2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include <linux/iversion.h>
27 #include "print-tree.h"
30 #include "compression.h"
32 #include "inode-map.h"
34 /* magic values for the inode_only field in btrfs_log_inode:
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
40 #define LOG_INODE_ALL 0
41 #define LOG_INODE_EXISTS 1
42 #define LOG_OTHER_INODE 2
45 * directory trouble cases
47 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
48 * log, we must force a full commit before doing an fsync of the directory
49 * where the unlink was done.
50 * ---> record transid of last unlink/rename per directory
54 * rename foo/some_dir foo2/some_dir
56 * fsync foo/some_dir/some_file
58 * The fsync above will unlink the original some_dir without recording
59 * it in its new location (foo2). After a crash, some_dir will be gone
60 * unless the fsync of some_file forces a full commit
62 * 2) we must log any new names for any file or dir that is in the fsync
63 * log. ---> check inode while renaming/linking.
65 * 2a) we must log any new names for any file or dir during rename
66 * when the directory they are being removed from was logged.
67 * ---> check inode and old parent dir during rename
69 * 2a is actually the more important variant. With the extra logging
70 * a crash might unlink the old name without recreating the new one
72 * 3) after a crash, we must go through any directories with a link count
73 * of zero and redo the rm -rf
80 * The directory f1 was fully removed from the FS, but fsync was never
81 * called on f1, only its parent dir. After a crash the rm -rf must
82 * be replayed. This must be able to recurse down the entire
83 * directory tree. The inode link count fixup code takes care of the
88 * stages for the tree walking. The first
89 * stage (0) is to only pin down the blocks we find
90 * the second stage (1) is to make sure that all the inodes
91 * we find in the log are created in the subvolume.
93 * The last stage is to deal with directories and links and extents
94 * and all the other fun semantics
96 #define LOG_WALK_PIN_ONLY 0
97 #define LOG_WALK_REPLAY_INODES 1
98 #define LOG_WALK_REPLAY_DIR_INDEX 2
99 #define LOG_WALK_REPLAY_ALL 3
101 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
102 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
106 struct btrfs_log_ctx
*ctx
);
107 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
108 struct btrfs_root
*root
,
109 struct btrfs_path
*path
, u64 objectid
);
110 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
111 struct btrfs_root
*root
,
112 struct btrfs_root
*log
,
113 struct btrfs_path
*path
,
114 u64 dirid
, int del_all
);
117 * tree logging is a special write ahead log used to make sure that
118 * fsyncs and O_SYNCs can happen without doing full tree commits.
120 * Full tree commits are expensive because they require commonly
121 * modified blocks to be recowed, creating many dirty pages in the
122 * extent tree an 4x-6x higher write load than ext3.
124 * Instead of doing a tree commit on every fsync, we use the
125 * key ranges and transaction ids to find items for a given file or directory
126 * that have changed in this transaction. Those items are copied into
127 * a special tree (one per subvolume root), that tree is written to disk
128 * and then the fsync is considered complete.
130 * After a crash, items are copied out of the log-tree back into the
131 * subvolume tree. Any file data extents found are recorded in the extent
132 * allocation tree, and the log-tree freed.
134 * The log tree is read three times, once to pin down all the extents it is
135 * using in ram and once, once to create all the inodes logged in the tree
136 * and once to do all the other items.
140 * start a sub transaction and setup the log tree
141 * this increments the log tree writer count to make the people
142 * syncing the tree wait for us to finish
144 static int start_log_trans(struct btrfs_trans_handle
*trans
,
145 struct btrfs_root
*root
,
146 struct btrfs_log_ctx
*ctx
)
148 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
151 mutex_lock(&root
->log_mutex
);
153 if (root
->log_root
) {
154 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
159 if (!root
->log_start_pid
) {
160 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
161 root
->log_start_pid
= current
->pid
;
162 } else if (root
->log_start_pid
!= current
->pid
) {
163 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
166 mutex_lock(&fs_info
->tree_log_mutex
);
167 if (!fs_info
->log_root_tree
)
168 ret
= btrfs_init_log_root_tree(trans
, fs_info
);
169 mutex_unlock(&fs_info
->tree_log_mutex
);
173 ret
= btrfs_add_log_tree(trans
, root
);
177 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
178 root
->log_start_pid
= current
->pid
;
181 atomic_inc(&root
->log_batch
);
182 atomic_inc(&root
->log_writers
);
184 int index
= root
->log_transid
% 2;
185 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
186 ctx
->log_transid
= root
->log_transid
;
190 mutex_unlock(&root
->log_mutex
);
195 * returns 0 if there was a log transaction running and we were able
196 * to join, or returns -ENOENT if there were not transactions
199 static int join_running_log_trans(struct btrfs_root
*root
)
207 mutex_lock(&root
->log_mutex
);
208 if (root
->log_root
) {
210 atomic_inc(&root
->log_writers
);
212 mutex_unlock(&root
->log_mutex
);
217 * This either makes the current running log transaction wait
218 * until you call btrfs_end_log_trans() or it makes any future
219 * log transactions wait until you call btrfs_end_log_trans()
221 int btrfs_pin_log_trans(struct btrfs_root
*root
)
225 mutex_lock(&root
->log_mutex
);
226 atomic_inc(&root
->log_writers
);
227 mutex_unlock(&root
->log_mutex
);
232 * indicate we're done making changes to the log tree
233 * and wake up anyone waiting to do a sync
235 void btrfs_end_log_trans(struct btrfs_root
*root
)
237 if (atomic_dec_and_test(&root
->log_writers
)) {
239 * Implicit memory barrier after atomic_dec_and_test
241 if (waitqueue_active(&root
->log_writer_wait
))
242 wake_up(&root
->log_writer_wait
);
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
253 struct walk_control
{
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
269 /* pin only walk, we record which extents on disk belong to the
274 /* what stage of the replay code we're currently in */
277 /* the root we are currently replaying */
278 struct btrfs_root
*replay_dest
;
280 /* the trans handle for the current replay */
281 struct btrfs_trans_handle
*trans
;
283 /* the function that gets used to process blocks we find in the
284 * tree. Note the extent_buffer might not be up to date when it is
285 * passed in, and it must be checked or read if you need the data
288 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
289 struct walk_control
*wc
, u64 gen
);
293 * process_func used to pin down extents, write them or wait on them
295 static int process_one_buffer(struct btrfs_root
*log
,
296 struct extent_buffer
*eb
,
297 struct walk_control
*wc
, u64 gen
)
299 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
306 if (btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
307 ret
= btrfs_read_buffer(eb
, gen
);
313 ret
= btrfs_pin_extent_for_log_replay(fs_info
, eb
->start
,
316 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
317 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
318 ret
= btrfs_exclude_logged_extents(fs_info
, eb
);
320 btrfs_write_tree_block(eb
);
322 btrfs_wait_tree_block_writeback(eb
);
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
339 * If the key isn't in the destination yet, a new item is inserted.
341 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
342 struct btrfs_root
*root
,
343 struct btrfs_path
*path
,
344 struct extent_buffer
*eb
, int slot
,
345 struct btrfs_key
*key
)
347 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
350 u64 saved_i_size
= 0;
351 int save_old_i_size
= 0;
352 unsigned long src_ptr
;
353 unsigned long dst_ptr
;
354 int overwrite_root
= 0;
355 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
357 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
360 item_size
= btrfs_item_size_nr(eb
, slot
);
361 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
363 /* look for the key in the destination tree */
364 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
371 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
373 if (dst_size
!= item_size
)
376 if (item_size
== 0) {
377 btrfs_release_path(path
);
380 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
381 src_copy
= kmalloc(item_size
, GFP_NOFS
);
382 if (!dst_copy
|| !src_copy
) {
383 btrfs_release_path(path
);
389 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
391 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
392 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
394 ret
= memcmp(dst_copy
, src_copy
, item_size
);
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
405 btrfs_release_path(path
);
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
414 struct btrfs_inode_item
*item
;
418 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
419 struct btrfs_inode_item
);
420 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
421 item
= btrfs_item_ptr(eb
, slot
,
422 struct btrfs_inode_item
);
423 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
430 mode
= btrfs_inode_mode(eb
, item
);
432 btrfs_set_inode_size(eb
, item
, 0);
434 } else if (inode_item
) {
435 struct btrfs_inode_item
*item
;
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
442 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
443 btrfs_set_inode_nbytes(eb
, item
, 0);
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
450 mode
= btrfs_inode_mode(eb
, item
);
452 btrfs_set_inode_size(eb
, item
, 0);
455 btrfs_release_path(path
);
456 /* try to insert the key into the destination tree */
457 path
->skip_release_on_error
= 1;
458 ret
= btrfs_insert_empty_item(trans
, root
, path
,
460 path
->skip_release_on_error
= 0;
462 /* make sure any existing item is the correct size */
463 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
465 found_size
= btrfs_item_size_nr(path
->nodes
[0],
467 if (found_size
> item_size
)
468 btrfs_truncate_item(fs_info
, path
, item_size
, 1);
469 else if (found_size
< item_size
)
470 btrfs_extend_item(fs_info
, path
,
471 item_size
- found_size
);
475 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
478 /* don't overwrite an existing inode if the generation number
479 * was logged as zero. This is done when the tree logging code
480 * is just logging an inode to make sure it exists after recovery.
482 * Also, don't overwrite i_size on directories during replay.
483 * log replay inserts and removes directory items based on the
484 * state of the tree found in the subvolume, and i_size is modified
487 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
488 struct btrfs_inode_item
*src_item
;
489 struct btrfs_inode_item
*dst_item
;
491 src_item
= (struct btrfs_inode_item
*)src_ptr
;
492 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
494 if (btrfs_inode_generation(eb
, src_item
) == 0) {
495 struct extent_buffer
*dst_eb
= path
->nodes
[0];
496 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
499 * For regular files an ino_size == 0 is used only when
500 * logging that an inode exists, as part of a directory
501 * fsync, and the inode wasn't fsynced before. In this
502 * case don't set the size of the inode in the fs/subvol
503 * tree, otherwise we would be throwing valid data away.
505 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
506 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
508 struct btrfs_map_token token
;
510 btrfs_init_map_token(&token
);
511 btrfs_set_token_inode_size(dst_eb
, dst_item
,
517 if (overwrite_root
&&
518 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
519 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
521 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
526 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
529 if (save_old_i_size
) {
530 struct btrfs_inode_item
*dst_item
;
531 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
532 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
535 /* make sure the generation is filled in */
536 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
537 struct btrfs_inode_item
*dst_item
;
538 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
539 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
540 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
545 btrfs_mark_buffer_dirty(path
->nodes
[0]);
546 btrfs_release_path(path
);
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
554 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
557 struct btrfs_key key
;
560 key
.objectid
= objectid
;
561 key
.type
= BTRFS_INODE_ITEM_KEY
;
563 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
566 } else if (is_bad_inode(inode
)) {
573 /* replays a single extent in 'eb' at 'slot' with 'key' into the
574 * subvolume 'root'. path is released on entry and should be released
577 * extents in the log tree have not been allocated out of the extent
578 * tree yet. So, this completes the allocation, taking a reference
579 * as required if the extent already exists or creating a new extent
580 * if it isn't in the extent allocation tree yet.
582 * The extent is inserted into the file, dropping any existing extents
583 * from the file that overlap the new one.
585 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
586 struct btrfs_root
*root
,
587 struct btrfs_path
*path
,
588 struct extent_buffer
*eb
, int slot
,
589 struct btrfs_key
*key
)
591 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
594 u64 start
= key
->offset
;
596 struct btrfs_file_extent_item
*item
;
597 struct inode
*inode
= NULL
;
601 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
602 found_type
= btrfs_file_extent_type(eb
, item
);
604 if (found_type
== BTRFS_FILE_EXTENT_REG
||
605 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
606 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
607 extent_end
= start
+ nbytes
;
610 * We don't add to the inodes nbytes if we are prealloc or a
613 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
615 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
616 size
= btrfs_file_extent_inline_len(eb
, slot
, item
);
617 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
618 extent_end
= ALIGN(start
+ size
,
619 fs_info
->sectorsize
);
625 inode
= read_one_inode(root
, key
->objectid
);
632 * first check to see if we already have this extent in the
633 * file. This must be done before the btrfs_drop_extents run
634 * so we don't try to drop this extent.
636 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
637 btrfs_ino(BTRFS_I(inode
)), start
, 0);
640 (found_type
== BTRFS_FILE_EXTENT_REG
||
641 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
642 struct btrfs_file_extent_item cmp1
;
643 struct btrfs_file_extent_item cmp2
;
644 struct btrfs_file_extent_item
*existing
;
645 struct extent_buffer
*leaf
;
647 leaf
= path
->nodes
[0];
648 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
649 struct btrfs_file_extent_item
);
651 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
653 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
657 * we already have a pointer to this exact extent,
658 * we don't have to do anything
660 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
661 btrfs_release_path(path
);
665 btrfs_release_path(path
);
667 /* drop any overlapping extents */
668 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
672 if (found_type
== BTRFS_FILE_EXTENT_REG
||
673 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
675 unsigned long dest_offset
;
676 struct btrfs_key ins
;
678 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0 &&
679 btrfs_fs_incompat(fs_info
, NO_HOLES
))
682 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
686 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
688 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
689 (unsigned long)item
, sizeof(*item
));
691 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
692 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
693 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
694 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
697 * Manually record dirty extent, as here we did a shallow
698 * file extent item copy and skip normal backref update,
699 * but modifying extent tree all by ourselves.
700 * So need to manually record dirty extent for qgroup,
701 * as the owner of the file extent changed from log tree
702 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
704 ret
= btrfs_qgroup_trace_extent(trans
, fs_info
,
705 btrfs_file_extent_disk_bytenr(eb
, item
),
706 btrfs_file_extent_disk_num_bytes(eb
, item
),
711 if (ins
.objectid
> 0) {
714 LIST_HEAD(ordered_sums
);
716 * is this extent already allocated in the extent
717 * allocation tree? If so, just add a reference
719 ret
= btrfs_lookup_data_extent(fs_info
, ins
.objectid
,
722 ret
= btrfs_inc_extent_ref(trans
, root
,
723 ins
.objectid
, ins
.offset
,
724 0, root
->root_key
.objectid
,
725 key
->objectid
, offset
);
730 * insert the extent pointer in the extent
733 ret
= btrfs_alloc_logged_file_extent(trans
,
735 root
->root_key
.objectid
,
736 key
->objectid
, offset
, &ins
);
740 btrfs_release_path(path
);
742 if (btrfs_file_extent_compression(eb
, item
)) {
743 csum_start
= ins
.objectid
;
744 csum_end
= csum_start
+ ins
.offset
;
746 csum_start
= ins
.objectid
+
747 btrfs_file_extent_offset(eb
, item
);
748 csum_end
= csum_start
+
749 btrfs_file_extent_num_bytes(eb
, item
);
752 ret
= btrfs_lookup_csums_range(root
->log_root
,
753 csum_start
, csum_end
- 1,
758 * Now delete all existing cums in the csum root that
759 * cover our range. We do this because we can have an
760 * extent that is completely referenced by one file
761 * extent item and partially referenced by another
762 * file extent item (like after using the clone or
763 * extent_same ioctls). In this case if we end up doing
764 * the replay of the one that partially references the
765 * extent first, and we do not do the csum deletion
766 * below, we can get 2 csum items in the csum tree that
767 * overlap each other. For example, imagine our log has
768 * the two following file extent items:
770 * key (257 EXTENT_DATA 409600)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 20480 nr 20480 ram 102400
774 * key (257 EXTENT_DATA 819200)
775 * extent data disk byte 12845056 nr 102400
776 * extent data offset 0 nr 102400 ram 102400
778 * Where the second one fully references the 100K extent
779 * that starts at disk byte 12845056, and the log tree
780 * has a single csum item that covers the entire range
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
785 * After the first file extent item is replayed, the
786 * csum tree gets the following csum item:
788 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
790 * Which covers the 20K sub-range starting at offset 20K
791 * of our extent. Now when we replay the second file
792 * extent item, if we do not delete existing csum items
793 * that cover any of its blocks, we end up getting two
794 * csum items in our csum tree that overlap each other:
796 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
797 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
799 * Which is a problem, because after this anyone trying
800 * to lookup up for the checksum of any block of our
801 * extent starting at an offset of 40K or higher, will
802 * end up looking at the second csum item only, which
803 * does not contain the checksum for any block starting
804 * at offset 40K or higher of our extent.
806 while (!list_empty(&ordered_sums
)) {
807 struct btrfs_ordered_sum
*sums
;
808 sums
= list_entry(ordered_sums
.next
,
809 struct btrfs_ordered_sum
,
812 ret
= btrfs_del_csums(trans
, fs_info
,
816 ret
= btrfs_csum_file_blocks(trans
,
817 fs_info
->csum_root
, sums
);
818 list_del(&sums
->list
);
824 btrfs_release_path(path
);
826 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
827 /* inline extents are easy, we just overwrite them */
828 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
833 inode_add_bytes(inode
, nbytes
);
835 ret
= btrfs_update_inode(trans
, root
, inode
);
843 * when cleaning up conflicts between the directory names in the
844 * subvolume, directory names in the log and directory names in the
845 * inode back references, we may have to unlink inodes from directories.
847 * This is a helper function to do the unlink of a specific directory
850 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
851 struct btrfs_root
*root
,
852 struct btrfs_path
*path
,
853 struct btrfs_inode
*dir
,
854 struct btrfs_dir_item
*di
)
856 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
860 struct extent_buffer
*leaf
;
861 struct btrfs_key location
;
864 leaf
= path
->nodes
[0];
866 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
867 name_len
= btrfs_dir_name_len(leaf
, di
);
868 name
= kmalloc(name_len
, GFP_NOFS
);
872 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
873 btrfs_release_path(path
);
875 inode
= read_one_inode(root
, location
.objectid
);
881 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
885 ret
= btrfs_unlink_inode(trans
, root
, dir
, BTRFS_I(inode
), name
,
890 ret
= btrfs_run_delayed_items(trans
, fs_info
);
898 * helper function to see if a given name and sequence number found
899 * in an inode back reference are already in a directory and correctly
900 * point to this inode
902 static noinline
int inode_in_dir(struct btrfs_root
*root
,
903 struct btrfs_path
*path
,
904 u64 dirid
, u64 objectid
, u64 index
,
905 const char *name
, int name_len
)
907 struct btrfs_dir_item
*di
;
908 struct btrfs_key location
;
911 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
912 index
, name
, name_len
, 0);
913 if (di
&& !IS_ERR(di
)) {
914 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
915 if (location
.objectid
!= objectid
)
919 btrfs_release_path(path
);
921 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
922 if (di
&& !IS_ERR(di
)) {
923 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
924 if (location
.objectid
!= objectid
)
930 btrfs_release_path(path
);
935 * helper function to check a log tree for a named back reference in
936 * an inode. This is used to decide if a back reference that is
937 * found in the subvolume conflicts with what we find in the log.
939 * inode backreferences may have multiple refs in a single item,
940 * during replay we process one reference at a time, and we don't
941 * want to delete valid links to a file from the subvolume if that
942 * link is also in the log.
944 static noinline
int backref_in_log(struct btrfs_root
*log
,
945 struct btrfs_key
*key
,
947 const char *name
, int namelen
)
949 struct btrfs_path
*path
;
950 struct btrfs_inode_ref
*ref
;
952 unsigned long ptr_end
;
953 unsigned long name_ptr
;
959 path
= btrfs_alloc_path();
963 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
967 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
969 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
970 if (btrfs_find_name_in_ext_backref(path
->nodes
[0],
973 name
, namelen
, NULL
))
979 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
980 ptr_end
= ptr
+ item_size
;
981 while (ptr
< ptr_end
) {
982 ref
= (struct btrfs_inode_ref
*)ptr
;
983 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
984 if (found_name_len
== namelen
) {
985 name_ptr
= (unsigned long)(ref
+ 1);
986 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
993 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
996 btrfs_free_path(path
);
1000 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
1001 struct btrfs_root
*root
,
1002 struct btrfs_path
*path
,
1003 struct btrfs_root
*log_root
,
1004 struct btrfs_inode
*dir
,
1005 struct btrfs_inode
*inode
,
1006 u64 inode_objectid
, u64 parent_objectid
,
1007 u64 ref_index
, char *name
, int namelen
,
1010 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1013 int victim_name_len
;
1014 struct extent_buffer
*leaf
;
1015 struct btrfs_dir_item
*di
;
1016 struct btrfs_key search_key
;
1017 struct btrfs_inode_extref
*extref
;
1020 /* Search old style refs */
1021 search_key
.objectid
= inode_objectid
;
1022 search_key
.type
= BTRFS_INODE_REF_KEY
;
1023 search_key
.offset
= parent_objectid
;
1024 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
1026 struct btrfs_inode_ref
*victim_ref
;
1028 unsigned long ptr_end
;
1030 leaf
= path
->nodes
[0];
1032 /* are we trying to overwrite a back ref for the root directory
1033 * if so, just jump out, we're done
1035 if (search_key
.objectid
== search_key
.offset
)
1038 /* check all the names in this back reference to see
1039 * if they are in the log. if so, we allow them to stay
1040 * otherwise they must be unlinked as a conflict
1042 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1043 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1044 while (ptr
< ptr_end
) {
1045 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1046 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
1048 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1052 read_extent_buffer(leaf
, victim_name
,
1053 (unsigned long)(victim_ref
+ 1),
1056 if (!backref_in_log(log_root
, &search_key
,
1060 inc_nlink(&inode
->vfs_inode
);
1061 btrfs_release_path(path
);
1063 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1064 victim_name
, victim_name_len
);
1068 ret
= btrfs_run_delayed_items(trans
, fs_info
);
1076 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1080 * NOTE: we have searched root tree and checked the
1081 * corresponding ref, it does not need to check again.
1085 btrfs_release_path(path
);
1087 /* Same search but for extended refs */
1088 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1089 inode_objectid
, parent_objectid
, 0,
1091 if (!IS_ERR_OR_NULL(extref
)) {
1095 struct inode
*victim_parent
;
1097 leaf
= path
->nodes
[0];
1099 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1100 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1102 while (cur_offset
< item_size
) {
1103 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1105 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1107 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1110 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1113 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1116 search_key
.objectid
= inode_objectid
;
1117 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1118 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1122 if (!backref_in_log(log_root
, &search_key
,
1123 parent_objectid
, victim_name
,
1126 victim_parent
= read_one_inode(root
,
1128 if (victim_parent
) {
1129 inc_nlink(&inode
->vfs_inode
);
1130 btrfs_release_path(path
);
1132 ret
= btrfs_unlink_inode(trans
, root
,
1133 BTRFS_I(victim_parent
),
1138 ret
= btrfs_run_delayed_items(
1142 iput(victim_parent
);
1151 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1155 btrfs_release_path(path
);
1157 /* look for a conflicting sequence number */
1158 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1159 ref_index
, name
, namelen
, 0);
1160 if (di
&& !IS_ERR(di
)) {
1161 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1165 btrfs_release_path(path
);
1167 /* look for a conflicing name */
1168 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1170 if (di
&& !IS_ERR(di
)) {
1171 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1175 btrfs_release_path(path
);
1180 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1181 u32
*namelen
, char **name
, u64
*index
,
1182 u64
*parent_objectid
)
1184 struct btrfs_inode_extref
*extref
;
1186 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1188 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1189 *name
= kmalloc(*namelen
, GFP_NOFS
);
1193 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1197 *index
= btrfs_inode_extref_index(eb
, extref
);
1198 if (parent_objectid
)
1199 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1204 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1205 u32
*namelen
, char **name
, u64
*index
)
1207 struct btrfs_inode_ref
*ref
;
1209 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1211 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1212 *name
= kmalloc(*namelen
, GFP_NOFS
);
1216 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1219 *index
= btrfs_inode_ref_index(eb
, ref
);
1225 * Take an inode reference item from the log tree and iterate all names from the
1226 * inode reference item in the subvolume tree with the same key (if it exists).
1227 * For any name that is not in the inode reference item from the log tree, do a
1228 * proper unlink of that name (that is, remove its entry from the inode
1229 * reference item and both dir index keys).
1231 static int unlink_old_inode_refs(struct btrfs_trans_handle
*trans
,
1232 struct btrfs_root
*root
,
1233 struct btrfs_path
*path
,
1234 struct btrfs_inode
*inode
,
1235 struct extent_buffer
*log_eb
,
1237 struct btrfs_key
*key
)
1240 unsigned long ref_ptr
;
1241 unsigned long ref_end
;
1242 struct extent_buffer
*eb
;
1245 btrfs_release_path(path
);
1246 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
1254 eb
= path
->nodes
[0];
1255 ref_ptr
= btrfs_item_ptr_offset(eb
, path
->slots
[0]);
1256 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, path
->slots
[0]);
1257 while (ref_ptr
< ref_end
) {
1262 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1263 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1266 parent_id
= key
->offset
;
1267 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1273 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
1274 ret
= btrfs_find_name_in_ext_backref(log_eb
, log_slot
,
1278 ret
= btrfs_find_name_in_backref(log_eb
, log_slot
, name
,
1284 btrfs_release_path(path
);
1285 dir
= read_one_inode(root
, parent_id
);
1291 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
1292 inode
, name
, namelen
);
1302 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
1303 ref_ptr
+= sizeof(struct btrfs_inode_extref
);
1305 ref_ptr
+= sizeof(struct btrfs_inode_ref
);
1309 btrfs_release_path(path
);
1314 * replay one inode back reference item found in the log tree.
1315 * eb, slot and key refer to the buffer and key found in the log tree.
1316 * root is the destination we are replaying into, and path is for temp
1317 * use by this function. (it should be released on return).
1319 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1320 struct btrfs_root
*root
,
1321 struct btrfs_root
*log
,
1322 struct btrfs_path
*path
,
1323 struct extent_buffer
*eb
, int slot
,
1324 struct btrfs_key
*key
)
1326 struct inode
*dir
= NULL
;
1327 struct inode
*inode
= NULL
;
1328 unsigned long ref_ptr
;
1329 unsigned long ref_end
;
1333 int search_done
= 0;
1334 int log_ref_ver
= 0;
1335 u64 parent_objectid
;
1338 int ref_struct_size
;
1340 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1341 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1343 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1344 struct btrfs_inode_extref
*r
;
1346 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1348 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1349 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1351 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1352 parent_objectid
= key
->offset
;
1354 inode_objectid
= key
->objectid
;
1357 * it is possible that we didn't log all the parent directories
1358 * for a given inode. If we don't find the dir, just don't
1359 * copy the back ref in. The link count fixup code will take
1362 dir
= read_one_inode(root
, parent_objectid
);
1368 inode
= read_one_inode(root
, inode_objectid
);
1374 while (ref_ptr
< ref_end
) {
1376 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1377 &ref_index
, &parent_objectid
);
1379 * parent object can change from one array
1383 dir
= read_one_inode(root
, parent_objectid
);
1389 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1395 /* if we already have a perfect match, we're done */
1396 if (!inode_in_dir(root
, path
, btrfs_ino(BTRFS_I(dir
)),
1397 btrfs_ino(BTRFS_I(inode
)), ref_index
,
1400 * look for a conflicting back reference in the
1401 * metadata. if we find one we have to unlink that name
1402 * of the file before we add our new link. Later on, we
1403 * overwrite any existing back reference, and we don't
1404 * want to create dangling pointers in the directory.
1408 ret
= __add_inode_ref(trans
, root
, path
, log
,
1413 ref_index
, name
, namelen
,
1422 /* insert our name */
1423 ret
= btrfs_add_link(trans
, BTRFS_I(dir
),
1425 name
, namelen
, 0, ref_index
);
1429 btrfs_update_inode(trans
, root
, inode
);
1432 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1442 * Before we overwrite the inode reference item in the subvolume tree
1443 * with the item from the log tree, we must unlink all names from the
1444 * parent directory that are in the subvolume's tree inode reference
1445 * item, otherwise we end up with an inconsistent subvolume tree where
1446 * dir index entries exist for a name but there is no inode reference
1447 * item with the same name.
1449 ret
= unlink_old_inode_refs(trans
, root
, path
, BTRFS_I(inode
), eb
, slot
,
1454 /* finally write the back reference in the inode */
1455 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1457 btrfs_release_path(path
);
1464 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1465 struct btrfs_root
*root
, u64 ino
)
1469 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1476 static int count_inode_extrefs(struct btrfs_root
*root
,
1477 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1481 unsigned int nlink
= 0;
1484 u64 inode_objectid
= btrfs_ino(inode
);
1487 struct btrfs_inode_extref
*extref
;
1488 struct extent_buffer
*leaf
;
1491 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1496 leaf
= path
->nodes
[0];
1497 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1498 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1501 while (cur_offset
< item_size
) {
1502 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1503 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1507 cur_offset
+= name_len
+ sizeof(*extref
);
1511 btrfs_release_path(path
);
1513 btrfs_release_path(path
);
1515 if (ret
< 0 && ret
!= -ENOENT
)
1520 static int count_inode_refs(struct btrfs_root
*root
,
1521 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1524 struct btrfs_key key
;
1525 unsigned int nlink
= 0;
1527 unsigned long ptr_end
;
1529 u64 ino
= btrfs_ino(inode
);
1532 key
.type
= BTRFS_INODE_REF_KEY
;
1533 key
.offset
= (u64
)-1;
1536 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1540 if (path
->slots
[0] == 0)
1545 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1547 if (key
.objectid
!= ino
||
1548 key
.type
!= BTRFS_INODE_REF_KEY
)
1550 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1551 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1553 while (ptr
< ptr_end
) {
1554 struct btrfs_inode_ref
*ref
;
1556 ref
= (struct btrfs_inode_ref
*)ptr
;
1557 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1559 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1563 if (key
.offset
== 0)
1565 if (path
->slots
[0] > 0) {
1570 btrfs_release_path(path
);
1572 btrfs_release_path(path
);
1578 * There are a few corners where the link count of the file can't
1579 * be properly maintained during replay. So, instead of adding
1580 * lots of complexity to the log code, we just scan the backrefs
1581 * for any file that has been through replay.
1583 * The scan will update the link count on the inode to reflect the
1584 * number of back refs found. If it goes down to zero, the iput
1585 * will free the inode.
1587 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1588 struct btrfs_root
*root
,
1589 struct inode
*inode
)
1591 struct btrfs_path
*path
;
1594 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1596 path
= btrfs_alloc_path();
1600 ret
= count_inode_refs(root
, BTRFS_I(inode
), path
);
1606 ret
= count_inode_extrefs(root
, BTRFS_I(inode
), path
);
1614 if (nlink
!= inode
->i_nlink
) {
1615 set_nlink(inode
, nlink
);
1616 btrfs_update_inode(trans
, root
, inode
);
1618 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1620 if (inode
->i_nlink
== 0) {
1621 if (S_ISDIR(inode
->i_mode
)) {
1622 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1627 ret
= insert_orphan_item(trans
, root
, ino
);
1631 btrfs_free_path(path
);
1635 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1636 struct btrfs_root
*root
,
1637 struct btrfs_path
*path
)
1640 struct btrfs_key key
;
1641 struct inode
*inode
;
1643 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1644 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1645 key
.offset
= (u64
)-1;
1647 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1652 if (path
->slots
[0] == 0)
1657 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1658 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1659 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1662 ret
= btrfs_del_item(trans
, root
, path
);
1666 btrfs_release_path(path
);
1667 inode
= read_one_inode(root
, key
.offset
);
1671 ret
= fixup_inode_link_count(trans
, root
, inode
);
1677 * fixup on a directory may create new entries,
1678 * make sure we always look for the highset possible
1681 key
.offset
= (u64
)-1;
1685 btrfs_release_path(path
);
1691 * record a given inode in the fixup dir so we can check its link
1692 * count when replay is done. The link count is incremented here
1693 * so the inode won't go away until we check it
1695 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1696 struct btrfs_root
*root
,
1697 struct btrfs_path
*path
,
1700 struct btrfs_key key
;
1702 struct inode
*inode
;
1704 inode
= read_one_inode(root
, objectid
);
1708 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1709 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1710 key
.offset
= objectid
;
1712 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1714 btrfs_release_path(path
);
1716 if (!inode
->i_nlink
)
1717 set_nlink(inode
, 1);
1720 ret
= btrfs_update_inode(trans
, root
, inode
);
1721 } else if (ret
== -EEXIST
) {
1724 BUG(); /* Logic Error */
1732 * when replaying the log for a directory, we only insert names
1733 * for inodes that actually exist. This means an fsync on a directory
1734 * does not implicitly fsync all the new files in it
1736 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1737 struct btrfs_root
*root
,
1738 u64 dirid
, u64 index
,
1739 char *name
, int name_len
,
1740 struct btrfs_key
*location
)
1742 struct inode
*inode
;
1746 inode
= read_one_inode(root
, location
->objectid
);
1750 dir
= read_one_inode(root
, dirid
);
1756 ret
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
), name
,
1757 name_len
, 1, index
);
1759 /* FIXME, put inode into FIXUP list */
1767 * Return true if an inode reference exists in the log for the given name,
1768 * inode and parent inode.
1770 static bool name_in_log_ref(struct btrfs_root
*log_root
,
1771 const char *name
, const int name_len
,
1772 const u64 dirid
, const u64 ino
)
1774 struct btrfs_key search_key
;
1776 search_key
.objectid
= ino
;
1777 search_key
.type
= BTRFS_INODE_REF_KEY
;
1778 search_key
.offset
= dirid
;
1779 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1782 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1783 search_key
.offset
= btrfs_extref_hash(dirid
, name
, name_len
);
1784 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1791 * take a single entry in a log directory item and replay it into
1794 * if a conflicting item exists in the subdirectory already,
1795 * the inode it points to is unlinked and put into the link count
1798 * If a name from the log points to a file or directory that does
1799 * not exist in the FS, it is skipped. fsyncs on directories
1800 * do not force down inodes inside that directory, just changes to the
1801 * names or unlinks in a directory.
1803 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1804 * non-existing inode) and 1 if the name was replayed.
1806 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1807 struct btrfs_root
*root
,
1808 struct btrfs_path
*path
,
1809 struct extent_buffer
*eb
,
1810 struct btrfs_dir_item
*di
,
1811 struct btrfs_key
*key
)
1815 struct btrfs_dir_item
*dst_di
;
1816 struct btrfs_key found_key
;
1817 struct btrfs_key log_key
;
1822 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1823 bool name_added
= false;
1825 dir
= read_one_inode(root
, key
->objectid
);
1829 name_len
= btrfs_dir_name_len(eb
, di
);
1830 name
= kmalloc(name_len
, GFP_NOFS
);
1836 log_type
= btrfs_dir_type(eb
, di
);
1837 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1840 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1841 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1846 btrfs_release_path(path
);
1848 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1849 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1851 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1852 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1861 if (IS_ERR_OR_NULL(dst_di
)) {
1862 /* we need a sequence number to insert, so we only
1863 * do inserts for the BTRFS_DIR_INDEX_KEY types
1865 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1870 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1871 /* the existing item matches the logged item */
1872 if (found_key
.objectid
== log_key
.objectid
&&
1873 found_key
.type
== log_key
.type
&&
1874 found_key
.offset
== log_key
.offset
&&
1875 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1876 update_size
= false;
1881 * don't drop the conflicting directory entry if the inode
1882 * for the new entry doesn't exist
1887 ret
= drop_one_dir_item(trans
, root
, path
, BTRFS_I(dir
), dst_di
);
1891 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1894 btrfs_release_path(path
);
1895 if (!ret
&& update_size
) {
1896 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ name_len
* 2);
1897 ret
= btrfs_update_inode(trans
, root
, dir
);
1901 if (!ret
&& name_added
)
1906 if (name_in_log_ref(root
->log_root
, name
, name_len
,
1907 key
->objectid
, log_key
.objectid
)) {
1908 /* The dentry will be added later. */
1910 update_size
= false;
1913 btrfs_release_path(path
);
1914 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
1915 name
, name_len
, &log_key
);
1916 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1920 update_size
= false;
1926 * find all the names in a directory item and reconcile them into
1927 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1928 * one name in a directory item, but the same code gets used for
1929 * both directory index types
1931 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1932 struct btrfs_root
*root
,
1933 struct btrfs_path
*path
,
1934 struct extent_buffer
*eb
, int slot
,
1935 struct btrfs_key
*key
)
1938 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1939 struct btrfs_dir_item
*di
;
1942 unsigned long ptr_end
;
1943 struct btrfs_path
*fixup_path
= NULL
;
1945 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1946 ptr_end
= ptr
+ item_size
;
1947 while (ptr
< ptr_end
) {
1948 di
= (struct btrfs_dir_item
*)ptr
;
1949 name_len
= btrfs_dir_name_len(eb
, di
);
1950 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1953 ptr
= (unsigned long)(di
+ 1);
1957 * If this entry refers to a non-directory (directories can not
1958 * have a link count > 1) and it was added in the transaction
1959 * that was not committed, make sure we fixup the link count of
1960 * the inode it the entry points to. Otherwise something like
1961 * the following would result in a directory pointing to an
1962 * inode with a wrong link that does not account for this dir
1970 * ln testdir/bar testdir/bar_link
1971 * ln testdir/foo testdir/foo_link
1972 * xfs_io -c "fsync" testdir/bar
1976 * mount fs, log replay happens
1978 * File foo would remain with a link count of 1 when it has two
1979 * entries pointing to it in the directory testdir. This would
1980 * make it impossible to ever delete the parent directory has
1981 * it would result in stale dentries that can never be deleted.
1983 if (ret
== 1 && btrfs_dir_type(eb
, di
) != BTRFS_FT_DIR
) {
1984 struct btrfs_key di_key
;
1987 fixup_path
= btrfs_alloc_path();
1994 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1995 ret
= link_to_fixup_dir(trans
, root
, fixup_path
,
2002 btrfs_free_path(fixup_path
);
2007 * directory replay has two parts. There are the standard directory
2008 * items in the log copied from the subvolume, and range items
2009 * created in the log while the subvolume was logged.
2011 * The range items tell us which parts of the key space the log
2012 * is authoritative for. During replay, if a key in the subvolume
2013 * directory is in a logged range item, but not actually in the log
2014 * that means it was deleted from the directory before the fsync
2015 * and should be removed.
2017 static noinline
int find_dir_range(struct btrfs_root
*root
,
2018 struct btrfs_path
*path
,
2019 u64 dirid
, int key_type
,
2020 u64
*start_ret
, u64
*end_ret
)
2022 struct btrfs_key key
;
2024 struct btrfs_dir_log_item
*item
;
2028 if (*start_ret
== (u64
)-1)
2031 key
.objectid
= dirid
;
2032 key
.type
= key_type
;
2033 key
.offset
= *start_ret
;
2035 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2039 if (path
->slots
[0] == 0)
2044 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2046 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
2050 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2051 struct btrfs_dir_log_item
);
2052 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
2054 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
2056 *start_ret
= key
.offset
;
2057 *end_ret
= found_end
;
2062 /* check the next slot in the tree to see if it is a valid item */
2063 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2065 if (path
->slots
[0] >= nritems
) {
2066 ret
= btrfs_next_leaf(root
, path
);
2071 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2073 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
2077 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2078 struct btrfs_dir_log_item
);
2079 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
2080 *start_ret
= key
.offset
;
2081 *end_ret
= found_end
;
2084 btrfs_release_path(path
);
2089 * this looks for a given directory item in the log. If the directory
2090 * item is not in the log, the item is removed and the inode it points
2093 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
2094 struct btrfs_root
*root
,
2095 struct btrfs_root
*log
,
2096 struct btrfs_path
*path
,
2097 struct btrfs_path
*log_path
,
2099 struct btrfs_key
*dir_key
)
2101 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2103 struct extent_buffer
*eb
;
2106 struct btrfs_dir_item
*di
;
2107 struct btrfs_dir_item
*log_di
;
2110 unsigned long ptr_end
;
2112 struct inode
*inode
;
2113 struct btrfs_key location
;
2116 eb
= path
->nodes
[0];
2117 slot
= path
->slots
[0];
2118 item_size
= btrfs_item_size_nr(eb
, slot
);
2119 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2120 ptr_end
= ptr
+ item_size
;
2121 while (ptr
< ptr_end
) {
2122 di
= (struct btrfs_dir_item
*)ptr
;
2123 name_len
= btrfs_dir_name_len(eb
, di
);
2124 name
= kmalloc(name_len
, GFP_NOFS
);
2129 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
2132 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
2133 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
2136 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
2137 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
2143 if (!log_di
|| (IS_ERR(log_di
) && PTR_ERR(log_di
) == -ENOENT
)) {
2144 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2145 btrfs_release_path(path
);
2146 btrfs_release_path(log_path
);
2147 inode
= read_one_inode(root
, location
.objectid
);
2153 ret
= link_to_fixup_dir(trans
, root
,
2154 path
, location
.objectid
);
2162 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
2163 BTRFS_I(inode
), name
, name_len
);
2165 ret
= btrfs_run_delayed_items(trans
, fs_info
);
2171 /* there might still be more names under this key
2172 * check and repeat if required
2174 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
2180 } else if (IS_ERR(log_di
)) {
2182 return PTR_ERR(log_di
);
2184 btrfs_release_path(log_path
);
2187 ptr
= (unsigned long)(di
+ 1);
2192 btrfs_release_path(path
);
2193 btrfs_release_path(log_path
);
2197 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2198 struct btrfs_root
*root
,
2199 struct btrfs_root
*log
,
2200 struct btrfs_path
*path
,
2203 struct btrfs_key search_key
;
2204 struct btrfs_path
*log_path
;
2209 log_path
= btrfs_alloc_path();
2213 search_key
.objectid
= ino
;
2214 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2215 search_key
.offset
= 0;
2217 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2221 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2222 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2223 struct btrfs_key key
;
2224 struct btrfs_dir_item
*di
;
2225 struct btrfs_dir_item
*log_di
;
2229 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2230 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2235 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2236 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2238 while (cur
< total_size
) {
2239 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2240 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2241 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2244 name
= kmalloc(name_len
, GFP_NOFS
);
2249 read_extent_buffer(path
->nodes
[0], name
,
2250 (unsigned long)(di
+ 1), name_len
);
2252 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2254 btrfs_release_path(log_path
);
2256 /* Doesn't exist in log tree, so delete it. */
2257 btrfs_release_path(path
);
2258 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2259 name
, name_len
, -1);
2266 ret
= btrfs_delete_one_dir_name(trans
, root
,
2270 btrfs_release_path(path
);
2275 if (IS_ERR(log_di
)) {
2276 ret
= PTR_ERR(log_di
);
2280 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2283 ret
= btrfs_next_leaf(root
, path
);
2289 btrfs_free_path(log_path
);
2290 btrfs_release_path(path
);
2296 * deletion replay happens before we copy any new directory items
2297 * out of the log or out of backreferences from inodes. It
2298 * scans the log to find ranges of keys that log is authoritative for,
2299 * and then scans the directory to find items in those ranges that are
2300 * not present in the log.
2302 * Anything we don't find in the log is unlinked and removed from the
2305 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2306 struct btrfs_root
*root
,
2307 struct btrfs_root
*log
,
2308 struct btrfs_path
*path
,
2309 u64 dirid
, int del_all
)
2313 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2315 struct btrfs_key dir_key
;
2316 struct btrfs_key found_key
;
2317 struct btrfs_path
*log_path
;
2320 dir_key
.objectid
= dirid
;
2321 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2322 log_path
= btrfs_alloc_path();
2326 dir
= read_one_inode(root
, dirid
);
2327 /* it isn't an error if the inode isn't there, that can happen
2328 * because we replay the deletes before we copy in the inode item
2332 btrfs_free_path(log_path
);
2340 range_end
= (u64
)-1;
2342 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2343 &range_start
, &range_end
);
2348 dir_key
.offset
= range_start
;
2351 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2356 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2357 if (path
->slots
[0] >= nritems
) {
2358 ret
= btrfs_next_leaf(root
, path
);
2362 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2364 if (found_key
.objectid
!= dirid
||
2365 found_key
.type
!= dir_key
.type
)
2368 if (found_key
.offset
> range_end
)
2371 ret
= check_item_in_log(trans
, root
, log
, path
,
2376 if (found_key
.offset
== (u64
)-1)
2378 dir_key
.offset
= found_key
.offset
+ 1;
2380 btrfs_release_path(path
);
2381 if (range_end
== (u64
)-1)
2383 range_start
= range_end
+ 1;
2388 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2389 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2390 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2391 btrfs_release_path(path
);
2395 btrfs_release_path(path
);
2396 btrfs_free_path(log_path
);
2402 * the process_func used to replay items from the log tree. This
2403 * gets called in two different stages. The first stage just looks
2404 * for inodes and makes sure they are all copied into the subvolume.
2406 * The second stage copies all the other item types from the log into
2407 * the subvolume. The two stage approach is slower, but gets rid of
2408 * lots of complexity around inodes referencing other inodes that exist
2409 * only in the log (references come from either directory items or inode
2412 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2413 struct walk_control
*wc
, u64 gen
)
2416 struct btrfs_path
*path
;
2417 struct btrfs_root
*root
= wc
->replay_dest
;
2418 struct btrfs_key key
;
2423 ret
= btrfs_read_buffer(eb
, gen
);
2427 level
= btrfs_header_level(eb
);
2432 path
= btrfs_alloc_path();
2436 nritems
= btrfs_header_nritems(eb
);
2437 for (i
= 0; i
< nritems
; i
++) {
2438 btrfs_item_key_to_cpu(eb
, &key
, i
);
2440 /* inode keys are done during the first stage */
2441 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2442 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2443 struct btrfs_inode_item
*inode_item
;
2446 inode_item
= btrfs_item_ptr(eb
, i
,
2447 struct btrfs_inode_item
);
2448 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2449 path
, key
.objectid
);
2452 mode
= btrfs_inode_mode(eb
, inode_item
);
2453 if (S_ISDIR(mode
)) {
2454 ret
= replay_dir_deletes(wc
->trans
,
2455 root
, log
, path
, key
.objectid
, 0);
2459 ret
= overwrite_item(wc
->trans
, root
, path
,
2464 /* for regular files, make sure corresponding
2465 * orphan item exist. extents past the new EOF
2466 * will be truncated later by orphan cleanup.
2468 if (S_ISREG(mode
)) {
2469 ret
= insert_orphan_item(wc
->trans
, root
,
2475 ret
= link_to_fixup_dir(wc
->trans
, root
,
2476 path
, key
.objectid
);
2481 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2482 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2483 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2489 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2492 /* these keys are simply copied */
2493 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2494 ret
= overwrite_item(wc
->trans
, root
, path
,
2498 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2499 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2500 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2502 if (ret
&& ret
!= -ENOENT
)
2505 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2506 ret
= replay_one_extent(wc
->trans
, root
, path
,
2510 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2511 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2517 btrfs_free_path(path
);
2521 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2522 struct btrfs_root
*root
,
2523 struct btrfs_path
*path
, int *level
,
2524 struct walk_control
*wc
)
2526 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2530 struct extent_buffer
*next
;
2531 struct extent_buffer
*cur
;
2532 struct extent_buffer
*parent
;
2536 WARN_ON(*level
< 0);
2537 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2539 while (*level
> 0) {
2540 WARN_ON(*level
< 0);
2541 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2542 cur
= path
->nodes
[*level
];
2544 WARN_ON(btrfs_header_level(cur
) != *level
);
2546 if (path
->slots
[*level
] >=
2547 btrfs_header_nritems(cur
))
2550 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2551 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2552 blocksize
= fs_info
->nodesize
;
2554 parent
= path
->nodes
[*level
];
2555 root_owner
= btrfs_header_owner(parent
);
2557 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
2559 return PTR_ERR(next
);
2562 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
2564 free_extent_buffer(next
);
2568 path
->slots
[*level
]++;
2570 ret
= btrfs_read_buffer(next
, ptr_gen
);
2572 free_extent_buffer(next
);
2577 btrfs_tree_lock(next
);
2578 btrfs_set_lock_blocking(next
);
2579 clean_tree_block(fs_info
, next
);
2580 btrfs_wait_tree_block_writeback(next
);
2581 btrfs_tree_unlock(next
);
2583 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2584 clear_extent_buffer_dirty(next
);
2587 WARN_ON(root_owner
!=
2588 BTRFS_TREE_LOG_OBJECTID
);
2589 ret
= btrfs_free_and_pin_reserved_extent(
2593 free_extent_buffer(next
);
2597 free_extent_buffer(next
);
2600 ret
= btrfs_read_buffer(next
, ptr_gen
);
2602 free_extent_buffer(next
);
2606 WARN_ON(*level
<= 0);
2607 if (path
->nodes
[*level
-1])
2608 free_extent_buffer(path
->nodes
[*level
-1]);
2609 path
->nodes
[*level
-1] = next
;
2610 *level
= btrfs_header_level(next
);
2611 path
->slots
[*level
] = 0;
2614 WARN_ON(*level
< 0);
2615 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2617 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2623 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2624 struct btrfs_root
*root
,
2625 struct btrfs_path
*path
, int *level
,
2626 struct walk_control
*wc
)
2628 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2634 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2635 slot
= path
->slots
[i
];
2636 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2639 WARN_ON(*level
== 0);
2642 struct extent_buffer
*parent
;
2643 if (path
->nodes
[*level
] == root
->node
)
2644 parent
= path
->nodes
[*level
];
2646 parent
= path
->nodes
[*level
+ 1];
2648 root_owner
= btrfs_header_owner(parent
);
2649 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2650 btrfs_header_generation(path
->nodes
[*level
]));
2655 struct extent_buffer
*next
;
2657 next
= path
->nodes
[*level
];
2660 btrfs_tree_lock(next
);
2661 btrfs_set_lock_blocking(next
);
2662 clean_tree_block(fs_info
, next
);
2663 btrfs_wait_tree_block_writeback(next
);
2664 btrfs_tree_unlock(next
);
2666 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2667 clear_extent_buffer_dirty(next
);
2670 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2671 ret
= btrfs_free_and_pin_reserved_extent(
2673 path
->nodes
[*level
]->start
,
2674 path
->nodes
[*level
]->len
);
2678 free_extent_buffer(path
->nodes
[*level
]);
2679 path
->nodes
[*level
] = NULL
;
2687 * drop the reference count on the tree rooted at 'snap'. This traverses
2688 * the tree freeing any blocks that have a ref count of zero after being
2691 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2692 struct btrfs_root
*log
, struct walk_control
*wc
)
2694 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2698 struct btrfs_path
*path
;
2701 path
= btrfs_alloc_path();
2705 level
= btrfs_header_level(log
->node
);
2707 path
->nodes
[level
] = log
->node
;
2708 extent_buffer_get(log
->node
);
2709 path
->slots
[level
] = 0;
2712 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2720 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2729 /* was the root node processed? if not, catch it here */
2730 if (path
->nodes
[orig_level
]) {
2731 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2732 btrfs_header_generation(path
->nodes
[orig_level
]));
2736 struct extent_buffer
*next
;
2738 next
= path
->nodes
[orig_level
];
2741 btrfs_tree_lock(next
);
2742 btrfs_set_lock_blocking(next
);
2743 clean_tree_block(fs_info
, next
);
2744 btrfs_wait_tree_block_writeback(next
);
2745 btrfs_tree_unlock(next
);
2747 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2748 clear_extent_buffer_dirty(next
);
2751 WARN_ON(log
->root_key
.objectid
!=
2752 BTRFS_TREE_LOG_OBJECTID
);
2753 ret
= btrfs_free_and_pin_reserved_extent(fs_info
,
2754 next
->start
, next
->len
);
2761 btrfs_free_path(path
);
2766 * helper function to update the item for a given subvolumes log root
2767 * in the tree of log roots
2769 static int update_log_root(struct btrfs_trans_handle
*trans
,
2770 struct btrfs_root
*log
)
2772 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2775 if (log
->log_transid
== 1) {
2776 /* insert root item on the first sync */
2777 ret
= btrfs_insert_root(trans
, fs_info
->log_root_tree
,
2778 &log
->root_key
, &log
->root_item
);
2780 ret
= btrfs_update_root(trans
, fs_info
->log_root_tree
,
2781 &log
->root_key
, &log
->root_item
);
2786 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2789 int index
= transid
% 2;
2792 * we only allow two pending log transactions at a time,
2793 * so we know that if ours is more than 2 older than the
2794 * current transaction, we're done
2797 prepare_to_wait(&root
->log_commit_wait
[index
],
2798 &wait
, TASK_UNINTERRUPTIBLE
);
2800 if (!(root
->log_transid_committed
< transid
&&
2801 atomic_read(&root
->log_commit
[index
])))
2804 mutex_unlock(&root
->log_mutex
);
2806 mutex_lock(&root
->log_mutex
);
2808 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2811 static void wait_for_writer(struct btrfs_root
*root
)
2816 prepare_to_wait(&root
->log_writer_wait
, &wait
,
2817 TASK_UNINTERRUPTIBLE
);
2818 if (!atomic_read(&root
->log_writers
))
2821 mutex_unlock(&root
->log_mutex
);
2823 mutex_lock(&root
->log_mutex
);
2825 finish_wait(&root
->log_writer_wait
, &wait
);
2828 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2829 struct btrfs_log_ctx
*ctx
)
2834 mutex_lock(&root
->log_mutex
);
2835 list_del_init(&ctx
->list
);
2836 mutex_unlock(&root
->log_mutex
);
2840 * Invoked in log mutex context, or be sure there is no other task which
2841 * can access the list.
2843 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2844 int index
, int error
)
2846 struct btrfs_log_ctx
*ctx
;
2847 struct btrfs_log_ctx
*safe
;
2849 list_for_each_entry_safe(ctx
, safe
, &root
->log_ctxs
[index
], list
) {
2850 list_del_init(&ctx
->list
);
2851 ctx
->log_ret
= error
;
2854 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2858 * btrfs_sync_log does sends a given tree log down to the disk and
2859 * updates the super blocks to record it. When this call is done,
2860 * you know that any inodes previously logged are safely on disk only
2863 * Any other return value means you need to call btrfs_commit_transaction.
2864 * Some of the edge cases for fsyncing directories that have had unlinks
2865 * or renames done in the past mean that sometimes the only safe
2866 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2867 * that has happened.
2869 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2870 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2876 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2877 struct btrfs_root
*log
= root
->log_root
;
2878 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
2879 int log_transid
= 0;
2880 struct btrfs_log_ctx root_log_ctx
;
2881 struct blk_plug plug
;
2883 mutex_lock(&root
->log_mutex
);
2884 log_transid
= ctx
->log_transid
;
2885 if (root
->log_transid_committed
>= log_transid
) {
2886 mutex_unlock(&root
->log_mutex
);
2887 return ctx
->log_ret
;
2890 index1
= log_transid
% 2;
2891 if (atomic_read(&root
->log_commit
[index1
])) {
2892 wait_log_commit(root
, log_transid
);
2893 mutex_unlock(&root
->log_mutex
);
2894 return ctx
->log_ret
;
2896 ASSERT(log_transid
== root
->log_transid
);
2897 atomic_set(&root
->log_commit
[index1
], 1);
2899 /* wait for previous tree log sync to complete */
2900 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2901 wait_log_commit(root
, log_transid
- 1);
2904 int batch
= atomic_read(&root
->log_batch
);
2905 /* when we're on an ssd, just kick the log commit out */
2906 if (!btrfs_test_opt(fs_info
, SSD
) &&
2907 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2908 mutex_unlock(&root
->log_mutex
);
2909 schedule_timeout_uninterruptible(1);
2910 mutex_lock(&root
->log_mutex
);
2912 wait_for_writer(root
);
2913 if (batch
== atomic_read(&root
->log_batch
))
2917 /* bail out if we need to do a full commit */
2918 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
2920 btrfs_free_logged_extents(log
, log_transid
);
2921 mutex_unlock(&root
->log_mutex
);
2925 if (log_transid
% 2 == 0)
2926 mark
= EXTENT_DIRTY
;
2930 /* we start IO on all the marked extents here, but we don't actually
2931 * wait for them until later.
2933 blk_start_plug(&plug
);
2934 ret
= btrfs_write_marked_extents(fs_info
, &log
->dirty_log_pages
, mark
);
2936 blk_finish_plug(&plug
);
2937 btrfs_abort_transaction(trans
, ret
);
2938 btrfs_free_logged_extents(log
, log_transid
);
2939 btrfs_set_log_full_commit(fs_info
, trans
);
2940 mutex_unlock(&root
->log_mutex
);
2944 btrfs_set_root_node(&log
->root_item
, log
->node
);
2946 root
->log_transid
++;
2947 log
->log_transid
= root
->log_transid
;
2948 root
->log_start_pid
= 0;
2950 * IO has been started, blocks of the log tree have WRITTEN flag set
2951 * in their headers. new modifications of the log will be written to
2952 * new positions. so it's safe to allow log writers to go in.
2954 mutex_unlock(&root
->log_mutex
);
2956 btrfs_init_log_ctx(&root_log_ctx
, NULL
);
2958 mutex_lock(&log_root_tree
->log_mutex
);
2959 atomic_inc(&log_root_tree
->log_batch
);
2960 atomic_inc(&log_root_tree
->log_writers
);
2962 index2
= log_root_tree
->log_transid
% 2;
2963 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
2964 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
2966 mutex_unlock(&log_root_tree
->log_mutex
);
2968 ret
= update_log_root(trans
, log
);
2970 mutex_lock(&log_root_tree
->log_mutex
);
2971 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2973 * Implicit memory barrier after atomic_dec_and_test
2975 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2976 wake_up(&log_root_tree
->log_writer_wait
);
2980 if (!list_empty(&root_log_ctx
.list
))
2981 list_del_init(&root_log_ctx
.list
);
2983 blk_finish_plug(&plug
);
2984 btrfs_set_log_full_commit(fs_info
, trans
);
2986 if (ret
!= -ENOSPC
) {
2987 btrfs_abort_transaction(trans
, ret
);
2988 mutex_unlock(&log_root_tree
->log_mutex
);
2991 btrfs_wait_tree_log_extents(log
, mark
);
2992 btrfs_free_logged_extents(log
, log_transid
);
2993 mutex_unlock(&log_root_tree
->log_mutex
);
2998 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
2999 blk_finish_plug(&plug
);
3000 list_del_init(&root_log_ctx
.list
);
3001 mutex_unlock(&log_root_tree
->log_mutex
);
3002 ret
= root_log_ctx
.log_ret
;
3006 index2
= root_log_ctx
.log_transid
% 2;
3007 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
3008 blk_finish_plug(&plug
);
3009 ret
= btrfs_wait_tree_log_extents(log
, mark
);
3010 btrfs_wait_logged_extents(trans
, log
, log_transid
);
3011 wait_log_commit(log_root_tree
,
3012 root_log_ctx
.log_transid
);
3013 mutex_unlock(&log_root_tree
->log_mutex
);
3015 ret
= root_log_ctx
.log_ret
;
3018 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
3019 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
3021 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
3022 wait_log_commit(log_root_tree
,
3023 root_log_ctx
.log_transid
- 1);
3026 wait_for_writer(log_root_tree
);
3029 * now that we've moved on to the tree of log tree roots,
3030 * check the full commit flag again
3032 if (btrfs_need_log_full_commit(fs_info
, trans
)) {
3033 blk_finish_plug(&plug
);
3034 btrfs_wait_tree_log_extents(log
, mark
);
3035 btrfs_free_logged_extents(log
, log_transid
);
3036 mutex_unlock(&log_root_tree
->log_mutex
);
3038 goto out_wake_log_root
;
3041 ret
= btrfs_write_marked_extents(fs_info
,
3042 &log_root_tree
->dirty_log_pages
,
3043 EXTENT_DIRTY
| EXTENT_NEW
);
3044 blk_finish_plug(&plug
);
3046 btrfs_set_log_full_commit(fs_info
, trans
);
3047 btrfs_abort_transaction(trans
, ret
);
3048 btrfs_free_logged_extents(log
, log_transid
);
3049 mutex_unlock(&log_root_tree
->log_mutex
);
3050 goto out_wake_log_root
;
3052 ret
= btrfs_wait_tree_log_extents(log
, mark
);
3054 ret
= btrfs_wait_tree_log_extents(log_root_tree
,
3055 EXTENT_NEW
| EXTENT_DIRTY
);
3057 btrfs_set_log_full_commit(fs_info
, trans
);
3058 btrfs_free_logged_extents(log
, log_transid
);
3059 mutex_unlock(&log_root_tree
->log_mutex
);
3060 goto out_wake_log_root
;
3062 btrfs_wait_logged_extents(trans
, log
, log_transid
);
3064 btrfs_set_super_log_root(fs_info
->super_for_commit
,
3065 log_root_tree
->node
->start
);
3066 btrfs_set_super_log_root_level(fs_info
->super_for_commit
,
3067 btrfs_header_level(log_root_tree
->node
));
3069 log_root_tree
->log_transid
++;
3070 mutex_unlock(&log_root_tree
->log_mutex
);
3073 * nobody else is going to jump in and write the the ctree
3074 * super here because the log_commit atomic below is protecting
3075 * us. We must be called with a transaction handle pinning
3076 * the running transaction open, so a full commit can't hop
3077 * in and cause problems either.
3079 ret
= write_all_supers(fs_info
, 1);
3081 btrfs_set_log_full_commit(fs_info
, trans
);
3082 btrfs_abort_transaction(trans
, ret
);
3083 goto out_wake_log_root
;
3086 mutex_lock(&root
->log_mutex
);
3087 if (root
->last_log_commit
< log_transid
)
3088 root
->last_log_commit
= log_transid
;
3089 mutex_unlock(&root
->log_mutex
);
3092 mutex_lock(&log_root_tree
->log_mutex
);
3093 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
3095 log_root_tree
->log_transid_committed
++;
3096 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
3097 mutex_unlock(&log_root_tree
->log_mutex
);
3100 * The barrier before waitqueue_active is implied by mutex_unlock
3102 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
3103 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
3105 mutex_lock(&root
->log_mutex
);
3106 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
3107 root
->log_transid_committed
++;
3108 atomic_set(&root
->log_commit
[index1
], 0);
3109 mutex_unlock(&root
->log_mutex
);
3112 * The barrier before waitqueue_active is implied by mutex_unlock
3114 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
3115 wake_up(&root
->log_commit_wait
[index1
]);
3119 static void free_log_tree(struct btrfs_trans_handle
*trans
,
3120 struct btrfs_root
*log
)
3125 struct walk_control wc
= {
3127 .process_func
= process_one_buffer
3130 ret
= walk_log_tree(trans
, log
, &wc
);
3131 /* I don't think this can happen but just in case */
3133 btrfs_abort_transaction(trans
, ret
);
3136 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
3138 EXTENT_DIRTY
| EXTENT_NEW
| EXTENT_NEED_WAIT
,
3143 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
3144 EXTENT_DIRTY
| EXTENT_NEW
| EXTENT_NEED_WAIT
);
3148 * We may have short-circuited the log tree with the full commit logic
3149 * and left ordered extents on our list, so clear these out to keep us
3150 * from leaking inodes and memory.
3152 btrfs_free_logged_extents(log
, 0);
3153 btrfs_free_logged_extents(log
, 1);
3155 free_extent_buffer(log
->node
);
3160 * free all the extents used by the tree log. This should be called
3161 * at commit time of the full transaction
3163 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3165 if (root
->log_root
) {
3166 free_log_tree(trans
, root
->log_root
);
3167 root
->log_root
= NULL
;
3172 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3173 struct btrfs_fs_info
*fs_info
)
3175 if (fs_info
->log_root_tree
) {
3176 free_log_tree(trans
, fs_info
->log_root_tree
);
3177 fs_info
->log_root_tree
= NULL
;
3183 * If both a file and directory are logged, and unlinks or renames are
3184 * mixed in, we have a few interesting corners:
3186 * create file X in dir Y
3187 * link file X to X.link in dir Y
3189 * unlink file X but leave X.link
3192 * After a crash we would expect only X.link to exist. But file X
3193 * didn't get fsync'd again so the log has back refs for X and X.link.
3195 * We solve this by removing directory entries and inode backrefs from the
3196 * log when a file that was logged in the current transaction is
3197 * unlinked. Any later fsync will include the updated log entries, and
3198 * we'll be able to reconstruct the proper directory items from backrefs.
3200 * This optimizations allows us to avoid relogging the entire inode
3201 * or the entire directory.
3203 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3204 struct btrfs_root
*root
,
3205 const char *name
, int name_len
,
3206 struct btrfs_inode
*dir
, u64 index
)
3208 struct btrfs_root
*log
;
3209 struct btrfs_dir_item
*di
;
3210 struct btrfs_path
*path
;
3214 u64 dir_ino
= btrfs_ino(dir
);
3216 if (dir
->logged_trans
< trans
->transid
)
3219 ret
= join_running_log_trans(root
);
3223 mutex_lock(&dir
->log_mutex
);
3225 log
= root
->log_root
;
3226 path
= btrfs_alloc_path();
3232 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
3233 name
, name_len
, -1);
3239 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3240 bytes_del
+= name_len
;
3246 btrfs_release_path(path
);
3247 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3248 index
, name
, name_len
, -1);
3254 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3255 bytes_del
+= name_len
;
3262 /* update the directory size in the log to reflect the names
3266 struct btrfs_key key
;
3268 key
.objectid
= dir_ino
;
3270 key
.type
= BTRFS_INODE_ITEM_KEY
;
3271 btrfs_release_path(path
);
3273 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3279 struct btrfs_inode_item
*item
;
3282 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3283 struct btrfs_inode_item
);
3284 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3285 if (i_size
> bytes_del
)
3286 i_size
-= bytes_del
;
3289 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3290 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3293 btrfs_release_path(path
);
3296 btrfs_free_path(path
);
3298 mutex_unlock(&dir
->log_mutex
);
3299 if (ret
== -ENOSPC
) {
3300 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3303 btrfs_abort_transaction(trans
, ret
);
3305 btrfs_end_log_trans(root
);
3310 /* see comments for btrfs_del_dir_entries_in_log */
3311 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3312 struct btrfs_root
*root
,
3313 const char *name
, int name_len
,
3314 struct btrfs_inode
*inode
, u64 dirid
)
3316 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3317 struct btrfs_root
*log
;
3321 if (inode
->logged_trans
< trans
->transid
)
3324 ret
= join_running_log_trans(root
);
3327 log
= root
->log_root
;
3328 mutex_lock(&inode
->log_mutex
);
3330 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3332 mutex_unlock(&inode
->log_mutex
);
3333 if (ret
== -ENOSPC
) {
3334 btrfs_set_log_full_commit(fs_info
, trans
);
3336 } else if (ret
< 0 && ret
!= -ENOENT
)
3337 btrfs_abort_transaction(trans
, ret
);
3338 btrfs_end_log_trans(root
);
3344 * creates a range item in the log for 'dirid'. first_offset and
3345 * last_offset tell us which parts of the key space the log should
3346 * be considered authoritative for.
3348 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3349 struct btrfs_root
*log
,
3350 struct btrfs_path
*path
,
3351 int key_type
, u64 dirid
,
3352 u64 first_offset
, u64 last_offset
)
3355 struct btrfs_key key
;
3356 struct btrfs_dir_log_item
*item
;
3358 key
.objectid
= dirid
;
3359 key
.offset
= first_offset
;
3360 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3361 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3363 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3364 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3368 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3369 struct btrfs_dir_log_item
);
3370 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3371 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3372 btrfs_release_path(path
);
3377 * log all the items included in the current transaction for a given
3378 * directory. This also creates the range items in the log tree required
3379 * to replay anything deleted before the fsync
3381 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3382 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3383 struct btrfs_path
*path
,
3384 struct btrfs_path
*dst_path
, int key_type
,
3385 struct btrfs_log_ctx
*ctx
,
3386 u64 min_offset
, u64
*last_offset_ret
)
3388 struct btrfs_key min_key
;
3389 struct btrfs_root
*log
= root
->log_root
;
3390 struct extent_buffer
*src
;
3395 u64 first_offset
= min_offset
;
3396 u64 last_offset
= (u64
)-1;
3397 u64 ino
= btrfs_ino(inode
);
3399 log
= root
->log_root
;
3401 min_key
.objectid
= ino
;
3402 min_key
.type
= key_type
;
3403 min_key
.offset
= min_offset
;
3405 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3408 * we didn't find anything from this transaction, see if there
3409 * is anything at all
3411 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3412 min_key
.objectid
= ino
;
3413 min_key
.type
= key_type
;
3414 min_key
.offset
= (u64
)-1;
3415 btrfs_release_path(path
);
3416 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3418 btrfs_release_path(path
);
3421 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3423 /* if ret == 0 there are items for this type,
3424 * create a range to tell us the last key of this type.
3425 * otherwise, there are no items in this directory after
3426 * *min_offset, and we create a range to indicate that.
3429 struct btrfs_key tmp
;
3430 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3432 if (key_type
== tmp
.type
)
3433 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3438 /* go backward to find any previous key */
3439 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3441 struct btrfs_key tmp
;
3442 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3443 if (key_type
== tmp
.type
) {
3444 first_offset
= tmp
.offset
;
3445 ret
= overwrite_item(trans
, log
, dst_path
,
3446 path
->nodes
[0], path
->slots
[0],
3454 btrfs_release_path(path
);
3456 /* find the first key from this transaction again */
3457 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3458 if (WARN_ON(ret
!= 0))
3462 * we have a block from this transaction, log every item in it
3463 * from our directory
3466 struct btrfs_key tmp
;
3467 src
= path
->nodes
[0];
3468 nritems
= btrfs_header_nritems(src
);
3469 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3470 struct btrfs_dir_item
*di
;
3472 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3474 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3476 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3484 * We must make sure that when we log a directory entry,
3485 * the corresponding inode, after log replay, has a
3486 * matching link count. For example:
3492 * xfs_io -c "fsync" mydir
3494 * <mount fs and log replay>
3496 * Would result in a fsync log that when replayed, our
3497 * file inode would have a link count of 1, but we get
3498 * two directory entries pointing to the same inode.
3499 * After removing one of the names, it would not be
3500 * possible to remove the other name, which resulted
3501 * always in stale file handle errors, and would not
3502 * be possible to rmdir the parent directory, since
3503 * its i_size could never decrement to the value
3504 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3506 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3507 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3509 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3510 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3511 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3512 ctx
->log_new_dentries
= true;
3514 path
->slots
[0] = nritems
;
3517 * look ahead to the next item and see if it is also
3518 * from this directory and from this transaction
3520 ret
= btrfs_next_leaf(root
, path
);
3522 last_offset
= (u64
)-1;
3525 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3526 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3527 last_offset
= (u64
)-1;
3530 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3531 ret
= overwrite_item(trans
, log
, dst_path
,
3532 path
->nodes
[0], path
->slots
[0],
3537 last_offset
= tmp
.offset
;
3542 btrfs_release_path(path
);
3543 btrfs_release_path(dst_path
);
3546 *last_offset_ret
= last_offset
;
3548 * insert the log range keys to indicate where the log
3551 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3552 ino
, first_offset
, last_offset
);
3560 * logging directories is very similar to logging inodes, We find all the items
3561 * from the current transaction and write them to the log.
3563 * The recovery code scans the directory in the subvolume, and if it finds a
3564 * key in the range logged that is not present in the log tree, then it means
3565 * that dir entry was unlinked during the transaction.
3567 * In order for that scan to work, we must include one key smaller than
3568 * the smallest logged by this transaction and one key larger than the largest
3569 * key logged by this transaction.
3571 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3572 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3573 struct btrfs_path
*path
,
3574 struct btrfs_path
*dst_path
,
3575 struct btrfs_log_ctx
*ctx
)
3580 int key_type
= BTRFS_DIR_ITEM_KEY
;
3586 ret
= log_dir_items(trans
, root
, inode
, path
, dst_path
, key_type
,
3587 ctx
, min_key
, &max_key
);
3590 if (max_key
== (u64
)-1)
3592 min_key
= max_key
+ 1;
3595 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3596 key_type
= BTRFS_DIR_INDEX_KEY
;
3603 * a helper function to drop items from the log before we relog an
3604 * inode. max_key_type indicates the highest item type to remove.
3605 * This cannot be run for file data extents because it does not
3606 * free the extents they point to.
3608 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3609 struct btrfs_root
*log
,
3610 struct btrfs_path
*path
,
3611 u64 objectid
, int max_key_type
)
3614 struct btrfs_key key
;
3615 struct btrfs_key found_key
;
3618 key
.objectid
= objectid
;
3619 key
.type
= max_key_type
;
3620 key
.offset
= (u64
)-1;
3623 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3624 BUG_ON(ret
== 0); /* Logic error */
3628 if (path
->slots
[0] == 0)
3632 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3635 if (found_key
.objectid
!= objectid
)
3638 found_key
.offset
= 0;
3640 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3643 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3644 path
->slots
[0] - start_slot
+ 1);
3646 * If start slot isn't 0 then we don't need to re-search, we've
3647 * found the last guy with the objectid in this tree.
3649 if (ret
|| start_slot
!= 0)
3651 btrfs_release_path(path
);
3653 btrfs_release_path(path
);
3659 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3660 struct extent_buffer
*leaf
,
3661 struct btrfs_inode_item
*item
,
3662 struct inode
*inode
, int log_inode_only
,
3665 struct btrfs_map_token token
;
3667 btrfs_init_map_token(&token
);
3669 if (log_inode_only
) {
3670 /* set the generation to zero so the recover code
3671 * can tell the difference between an logging
3672 * just to say 'this inode exists' and a logging
3673 * to say 'update this inode with these values'
3675 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3676 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3678 btrfs_set_token_inode_generation(leaf
, item
,
3679 BTRFS_I(inode
)->generation
,
3681 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3684 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3685 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3686 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3687 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3689 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3690 inode
->i_atime
.tv_sec
, &token
);
3691 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3692 inode
->i_atime
.tv_nsec
, &token
);
3694 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3695 inode
->i_mtime
.tv_sec
, &token
);
3696 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3697 inode
->i_mtime
.tv_nsec
, &token
);
3699 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3700 inode
->i_ctime
.tv_sec
, &token
);
3701 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3702 inode
->i_ctime
.tv_nsec
, &token
);
3704 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3707 btrfs_set_token_inode_sequence(leaf
, item
,
3708 inode_peek_iversion(inode
), &token
);
3709 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3710 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3711 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3712 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3715 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3716 struct btrfs_root
*log
, struct btrfs_path
*path
,
3717 struct btrfs_inode
*inode
)
3719 struct btrfs_inode_item
*inode_item
;
3722 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3723 &inode
->location
, sizeof(*inode_item
));
3724 if (ret
&& ret
!= -EEXIST
)
3726 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3727 struct btrfs_inode_item
);
3728 fill_inode_item(trans
, path
->nodes
[0], inode_item
, &inode
->vfs_inode
,
3730 btrfs_release_path(path
);
3734 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3735 struct btrfs_inode
*inode
,
3736 struct btrfs_path
*dst_path
,
3737 struct btrfs_path
*src_path
, u64
*last_extent
,
3738 int start_slot
, int nr
, int inode_only
,
3741 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
3742 unsigned long src_offset
;
3743 unsigned long dst_offset
;
3744 struct btrfs_root
*log
= inode
->root
->log_root
;
3745 struct btrfs_file_extent_item
*extent
;
3746 struct btrfs_inode_item
*inode_item
;
3747 struct extent_buffer
*src
= src_path
->nodes
[0];
3748 struct btrfs_key first_key
, last_key
, key
;
3750 struct btrfs_key
*ins_keys
;
3754 struct list_head ordered_sums
;
3755 int skip_csum
= inode
->flags
& BTRFS_INODE_NODATASUM
;
3756 bool has_extents
= false;
3757 bool need_find_last_extent
= true;
3760 INIT_LIST_HEAD(&ordered_sums
);
3762 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3763 nr
* sizeof(u32
), GFP_NOFS
);
3767 first_key
.objectid
= (u64
)-1;
3769 ins_sizes
= (u32
*)ins_data
;
3770 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3772 for (i
= 0; i
< nr
; i
++) {
3773 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3774 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3776 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3777 ins_keys
, ins_sizes
, nr
);
3783 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3784 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3785 dst_path
->slots
[0]);
3787 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3790 last_key
= ins_keys
[i
];
3792 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3793 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3795 struct btrfs_inode_item
);
3796 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3798 inode_only
== LOG_INODE_EXISTS
,
3801 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3802 src_offset
, ins_sizes
[i
]);
3806 * We set need_find_last_extent here in case we know we were
3807 * processing other items and then walk into the first extent in
3808 * the inode. If we don't hit an extent then nothing changes,
3809 * we'll do the last search the next time around.
3811 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
) {
3813 if (first_key
.objectid
== (u64
)-1)
3814 first_key
= ins_keys
[i
];
3816 need_find_last_extent
= false;
3819 /* take a reference on file data extents so that truncates
3820 * or deletes of this inode don't have to relog the inode
3823 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3826 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3827 struct btrfs_file_extent_item
);
3829 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3832 found_type
= btrfs_file_extent_type(src
, extent
);
3833 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3835 ds
= btrfs_file_extent_disk_bytenr(src
,
3837 /* ds == 0 is a hole */
3841 dl
= btrfs_file_extent_disk_num_bytes(src
,
3843 cs
= btrfs_file_extent_offset(src
, extent
);
3844 cl
= btrfs_file_extent_num_bytes(src
,
3846 if (btrfs_file_extent_compression(src
,
3852 ret
= btrfs_lookup_csums_range(
3854 ds
+ cs
, ds
+ cs
+ cl
- 1,
3857 btrfs_release_path(dst_path
);
3865 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3866 btrfs_release_path(dst_path
);
3870 * we have to do this after the loop above to avoid changing the
3871 * log tree while trying to change the log tree.
3874 while (!list_empty(&ordered_sums
)) {
3875 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3876 struct btrfs_ordered_sum
,
3879 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3880 list_del(&sums
->list
);
3887 if (need_find_last_extent
&& *last_extent
== first_key
.offset
) {
3889 * We don't have any leafs between our current one and the one
3890 * we processed before that can have file extent items for our
3891 * inode (and have a generation number smaller than our current
3894 need_find_last_extent
= false;
3898 * Because we use btrfs_search_forward we could skip leaves that were
3899 * not modified and then assume *last_extent is valid when it really
3900 * isn't. So back up to the previous leaf and read the end of the last
3901 * extent before we go and fill in holes.
3903 if (need_find_last_extent
) {
3906 ret
= btrfs_prev_leaf(inode
->root
, src_path
);
3911 if (src_path
->slots
[0])
3912 src_path
->slots
[0]--;
3913 src
= src_path
->nodes
[0];
3914 btrfs_item_key_to_cpu(src
, &key
, src_path
->slots
[0]);
3915 if (key
.objectid
!= btrfs_ino(inode
) ||
3916 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3918 extent
= btrfs_item_ptr(src
, src_path
->slots
[0],
3919 struct btrfs_file_extent_item
);
3920 if (btrfs_file_extent_type(src
, extent
) ==
3921 BTRFS_FILE_EXTENT_INLINE
) {
3922 len
= btrfs_file_extent_inline_len(src
,
3925 *last_extent
= ALIGN(key
.offset
+ len
,
3926 fs_info
->sectorsize
);
3928 len
= btrfs_file_extent_num_bytes(src
, extent
);
3929 *last_extent
= key
.offset
+ len
;
3933 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3934 * things could have happened
3936 * 1) A merge could have happened, so we could currently be on a leaf
3937 * that holds what we were copying in the first place.
3938 * 2) A split could have happened, and now not all of the items we want
3939 * are on the same leaf.
3941 * So we need to adjust how we search for holes, we need to drop the
3942 * path and re-search for the first extent key we found, and then walk
3943 * forward until we hit the last one we copied.
3945 if (need_find_last_extent
) {
3946 /* btrfs_prev_leaf could return 1 without releasing the path */
3947 btrfs_release_path(src_path
);
3948 ret
= btrfs_search_slot(NULL
, inode
->root
, &first_key
,
3953 src
= src_path
->nodes
[0];
3954 i
= src_path
->slots
[0];
3960 * Ok so here we need to go through and fill in any holes we may have
3961 * to make sure that holes are punched for those areas in case they had
3962 * extents previously.
3968 if (i
>= btrfs_header_nritems(src_path
->nodes
[0])) {
3969 ret
= btrfs_next_leaf(inode
->root
, src_path
);
3973 src
= src_path
->nodes
[0];
3977 btrfs_item_key_to_cpu(src
, &key
, i
);
3978 if (!btrfs_comp_cpu_keys(&key
, &last_key
))
3980 if (key
.objectid
!= btrfs_ino(inode
) ||
3981 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
3985 extent
= btrfs_item_ptr(src
, i
, struct btrfs_file_extent_item
);
3986 if (btrfs_file_extent_type(src
, extent
) ==
3987 BTRFS_FILE_EXTENT_INLINE
) {
3988 len
= btrfs_file_extent_inline_len(src
, i
, extent
);
3989 extent_end
= ALIGN(key
.offset
+ len
,
3990 fs_info
->sectorsize
);
3992 len
= btrfs_file_extent_num_bytes(src
, extent
);
3993 extent_end
= key
.offset
+ len
;
3997 if (*last_extent
== key
.offset
) {
3998 *last_extent
= extent_end
;
4001 offset
= *last_extent
;
4002 len
= key
.offset
- *last_extent
;
4003 ret
= btrfs_insert_file_extent(trans
, log
, btrfs_ino(inode
),
4004 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4007 *last_extent
= extent_end
;
4010 * Need to let the callers know we dropped the path so they should
4013 if (!ret
&& need_find_last_extent
)
4018 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
4020 struct extent_map
*em1
, *em2
;
4022 em1
= list_entry(a
, struct extent_map
, list
);
4023 em2
= list_entry(b
, struct extent_map
, list
);
4025 if (em1
->start
< em2
->start
)
4027 else if (em1
->start
> em2
->start
)
4032 static int wait_ordered_extents(struct btrfs_trans_handle
*trans
,
4033 struct inode
*inode
,
4034 struct btrfs_root
*root
,
4035 const struct extent_map
*em
,
4036 const struct list_head
*logged_list
,
4037 bool *ordered_io_error
)
4039 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4040 struct btrfs_ordered_extent
*ordered
;
4041 struct btrfs_root
*log
= root
->log_root
;
4042 u64 mod_start
= em
->mod_start
;
4043 u64 mod_len
= em
->mod_len
;
4044 const bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
4047 LIST_HEAD(ordered_sums
);
4050 *ordered_io_error
= false;
4052 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
4053 em
->block_start
== EXTENT_MAP_HOLE
)
4057 * Wait far any ordered extent that covers our extent map. If it
4058 * finishes without an error, first check and see if our csums are on
4059 * our outstanding ordered extents.
4061 list_for_each_entry(ordered
, logged_list
, log_list
) {
4062 struct btrfs_ordered_sum
*sum
;
4067 if (ordered
->file_offset
+ ordered
->len
<= mod_start
||
4068 mod_start
+ mod_len
<= ordered
->file_offset
)
4071 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
4072 !test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
) &&
4073 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
4074 const u64 start
= ordered
->file_offset
;
4075 const u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
4077 WARN_ON(ordered
->inode
!= inode
);
4078 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
4081 wait_event(ordered
->wait
,
4082 (test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) ||
4083 test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)));
4085 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)) {
4087 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4088 * i_mapping flags, so that the next fsync won't get
4089 * an outdated io error too.
4091 filemap_check_errors(inode
->i_mapping
);
4092 *ordered_io_error
= true;
4096 * We are going to copy all the csums on this ordered extent, so
4097 * go ahead and adjust mod_start and mod_len in case this
4098 * ordered extent has already been logged.
4100 if (ordered
->file_offset
> mod_start
) {
4101 if (ordered
->file_offset
+ ordered
->len
>=
4102 mod_start
+ mod_len
)
4103 mod_len
= ordered
->file_offset
- mod_start
;
4105 * If we have this case
4107 * |--------- logged extent ---------|
4108 * |----- ordered extent ----|
4110 * Just don't mess with mod_start and mod_len, we'll
4111 * just end up logging more csums than we need and it
4115 if (ordered
->file_offset
+ ordered
->len
<
4116 mod_start
+ mod_len
) {
4117 mod_len
= (mod_start
+ mod_len
) -
4118 (ordered
->file_offset
+ ordered
->len
);
4119 mod_start
= ordered
->file_offset
+
4130 * To keep us from looping for the above case of an ordered
4131 * extent that falls inside of the logged extent.
4133 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
,
4137 list_for_each_entry(sum
, &ordered
->list
, list
) {
4138 ret
= btrfs_csum_file_blocks(trans
, log
, sum
);
4144 if (*ordered_io_error
|| !mod_len
|| ret
|| skip_csum
)
4147 if (em
->compress_type
) {
4149 csum_len
= max(em
->block_len
, em
->orig_block_len
);
4151 csum_offset
= mod_start
- em
->start
;
4155 /* block start is already adjusted for the file extent offset. */
4156 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
,
4157 em
->block_start
+ csum_offset
,
4158 em
->block_start
+ csum_offset
+
4159 csum_len
- 1, &ordered_sums
, 0);
4163 while (!list_empty(&ordered_sums
)) {
4164 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4165 struct btrfs_ordered_sum
,
4168 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
4169 list_del(&sums
->list
);
4176 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4177 struct btrfs_inode
*inode
, struct btrfs_root
*root
,
4178 const struct extent_map
*em
,
4179 struct btrfs_path
*path
,
4180 const struct list_head
*logged_list
,
4181 struct btrfs_log_ctx
*ctx
)
4183 struct btrfs_root
*log
= root
->log_root
;
4184 struct btrfs_file_extent_item
*fi
;
4185 struct extent_buffer
*leaf
;
4186 struct btrfs_map_token token
;
4187 struct btrfs_key key
;
4188 u64 extent_offset
= em
->start
- em
->orig_start
;
4191 int extent_inserted
= 0;
4192 bool ordered_io_err
= false;
4194 ret
= wait_ordered_extents(trans
, &inode
->vfs_inode
, root
, em
,
4195 logged_list
, &ordered_io_err
);
4199 if (ordered_io_err
) {
4204 btrfs_init_map_token(&token
);
4206 ret
= __btrfs_drop_extents(trans
, log
, &inode
->vfs_inode
, path
, em
->start
,
4207 em
->start
+ em
->len
, NULL
, 0, 1,
4208 sizeof(*fi
), &extent_inserted
);
4212 if (!extent_inserted
) {
4213 key
.objectid
= btrfs_ino(inode
);
4214 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4215 key
.offset
= em
->start
;
4217 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4222 leaf
= path
->nodes
[0];
4223 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4224 struct btrfs_file_extent_item
);
4226 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
4228 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4229 btrfs_set_token_file_extent_type(leaf
, fi
,
4230 BTRFS_FILE_EXTENT_PREALLOC
,
4233 btrfs_set_token_file_extent_type(leaf
, fi
,
4234 BTRFS_FILE_EXTENT_REG
,
4237 block_len
= max(em
->block_len
, em
->orig_block_len
);
4238 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
4239 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4242 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4244 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
4245 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4247 extent_offset
, &token
);
4248 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4251 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
4252 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
4256 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
4257 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
4258 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
4259 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
4261 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
4262 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
4263 btrfs_mark_buffer_dirty(leaf
);
4265 btrfs_release_path(path
);
4270 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4271 struct btrfs_root
*root
,
4272 struct btrfs_inode
*inode
,
4273 struct btrfs_path
*path
,
4274 struct list_head
*logged_list
,
4275 struct btrfs_log_ctx
*ctx
,
4279 struct extent_map
*em
, *n
;
4280 struct list_head extents
;
4281 struct extent_map_tree
*tree
= &inode
->extent_tree
;
4282 u64 logged_start
, logged_end
;
4287 INIT_LIST_HEAD(&extents
);
4289 down_write(&inode
->dio_sem
);
4290 write_lock(&tree
->lock
);
4291 test_gen
= root
->fs_info
->last_trans_committed
;
4292 logged_start
= start
;
4295 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4296 list_del_init(&em
->list
);
4298 * Just an arbitrary number, this can be really CPU intensive
4299 * once we start getting a lot of extents, and really once we
4300 * have a bunch of extents we just want to commit since it will
4303 if (++num
> 32768) {
4304 list_del_init(&tree
->modified_extents
);
4309 if (em
->generation
<= test_gen
)
4312 if (em
->start
< logged_start
)
4313 logged_start
= em
->start
;
4314 if ((em
->start
+ em
->len
- 1) > logged_end
)
4315 logged_end
= em
->start
+ em
->len
- 1;
4317 /* Need a ref to keep it from getting evicted from cache */
4318 refcount_inc(&em
->refs
);
4319 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4320 list_add_tail(&em
->list
, &extents
);
4324 list_sort(NULL
, &extents
, extent_cmp
);
4325 btrfs_get_logged_extents(inode
, logged_list
, logged_start
, logged_end
);
4327 * Some ordered extents started by fsync might have completed
4328 * before we could collect them into the list logged_list, which
4329 * means they're gone, not in our logged_list nor in the inode's
4330 * ordered tree. We want the application/user space to know an
4331 * error happened while attempting to persist file data so that
4332 * it can take proper action. If such error happened, we leave
4333 * without writing to the log tree and the fsync must report the
4334 * file data write error and not commit the current transaction.
4336 ret
= filemap_check_errors(inode
->vfs_inode
.i_mapping
);
4340 while (!list_empty(&extents
)) {
4341 em
= list_entry(extents
.next
, struct extent_map
, list
);
4343 list_del_init(&em
->list
);
4346 * If we had an error we just need to delete everybody from our
4350 clear_em_logging(tree
, em
);
4351 free_extent_map(em
);
4355 write_unlock(&tree
->lock
);
4357 ret
= log_one_extent(trans
, inode
, root
, em
, path
, logged_list
,
4359 write_lock(&tree
->lock
);
4360 clear_em_logging(tree
, em
);
4361 free_extent_map(em
);
4363 WARN_ON(!list_empty(&extents
));
4364 write_unlock(&tree
->lock
);
4365 up_write(&inode
->dio_sem
);
4367 btrfs_release_path(path
);
4371 static int logged_inode_size(struct btrfs_root
*log
, struct btrfs_inode
*inode
,
4372 struct btrfs_path
*path
, u64
*size_ret
)
4374 struct btrfs_key key
;
4377 key
.objectid
= btrfs_ino(inode
);
4378 key
.type
= BTRFS_INODE_ITEM_KEY
;
4381 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4384 } else if (ret
> 0) {
4387 struct btrfs_inode_item
*item
;
4389 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4390 struct btrfs_inode_item
);
4391 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4394 btrfs_release_path(path
);
4399 * At the moment we always log all xattrs. This is to figure out at log replay
4400 * time which xattrs must have their deletion replayed. If a xattr is missing
4401 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4402 * because if a xattr is deleted, the inode is fsynced and a power failure
4403 * happens, causing the log to be replayed the next time the fs is mounted,
4404 * we want the xattr to not exist anymore (same behaviour as other filesystems
4405 * with a journal, ext3/4, xfs, f2fs, etc).
4407 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
4408 struct btrfs_root
*root
,
4409 struct btrfs_inode
*inode
,
4410 struct btrfs_path
*path
,
4411 struct btrfs_path
*dst_path
)
4414 struct btrfs_key key
;
4415 const u64 ino
= btrfs_ino(inode
);
4420 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4423 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4428 int slot
= path
->slots
[0];
4429 struct extent_buffer
*leaf
= path
->nodes
[0];
4430 int nritems
= btrfs_header_nritems(leaf
);
4432 if (slot
>= nritems
) {
4434 u64 last_extent
= 0;
4436 ret
= copy_items(trans
, inode
, dst_path
, path
,
4437 &last_extent
, start_slot
,
4439 /* can't be 1, extent items aren't processed */
4445 ret
= btrfs_next_leaf(root
, path
);
4453 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4454 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
4464 u64 last_extent
= 0;
4466 ret
= copy_items(trans
, inode
, dst_path
, path
,
4467 &last_extent
, start_slot
,
4469 /* can't be 1, extent items aren't processed */
4479 * If the no holes feature is enabled we need to make sure any hole between the
4480 * last extent and the i_size of our inode is explicitly marked in the log. This
4481 * is to make sure that doing something like:
4483 * 1) create file with 128Kb of data
4484 * 2) truncate file to 64Kb
4485 * 3) truncate file to 256Kb
4487 * 5) <crash/power failure>
4488 * 6) mount fs and trigger log replay
4490 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4491 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4492 * file correspond to a hole. The presence of explicit holes in a log tree is
4493 * what guarantees that log replay will remove/adjust file extent items in the
4496 * Here we do not need to care about holes between extents, that is already done
4497 * by copy_items(). We also only need to do this in the full sync path, where we
4498 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4499 * lookup the list of modified extent maps and if any represents a hole, we
4500 * insert a corresponding extent representing a hole in the log tree.
4502 static int btrfs_log_trailing_hole(struct btrfs_trans_handle
*trans
,
4503 struct btrfs_root
*root
,
4504 struct btrfs_inode
*inode
,
4505 struct btrfs_path
*path
)
4507 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4509 struct btrfs_key key
;
4512 struct extent_buffer
*leaf
;
4513 struct btrfs_root
*log
= root
->log_root
;
4514 const u64 ino
= btrfs_ino(inode
);
4515 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
4517 if (!btrfs_fs_incompat(fs_info
, NO_HOLES
))
4521 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4522 key
.offset
= (u64
)-1;
4524 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4529 ASSERT(path
->slots
[0] > 0);
4531 leaf
= path
->nodes
[0];
4532 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4534 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
4535 /* inode does not have any extents */
4539 struct btrfs_file_extent_item
*extent
;
4543 * If there's an extent beyond i_size, an explicit hole was
4544 * already inserted by copy_items().
4546 if (key
.offset
>= i_size
)
4549 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
4550 struct btrfs_file_extent_item
);
4552 if (btrfs_file_extent_type(leaf
, extent
) ==
4553 BTRFS_FILE_EXTENT_INLINE
) {
4554 len
= btrfs_file_extent_inline_len(leaf
,
4557 ASSERT(len
== i_size
||
4558 (len
== fs_info
->sectorsize
&&
4559 btrfs_file_extent_compression(leaf
, extent
) !=
4560 BTRFS_COMPRESS_NONE
));
4564 len
= btrfs_file_extent_num_bytes(leaf
, extent
);
4565 /* Last extent goes beyond i_size, no need to log a hole. */
4566 if (key
.offset
+ len
> i_size
)
4568 hole_start
= key
.offset
+ len
;
4569 hole_size
= i_size
- hole_start
;
4571 btrfs_release_path(path
);
4573 /* Last extent ends at i_size. */
4577 hole_size
= ALIGN(hole_size
, fs_info
->sectorsize
);
4578 ret
= btrfs_insert_file_extent(trans
, log
, ino
, hole_start
, 0, 0,
4579 hole_size
, 0, hole_size
, 0, 0, 0);
4584 * When we are logging a new inode X, check if it doesn't have a reference that
4585 * matches the reference from some other inode Y created in a past transaction
4586 * and that was renamed in the current transaction. If we don't do this, then at
4587 * log replay time we can lose inode Y (and all its files if it's a directory):
4590 * echo "hello world" > /mnt/x/foobar
4593 * mkdir /mnt/x # or touch /mnt/x
4594 * xfs_io -c fsync /mnt/x
4596 * mount fs, trigger log replay
4598 * After the log replay procedure, we would lose the first directory and all its
4599 * files (file foobar).
4600 * For the case where inode Y is not a directory we simply end up losing it:
4602 * echo "123" > /mnt/foo
4604 * mv /mnt/foo /mnt/bar
4605 * echo "abc" > /mnt/foo
4606 * xfs_io -c fsync /mnt/foo
4609 * We also need this for cases where a snapshot entry is replaced by some other
4610 * entry (file or directory) otherwise we end up with an unreplayable log due to
4611 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4612 * if it were a regular entry:
4615 * btrfs subvolume snapshot /mnt /mnt/x/snap
4616 * btrfs subvolume delete /mnt/x/snap
4619 * fsync /mnt/x or fsync some new file inside it
4622 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4623 * the same transaction.
4625 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
4627 const struct btrfs_key
*key
,
4628 struct btrfs_inode
*inode
,
4632 struct btrfs_path
*search_path
;
4635 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
4637 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
4639 search_path
= btrfs_alloc_path();
4642 search_path
->search_commit_root
= 1;
4643 search_path
->skip_locking
= 1;
4645 while (cur_offset
< item_size
) {
4649 unsigned long name_ptr
;
4650 struct btrfs_dir_item
*di
;
4652 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4653 struct btrfs_inode_ref
*iref
;
4655 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
4656 parent
= key
->offset
;
4657 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
4658 name_ptr
= (unsigned long)(iref
+ 1);
4659 this_len
= sizeof(*iref
) + this_name_len
;
4661 struct btrfs_inode_extref
*extref
;
4663 extref
= (struct btrfs_inode_extref
*)(ptr
+
4665 parent
= btrfs_inode_extref_parent(eb
, extref
);
4666 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
4667 name_ptr
= (unsigned long)&extref
->name
;
4668 this_len
= sizeof(*extref
) + this_name_len
;
4671 if (this_name_len
> name_len
) {
4674 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
4679 name_len
= this_name_len
;
4683 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
4684 di
= btrfs_lookup_dir_item(NULL
, inode
->root
, search_path
,
4685 parent
, name
, this_name_len
, 0);
4686 if (di
&& !IS_ERR(di
)) {
4687 struct btrfs_key di_key
;
4689 btrfs_dir_item_key_to_cpu(search_path
->nodes
[0],
4691 if (di_key
.type
== BTRFS_INODE_ITEM_KEY
) {
4693 *other_ino
= di_key
.objectid
;
4698 } else if (IS_ERR(di
)) {
4702 btrfs_release_path(search_path
);
4704 cur_offset
+= this_len
;
4708 btrfs_free_path(search_path
);
4713 /* log a single inode in the tree log.
4714 * At least one parent directory for this inode must exist in the tree
4715 * or be logged already.
4717 * Any items from this inode changed by the current transaction are copied
4718 * to the log tree. An extra reference is taken on any extents in this
4719 * file, allowing us to avoid a whole pile of corner cases around logging
4720 * blocks that have been removed from the tree.
4722 * See LOG_INODE_ALL and related defines for a description of what inode_only
4725 * This handles both files and directories.
4727 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
4728 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
4732 struct btrfs_log_ctx
*ctx
)
4734 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4735 struct btrfs_path
*path
;
4736 struct btrfs_path
*dst_path
;
4737 struct btrfs_key min_key
;
4738 struct btrfs_key max_key
;
4739 struct btrfs_root
*log
= root
->log_root
;
4740 LIST_HEAD(logged_list
);
4741 u64 last_extent
= 0;
4745 int ins_start_slot
= 0;
4747 bool fast_search
= false;
4748 u64 ino
= btrfs_ino(inode
);
4749 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
4750 u64 logged_isize
= 0;
4751 bool need_log_inode_item
= true;
4752 bool xattrs_logged
= false;
4754 path
= btrfs_alloc_path();
4757 dst_path
= btrfs_alloc_path();
4759 btrfs_free_path(path
);
4763 min_key
.objectid
= ino
;
4764 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4767 max_key
.objectid
= ino
;
4770 /* today the code can only do partial logging of directories */
4771 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
4772 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4773 &inode
->runtime_flags
) &&
4774 inode_only
>= LOG_INODE_EXISTS
))
4775 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4777 max_key
.type
= (u8
)-1;
4778 max_key
.offset
= (u64
)-1;
4781 * Only run delayed items if we are a dir or a new file.
4782 * Otherwise commit the delayed inode only, which is needed in
4783 * order for the log replay code to mark inodes for link count
4784 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4786 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
4787 inode
->generation
> fs_info
->last_trans_committed
)
4788 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
4790 ret
= btrfs_commit_inode_delayed_inode(inode
);
4793 btrfs_free_path(path
);
4794 btrfs_free_path(dst_path
);
4798 if (inode_only
== LOG_OTHER_INODE
) {
4799 inode_only
= LOG_INODE_EXISTS
;
4800 mutex_lock_nested(&inode
->log_mutex
, SINGLE_DEPTH_NESTING
);
4802 mutex_lock(&inode
->log_mutex
);
4806 * a brute force approach to making sure we get the most uptodate
4807 * copies of everything.
4809 if (S_ISDIR(inode
->vfs_inode
.i_mode
)) {
4810 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
4812 if (inode_only
== LOG_INODE_EXISTS
)
4813 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
4814 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
4816 if (inode_only
== LOG_INODE_EXISTS
) {
4818 * Make sure the new inode item we write to the log has
4819 * the same isize as the current one (if it exists).
4820 * This is necessary to prevent data loss after log
4821 * replay, and also to prevent doing a wrong expanding
4822 * truncate - for e.g. create file, write 4K into offset
4823 * 0, fsync, write 4K into offset 4096, add hard link,
4824 * fsync some other file (to sync log), power fail - if
4825 * we use the inode's current i_size, after log replay
4826 * we get a 8Kb file, with the last 4Kb extent as a hole
4827 * (zeroes), as if an expanding truncate happened,
4828 * instead of getting a file of 4Kb only.
4830 err
= logged_inode_size(log
, inode
, path
, &logged_isize
);
4834 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4835 &inode
->runtime_flags
)) {
4836 if (inode_only
== LOG_INODE_EXISTS
) {
4837 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4838 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4841 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4842 &inode
->runtime_flags
);
4843 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4844 &inode
->runtime_flags
);
4846 ret
= btrfs_truncate_inode_items(trans
,
4847 log
, &inode
->vfs_inode
, 0, 0);
4852 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4853 &inode
->runtime_flags
) ||
4854 inode_only
== LOG_INODE_EXISTS
) {
4855 if (inode_only
== LOG_INODE_ALL
)
4857 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4858 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4861 if (inode_only
== LOG_INODE_ALL
)
4874 ret
= btrfs_search_forward(root
, &min_key
,
4875 path
, trans
->transid
);
4883 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4884 if (min_key
.objectid
!= ino
)
4886 if (min_key
.type
> max_key
.type
)
4889 if (min_key
.type
== BTRFS_INODE_ITEM_KEY
)
4890 need_log_inode_item
= false;
4892 if ((min_key
.type
== BTRFS_INODE_REF_KEY
||
4893 min_key
.type
== BTRFS_INODE_EXTREF_KEY
) &&
4894 inode
->generation
== trans
->transid
) {
4897 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
4898 path
->slots
[0], &min_key
, inode
,
4903 } else if (ret
> 0 && ctx
&&
4904 other_ino
!= btrfs_ino(BTRFS_I(ctx
->inode
))) {
4905 struct btrfs_key inode_key
;
4906 struct inode
*other_inode
;
4912 ins_start_slot
= path
->slots
[0];
4914 ret
= copy_items(trans
, inode
, dst_path
, path
,
4915 &last_extent
, ins_start_slot
,
4923 btrfs_release_path(path
);
4924 inode_key
.objectid
= other_ino
;
4925 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
4926 inode_key
.offset
= 0;
4927 other_inode
= btrfs_iget(fs_info
->sb
,
4931 * If the other inode that had a conflicting dir
4932 * entry was deleted in the current transaction,
4933 * we don't need to do more work nor fallback to
4934 * a transaction commit.
4936 if (IS_ERR(other_inode
) &&
4937 PTR_ERR(other_inode
) == -ENOENT
) {
4939 } else if (IS_ERR(other_inode
)) {
4940 err
= PTR_ERR(other_inode
);
4944 * We are safe logging the other inode without
4945 * acquiring its i_mutex as long as we log with
4946 * the LOG_INODE_EXISTS mode. We're safe against
4947 * concurrent renames of the other inode as well
4948 * because during a rename we pin the log and
4949 * update the log with the new name before we
4952 err
= btrfs_log_inode(trans
, root
,
4953 BTRFS_I(other_inode
),
4954 LOG_OTHER_INODE
, 0, LLONG_MAX
,
4964 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4965 if (min_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
4968 ret
= copy_items(trans
, inode
, dst_path
, path
,
4969 &last_extent
, ins_start_slot
,
4970 ins_nr
, inode_only
, logged_isize
);
4977 btrfs_release_path(path
);
4983 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
4986 } else if (!ins_nr
) {
4987 ins_start_slot
= path
->slots
[0];
4992 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4993 ins_start_slot
, ins_nr
, inode_only
,
5001 btrfs_release_path(path
);
5005 ins_start_slot
= path
->slots
[0];
5008 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5010 if (path
->slots
[0] < nritems
) {
5011 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
5016 ret
= copy_items(trans
, inode
, dst_path
, path
,
5017 &last_extent
, ins_start_slot
,
5018 ins_nr
, inode_only
, logged_isize
);
5026 btrfs_release_path(path
);
5028 if (min_key
.offset
< (u64
)-1) {
5030 } else if (min_key
.type
< max_key
.type
) {
5038 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
5039 ins_start_slot
, ins_nr
, inode_only
,
5049 btrfs_release_path(path
);
5050 btrfs_release_path(dst_path
);
5051 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
, dst_path
);
5054 xattrs_logged
= true;
5055 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
5056 btrfs_release_path(path
);
5057 btrfs_release_path(dst_path
);
5058 err
= btrfs_log_trailing_hole(trans
, root
, inode
, path
);
5063 btrfs_release_path(path
);
5064 btrfs_release_path(dst_path
);
5065 if (need_log_inode_item
) {
5066 err
= log_inode_item(trans
, log
, dst_path
, inode
);
5067 if (!err
&& !xattrs_logged
) {
5068 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
,
5070 btrfs_release_path(path
);
5076 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
5077 &logged_list
, ctx
, start
, end
);
5082 } else if (inode_only
== LOG_INODE_ALL
) {
5083 struct extent_map
*em
, *n
;
5085 write_lock(&em_tree
->lock
);
5087 * We can't just remove every em if we're called for a ranged
5088 * fsync - that is, one that doesn't cover the whole possible
5089 * file range (0 to LLONG_MAX). This is because we can have
5090 * em's that fall outside the range we're logging and therefore
5091 * their ordered operations haven't completed yet
5092 * (btrfs_finish_ordered_io() not invoked yet). This means we
5093 * didn't get their respective file extent item in the fs/subvol
5094 * tree yet, and need to let the next fast fsync (one which
5095 * consults the list of modified extent maps) find the em so
5096 * that it logs a matching file extent item and waits for the
5097 * respective ordered operation to complete (if it's still
5100 * Removing every em outside the range we're logging would make
5101 * the next fast fsync not log their matching file extent items,
5102 * therefore making us lose data after a log replay.
5104 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
5106 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
5108 if (em
->mod_start
>= start
&& mod_end
<= end
)
5109 list_del_init(&em
->list
);
5111 write_unlock(&em_tree
->lock
);
5114 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5115 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
5123 spin_lock(&inode
->lock
);
5124 inode
->logged_trans
= trans
->transid
;
5125 inode
->last_log_commit
= inode
->last_sub_trans
;
5126 spin_unlock(&inode
->lock
);
5129 btrfs_put_logged_extents(&logged_list
);
5131 btrfs_submit_logged_extents(&logged_list
, log
);
5132 mutex_unlock(&inode
->log_mutex
);
5134 btrfs_free_path(path
);
5135 btrfs_free_path(dst_path
);
5140 * Check if we must fallback to a transaction commit when logging an inode.
5141 * This must be called after logging the inode and is used only in the context
5142 * when fsyncing an inode requires the need to log some other inode - in which
5143 * case we can't lock the i_mutex of each other inode we need to log as that
5144 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5145 * log inodes up or down in the hierarchy) or rename operations for example. So
5146 * we take the log_mutex of the inode after we have logged it and then check for
5147 * its last_unlink_trans value - this is safe because any task setting
5148 * last_unlink_trans must take the log_mutex and it must do this before it does
5149 * the actual unlink operation, so if we do this check before a concurrent task
5150 * sets last_unlink_trans it means we've logged a consistent version/state of
5151 * all the inode items, otherwise we are not sure and must do a transaction
5152 * commit (the concurrent task might have only updated last_unlink_trans before
5153 * we logged the inode or it might have also done the unlink).
5155 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle
*trans
,
5156 struct btrfs_inode
*inode
)
5158 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
5161 mutex_lock(&inode
->log_mutex
);
5162 if (inode
->last_unlink_trans
> fs_info
->last_trans_committed
) {
5164 * Make sure any commits to the log are forced to be full
5167 btrfs_set_log_full_commit(fs_info
, trans
);
5170 mutex_unlock(&inode
->log_mutex
);
5176 * follow the dentry parent pointers up the chain and see if any
5177 * of the directories in it require a full commit before they can
5178 * be logged. Returns zero if nothing special needs to be done or 1 if
5179 * a full commit is required.
5181 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
5182 struct btrfs_inode
*inode
,
5183 struct dentry
*parent
,
5184 struct super_block
*sb
,
5188 struct dentry
*old_parent
= NULL
;
5189 struct btrfs_inode
*orig_inode
= inode
;
5192 * for regular files, if its inode is already on disk, we don't
5193 * have to worry about the parents at all. This is because
5194 * we can use the last_unlink_trans field to record renames
5195 * and other fun in this file.
5197 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
5198 inode
->generation
<= last_committed
&&
5199 inode
->last_unlink_trans
<= last_committed
)
5202 if (!S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5203 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5205 inode
= BTRFS_I(d_inode(parent
));
5210 * If we are logging a directory then we start with our inode,
5211 * not our parent's inode, so we need to skip setting the
5212 * logged_trans so that further down in the log code we don't
5213 * think this inode has already been logged.
5215 if (inode
!= orig_inode
)
5216 inode
->logged_trans
= trans
->transid
;
5219 if (btrfs_must_commit_transaction(trans
, inode
)) {
5224 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5227 if (IS_ROOT(parent
)) {
5228 inode
= BTRFS_I(d_inode(parent
));
5229 if (btrfs_must_commit_transaction(trans
, inode
))
5234 parent
= dget_parent(parent
);
5236 old_parent
= parent
;
5237 inode
= BTRFS_I(d_inode(parent
));
5245 struct btrfs_dir_list
{
5247 struct list_head list
;
5251 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5252 * details about the why it is needed.
5253 * This is a recursive operation - if an existing dentry corresponds to a
5254 * directory, that directory's new entries are logged too (same behaviour as
5255 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5256 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5257 * complains about the following circular lock dependency / possible deadlock:
5261 * lock(&type->i_mutex_dir_key#3/2);
5262 * lock(sb_internal#2);
5263 * lock(&type->i_mutex_dir_key#3/2);
5264 * lock(&sb->s_type->i_mutex_key#14);
5266 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5267 * sb_start_intwrite() in btrfs_start_transaction().
5268 * Not locking i_mutex of the inodes is still safe because:
5270 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5271 * that while logging the inode new references (names) are added or removed
5272 * from the inode, leaving the logged inode item with a link count that does
5273 * not match the number of logged inode reference items. This is fine because
5274 * at log replay time we compute the real number of links and correct the
5275 * link count in the inode item (see replay_one_buffer() and
5276 * link_to_fixup_dir());
5278 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5279 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5280 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5281 * has a size that doesn't match the sum of the lengths of all the logged
5282 * names. This does not result in a problem because if a dir_item key is
5283 * logged but its matching dir_index key is not logged, at log replay time we
5284 * don't use it to replay the respective name (see replay_one_name()). On the
5285 * other hand if only the dir_index key ends up being logged, the respective
5286 * name is added to the fs/subvol tree with both the dir_item and dir_index
5287 * keys created (see replay_one_name()).
5288 * The directory's inode item with a wrong i_size is not a problem as well,
5289 * since we don't use it at log replay time to set the i_size in the inode
5290 * item of the fs/subvol tree (see overwrite_item()).
5292 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5293 struct btrfs_root
*root
,
5294 struct btrfs_inode
*start_inode
,
5295 struct btrfs_log_ctx
*ctx
)
5297 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5298 struct btrfs_root
*log
= root
->log_root
;
5299 struct btrfs_path
*path
;
5300 LIST_HEAD(dir_list
);
5301 struct btrfs_dir_list
*dir_elem
;
5304 path
= btrfs_alloc_path();
5308 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5310 btrfs_free_path(path
);
5313 dir_elem
->ino
= btrfs_ino(start_inode
);
5314 list_add_tail(&dir_elem
->list
, &dir_list
);
5316 while (!list_empty(&dir_list
)) {
5317 struct extent_buffer
*leaf
;
5318 struct btrfs_key min_key
;
5322 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
5325 goto next_dir_inode
;
5327 min_key
.objectid
= dir_elem
->ino
;
5328 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
5331 btrfs_release_path(path
);
5332 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
5334 goto next_dir_inode
;
5335 } else if (ret
> 0) {
5337 goto next_dir_inode
;
5341 leaf
= path
->nodes
[0];
5342 nritems
= btrfs_header_nritems(leaf
);
5343 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
5344 struct btrfs_dir_item
*di
;
5345 struct btrfs_key di_key
;
5346 struct inode
*di_inode
;
5347 struct btrfs_dir_list
*new_dir_elem
;
5348 int log_mode
= LOG_INODE_EXISTS
;
5351 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
5352 if (min_key
.objectid
!= dir_elem
->ino
||
5353 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
5354 goto next_dir_inode
;
5356 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
5357 type
= btrfs_dir_type(leaf
, di
);
5358 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
5359 type
!= BTRFS_FT_DIR
)
5361 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5362 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5365 btrfs_release_path(path
);
5366 di_inode
= btrfs_iget(fs_info
->sb
, &di_key
, root
, NULL
);
5367 if (IS_ERR(di_inode
)) {
5368 ret
= PTR_ERR(di_inode
);
5369 goto next_dir_inode
;
5372 if (btrfs_inode_in_log(BTRFS_I(di_inode
), trans
->transid
)) {
5377 ctx
->log_new_dentries
= false;
5378 if (type
== BTRFS_FT_DIR
|| type
== BTRFS_FT_SYMLINK
)
5379 log_mode
= LOG_INODE_ALL
;
5380 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(di_inode
),
5381 log_mode
, 0, LLONG_MAX
, ctx
);
5383 btrfs_must_commit_transaction(trans
, BTRFS_I(di_inode
)))
5387 goto next_dir_inode
;
5388 if (ctx
->log_new_dentries
) {
5389 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
5391 if (!new_dir_elem
) {
5393 goto next_dir_inode
;
5395 new_dir_elem
->ino
= di_key
.objectid
;
5396 list_add_tail(&new_dir_elem
->list
, &dir_list
);
5401 ret
= btrfs_next_leaf(log
, path
);
5403 goto next_dir_inode
;
5404 } else if (ret
> 0) {
5406 goto next_dir_inode
;
5410 if (min_key
.offset
< (u64
)-1) {
5415 list_del(&dir_elem
->list
);
5419 btrfs_free_path(path
);
5423 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
5424 struct btrfs_inode
*inode
,
5425 struct btrfs_log_ctx
*ctx
)
5427 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5429 struct btrfs_path
*path
;
5430 struct btrfs_key key
;
5431 struct btrfs_root
*root
= inode
->root
;
5432 const u64 ino
= btrfs_ino(inode
);
5434 path
= btrfs_alloc_path();
5437 path
->skip_locking
= 1;
5438 path
->search_commit_root
= 1;
5441 key
.type
= BTRFS_INODE_REF_KEY
;
5443 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5448 struct extent_buffer
*leaf
= path
->nodes
[0];
5449 int slot
= path
->slots
[0];
5454 if (slot
>= btrfs_header_nritems(leaf
)) {
5455 ret
= btrfs_next_leaf(root
, path
);
5463 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5464 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5465 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
5468 item_size
= btrfs_item_size_nr(leaf
, slot
);
5469 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
5470 while (cur_offset
< item_size
) {
5471 struct btrfs_key inode_key
;
5472 struct inode
*dir_inode
;
5474 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
5475 inode_key
.offset
= 0;
5477 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5478 struct btrfs_inode_extref
*extref
;
5480 extref
= (struct btrfs_inode_extref
*)
5482 inode_key
.objectid
= btrfs_inode_extref_parent(
5484 cur_offset
+= sizeof(*extref
);
5485 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
5488 inode_key
.objectid
= key
.offset
;
5489 cur_offset
= item_size
;
5492 dir_inode
= btrfs_iget(fs_info
->sb
, &inode_key
,
5494 /* If parent inode was deleted, skip it. */
5495 if (IS_ERR(dir_inode
))
5499 ctx
->log_new_dentries
= false;
5500 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(dir_inode
),
5501 LOG_INODE_ALL
, 0, LLONG_MAX
, ctx
);
5503 btrfs_must_commit_transaction(trans
, BTRFS_I(dir_inode
)))
5505 if (!ret
&& ctx
&& ctx
->log_new_dentries
)
5506 ret
= log_new_dir_dentries(trans
, root
,
5507 BTRFS_I(dir_inode
), ctx
);
5516 btrfs_free_path(path
);
5521 * helper function around btrfs_log_inode to make sure newly created
5522 * parent directories also end up in the log. A minimal inode and backref
5523 * only logging is done of any parent directories that are older than
5524 * the last committed transaction
5526 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
5527 struct btrfs_root
*root
,
5528 struct btrfs_inode
*inode
,
5529 struct dentry
*parent
,
5533 struct btrfs_log_ctx
*ctx
)
5535 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5536 struct super_block
*sb
;
5537 struct dentry
*old_parent
= NULL
;
5539 u64 last_committed
= fs_info
->last_trans_committed
;
5540 bool log_dentries
= false;
5541 struct btrfs_inode
*orig_inode
= inode
;
5543 sb
= inode
->vfs_inode
.i_sb
;
5545 if (btrfs_test_opt(fs_info
, NOTREELOG
)) {
5551 * The prev transaction commit doesn't complete, we need do
5552 * full commit by ourselves.
5554 if (fs_info
->last_trans_log_full_commit
>
5555 fs_info
->last_trans_committed
) {
5560 if (root
!= inode
->root
|| btrfs_root_refs(&root
->root_item
) == 0) {
5565 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
, sb
,
5570 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
5571 ret
= BTRFS_NO_LOG_SYNC
;
5575 ret
= start_log_trans(trans
, root
, ctx
);
5579 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
5584 * for regular files, if its inode is already on disk, we don't
5585 * have to worry about the parents at all. This is because
5586 * we can use the last_unlink_trans field to record renames
5587 * and other fun in this file.
5589 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
5590 inode
->generation
<= last_committed
&&
5591 inode
->last_unlink_trans
<= last_committed
) {
5596 if (S_ISDIR(inode
->vfs_inode
.i_mode
) && ctx
&& ctx
->log_new_dentries
)
5597 log_dentries
= true;
5600 * On unlink we must make sure all our current and old parent directory
5601 * inodes are fully logged. This is to prevent leaving dangling
5602 * directory index entries in directories that were our parents but are
5603 * not anymore. Not doing this results in old parent directory being
5604 * impossible to delete after log replay (rmdir will always fail with
5605 * error -ENOTEMPTY).
5611 * ln testdir/foo testdir/bar
5613 * unlink testdir/bar
5614 * xfs_io -c fsync testdir/foo
5616 * mount fs, triggers log replay
5618 * If we don't log the parent directory (testdir), after log replay the
5619 * directory still has an entry pointing to the file inode using the bar
5620 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5621 * the file inode has a link count of 1.
5627 * ln foo testdir/foo2
5628 * ln foo testdir/foo3
5630 * unlink testdir/foo3
5631 * xfs_io -c fsync foo
5633 * mount fs, triggers log replay
5635 * Similar as the first example, after log replay the parent directory
5636 * testdir still has an entry pointing to the inode file with name foo3
5637 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5638 * and has a link count of 2.
5640 if (inode
->last_unlink_trans
> last_committed
) {
5641 ret
= btrfs_log_all_parents(trans
, orig_inode
, ctx
);
5647 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5650 inode
= BTRFS_I(d_inode(parent
));
5651 if (root
!= inode
->root
)
5654 if (inode
->generation
> last_committed
) {
5655 ret
= btrfs_log_inode(trans
, root
, inode
,
5656 LOG_INODE_EXISTS
, 0, LLONG_MAX
, ctx
);
5660 if (IS_ROOT(parent
))
5663 parent
= dget_parent(parent
);
5665 old_parent
= parent
;
5668 ret
= log_new_dir_dentries(trans
, root
, orig_inode
, ctx
);
5674 btrfs_set_log_full_commit(fs_info
, trans
);
5679 btrfs_remove_log_ctx(root
, ctx
);
5680 btrfs_end_log_trans(root
);
5686 * it is not safe to log dentry if the chunk root has added new
5687 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5688 * If this returns 1, you must commit the transaction to safely get your
5691 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
5692 struct btrfs_root
*root
, struct dentry
*dentry
,
5695 struct btrfs_log_ctx
*ctx
)
5697 struct dentry
*parent
= dget_parent(dentry
);
5700 ret
= btrfs_log_inode_parent(trans
, root
, BTRFS_I(d_inode(dentry
)),
5701 parent
, start
, end
, LOG_INODE_ALL
, ctx
);
5708 * should be called during mount to recover any replay any log trees
5711 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
5714 struct btrfs_path
*path
;
5715 struct btrfs_trans_handle
*trans
;
5716 struct btrfs_key key
;
5717 struct btrfs_key found_key
;
5718 struct btrfs_key tmp_key
;
5719 struct btrfs_root
*log
;
5720 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
5721 struct walk_control wc
= {
5722 .process_func
= process_one_buffer
,
5726 path
= btrfs_alloc_path();
5730 set_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5732 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
5733 if (IS_ERR(trans
)) {
5734 ret
= PTR_ERR(trans
);
5741 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
5743 btrfs_handle_fs_error(fs_info
, ret
,
5744 "Failed to pin buffers while recovering log root tree.");
5749 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
5750 key
.offset
= (u64
)-1;
5751 key
.type
= BTRFS_ROOT_ITEM_KEY
;
5754 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
5757 btrfs_handle_fs_error(fs_info
, ret
,
5758 "Couldn't find tree log root.");
5762 if (path
->slots
[0] == 0)
5766 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
5768 btrfs_release_path(path
);
5769 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
5772 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
5775 btrfs_handle_fs_error(fs_info
, ret
,
5776 "Couldn't read tree log root.");
5780 tmp_key
.objectid
= found_key
.offset
;
5781 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
5782 tmp_key
.offset
= (u64
)-1;
5784 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
5785 if (IS_ERR(wc
.replay_dest
)) {
5786 ret
= PTR_ERR(wc
.replay_dest
);
5787 free_extent_buffer(log
->node
);
5788 free_extent_buffer(log
->commit_root
);
5790 btrfs_handle_fs_error(fs_info
, ret
,
5791 "Couldn't read target root for tree log recovery.");
5795 wc
.replay_dest
->log_root
= log
;
5796 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
5797 ret
= walk_log_tree(trans
, log
, &wc
);
5799 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5800 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
5804 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5805 struct btrfs_root
*root
= wc
.replay_dest
;
5807 btrfs_release_path(path
);
5810 * We have just replayed everything, and the highest
5811 * objectid of fs roots probably has changed in case
5812 * some inode_item's got replayed.
5814 * root->objectid_mutex is not acquired as log replay
5815 * could only happen during mount.
5817 ret
= btrfs_find_highest_objectid(root
,
5818 &root
->highest_objectid
);
5821 key
.offset
= found_key
.offset
- 1;
5822 wc
.replay_dest
->log_root
= NULL
;
5823 free_extent_buffer(log
->node
);
5824 free_extent_buffer(log
->commit_root
);
5830 if (found_key
.offset
== 0)
5833 btrfs_release_path(path
);
5835 /* step one is to pin it all, step two is to replay just inodes */
5838 wc
.process_func
= replay_one_buffer
;
5839 wc
.stage
= LOG_WALK_REPLAY_INODES
;
5842 /* step three is to replay everything */
5843 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
5848 btrfs_free_path(path
);
5850 /* step 4: commit the transaction, which also unpins the blocks */
5851 ret
= btrfs_commit_transaction(trans
);
5855 free_extent_buffer(log_root_tree
->node
);
5856 log_root_tree
->log_root
= NULL
;
5857 clear_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
5858 kfree(log_root_tree
);
5863 btrfs_end_transaction(wc
.trans
);
5864 btrfs_free_path(path
);
5869 * there are some corner cases where we want to force a full
5870 * commit instead of allowing a directory to be logged.
5872 * They revolve around files there were unlinked from the directory, and
5873 * this function updates the parent directory so that a full commit is
5874 * properly done if it is fsync'd later after the unlinks are done.
5876 * Must be called before the unlink operations (updates to the subvolume tree,
5877 * inodes, etc) are done.
5879 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
5880 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
5884 * when we're logging a file, if it hasn't been renamed
5885 * or unlinked, and its inode is fully committed on disk,
5886 * we don't have to worry about walking up the directory chain
5887 * to log its parents.
5889 * So, we use the last_unlink_trans field to put this transid
5890 * into the file. When the file is logged we check it and
5891 * don't log the parents if the file is fully on disk.
5893 mutex_lock(&inode
->log_mutex
);
5894 inode
->last_unlink_trans
= trans
->transid
;
5895 mutex_unlock(&inode
->log_mutex
);
5898 * if this directory was already logged any new
5899 * names for this file/dir will get recorded
5902 if (dir
->logged_trans
== trans
->transid
)
5906 * if the inode we're about to unlink was logged,
5907 * the log will be properly updated for any new names
5909 if (inode
->logged_trans
== trans
->transid
)
5913 * when renaming files across directories, if the directory
5914 * there we're unlinking from gets fsync'd later on, there's
5915 * no way to find the destination directory later and fsync it
5916 * properly. So, we have to be conservative and force commits
5917 * so the new name gets discovered.
5922 /* we can safely do the unlink without any special recording */
5926 mutex_lock(&dir
->log_mutex
);
5927 dir
->last_unlink_trans
= trans
->transid
;
5928 mutex_unlock(&dir
->log_mutex
);
5932 * Make sure that if someone attempts to fsync the parent directory of a deleted
5933 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5934 * that after replaying the log tree of the parent directory's root we will not
5935 * see the snapshot anymore and at log replay time we will not see any log tree
5936 * corresponding to the deleted snapshot's root, which could lead to replaying
5937 * it after replaying the log tree of the parent directory (which would replay
5938 * the snapshot delete operation).
5940 * Must be called before the actual snapshot destroy operation (updates to the
5941 * parent root and tree of tree roots trees, etc) are done.
5943 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
5944 struct btrfs_inode
*dir
)
5946 mutex_lock(&dir
->log_mutex
);
5947 dir
->last_unlink_trans
= trans
->transid
;
5948 mutex_unlock(&dir
->log_mutex
);
5952 * Call this after adding a new name for a file and it will properly
5953 * update the log to reflect the new name.
5955 * It will return zero if all goes well, and it will return 1 if a
5956 * full transaction commit is required.
5958 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
5959 struct btrfs_inode
*inode
, struct btrfs_inode
*old_dir
,
5960 struct dentry
*parent
)
5962 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
5963 struct btrfs_root
*root
= inode
->root
;
5966 * this will force the logging code to walk the dentry chain
5969 if (!S_ISDIR(inode
->vfs_inode
.i_mode
))
5970 inode
->last_unlink_trans
= trans
->transid
;
5973 * if this inode hasn't been logged and directory we're renaming it
5974 * from hasn't been logged, we don't need to log it
5976 if (inode
->logged_trans
<= fs_info
->last_trans_committed
&&
5977 (!old_dir
|| old_dir
->logged_trans
<= fs_info
->last_trans_committed
))
5980 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 0,
5981 LLONG_MAX
, LOG_INODE_EXISTS
, NULL
);