bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / fs / btrfs / inode-map.c
blob022b19336feeadd7c9fb686fcc94f1266b7b382f
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/delay.h>
20 #include <linux/kthread.h>
21 #include <linux/pagemap.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "free-space-cache.h"
26 #include "inode-map.h"
27 #include "transaction.h"
29 static int caching_kthread(void *data)
31 struct btrfs_root *root = data;
32 struct btrfs_fs_info *fs_info = root->fs_info;
33 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
34 struct btrfs_key key;
35 struct btrfs_path *path;
36 struct extent_buffer *leaf;
37 u64 last = (u64)-1;
38 int slot;
39 int ret;
41 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
42 return 0;
44 path = btrfs_alloc_path();
45 if (!path)
46 return -ENOMEM;
48 /* Since the commit root is read-only, we can safely skip locking. */
49 path->skip_locking = 1;
50 path->search_commit_root = 1;
51 path->reada = READA_FORWARD;
53 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
54 key.offset = 0;
55 key.type = BTRFS_INODE_ITEM_KEY;
56 again:
57 /* need to make sure the commit_root doesn't disappear */
58 down_read(&fs_info->commit_root_sem);
60 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
61 if (ret < 0)
62 goto out;
64 while (1) {
65 if (btrfs_fs_closing(fs_info))
66 goto out;
68 leaf = path->nodes[0];
69 slot = path->slots[0];
70 if (slot >= btrfs_header_nritems(leaf)) {
71 ret = btrfs_next_leaf(root, path);
72 if (ret < 0)
73 goto out;
74 else if (ret > 0)
75 break;
77 if (need_resched() ||
78 btrfs_transaction_in_commit(fs_info)) {
79 leaf = path->nodes[0];
81 if (WARN_ON(btrfs_header_nritems(leaf) == 0))
82 break;
85 * Save the key so we can advances forward
86 * in the next search.
88 btrfs_item_key_to_cpu(leaf, &key, 0);
89 btrfs_release_path(path);
90 root->ino_cache_progress = last;
91 up_read(&fs_info->commit_root_sem);
92 schedule_timeout(1);
93 goto again;
94 } else
95 continue;
98 btrfs_item_key_to_cpu(leaf, &key, slot);
100 if (key.type != BTRFS_INODE_ITEM_KEY)
101 goto next;
103 if (key.objectid >= root->highest_objectid)
104 break;
106 if (last != (u64)-1 && last + 1 != key.objectid) {
107 __btrfs_add_free_space(fs_info, ctl, last + 1,
108 key.objectid - last - 1);
109 wake_up(&root->ino_cache_wait);
112 last = key.objectid;
113 next:
114 path->slots[0]++;
117 if (last < root->highest_objectid - 1) {
118 __btrfs_add_free_space(fs_info, ctl, last + 1,
119 root->highest_objectid - last - 1);
122 spin_lock(&root->ino_cache_lock);
123 root->ino_cache_state = BTRFS_CACHE_FINISHED;
124 spin_unlock(&root->ino_cache_lock);
126 root->ino_cache_progress = (u64)-1;
127 btrfs_unpin_free_ino(root);
128 out:
129 wake_up(&root->ino_cache_wait);
130 up_read(&fs_info->commit_root_sem);
132 btrfs_free_path(path);
134 return ret;
137 static void start_caching(struct btrfs_root *root)
139 struct btrfs_fs_info *fs_info = root->fs_info;
140 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
141 struct task_struct *tsk;
142 int ret;
143 u64 objectid;
145 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
146 return;
148 spin_lock(&root->ino_cache_lock);
149 if (root->ino_cache_state != BTRFS_CACHE_NO) {
150 spin_unlock(&root->ino_cache_lock);
151 return;
154 root->ino_cache_state = BTRFS_CACHE_STARTED;
155 spin_unlock(&root->ino_cache_lock);
157 ret = load_free_ino_cache(fs_info, root);
158 if (ret == 1) {
159 spin_lock(&root->ino_cache_lock);
160 root->ino_cache_state = BTRFS_CACHE_FINISHED;
161 spin_unlock(&root->ino_cache_lock);
162 return;
166 * It can be quite time-consuming to fill the cache by searching
167 * through the extent tree, and this can keep ino allocation path
168 * waiting. Therefore at start we quickly find out the highest
169 * inode number and we know we can use inode numbers which fall in
170 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
172 ret = btrfs_find_free_objectid(root, &objectid);
173 if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
174 __btrfs_add_free_space(fs_info, ctl, objectid,
175 BTRFS_LAST_FREE_OBJECTID - objectid + 1);
178 tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
179 root->root_key.objectid);
180 if (IS_ERR(tsk)) {
181 btrfs_warn(fs_info, "failed to start inode caching task");
182 btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
183 "disabling inode map caching");
187 int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
189 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
190 return btrfs_find_free_objectid(root, objectid);
192 again:
193 *objectid = btrfs_find_ino_for_alloc(root);
195 if (*objectid != 0)
196 return 0;
198 start_caching(root);
200 wait_event(root->ino_cache_wait,
201 root->ino_cache_state == BTRFS_CACHE_FINISHED ||
202 root->free_ino_ctl->free_space > 0);
204 if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
205 root->free_ino_ctl->free_space == 0)
206 return -ENOSPC;
207 else
208 goto again;
211 void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
213 struct btrfs_fs_info *fs_info = root->fs_info;
214 struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
216 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
217 return;
218 again:
219 if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
220 __btrfs_add_free_space(fs_info, pinned, objectid, 1);
221 } else {
222 down_write(&fs_info->commit_root_sem);
223 spin_lock(&root->ino_cache_lock);
224 if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
225 spin_unlock(&root->ino_cache_lock);
226 up_write(&fs_info->commit_root_sem);
227 goto again;
229 spin_unlock(&root->ino_cache_lock);
231 start_caching(root);
233 __btrfs_add_free_space(fs_info, pinned, objectid, 1);
235 up_write(&fs_info->commit_root_sem);
240 * When a transaction is committed, we'll move those inode numbers which are
241 * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
242 * others will just be dropped, because the commit root we were searching has
243 * changed.
245 * Must be called with root->fs_info->commit_root_sem held
247 void btrfs_unpin_free_ino(struct btrfs_root *root)
249 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
250 struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
251 spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
252 struct btrfs_free_space *info;
253 struct rb_node *n;
254 u64 count;
256 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
257 return;
259 while (1) {
260 bool add_to_ctl = true;
262 spin_lock(rbroot_lock);
263 n = rb_first(rbroot);
264 if (!n) {
265 spin_unlock(rbroot_lock);
266 break;
269 info = rb_entry(n, struct btrfs_free_space, offset_index);
270 BUG_ON(info->bitmap); /* Logic error */
272 if (info->offset > root->ino_cache_progress)
273 add_to_ctl = false;
274 else if (info->offset + info->bytes > root->ino_cache_progress)
275 count = root->ino_cache_progress - info->offset + 1;
276 else
277 count = info->bytes;
279 rb_erase(&info->offset_index, rbroot);
280 spin_unlock(rbroot_lock);
281 if (add_to_ctl)
282 __btrfs_add_free_space(root->fs_info, ctl,
283 info->offset, count);
284 kmem_cache_free(btrfs_free_space_cachep, info);
288 #define INIT_THRESHOLD ((SZ_32K / 2) / sizeof(struct btrfs_free_space))
289 #define INODES_PER_BITMAP (PAGE_SIZE * 8)
292 * The goal is to keep the memory used by the free_ino tree won't
293 * exceed the memory if we use bitmaps only.
295 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
297 struct btrfs_free_space *info;
298 struct rb_node *n;
299 int max_ino;
300 int max_bitmaps;
302 n = rb_last(&ctl->free_space_offset);
303 if (!n) {
304 ctl->extents_thresh = INIT_THRESHOLD;
305 return;
307 info = rb_entry(n, struct btrfs_free_space, offset_index);
310 * Find the maximum inode number in the filesystem. Note we
311 * ignore the fact that this can be a bitmap, because we are
312 * not doing precise calculation.
314 max_ino = info->bytes - 1;
316 max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
317 if (max_bitmaps <= ctl->total_bitmaps) {
318 ctl->extents_thresh = 0;
319 return;
322 ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
323 PAGE_SIZE / sizeof(*info);
327 * We don't fall back to bitmap, if we are below the extents threshold
328 * or this chunk of inode numbers is a big one.
330 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
331 struct btrfs_free_space *info)
333 if (ctl->free_extents < ctl->extents_thresh ||
334 info->bytes > INODES_PER_BITMAP / 10)
335 return false;
337 return true;
340 static const struct btrfs_free_space_op free_ino_op = {
341 .recalc_thresholds = recalculate_thresholds,
342 .use_bitmap = use_bitmap,
345 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
349 static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
350 struct btrfs_free_space *info)
353 * We always use extents for two reasons:
355 * - The pinned tree is only used during the process of caching
356 * work.
357 * - Make code simpler. See btrfs_unpin_free_ino().
359 return false;
362 static const struct btrfs_free_space_op pinned_free_ino_op = {
363 .recalc_thresholds = pinned_recalc_thresholds,
364 .use_bitmap = pinned_use_bitmap,
367 void btrfs_init_free_ino_ctl(struct btrfs_root *root)
369 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
370 struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
372 spin_lock_init(&ctl->tree_lock);
373 ctl->unit = 1;
374 ctl->start = 0;
375 ctl->private = NULL;
376 ctl->op = &free_ino_op;
377 INIT_LIST_HEAD(&ctl->trimming_ranges);
378 mutex_init(&ctl->cache_writeout_mutex);
381 * Initially we allow to use 16K of ram to cache chunks of
382 * inode numbers before we resort to bitmaps. This is somewhat
383 * arbitrary, but it will be adjusted in runtime.
385 ctl->extents_thresh = INIT_THRESHOLD;
387 spin_lock_init(&pinned->tree_lock);
388 pinned->unit = 1;
389 pinned->start = 0;
390 pinned->private = NULL;
391 pinned->extents_thresh = 0;
392 pinned->op = &pinned_free_ino_op;
395 int btrfs_save_ino_cache(struct btrfs_root *root,
396 struct btrfs_trans_handle *trans)
398 struct btrfs_fs_info *fs_info = root->fs_info;
399 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
400 struct btrfs_path *path;
401 struct inode *inode;
402 struct btrfs_block_rsv *rsv;
403 struct extent_changeset *data_reserved = NULL;
404 u64 num_bytes;
405 u64 alloc_hint = 0;
406 int ret;
407 int prealloc;
408 bool retry = false;
410 /* only fs tree and subvol/snap needs ino cache */
411 if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
412 (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
413 root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
414 return 0;
416 /* Don't save inode cache if we are deleting this root */
417 if (btrfs_root_refs(&root->root_item) == 0)
418 return 0;
420 if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
421 return 0;
423 path = btrfs_alloc_path();
424 if (!path)
425 return -ENOMEM;
427 rsv = trans->block_rsv;
428 trans->block_rsv = &fs_info->trans_block_rsv;
430 num_bytes = trans->bytes_reserved;
432 * 1 item for inode item insertion if need
433 * 4 items for inode item update (in the worst case)
434 * 1 items for slack space if we need do truncation
435 * 1 item for free space object
436 * 3 items for pre-allocation
438 trans->bytes_reserved = btrfs_calc_trans_metadata_size(fs_info, 10);
439 ret = btrfs_block_rsv_add(root, trans->block_rsv,
440 trans->bytes_reserved,
441 BTRFS_RESERVE_NO_FLUSH);
442 if (ret)
443 goto out;
444 trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
445 trans->bytes_reserved, 1);
446 again:
447 inode = lookup_free_ino_inode(root, path);
448 if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
449 ret = PTR_ERR(inode);
450 goto out_release;
453 if (IS_ERR(inode)) {
454 BUG_ON(retry); /* Logic error */
455 retry = true;
457 ret = create_free_ino_inode(root, trans, path);
458 if (ret)
459 goto out_release;
460 goto again;
463 BTRFS_I(inode)->generation = 0;
464 ret = btrfs_update_inode(trans, root, inode);
465 if (ret) {
466 btrfs_abort_transaction(trans, ret);
467 goto out_put;
470 if (i_size_read(inode) > 0) {
471 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
472 if (ret) {
473 if (ret != -ENOSPC)
474 btrfs_abort_transaction(trans, ret);
475 goto out_put;
479 spin_lock(&root->ino_cache_lock);
480 if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
481 ret = -1;
482 spin_unlock(&root->ino_cache_lock);
483 goto out_put;
485 spin_unlock(&root->ino_cache_lock);
487 spin_lock(&ctl->tree_lock);
488 prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
489 prealloc = ALIGN(prealloc, PAGE_SIZE);
490 prealloc += ctl->total_bitmaps * PAGE_SIZE;
491 spin_unlock(&ctl->tree_lock);
493 /* Just to make sure we have enough space */
494 prealloc += 8 * PAGE_SIZE;
496 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 0, prealloc);
497 if (ret)
498 goto out_put;
500 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
501 prealloc, prealloc, &alloc_hint);
502 if (ret) {
503 btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
504 goto out_put;
507 ret = btrfs_write_out_ino_cache(root, trans, path, inode);
508 btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc);
509 out_put:
510 iput(inode);
511 out_release:
512 trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
513 trans->bytes_reserved, 0);
514 btrfs_block_rsv_release(fs_info, trans->block_rsv,
515 trans->bytes_reserved);
516 out:
517 trans->block_rsv = rsv;
518 trans->bytes_reserved = num_bytes;
520 btrfs_free_path(path);
521 extent_changeset_free(data_reserved);
522 return ret;
525 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
527 struct btrfs_path *path;
528 int ret;
529 struct extent_buffer *l;
530 struct btrfs_key search_key;
531 struct btrfs_key found_key;
532 int slot;
534 path = btrfs_alloc_path();
535 if (!path)
536 return -ENOMEM;
538 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
539 search_key.type = -1;
540 search_key.offset = (u64)-1;
541 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
542 if (ret < 0)
543 goto error;
544 BUG_ON(ret == 0); /* Corruption */
545 if (path->slots[0] > 0) {
546 slot = path->slots[0] - 1;
547 l = path->nodes[0];
548 btrfs_item_key_to_cpu(l, &found_key, slot);
549 *objectid = max_t(u64, found_key.objectid,
550 BTRFS_FIRST_FREE_OBJECTID - 1);
551 } else {
552 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
554 ret = 0;
555 error:
556 btrfs_free_path(path);
557 return ret;
560 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
562 int ret;
563 mutex_lock(&root->objectid_mutex);
565 if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
566 btrfs_warn(root->fs_info,
567 "the objectid of root %llu reaches its highest value",
568 root->root_key.objectid);
569 ret = -ENOSPC;
570 goto out;
573 *objectid = ++root->highest_objectid;
574 ret = 0;
575 out:
576 mutex_unlock(&root->objectid_mutex);
577 return ret;