointAddress
& USB_ENDPOINT_DIR_MASK
) ? 1 : 0;
3803 if (dir_in
!= hs_ep
->dir_in
) {
3804 dev_err(hsotg
->dev
, "%s: direction mismatch!\n", __func__
);
3808 mps
= usb_endpoint_maxp(desc
);
3809 mc
= usb_endpoint_maxp_mult(desc
);
3811 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3813 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
3814 epctrl
= dwc2_readl(hsotg
->regs
+ epctrl_reg
);
3816 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3817 __func__
, epctrl
, epctrl_reg
);
3819 /* Allocate DMA descriptor chain for non-ctrl endpoints */
3820 if (using_desc_dma(hsotg
) && !hs_ep
->desc_list
) {
3821 hs_ep
->desc_list
= dmam_alloc_coherent(hsotg
->dev
,
3822 MAX_DMA_DESC_NUM_GENERIC
*
3823 sizeof(struct dwc2_dma_desc
),
3824 &hs_ep
->desc_list_dma
, GFP_ATOMIC
);
3825 if (!hs_ep
->desc_list
) {
3831 spin_lock_irqsave(&hsotg
->lock
, flags
);
3833 epctrl
&= ~(DXEPCTL_EPTYPE_MASK
| DXEPCTL_MPS_MASK
);
3834 epctrl
|= DXEPCTL_MPS(mps
);
3837 * mark the endpoint as active, otherwise the core may ignore
3838 * transactions entirely for this endpoint
3840 epctrl
|= DXEPCTL_USBACTEP
;
3842 /* update the endpoint state */
3843 dwc2_hsotg_set_ep_maxpacket(hsotg
, hs_ep
->index
, mps
, mc
, dir_in
);
3845 /* default, set to non-periodic */
3846 hs_ep
->isochronous
= 0;
3847 hs_ep
->periodic
= 0;
3849 hs_ep
->interval
= desc
->bInterval
;
3851 switch (desc
->bmAttributes
& USB_ENDPOINT_XFERTYPE_MASK
) {
3852 case USB_ENDPOINT_XFER_ISOC
:
3853 epctrl
|= DXEPCTL_EPTYPE_ISO
;
3854 epctrl
|= DXEPCTL_SETEVENFR
;
3855 hs_ep
->isochronous
= 1;
3856 hs_ep
->interval
= 1 << (desc
->bInterval
- 1);
3857 hs_ep
->target_frame
= TARGET_FRAME_INITIAL
;
3858 hs_ep
->isoc_chain_num
= 0;
3859 hs_ep
->next_desc
= 0;
3861 hs_ep
->periodic
= 1;
3862 mask
= dwc2_readl(hsotg
->regs
+ DIEPMSK
);
3863 mask
|= DIEPMSK_NAKMSK
;
3864 dwc2_writel(mask
, hsotg
->regs
+ DIEPMSK
);
3866 mask
= dwc2_readl(hsotg
->regs
+ DOEPMSK
);
3867 mask
|= DOEPMSK_OUTTKNEPDISMSK
;
3868 dwc2_writel(mask
, hsotg
->regs
+ DOEPMSK
);
3872 case USB_ENDPOINT_XFER_BULK
:
3873 epctrl
|= DXEPCTL_EPTYPE_BULK
;
3876 case USB_ENDPOINT_XFER_INT
:
3878 hs_ep
->periodic
= 1;
3880 if (hsotg
->gadget
.speed
== USB_SPEED_HIGH
)
3881 hs_ep
->interval
= 1 << (desc
->bInterval
- 1);
3883 epctrl
|= DXEPCTL_EPTYPE_INTERRUPT
;
3886 case USB_ENDPOINT_XFER_CONTROL
:
3887 epctrl
|= DXEPCTL_EPTYPE_CONTROL
;
3892 * if the hardware has dedicated fifos, we must give each IN EP
3893 * a unique tx-fifo even if it is non-periodic.
3895 if (dir_in
&& hsotg
->dedicated_fifos
) {
3897 u32 fifo_size
= UINT_MAX
;
3899 size
= hs_ep
->ep
.maxpacket
* hs_ep
->mc
;
3900 for (i
= 1; i
< hsotg
->num_of_eps
; ++i
) {
3901 if (hsotg
->fifo_map
& (1 << i
))
3903 val
= dwc2_readl(hsotg
->regs
+ DPTXFSIZN(i
));
3904 val
= (val
>> FIFOSIZE_DEPTH_SHIFT
) * 4;
3907 /* Search for smallest acceptable fifo */
3908 if (val
< fifo_size
) {
3915 "%s: No suitable fifo found\n", __func__
);
3919 hsotg
->fifo_map
|= 1 << fifo_index
;
3920 epctrl
|= DXEPCTL_TXFNUM(fifo_index
);
3921 hs_ep
->fifo_index
= fifo_index
;
3922 hs_ep
->fifo_size
= fifo_size
;
3925 /* for non control endpoints, set PID to D0 */
3926 if (index
&& !hs_ep
->isochronous
)
3927 epctrl
|= DXEPCTL_SETD0PID
;
3929 dev_dbg(hsotg
->dev
, "%s: write DxEPCTL=0x%08x\n",
3932 dwc2_writel(epctrl
, hsotg
->regs
+ epctrl_reg
);
3933 dev_dbg(hsotg
->dev
, "%s: read DxEPCTL=0x%08x\n",
3934 __func__
, dwc2_readl(hsotg
->regs
+ epctrl_reg
));
3936 /* enable the endpoint interrupt */
3937 dwc2_hsotg_ctrl_epint(hsotg
, index
, dir_in
, 1);
3940 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
3943 if (ret
&& using_desc_dma(hsotg
) && hs_ep
->desc_list
) {
3944 dmam_free_coherent(hsotg
->dev
, MAX_DMA_DESC_NUM_GENERIC
*
3945 sizeof(struct dwc2_dma_desc
),
3946 hs_ep
->desc_list
, hs_ep
->desc_list_dma
);
3947 hs_ep
->desc_list
= NULL
;
3954 * dwc2_hsotg_ep_disable - disable given endpoint
3955 * @ep: The endpoint to disable.
3957 static int dwc2_hsotg_ep_disable(struct usb_ep
*ep
)
3959 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
3960 struct dwc2_hsotg
*hsotg
= hs_ep
->parent
;
3961 int dir_in
= hs_ep
->dir_in
;
3962 int index
= hs_ep
->index
;
3963 unsigned long flags
;
3967 dev_dbg(hsotg
->dev
, "%s(ep %p)\n", __func__
, ep
);
3969 if (ep
== &hsotg
->eps_out
[0]->ep
) {
3970 dev_err(hsotg
->dev
, "%s: called for ep0\n", __func__
);
3974 if (hsotg
->op_state
!= OTG_STATE_B_PERIPHERAL
) {
3975 dev_err(hsotg
->dev
, "%s: called in host mode?\n", __func__
);
3979 epctrl_reg
= dir_in
? DIEPCTL(index
) : DOEPCTL(index
);
3981 spin_lock_irqsave(&hsotg
->lock
, flags
);
3983 ctrl
= dwc2_readl(hsotg
->regs
+ epctrl_reg
);
3985 if (ctrl
& DXEPCTL_EPENA
)
3986 dwc2_hsotg_ep_stop_xfr(hsotg
, hs_ep
);
3988 ctrl
&= ~DXEPCTL_EPENA
;
3989 ctrl
&= ~DXEPCTL_USBACTEP
;
3990 ctrl
|= DXEPCTL_SNAK
;
3992 dev_dbg(hsotg
->dev
, "%s: DxEPCTL=0x%08x\n", __func__
, ctrl
);
3993 dwc2_writel(ctrl
, hsotg
->regs
+ epctrl_reg
);
3995 /* disable endpoint interrupts */
3996 dwc2_hsotg_ctrl_epint(hsotg
, hs_ep
->index
, hs_ep
->dir_in
, 0);
3998 /* terminate all requests with shutdown */
3999 kill_all_requests(hsotg
, hs_ep
, -ESHUTDOWN
);
4001 hsotg
->fifo_map
&= ~(1 << hs_ep
->fifo_index
);
4002 hs_ep
->fifo_index
= 0;
4003 hs_ep
->fifo_size
= 0;
4005 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4010 * on_list - check request is on the given endpoint
4011 * @ep: The endpoint to check.
4012 * @test: The request to test if it is on the endpoint.
4014 static bool on_list(struct dwc2_hsotg_ep
*ep
, struct dwc2_hsotg_req
*test
)
4016 struct dwc2_hsotg_req
*req
, *treq
;
4018 list_for_each_entry_safe(req
, treq
, &ep
->queue
, queue
) {
4027 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4028 * @ep: The endpoint to dequeue.
4029 * @req: The request to be removed from a queue.
4031 static int dwc2_hsotg_ep_dequeue(struct usb_ep
*ep
, struct usb_request
*req
)
4033 struct dwc2_hsotg_req
*hs_req
= our_req(req
);
4034 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4035 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4036 unsigned long flags
;
4038 dev_dbg(hs
->dev
, "ep_dequeue(%p,%p)\n", ep
, req
);
4040 spin_lock_irqsave(&hs
->lock
, flags
);
4042 if (!on_list(hs_ep
, hs_req
)) {
4043 spin_unlock_irqrestore(&hs
->lock
, flags
);
4047 /* Dequeue already started request */
4048 if (req
== &hs_ep
->req
->req
)
4049 dwc2_hsotg_ep_stop_xfr(hs
, hs_ep
);
4051 dwc2_hsotg_complete_request(hs
, hs_ep
, hs_req
, -ECONNRESET
);
4052 spin_unlock_irqrestore(&hs
->lock
, flags
);
4058 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4059 * @ep: The endpoint to set halt.
4060 * @value: Set or unset the halt.
4061 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4062 * the endpoint is busy processing requests.
4064 * We need to stall the endpoint immediately if request comes from set_feature
4065 * protocol command handler.
4067 static int dwc2_hsotg_ep_sethalt(struct usb_ep
*ep
, int value
, bool now
)
4069 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4070 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4071 int index
= hs_ep
->index
;
4076 dev_info(hs
->dev
, "%s(ep %p %s, %d)\n", __func__
, ep
, ep
->name
, value
);
4080 dwc2_hsotg_stall_ep0(hs
);
4083 "%s: can't clear halt on ep0\n", __func__
);
4087 if (hs_ep
->isochronous
) {
4088 dev_err(hs
->dev
, "%s is Isochronous Endpoint\n", ep
->name
);
4092 if (!now
&& value
&& !list_empty(&hs_ep
->queue
)) {
4093 dev_dbg(hs
->dev
, "%s request is pending, cannot halt\n",
4098 if (hs_ep
->dir_in
) {
4099 epreg
= DIEPCTL(index
);
4100 epctl
= dwc2_readl(hs
->regs
+ epreg
);
4103 epctl
|= DXEPCTL_STALL
| DXEPCTL_SNAK
;
4104 if (epctl
& DXEPCTL_EPENA
)
4105 epctl
|= DXEPCTL_EPDIS
;
4107 epctl
&= ~DXEPCTL_STALL
;
4108 xfertype
= epctl
& DXEPCTL_EPTYPE_MASK
;
4109 if (xfertype
== DXEPCTL_EPTYPE_BULK
||
4110 xfertype
== DXEPCTL_EPTYPE_INTERRUPT
)
4111 epctl
|= DXEPCTL_SETD0PID
;
4113 dwc2_writel(epctl
, hs
->regs
+ epreg
);
4115 epreg
= DOEPCTL(index
);
4116 epctl
= dwc2_readl(hs
->regs
+ epreg
);
4119 epctl
|= DXEPCTL_STALL
;
4121 epctl
&= ~DXEPCTL_STALL
;
4122 xfertype
= epctl
& DXEPCTL_EPTYPE_MASK
;
4123 if (xfertype
== DXEPCTL_EPTYPE_BULK
||
4124 xfertype
== DXEPCTL_EPTYPE_INTERRUPT
)
4125 epctl
|= DXEPCTL_SETD0PID
;
4127 dwc2_writel(epctl
, hs
->regs
+ epreg
);
4130 hs_ep
->halted
= value
;
4136 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4137 * @ep: The endpoint to set halt.
4138 * @value: Set or unset the halt.
4140 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep
*ep
, int value
)
4142 struct dwc2_hsotg_ep
*hs_ep
= our_ep(ep
);
4143 struct dwc2_hsotg
*hs
= hs_ep
->parent
;
4144 unsigned long flags
= 0;
4147 spin_lock_irqsave(&hs
->lock
, flags
);
4148 ret
= dwc2_hsotg_ep_sethalt(ep
, value
, false);
4149 spin_unlock_irqrestore(&hs
->lock
, flags
);
4154 static const struct usb_ep_ops dwc2_hsotg_ep_ops
= {
4155 .enable
= dwc2_hsotg_ep_enable
,
4156 .disable
= dwc2_hsotg_ep_disable
,
4157 .alloc_request
= dwc2_hsotg_ep_alloc_request
,
4158 .free_request
= dwc2_hsotg_ep_free_request
,
4159 .queue
= dwc2_hsotg_ep_queue_lock
,
4160 .dequeue
= dwc2_hsotg_ep_dequeue
,
4161 .set_halt
= dwc2_hsotg_ep_sethalt_lock
,
4162 /* note, don't believe we have any call for the fifo routines */
4166 * dwc2_hsotg_init - initialize the usb core
4167 * @hsotg: The driver state
4169 static void dwc2_hsotg_init(struct dwc2_hsotg
*hsotg
)
4173 /* unmask subset of endpoint interrupts */
4175 dwc2_writel(DIEPMSK_TIMEOUTMSK
| DIEPMSK_AHBERRMSK
|
4176 DIEPMSK_EPDISBLDMSK
| DIEPMSK_XFERCOMPLMSK
,
4177 hsotg
->regs
+ DIEPMSK
);
4179 dwc2_writel(DOEPMSK_SETUPMSK
| DOEPMSK_AHBERRMSK
|
4180 DOEPMSK_EPDISBLDMSK
| DOEPMSK_XFERCOMPLMSK
,
4181 hsotg
->regs
+ DOEPMSK
);
4183 dwc2_writel(0, hsotg
->regs
+ DAINTMSK
);
4185 /* Be in disconnected state until gadget is registered */
4186 __orr32(hsotg
->regs
+ DCTL
, DCTL_SFTDISCON
);
4190 dev_dbg(hsotg
->dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4191 dwc2_readl(hsotg
->regs
+ GRXFSIZ
),
4192 dwc2_readl(hsotg
->regs
+ GNPTXFSIZ
));
4194 dwc2_hsotg_init_fifo(hsotg
);
4196 /* keep other bits untouched (so e.g. forced modes are not lost) */
4197 usbcfg
= dwc2_readl(hsotg
->regs
+ GUSBCFG
);
4198 usbcfg
&= ~(GUSBCFG_TOUTCAL_MASK
| GUSBCFG_PHYIF16
| GUSBCFG_SRPCAP
|
4199 GUSBCFG_HNPCAP
| GUSBCFG_USBTRDTIM_MASK
);
4201 /* set the PLL on, remove the HNP/SRP and set the PHY */
4202 trdtim
= (hsotg
->phyif
== GUSBCFG_PHYIF8
) ? 9 : 5;
4203 usbcfg
|= hsotg
->phyif
| GUSBCFG_TOUTCAL(7) |
4204 (trdtim
<< GUSBCFG_USBTRDTIM_SHIFT
);
4205 dwc2_writel(usbcfg
, hsotg
->regs
+ GUSBCFG
);
4207 if (using_dma(hsotg
))
4208 __orr32(hsotg
->regs
+ GAHBCFG
, GAHBCFG_DMA_EN
);
4212 * dwc2_hsotg_udc_start - prepare the udc for work
4213 * @gadget: The usb gadget state
4214 * @driver: The usb gadget driver
4216 * Perform initialization to prepare udc device and driver
4219 static int dwc2_hsotg_udc_start(struct usb_gadget
*gadget
,
4220 struct usb_gadget_driver
*driver
)
4222 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4223 unsigned long flags
;
4227 pr_err("%s: called with no device\n", __func__
);
4232 dev_err(hsotg
->dev
, "%s: no driver\n", __func__
);
4236 if (driver
->max_speed
< USB_SPEED_FULL
)
4237 dev_err(hsotg
->dev
, "%s: bad speed\n", __func__
);
4239 if (!driver
->setup
) {
4240 dev_err(hsotg
->dev
, "%s: missing entry points\n", __func__
);
4244 WARN_ON(hsotg
->driver
);
4246 driver
->driver
.bus
= NULL
;
4247 hsotg
->driver
= driver
;
4248 hsotg
->gadget
.dev
.of_node
= hsotg
->dev
->of_node
;
4249 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4251 if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
) {
4252 ret
= dwc2_lowlevel_hw_enable(hsotg
);
4257 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
4258 otg_set_peripheral(hsotg
->uphy
->otg
, &hsotg
->gadget
);
4260 spin_lock_irqsave(&hsotg
->lock
, flags
);
4261 if (dwc2_hw_is_device(hsotg
)) {
4262 dwc2_hsotg_init(hsotg
);
4263 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4267 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4269 dev_info(hsotg
->dev
, "bound driver %s\n", driver
->driver
.name
);
4274 hsotg
->driver
= NULL
;
4279 * dwc2_hsotg_udc_stop - stop the udc
4280 * @gadget: The usb gadget state
4281 * @driver: The usb gadget driver
4283 * Stop udc hw block and stay tunned for future transmissions
4285 static int dwc2_hsotg_udc_stop(struct usb_gadget
*gadget
)
4287 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4288 unsigned long flags
= 0;
4294 /* all endpoints should be shutdown */
4295 for (ep
= 1; ep
< hsotg
->num_of_eps
; ep
++) {
4296 if (hsotg
->eps_in
[ep
])
4297 dwc2_hsotg_ep_disable(&hsotg
->eps_in
[ep
]->ep
);
4298 if (hsotg
->eps_out
[ep
])
4299 dwc2_hsotg_ep_disable(&hsotg
->eps_out
[ep
]->ep
);
4302 spin_lock_irqsave(&hsotg
->lock
, flags
);
4304 hsotg
->driver
= NULL
;
4305 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4308 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4310 if (!IS_ERR_OR_NULL(hsotg
->uphy
))
4311 otg_set_peripheral(hsotg
->uphy
->otg
, NULL
);
4313 if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
)
4314 dwc2_lowlevel_hw_disable(hsotg
);
4320 * dwc2_hsotg_gadget_getframe - read the frame number
4321 * @gadget: The usb gadget state
4323 * Read the {micro} frame number
4325 static int dwc2_hsotg_gadget_getframe(struct usb_gadget
*gadget
)
4327 return dwc2_hsotg_read_frameno(to_hsotg(gadget
));
4331 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4332 * @gadget: The usb gadget state
4333 * @is_on: Current state of the USB PHY
4335 * Connect/Disconnect the USB PHY pullup
4337 static int dwc2_hsotg_pullup(struct usb_gadget
*gadget
, int is_on
)
4339 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4340 unsigned long flags
= 0;
4342 dev_dbg(hsotg
->dev
, "%s: is_on: %d op_state: %d\n", __func__
, is_on
,
4345 /* Don't modify pullup state while in host mode */
4346 if (hsotg
->op_state
!= OTG_STATE_B_PERIPHERAL
) {
4347 hsotg
->enabled
= is_on
;
4351 spin_lock_irqsave(&hsotg
->lock
, flags
);
4354 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4355 dwc2_hsotg_core_connect(hsotg
);
4357 dwc2_hsotg_core_disconnect(hsotg
);
4358 dwc2_hsotg_disconnect(hsotg
);
4362 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4363 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4368 static int dwc2_hsotg_vbus_session(struct usb_gadget
*gadget
, int is_active
)
4370 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4371 unsigned long flags
;
4373 dev_dbg(hsotg
->dev
, "%s: is_active: %d\n", __func__
, is_active
);
4374 spin_lock_irqsave(&hsotg
->lock
, flags
);
4377 * If controller is hibernated, it must exit from hibernation
4378 * before being initialized / de-initialized
4380 if (hsotg
->lx_state
== DWC2_L2
)
4381 dwc2_exit_hibernation(hsotg
, false);
4384 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
4386 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4388 dwc2_hsotg_core_connect(hsotg
);
4390 dwc2_hsotg_core_disconnect(hsotg
);
4391 dwc2_hsotg_disconnect(hsotg
);
4394 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4399 * dwc2_hsotg_vbus_draw - report bMaxPower field
4400 * @gadget: The usb gadget state
4401 * @mA: Amount of current
4403 * Report how much power the device may consume to the phy.
4405 static int dwc2_hsotg_vbus_draw(struct usb_gadget
*gadget
, unsigned int mA
)
4407 struct dwc2_hsotg
*hsotg
= to_hsotg(gadget
);
4409 if (IS_ERR_OR_NULL(hsotg
->uphy
))
4411 return usb_phy_set_power(hsotg
->uphy
, mA
);
4414 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops
= {
4415 .get_frame
= dwc2_hsotg_gadget_getframe
,
4416 .udc_start
= dwc2_hsotg_udc_start
,
4417 .udc_stop
= dwc2_hsotg_udc_stop
,
4418 .pullup
= dwc2_hsotg_pullup
,
4419 .vbus_session
= dwc2_hsotg_vbus_session
,
4420 .vbus_draw
= dwc2_hsotg_vbus_draw
,
4424 * dwc2_hsotg_initep - initialise a single endpoint
4425 * @hsotg: The device state.
4426 * @hs_ep: The endpoint to be initialised.
4427 * @epnum: The endpoint number
4429 * Initialise the given endpoint (as part of the probe and device state
4430 * creation) to give to the gadget driver. Setup the endpoint name, any
4431 * direction information and other state that may be required.
4433 static void dwc2_hsotg_initep(struct dwc2_hsotg
*hsotg
,
4434 struct dwc2_hsotg_ep
*hs_ep
,
4447 hs_ep
->dir_in
= dir_in
;
4448 hs_ep
->index
= epnum
;
4450 snprintf(hs_ep
->name
, sizeof(hs_ep
->name
), "ep%d%s", epnum
, dir
);
4452 INIT_LIST_HEAD(&hs_ep
->queue
);
4453 INIT_LIST_HEAD(&hs_ep
->ep
.ep_list
);
4455 /* add to the list of endpoints known by the gadget driver */
4457 list_add_tail(&hs_ep
->ep
.ep_list
, &hsotg
->gadget
.ep_list
);
4459 hs_ep
->parent
= hsotg
;
4460 hs_ep
->ep
.name
= hs_ep
->name
;
4462 if (hsotg
->params
.speed
== DWC2_SPEED_PARAM_LOW
)
4463 usb_ep_set_maxpacket_limit(&hs_ep
->ep
, 8);
4465 usb_ep_set_maxpacket_limit(&hs_ep
->ep
,
4466 epnum
? 1024 : EP0_MPS_LIMIT
);
4467 hs_ep
->ep
.ops
= &dwc2_hsotg_ep_ops
;
4470 hs_ep
->ep
.caps
.type_control
= true;
4472 if (hsotg
->params
.speed
!= DWC2_SPEED_PARAM_LOW
) {
4473 hs_ep
->ep
.caps
.type_iso
= true;
4474 hs_ep
->ep
.caps
.type_bulk
= true;
4476 hs_ep
->ep
.caps
.type_int
= true;
4480 hs_ep
->ep
.caps
.dir_in
= true;
4482 hs_ep
->ep
.caps
.dir_out
= true;
4485 * if we're using dma, we need to set the next-endpoint pointer
4486 * to be something valid.
4489 if (using_dma(hsotg
)) {
4490 u32 next
= DXEPCTL_NEXTEP((epnum
+ 1) % 15);
4493 dwc2_writel(next
, hsotg
->regs
+ DIEPCTL(epnum
));
4495 dwc2_writel(next
, hsotg
->regs
+ DOEPCTL(epnum
));
4500 * dwc2_hsotg_hw_cfg - read HW configuration registers
4501 * @param: The device state
4503 * Read the USB core HW configuration registers
4505 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg
*hsotg
)
4511 /* check hardware configuration */
4513 hsotg
->num_of_eps
= hsotg
->hw_params
.num_dev_ep
;
4516 hsotg
->num_of_eps
++;
4518 hsotg
->eps_in
[0] = devm_kzalloc(hsotg
->dev
,
4519 sizeof(struct dwc2_hsotg_ep
),
4521 if (!hsotg
->eps_in
[0])
4523 /* Same dwc2_hsotg_ep is used in both directions for ep0 */
4524 hsotg
->eps_out
[0] = hsotg
->eps_in
[0];
4526 cfg
= hsotg
->hw_params
.dev_ep_dirs
;
4527 for (i
= 1, cfg
>>= 2; i
< hsotg
->num_of_eps
; i
++, cfg
>>= 2) {
4529 /* Direction in or both */
4530 if (!(ep_type
& 2)) {
4531 hsotg
->eps_in
[i
] = devm_kzalloc(hsotg
->dev
,
4532 sizeof(struct dwc2_hsotg_ep
), GFP_KERNEL
);
4533 if (!hsotg
->eps_in
[i
])
4536 /* Direction out or both */
4537 if (!(ep_type
& 1)) {
4538 hsotg
->eps_out
[i
] = devm_kzalloc(hsotg
->dev
,
4539 sizeof(struct dwc2_hsotg_ep
), GFP_KERNEL
);
4540 if (!hsotg
->eps_out
[i
])
4545 hsotg
->fifo_mem
= hsotg
->hw_params
.total_fifo_size
;
4546 hsotg
->dedicated_fifos
= hsotg
->hw_params
.en_multiple_tx_fifo
;
4548 dev_info(hsotg
->dev
, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4550 hsotg
->dedicated_fifos
? "dedicated" : "shared",
4556 * dwc2_hsotg_dump - dump state of the udc
4557 * @param: The device state
4559 static void dwc2_hsotg_dump(struct dwc2_hsotg
*hsotg
)
4562 struct device
*dev
= hsotg
->dev
;
4563 void __iomem
*regs
= hsotg
->regs
;
4567 dev_info(dev
, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4568 dwc2_readl(regs
+ DCFG
), dwc2_readl(regs
+ DCTL
),
4569 dwc2_readl(regs
+ DIEPMSK
));
4571 dev_info(dev
, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4572 dwc2_readl(regs
+ GAHBCFG
), dwc2_readl(regs
+ GHWCFG1
));
4574 dev_info(dev
, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4575 dwc2_readl(regs
+ GRXFSIZ
), dwc2_readl(regs
+ GNPTXFSIZ
));
4577 /* show periodic fifo settings */
4579 for (idx
= 1; idx
< hsotg
->num_of_eps
; idx
++) {
4580 val
= dwc2_readl(regs
+ DPTXFSIZN(idx
));
4581 dev_info(dev
, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx
,
4582 val
>> FIFOSIZE_DEPTH_SHIFT
,
4583 val
& FIFOSIZE_STARTADDR_MASK
);
4586 for (idx
= 0; idx
< hsotg
->num_of_eps
; idx
++) {
4588 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx
,
4589 dwc2_readl(regs
+ DIEPCTL(idx
)),
4590 dwc2_readl(regs
+ DIEPTSIZ(idx
)),
4591 dwc2_readl(regs
+ DIEPDMA(idx
)));
4593 val
= dwc2_readl(regs
+ DOEPCTL(idx
));
4595 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4596 idx
, dwc2_readl(regs
+ DOEPCTL(idx
)),
4597 dwc2_readl(regs
+ DOEPTSIZ(idx
)),
4598 dwc2_readl(regs
+ DOEPDMA(idx
)));
4601 dev_info(dev
, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4602 dwc2_readl(regs
+ DVBUSDIS
), dwc2_readl(regs
+ DVBUSPULSE
));
4607 * dwc2_gadget_init - init function for gadget
4608 * @dwc2: The data structure for the DWC2 driver.
4609 * @irq: The IRQ number for the controller.
4611 int dwc2_gadget_init(struct dwc2_hsotg
*hsotg
, int irq
)
4613 struct device
*dev
= hsotg
->dev
;
4617 /* Dump fifo information */
4618 dev_dbg(dev
, "NonPeriodic TXFIFO size: %d\n",
4619 hsotg
->params
.g_np_tx_fifo_size
);
4620 dev_dbg(dev
, "RXFIFO size: %d\n", hsotg
->params
.g_rx_fifo_size
);
4622 hsotg
->gadget
.max_speed
= USB_SPEED_HIGH
;
4623 hsotg
->gadget
.ops
= &dwc2_hsotg_gadget_ops
;
4624 hsotg
->gadget
.name
= dev_name(dev
);
4625 if (hsotg
->dr_mode
== USB_DR_MODE_OTG
)
4626 hsotg
->gadget
.is_otg
= 1;
4627 else if (hsotg
->dr_mode
== USB_DR_MODE_PERIPHERAL
)
4628 hsotg
->op_state
= OTG_STATE_B_PERIPHERAL
;
4630 ret
= dwc2_hsotg_hw_cfg(hsotg
);
4632 dev_err(hsotg
->dev
, "Hardware configuration failed: %d\n", ret
);
4636 hsotg
->ctrl_buff
= devm_kzalloc(hsotg
->dev
,
4637 DWC2_CTRL_BUFF_SIZE
, GFP_KERNEL
);
4638 if (!hsotg
->ctrl_buff
)
4641 hsotg
->ep0_buff
= devm_kzalloc(hsotg
->dev
,
4642 DWC2_CTRL_BUFF_SIZE
, GFP_KERNEL
);
4643 if (!hsotg
->ep0_buff
)
4646 if (using_desc_dma(hsotg
)) {
4647 ret
= dwc2_gadget_alloc_ctrl_desc_chains(hsotg
);
4652 ret
= devm_request_irq(hsotg
->dev
, irq
, dwc2_hsotg_irq
, IRQF_SHARED
,
4653 dev_name(hsotg
->dev
), hsotg
);
4655 dev_err(dev
, "cannot claim IRQ for gadget\n");
4659 /* hsotg->num_of_eps holds number of EPs other than ep0 */
4661 if (hsotg
->num_of_eps
== 0) {
4662 dev_err(dev
, "wrong number of EPs (zero)\n");
4666 /* setup endpoint information */
4668 INIT_LIST_HEAD(&hsotg
->gadget
.ep_list
);
4669 hsotg
->gadget
.ep0
= &hsotg
->eps_out
[0]->ep
;
4671 /* allocate EP0 request */
4673 hsotg
->ctrl_req
= dwc2_hsotg_ep_alloc_request(&hsotg
->eps_out
[0]->ep
,
4675 if (!hsotg
->ctrl_req
) {
4676 dev_err(dev
, "failed to allocate ctrl req\n");
4680 /* initialise the endpoints now the core has been initialised */
4681 for (epnum
= 0; epnum
< hsotg
->num_of_eps
; epnum
++) {
4682 if (hsotg
->eps_in
[epnum
])
4683 dwc2_hsotg_initep(hsotg
, hsotg
->eps_in
[epnum
],
4685 if (hsotg
->eps_out
[epnum
])
4686 dwc2_hsotg_initep(hsotg
, hsotg
->eps_out
[epnum
],
4690 ret
= usb_add_gadget_udc(dev
, &hsotg
->gadget
);
4694 dwc2_hsotg_dump(hsotg
);
4700 * dwc2_hsotg_remove - remove function for hsotg driver
4701 * @pdev: The platform information for the driver
4703 int dwc2_hsotg_remove(struct dwc2_hsotg
*hsotg
)
4705 usb_del_gadget_udc(&hsotg
->gadget
);
4710 int dwc2_hsotg_suspend(struct dwc2_hsotg
*hsotg
)
4712 unsigned long flags
;
4714 if (hsotg
->lx_state
!= DWC2_L0
)
4717 if (hsotg
->driver
) {
4720 dev_info(hsotg
->dev
, "suspending usb gadget %s\n",
4721 hsotg
->driver
->driver
.name
);
4723 spin_lock_irqsave(&hsotg
->lock
, flags
);
4725 dwc2_hsotg_core_disconnect(hsotg
);
4726 dwc2_hsotg_disconnect(hsotg
);
4727 hsotg
->gadget
.speed
= USB_SPEED_UNKNOWN
;
4728 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4730 for (ep
= 0; ep
< hsotg
->num_of_eps
; ep
++) {
4731 if (hsotg
->eps_in
[ep
])
4732 dwc2_hsotg_ep_disable(&hsotg
->eps_in
[ep
]->ep
);
4733 if (hsotg
->eps_out
[ep
])
4734 dwc2_hsotg_ep_disable(&hsotg
->eps_out
[ep
]->ep
);
4741 int dwc2_hsotg_resume(struct dwc2_hsotg
*hsotg
)
4743 unsigned long flags
;
4745 if (hsotg
->lx_state
== DWC2_L2
)
4748 if (hsotg
->driver
) {
4749 dev_info(hsotg
->dev
, "resuming usb gadget %s\n",
4750 hsotg
->driver
->driver
.name
);
4752 spin_lock_irqsave(&hsotg
->lock
, flags
);
4753 dwc2_hsotg_core_init_disconnected(hsotg
, false);
4755 dwc2_hsotg_core_connect(hsotg
);
4756 spin_unlock_irqrestore(&hsotg
->lock
, flags
);
4763 * dwc2_backup_device_registers() - Backup controller device registers.
4764 * When suspending usb bus, registers needs to be backuped
4765 * if controller power is disabled once suspended.
4767 * @hsotg: Programming view of the DWC_otg controller
4769 int dwc2_backup_device_registers(struct dwc2_hsotg
*hsotg
)
4771 struct dwc2_dregs_backup
*dr
;
4774 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
4776 /* Backup dev regs */
4777 dr
= &hsotg
->dr_backup
;
4779 dr
->dcfg
= dwc2_readl(hsotg
->regs
+ DCFG
);
4780 dr
->dctl
= dwc2_readl(hsotg
->regs
+ DCTL
);
4781 dr
->daintmsk
= dwc2_readl(hsotg
->regs
+ DAINTMSK
);
4782 dr
->diepmsk
= dwc2_readl(hsotg
->regs
+ DIEPMSK
);
4783 dr
->doepmsk
= dwc2_readl(hsotg
->regs
+ DOEPMSK
);
4785 for (i
= 0; i
< hsotg
->num_of_eps
; i
++) {
4787 dr
->diepctl
[i
] = dwc2_readl(hsotg
->regs
+ DIEPCTL(i
));
4789 /* Ensure DATA PID is correctly configured */
4790 if (dr
->diepctl
[i
] & DXEPCTL_DPID
)
4791 dr
->diepctl
[i
] |= DXEPCTL_SETD1PID
;
4793 dr
->diepctl
[i
] |= DXEPCTL_SETD0PID
;
4795 dr
->dieptsiz
[i
] = dwc2_readl(hsotg
->regs
+ DIEPTSIZ(i
));
4796 dr
->diepdma
[i
] = dwc2_readl(hsotg
->regs
+ DIEPDMA(i
));
4798 /* Backup OUT EPs */
4799 dr
->doepctl
[i
] = dwc2_readl(hsotg
->regs
+ DOEPCTL(i
));
4801 /* Ensure DATA PID is correctly configured */
4802 if (dr
->doepctl
[i
] & DXEPCTL_DPID
)
4803 dr
->doepctl
[i
] |= DXEPCTL_SETD1PID
;
4805 dr
->doepctl
[i
] |= DXEPCTL_SETD0PID
;
4807 dr
->doeptsiz
[i
] = dwc2_readl(hsotg
->regs
+ DOEPTSIZ(i
));
4808 dr
->doepdma
[i
] = dwc2_readl(hsotg
->regs
+ DOEPDMA(i
));
4815 * dwc2_restore_device_registers() - Restore controller device registers.
4816 * When resuming usb bus, device registers needs to be restored
4817 * if controller power were disabled.
4819 * @hsotg: Programming view of the DWC_otg controller
4821 int dwc2_restore_device_registers(struct dwc2_hsotg
*hsotg
)
4823 struct dwc2_dregs_backup
*dr
;
4827 dev_dbg(hsotg
->dev
, "%s\n", __func__
);
4829 /* Restore dev regs */
4830 dr
= &hsotg
->dr_backup
;
4832 dev_err(hsotg
->dev
, "%s: no device registers to restore\n",
4838 dwc2_writel(dr
->dcfg
, hsotg
->regs
+ DCFG
);
4839 dwc2_writel(dr
->dctl
, hsotg
->regs
+ DCTL
);
4840 dwc2_writel(dr
->daintmsk
, hsotg
->regs
+ DAINTMSK
);
4841 dwc2_writel(dr
->diepmsk
, hsotg
->regs
+ DIEPMSK
);
4842 dwc2_writel(dr
->doepmsk
, hsotg
->regs
+ DOEPMSK
);
4844 for (i
= 0; i
< hsotg
->num_of_eps
; i
++) {
4845 /* Restore IN EPs */
4846 dwc2_writel(dr
->diepctl
[i
], hsotg
->regs
+ DIEPCTL(i
));
4847 dwc2_writel(dr
->dieptsiz
[i
], hsotg
->regs
+ DIEPTSIZ(i
));
4848 dwc2_writel(dr
->diepdma
[i
], hsotg
->regs
+ DIEPDMA(i
));
4850 /* Restore OUT EPs */
4851 dwc2_writel(dr
->doepctl
[i
], hsotg
->regs
+ DOEPCTL(i
));
4852 dwc2_writel(dr
->doeptsiz
[i
], hsotg
->regs
+ DOEPTSIZ(i
));
4853 dwc2_writel(dr
->doepdma
[i
], hsotg
->regs
+ DOEPDMA(i
));
4856 /* Set the Power-On Programming done bit */
4857 dctl
= dwc2_readl(hsotg
->regs
+ DCTL
);
4858 dctl
|= DCTL_PWRONPRGDONE
;
4859 dwc2_writel(dctl
, hsotg
->regs
+ DCTL
);