bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / fs / btrfs / tree-log.c
blobac6ea1503cd6b2679cce1db1c6a413cc3958aac7
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include <linux/iversion.h>
24 #include "tree-log.h"
25 #include "disk-io.h"
26 #include "locking.h"
27 #include "print-tree.h"
28 #include "backref.h"
29 #include "hash.h"
30 #include "compression.h"
31 #include "qgroup.h"
32 #include "inode-map.h"
34 /* magic values for the inode_only field in btrfs_log_inode:
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
40 #define LOG_INODE_ALL 0
41 #define LOG_INODE_EXISTS 1
42 #define LOG_OTHER_INODE 2
45 * directory trouble cases
47 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
48 * log, we must force a full commit before doing an fsync of the directory
49 * where the unlink was done.
50 * ---> record transid of last unlink/rename per directory
52 * mkdir foo/some_dir
53 * normal commit
54 * rename foo/some_dir foo2/some_dir
55 * mkdir foo/some_dir
56 * fsync foo/some_dir/some_file
58 * The fsync above will unlink the original some_dir without recording
59 * it in its new location (foo2). After a crash, some_dir will be gone
60 * unless the fsync of some_file forces a full commit
62 * 2) we must log any new names for any file or dir that is in the fsync
63 * log. ---> check inode while renaming/linking.
65 * 2a) we must log any new names for any file or dir during rename
66 * when the directory they are being removed from was logged.
67 * ---> check inode and old parent dir during rename
69 * 2a is actually the more important variant. With the extra logging
70 * a crash might unlink the old name without recreating the new one
72 * 3) after a crash, we must go through any directories with a link count
73 * of zero and redo the rm -rf
75 * mkdir f1/foo
76 * normal commit
77 * rm -rf f1/foo
78 * fsync(f1)
80 * The directory f1 was fully removed from the FS, but fsync was never
81 * called on f1, only its parent dir. After a crash the rm -rf must
82 * be replayed. This must be able to recurse down the entire
83 * directory tree. The inode link count fixup code takes care of the
84 * ugly details.
88 * stages for the tree walking. The first
89 * stage (0) is to only pin down the blocks we find
90 * the second stage (1) is to make sure that all the inodes
91 * we find in the log are created in the subvolume.
93 * The last stage is to deal with directories and links and extents
94 * and all the other fun semantics
96 #define LOG_WALK_PIN_ONLY 0
97 #define LOG_WALK_REPLAY_INODES 1
98 #define LOG_WALK_REPLAY_DIR_INDEX 2
99 #define LOG_WALK_REPLAY_ALL 3
101 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
102 struct btrfs_root *root, struct btrfs_inode *inode,
103 int inode_only,
104 const loff_t start,
105 const loff_t end,
106 struct btrfs_log_ctx *ctx);
107 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
108 struct btrfs_root *root,
109 struct btrfs_path *path, u64 objectid);
110 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
111 struct btrfs_root *root,
112 struct btrfs_root *log,
113 struct btrfs_path *path,
114 u64 dirid, int del_all);
117 * tree logging is a special write ahead log used to make sure that
118 * fsyncs and O_SYNCs can happen without doing full tree commits.
120 * Full tree commits are expensive because they require commonly
121 * modified blocks to be recowed, creating many dirty pages in the
122 * extent tree an 4x-6x higher write load than ext3.
124 * Instead of doing a tree commit on every fsync, we use the
125 * key ranges and transaction ids to find items for a given file or directory
126 * that have changed in this transaction. Those items are copied into
127 * a special tree (one per subvolume root), that tree is written to disk
128 * and then the fsync is considered complete.
130 * After a crash, items are copied out of the log-tree back into the
131 * subvolume tree. Any file data extents found are recorded in the extent
132 * allocation tree, and the log-tree freed.
134 * The log tree is read three times, once to pin down all the extents it is
135 * using in ram and once, once to create all the inodes logged in the tree
136 * and once to do all the other items.
140 * start a sub transaction and setup the log tree
141 * this increments the log tree writer count to make the people
142 * syncing the tree wait for us to finish
144 static int start_log_trans(struct btrfs_trans_handle *trans,
145 struct btrfs_root *root,
146 struct btrfs_log_ctx *ctx)
148 struct btrfs_fs_info *fs_info = root->fs_info;
149 int ret = 0;
151 mutex_lock(&root->log_mutex);
153 if (root->log_root) {
154 if (btrfs_need_log_full_commit(fs_info, trans)) {
155 ret = -EAGAIN;
156 goto out;
159 if (!root->log_start_pid) {
160 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
161 root->log_start_pid = current->pid;
162 } else if (root->log_start_pid != current->pid) {
163 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 } else {
166 mutex_lock(&fs_info->tree_log_mutex);
167 if (!fs_info->log_root_tree)
168 ret = btrfs_init_log_root_tree(trans, fs_info);
169 mutex_unlock(&fs_info->tree_log_mutex);
170 if (ret)
171 goto out;
173 ret = btrfs_add_log_tree(trans, root);
174 if (ret)
175 goto out;
177 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
178 root->log_start_pid = current->pid;
181 atomic_inc(&root->log_batch);
182 atomic_inc(&root->log_writers);
183 if (ctx) {
184 int index = root->log_transid % 2;
185 list_add_tail(&ctx->list, &root->log_ctxs[index]);
186 ctx->log_transid = root->log_transid;
189 out:
190 mutex_unlock(&root->log_mutex);
191 return ret;
195 * returns 0 if there was a log transaction running and we were able
196 * to join, or returns -ENOENT if there were not transactions
197 * in progress
199 static int join_running_log_trans(struct btrfs_root *root)
201 int ret = -ENOENT;
203 smp_mb();
204 if (!root->log_root)
205 return -ENOENT;
207 mutex_lock(&root->log_mutex);
208 if (root->log_root) {
209 ret = 0;
210 atomic_inc(&root->log_writers);
212 mutex_unlock(&root->log_mutex);
213 return ret;
217 * This either makes the current running log transaction wait
218 * until you call btrfs_end_log_trans() or it makes any future
219 * log transactions wait until you call btrfs_end_log_trans()
221 int btrfs_pin_log_trans(struct btrfs_root *root)
223 int ret = -ENOENT;
225 mutex_lock(&root->log_mutex);
226 atomic_inc(&root->log_writers);
227 mutex_unlock(&root->log_mutex);
228 return ret;
232 * indicate we're done making changes to the log tree
233 * and wake up anyone waiting to do a sync
235 void btrfs_end_log_trans(struct btrfs_root *root)
237 if (atomic_dec_and_test(&root->log_writers)) {
239 * Implicit memory barrier after atomic_dec_and_test
241 if (waitqueue_active(&root->log_writer_wait))
242 wake_up(&root->log_writer_wait);
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
253 struct walk_control {
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
257 int free;
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
262 int write;
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
267 int wait;
269 /* pin only walk, we record which extents on disk belong to the
270 * log trees
272 int pin;
274 /* what stage of the replay code we're currently in */
275 int stage;
277 /* the root we are currently replaying */
278 struct btrfs_root *replay_dest;
280 /* the trans handle for the current replay */
281 struct btrfs_trans_handle *trans;
283 /* the function that gets used to process blocks we find in the
284 * tree. Note the extent_buffer might not be up to date when it is
285 * passed in, and it must be checked or read if you need the data
286 * inside it
288 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
289 struct walk_control *wc, u64 gen);
293 * process_func used to pin down extents, write them or wait on them
295 static int process_one_buffer(struct btrfs_root *log,
296 struct extent_buffer *eb,
297 struct walk_control *wc, u64 gen)
299 struct btrfs_fs_info *fs_info = log->fs_info;
300 int ret = 0;
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
306 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
307 ret = btrfs_read_buffer(eb, gen);
308 if (ret)
309 return ret;
312 if (wc->pin)
313 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
314 eb->len);
316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
317 if (wc->pin && btrfs_header_level(eb) == 0)
318 ret = btrfs_exclude_logged_extents(fs_info, eb);
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
324 return ret;
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
339 * If the key isn't in the destination yet, a new item is inserted.
341 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
347 struct btrfs_fs_info *fs_info = root->fs_info;
348 int ret;
349 u32 item_size;
350 u64 saved_i_size = 0;
351 int save_old_i_size = 0;
352 unsigned long src_ptr;
353 unsigned long dst_ptr;
354 int overwrite_root = 0;
355 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
357 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
358 overwrite_root = 1;
360 item_size = btrfs_item_size_nr(eb, slot);
361 src_ptr = btrfs_item_ptr_offset(eb, slot);
363 /* look for the key in the destination tree */
364 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
365 if (ret < 0)
366 return ret;
368 if (ret == 0) {
369 char *src_copy;
370 char *dst_copy;
371 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
372 path->slots[0]);
373 if (dst_size != item_size)
374 goto insert;
376 if (item_size == 0) {
377 btrfs_release_path(path);
378 return 0;
380 dst_copy = kmalloc(item_size, GFP_NOFS);
381 src_copy = kmalloc(item_size, GFP_NOFS);
382 if (!dst_copy || !src_copy) {
383 btrfs_release_path(path);
384 kfree(dst_copy);
385 kfree(src_copy);
386 return -ENOMEM;
389 read_extent_buffer(eb, src_copy, src_ptr, item_size);
391 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
392 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
393 item_size);
394 ret = memcmp(dst_copy, src_copy, item_size);
396 kfree(dst_copy);
397 kfree(src_copy);
399 * they have the same contents, just return, this saves
400 * us from cowing blocks in the destination tree and doing
401 * extra writes that may not have been done by a previous
402 * sync
404 if (ret == 0) {
405 btrfs_release_path(path);
406 return 0;
410 * We need to load the old nbytes into the inode so when we
411 * replay the extents we've logged we get the right nbytes.
413 if (inode_item) {
414 struct btrfs_inode_item *item;
415 u64 nbytes;
416 u32 mode;
418 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
419 struct btrfs_inode_item);
420 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
421 item = btrfs_item_ptr(eb, slot,
422 struct btrfs_inode_item);
423 btrfs_set_inode_nbytes(eb, item, nbytes);
426 * If this is a directory we need to reset the i_size to
427 * 0 so that we can set it up properly when replaying
428 * the rest of the items in this log.
430 mode = btrfs_inode_mode(eb, item);
431 if (S_ISDIR(mode))
432 btrfs_set_inode_size(eb, item, 0);
434 } else if (inode_item) {
435 struct btrfs_inode_item *item;
436 u32 mode;
439 * New inode, set nbytes to 0 so that the nbytes comes out
440 * properly when we replay the extents.
442 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
443 btrfs_set_inode_nbytes(eb, item, 0);
446 * If this is a directory we need to reset the i_size to 0 so
447 * that we can set it up properly when replaying the rest of
448 * the items in this log.
450 mode = btrfs_inode_mode(eb, item);
451 if (S_ISDIR(mode))
452 btrfs_set_inode_size(eb, item, 0);
454 insert:
455 btrfs_release_path(path);
456 /* try to insert the key into the destination tree */
457 path->skip_release_on_error = 1;
458 ret = btrfs_insert_empty_item(trans, root, path,
459 key, item_size);
460 path->skip_release_on_error = 0;
462 /* make sure any existing item is the correct size */
463 if (ret == -EEXIST || ret == -EOVERFLOW) {
464 u32 found_size;
465 found_size = btrfs_item_size_nr(path->nodes[0],
466 path->slots[0]);
467 if (found_size > item_size)
468 btrfs_truncate_item(fs_info, path, item_size, 1);
469 else if (found_size < item_size)
470 btrfs_extend_item(fs_info, path,
471 item_size - found_size);
472 } else if (ret) {
473 return ret;
475 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
476 path->slots[0]);
478 /* don't overwrite an existing inode if the generation number
479 * was logged as zero. This is done when the tree logging code
480 * is just logging an inode to make sure it exists after recovery.
482 * Also, don't overwrite i_size on directories during replay.
483 * log replay inserts and removes directory items based on the
484 * state of the tree found in the subvolume, and i_size is modified
485 * as it goes
487 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
488 struct btrfs_inode_item *src_item;
489 struct btrfs_inode_item *dst_item;
491 src_item = (struct btrfs_inode_item *)src_ptr;
492 dst_item = (struct btrfs_inode_item *)dst_ptr;
494 if (btrfs_inode_generation(eb, src_item) == 0) {
495 struct extent_buffer *dst_eb = path->nodes[0];
496 const u64 ino_size = btrfs_inode_size(eb, src_item);
499 * For regular files an ino_size == 0 is used only when
500 * logging that an inode exists, as part of a directory
501 * fsync, and the inode wasn't fsynced before. In this
502 * case don't set the size of the inode in the fs/subvol
503 * tree, otherwise we would be throwing valid data away.
505 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
506 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
507 ino_size != 0) {
508 struct btrfs_map_token token;
510 btrfs_init_map_token(&token);
511 btrfs_set_token_inode_size(dst_eb, dst_item,
512 ino_size, &token);
514 goto no_copy;
517 if (overwrite_root &&
518 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
519 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
520 save_old_i_size = 1;
521 saved_i_size = btrfs_inode_size(path->nodes[0],
522 dst_item);
526 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
527 src_ptr, item_size);
529 if (save_old_i_size) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
535 /* make sure the generation is filled in */
536 if (key->type == BTRFS_INODE_ITEM_KEY) {
537 struct btrfs_inode_item *dst_item;
538 dst_item = (struct btrfs_inode_item *)dst_ptr;
539 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
540 btrfs_set_inode_generation(path->nodes[0], dst_item,
541 trans->transid);
544 no_copy:
545 btrfs_mark_buffer_dirty(path->nodes[0]);
546 btrfs_release_path(path);
547 return 0;
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
554 static noinline struct inode *read_one_inode(struct btrfs_root *root,
555 u64 objectid)
557 struct btrfs_key key;
558 struct inode *inode;
560 key.objectid = objectid;
561 key.type = BTRFS_INODE_ITEM_KEY;
562 key.offset = 0;
563 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
564 if (IS_ERR(inode)) {
565 inode = NULL;
566 } else if (is_bad_inode(inode)) {
567 iput(inode);
568 inode = NULL;
570 return inode;
573 /* replays a single extent in 'eb' at 'slot' with 'key' into the
574 * subvolume 'root'. path is released on entry and should be released
575 * on exit.
577 * extents in the log tree have not been allocated out of the extent
578 * tree yet. So, this completes the allocation, taking a reference
579 * as required if the extent already exists or creating a new extent
580 * if it isn't in the extent allocation tree yet.
582 * The extent is inserted into the file, dropping any existing extents
583 * from the file that overlap the new one.
585 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
586 struct btrfs_root *root,
587 struct btrfs_path *path,
588 struct extent_buffer *eb, int slot,
589 struct btrfs_key *key)
591 struct btrfs_fs_info *fs_info = root->fs_info;
592 int found_type;
593 u64 extent_end;
594 u64 start = key->offset;
595 u64 nbytes = 0;
596 struct btrfs_file_extent_item *item;
597 struct inode *inode = NULL;
598 unsigned long size;
599 int ret = 0;
601 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
602 found_type = btrfs_file_extent_type(eb, item);
604 if (found_type == BTRFS_FILE_EXTENT_REG ||
605 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
606 nbytes = btrfs_file_extent_num_bytes(eb, item);
607 extent_end = start + nbytes;
610 * We don't add to the inodes nbytes if we are prealloc or a
611 * hole.
613 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
614 nbytes = 0;
615 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
616 size = btrfs_file_extent_inline_len(eb, slot, item);
617 nbytes = btrfs_file_extent_ram_bytes(eb, item);
618 extent_end = ALIGN(start + size,
619 fs_info->sectorsize);
620 } else {
621 ret = 0;
622 goto out;
625 inode = read_one_inode(root, key->objectid);
626 if (!inode) {
627 ret = -EIO;
628 goto out;
632 * first check to see if we already have this extent in the
633 * file. This must be done before the btrfs_drop_extents run
634 * so we don't try to drop this extent.
636 ret = btrfs_lookup_file_extent(trans, root, path,
637 btrfs_ino(BTRFS_I(inode)), start, 0);
639 if (ret == 0 &&
640 (found_type == BTRFS_FILE_EXTENT_REG ||
641 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
642 struct btrfs_file_extent_item cmp1;
643 struct btrfs_file_extent_item cmp2;
644 struct btrfs_file_extent_item *existing;
645 struct extent_buffer *leaf;
647 leaf = path->nodes[0];
648 existing = btrfs_item_ptr(leaf, path->slots[0],
649 struct btrfs_file_extent_item);
651 read_extent_buffer(eb, &cmp1, (unsigned long)item,
652 sizeof(cmp1));
653 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
654 sizeof(cmp2));
657 * we already have a pointer to this exact extent,
658 * we don't have to do anything
660 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
661 btrfs_release_path(path);
662 goto out;
665 btrfs_release_path(path);
667 /* drop any overlapping extents */
668 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
669 if (ret)
670 goto out;
672 if (found_type == BTRFS_FILE_EXTENT_REG ||
673 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
674 u64 offset;
675 unsigned long dest_offset;
676 struct btrfs_key ins;
678 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
679 btrfs_fs_incompat(fs_info, NO_HOLES))
680 goto update_inode;
682 ret = btrfs_insert_empty_item(trans, root, path, key,
683 sizeof(*item));
684 if (ret)
685 goto out;
686 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
687 path->slots[0]);
688 copy_extent_buffer(path->nodes[0], eb, dest_offset,
689 (unsigned long)item, sizeof(*item));
691 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
692 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
693 ins.type = BTRFS_EXTENT_ITEM_KEY;
694 offset = key->offset - btrfs_file_extent_offset(eb, item);
697 * Manually record dirty extent, as here we did a shallow
698 * file extent item copy and skip normal backref update,
699 * but modifying extent tree all by ourselves.
700 * So need to manually record dirty extent for qgroup,
701 * as the owner of the file extent changed from log tree
702 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
704 ret = btrfs_qgroup_trace_extent(trans, fs_info,
705 btrfs_file_extent_disk_bytenr(eb, item),
706 btrfs_file_extent_disk_num_bytes(eb, item),
707 GFP_NOFS);
708 if (ret < 0)
709 goto out;
711 if (ins.objectid > 0) {
712 u64 csum_start;
713 u64 csum_end;
714 LIST_HEAD(ordered_sums);
716 * is this extent already allocated in the extent
717 * allocation tree? If so, just add a reference
719 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
720 ins.offset);
721 if (ret == 0) {
722 ret = btrfs_inc_extent_ref(trans, root,
723 ins.objectid, ins.offset,
724 0, root->root_key.objectid,
725 key->objectid, offset);
726 if (ret)
727 goto out;
728 } else {
730 * insert the extent pointer in the extent
731 * allocation tree
733 ret = btrfs_alloc_logged_file_extent(trans,
734 fs_info,
735 root->root_key.objectid,
736 key->objectid, offset, &ins);
737 if (ret)
738 goto out;
740 btrfs_release_path(path);
742 if (btrfs_file_extent_compression(eb, item)) {
743 csum_start = ins.objectid;
744 csum_end = csum_start + ins.offset;
745 } else {
746 csum_start = ins.objectid +
747 btrfs_file_extent_offset(eb, item);
748 csum_end = csum_start +
749 btrfs_file_extent_num_bytes(eb, item);
752 ret = btrfs_lookup_csums_range(root->log_root,
753 csum_start, csum_end - 1,
754 &ordered_sums, 0);
755 if (ret)
756 goto out;
758 * Now delete all existing cums in the csum root that
759 * cover our range. We do this because we can have an
760 * extent that is completely referenced by one file
761 * extent item and partially referenced by another
762 * file extent item (like after using the clone or
763 * extent_same ioctls). In this case if we end up doing
764 * the replay of the one that partially references the
765 * extent first, and we do not do the csum deletion
766 * below, we can get 2 csum items in the csum tree that
767 * overlap each other. For example, imagine our log has
768 * the two following file extent items:
770 * key (257 EXTENT_DATA 409600)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 20480 nr 20480 ram 102400
774 * key (257 EXTENT_DATA 819200)
775 * extent data disk byte 12845056 nr 102400
776 * extent data offset 0 nr 102400 ram 102400
778 * Where the second one fully references the 100K extent
779 * that starts at disk byte 12845056, and the log tree
780 * has a single csum item that covers the entire range
781 * of the extent:
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
785 * After the first file extent item is replayed, the
786 * csum tree gets the following csum item:
788 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
790 * Which covers the 20K sub-range starting at offset 20K
791 * of our extent. Now when we replay the second file
792 * extent item, if we do not delete existing csum items
793 * that cover any of its blocks, we end up getting two
794 * csum items in our csum tree that overlap each other:
796 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
797 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
799 * Which is a problem, because after this anyone trying
800 * to lookup up for the checksum of any block of our
801 * extent starting at an offset of 40K or higher, will
802 * end up looking at the second csum item only, which
803 * does not contain the checksum for any block starting
804 * at offset 40K or higher of our extent.
806 while (!list_empty(&ordered_sums)) {
807 struct btrfs_ordered_sum *sums;
808 sums = list_entry(ordered_sums.next,
809 struct btrfs_ordered_sum,
810 list);
811 if (!ret)
812 ret = btrfs_del_csums(trans, fs_info,
813 sums->bytenr,
814 sums->len);
815 if (!ret)
816 ret = btrfs_csum_file_blocks(trans,
817 fs_info->csum_root, sums);
818 list_del(&sums->list);
819 kfree(sums);
821 if (ret)
822 goto out;
823 } else {
824 btrfs_release_path(path);
826 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
827 /* inline extents are easy, we just overwrite them */
828 ret = overwrite_item(trans, root, path, eb, slot, key);
829 if (ret)
830 goto out;
833 inode_add_bytes(inode, nbytes);
834 update_inode:
835 ret = btrfs_update_inode(trans, root, inode);
836 out:
837 if (inode)
838 iput(inode);
839 return ret;
843 * when cleaning up conflicts between the directory names in the
844 * subvolume, directory names in the log and directory names in the
845 * inode back references, we may have to unlink inodes from directories.
847 * This is a helper function to do the unlink of a specific directory
848 * item
850 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
851 struct btrfs_root *root,
852 struct btrfs_path *path,
853 struct btrfs_inode *dir,
854 struct btrfs_dir_item *di)
856 struct btrfs_fs_info *fs_info = root->fs_info;
857 struct inode *inode;
858 char *name;
859 int name_len;
860 struct extent_buffer *leaf;
861 struct btrfs_key location;
862 int ret;
864 leaf = path->nodes[0];
866 btrfs_dir_item_key_to_cpu(leaf, di, &location);
867 name_len = btrfs_dir_name_len(leaf, di);
868 name = kmalloc(name_len, GFP_NOFS);
869 if (!name)
870 return -ENOMEM;
872 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
873 btrfs_release_path(path);
875 inode = read_one_inode(root, location.objectid);
876 if (!inode) {
877 ret = -EIO;
878 goto out;
881 ret = link_to_fixup_dir(trans, root, path, location.objectid);
882 if (ret)
883 goto out;
885 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
886 name_len);
887 if (ret)
888 goto out;
889 else
890 ret = btrfs_run_delayed_items(trans, fs_info);
891 out:
892 kfree(name);
893 iput(inode);
894 return ret;
898 * helper function to see if a given name and sequence number found
899 * in an inode back reference are already in a directory and correctly
900 * point to this inode
902 static noinline int inode_in_dir(struct btrfs_root *root,
903 struct btrfs_path *path,
904 u64 dirid, u64 objectid, u64 index,
905 const char *name, int name_len)
907 struct btrfs_dir_item *di;
908 struct btrfs_key location;
909 int match = 0;
911 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
912 index, name, name_len, 0);
913 if (di && !IS_ERR(di)) {
914 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
915 if (location.objectid != objectid)
916 goto out;
917 } else
918 goto out;
919 btrfs_release_path(path);
921 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
922 if (di && !IS_ERR(di)) {
923 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
924 if (location.objectid != objectid)
925 goto out;
926 } else
927 goto out;
928 match = 1;
929 out:
930 btrfs_release_path(path);
931 return match;
935 * helper function to check a log tree for a named back reference in
936 * an inode. This is used to decide if a back reference that is
937 * found in the subvolume conflicts with what we find in the log.
939 * inode backreferences may have multiple refs in a single item,
940 * during replay we process one reference at a time, and we don't
941 * want to delete valid links to a file from the subvolume if that
942 * link is also in the log.
944 static noinline int backref_in_log(struct btrfs_root *log,
945 struct btrfs_key *key,
946 u64 ref_objectid,
947 const char *name, int namelen)
949 struct btrfs_path *path;
950 struct btrfs_inode_ref *ref;
951 unsigned long ptr;
952 unsigned long ptr_end;
953 unsigned long name_ptr;
954 int found_name_len;
955 int item_size;
956 int ret;
957 int match = 0;
959 path = btrfs_alloc_path();
960 if (!path)
961 return -ENOMEM;
963 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
964 if (ret != 0)
965 goto out;
967 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
969 if (key->type == BTRFS_INODE_EXTREF_KEY) {
970 if (btrfs_find_name_in_ext_backref(path->nodes[0],
971 path->slots[0],
972 ref_objectid,
973 name, namelen, NULL))
974 match = 1;
976 goto out;
979 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
980 ptr_end = ptr + item_size;
981 while (ptr < ptr_end) {
982 ref = (struct btrfs_inode_ref *)ptr;
983 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
984 if (found_name_len == namelen) {
985 name_ptr = (unsigned long)(ref + 1);
986 ret = memcmp_extent_buffer(path->nodes[0], name,
987 name_ptr, namelen);
988 if (ret == 0) {
989 match = 1;
990 goto out;
993 ptr = (unsigned long)(ref + 1) + found_name_len;
995 out:
996 btrfs_free_path(path);
997 return match;
1000 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1001 struct btrfs_root *root,
1002 struct btrfs_path *path,
1003 struct btrfs_root *log_root,
1004 struct btrfs_inode *dir,
1005 struct btrfs_inode *inode,
1006 u64 inode_objectid, u64 parent_objectid,
1007 u64 ref_index, char *name, int namelen,
1008 int *search_done)
1010 struct btrfs_fs_info *fs_info = root->fs_info;
1011 int ret;
1012 char *victim_name;
1013 int victim_name_len;
1014 struct extent_buffer *leaf;
1015 struct btrfs_dir_item *di;
1016 struct btrfs_key search_key;
1017 struct btrfs_inode_extref *extref;
1019 again:
1020 /* Search old style refs */
1021 search_key.objectid = inode_objectid;
1022 search_key.type = BTRFS_INODE_REF_KEY;
1023 search_key.offset = parent_objectid;
1024 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1025 if (ret == 0) {
1026 struct btrfs_inode_ref *victim_ref;
1027 unsigned long ptr;
1028 unsigned long ptr_end;
1030 leaf = path->nodes[0];
1032 /* are we trying to overwrite a back ref for the root directory
1033 * if so, just jump out, we're done
1035 if (search_key.objectid == search_key.offset)
1036 return 1;
1038 /* check all the names in this back reference to see
1039 * if they are in the log. if so, we allow them to stay
1040 * otherwise they must be unlinked as a conflict
1042 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1043 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1044 while (ptr < ptr_end) {
1045 victim_ref = (struct btrfs_inode_ref *)ptr;
1046 victim_name_len = btrfs_inode_ref_name_len(leaf,
1047 victim_ref);
1048 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1049 if (!victim_name)
1050 return -ENOMEM;
1052 read_extent_buffer(leaf, victim_name,
1053 (unsigned long)(victim_ref + 1),
1054 victim_name_len);
1056 if (!backref_in_log(log_root, &search_key,
1057 parent_objectid,
1058 victim_name,
1059 victim_name_len)) {
1060 inc_nlink(&inode->vfs_inode);
1061 btrfs_release_path(path);
1063 ret = btrfs_unlink_inode(trans, root, dir, inode,
1064 victim_name, victim_name_len);
1065 kfree(victim_name);
1066 if (ret)
1067 return ret;
1068 ret = btrfs_run_delayed_items(trans, fs_info);
1069 if (ret)
1070 return ret;
1071 *search_done = 1;
1072 goto again;
1074 kfree(victim_name);
1076 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1080 * NOTE: we have searched root tree and checked the
1081 * corresponding ref, it does not need to check again.
1083 *search_done = 1;
1085 btrfs_release_path(path);
1087 /* Same search but for extended refs */
1088 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1089 inode_objectid, parent_objectid, 0,
1091 if (!IS_ERR_OR_NULL(extref)) {
1092 u32 item_size;
1093 u32 cur_offset = 0;
1094 unsigned long base;
1095 struct inode *victim_parent;
1097 leaf = path->nodes[0];
1099 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1100 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1102 while (cur_offset < item_size) {
1103 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1105 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1107 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1108 goto next;
1110 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1111 if (!victim_name)
1112 return -ENOMEM;
1113 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1114 victim_name_len);
1116 search_key.objectid = inode_objectid;
1117 search_key.type = BTRFS_INODE_EXTREF_KEY;
1118 search_key.offset = btrfs_extref_hash(parent_objectid,
1119 victim_name,
1120 victim_name_len);
1121 ret = 0;
1122 if (!backref_in_log(log_root, &search_key,
1123 parent_objectid, victim_name,
1124 victim_name_len)) {
1125 ret = -ENOENT;
1126 victim_parent = read_one_inode(root,
1127 parent_objectid);
1128 if (victim_parent) {
1129 inc_nlink(&inode->vfs_inode);
1130 btrfs_release_path(path);
1132 ret = btrfs_unlink_inode(trans, root,
1133 BTRFS_I(victim_parent),
1134 inode,
1135 victim_name,
1136 victim_name_len);
1137 if (!ret)
1138 ret = btrfs_run_delayed_items(
1139 trans,
1140 fs_info);
1142 iput(victim_parent);
1143 kfree(victim_name);
1144 if (ret)
1145 return ret;
1146 *search_done = 1;
1147 goto again;
1149 kfree(victim_name);
1150 next:
1151 cur_offset += victim_name_len + sizeof(*extref);
1153 *search_done = 1;
1155 btrfs_release_path(path);
1157 /* look for a conflicting sequence number */
1158 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1159 ref_index, name, namelen, 0);
1160 if (di && !IS_ERR(di)) {
1161 ret = drop_one_dir_item(trans, root, path, dir, di);
1162 if (ret)
1163 return ret;
1165 btrfs_release_path(path);
1167 /* look for a conflicing name */
1168 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1169 name, namelen, 0);
1170 if (di && !IS_ERR(di)) {
1171 ret = drop_one_dir_item(trans, root, path, dir, di);
1172 if (ret)
1173 return ret;
1175 btrfs_release_path(path);
1177 return 0;
1180 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1181 u32 *namelen, char **name, u64 *index,
1182 u64 *parent_objectid)
1184 struct btrfs_inode_extref *extref;
1186 extref = (struct btrfs_inode_extref *)ref_ptr;
1188 *namelen = btrfs_inode_extref_name_len(eb, extref);
1189 *name = kmalloc(*namelen, GFP_NOFS);
1190 if (*name == NULL)
1191 return -ENOMEM;
1193 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1194 *namelen);
1196 if (index)
1197 *index = btrfs_inode_extref_index(eb, extref);
1198 if (parent_objectid)
1199 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1201 return 0;
1204 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1205 u32 *namelen, char **name, u64 *index)
1207 struct btrfs_inode_ref *ref;
1209 ref = (struct btrfs_inode_ref *)ref_ptr;
1211 *namelen = btrfs_inode_ref_name_len(eb, ref);
1212 *name = kmalloc(*namelen, GFP_NOFS);
1213 if (*name == NULL)
1214 return -ENOMEM;
1216 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1218 if (index)
1219 *index = btrfs_inode_ref_index(eb, ref);
1221 return 0;
1225 * Take an inode reference item from the log tree and iterate all names from the
1226 * inode reference item in the subvolume tree with the same key (if it exists).
1227 * For any name that is not in the inode reference item from the log tree, do a
1228 * proper unlink of that name (that is, remove its entry from the inode
1229 * reference item and both dir index keys).
1231 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1232 struct btrfs_root *root,
1233 struct btrfs_path *path,
1234 struct btrfs_inode *inode,
1235 struct extent_buffer *log_eb,
1236 int log_slot,
1237 struct btrfs_key *key)
1239 int ret;
1240 unsigned long ref_ptr;
1241 unsigned long ref_end;
1242 struct extent_buffer *eb;
1244 again:
1245 btrfs_release_path(path);
1246 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1247 if (ret > 0) {
1248 ret = 0;
1249 goto out;
1251 if (ret < 0)
1252 goto out;
1254 eb = path->nodes[0];
1255 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1256 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1257 while (ref_ptr < ref_end) {
1258 char *name = NULL;
1259 int namelen;
1260 u64 parent_id;
1262 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1263 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1264 NULL, &parent_id);
1265 } else {
1266 parent_id = key->offset;
1267 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1268 NULL);
1270 if (ret)
1271 goto out;
1273 if (key->type == BTRFS_INODE_EXTREF_KEY)
1274 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1275 parent_id, name,
1276 namelen, NULL);
1277 else
1278 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1279 namelen, NULL);
1281 if (!ret) {
1282 struct inode *dir;
1284 btrfs_release_path(path);
1285 dir = read_one_inode(root, parent_id);
1286 if (!dir) {
1287 ret = -ENOENT;
1288 kfree(name);
1289 goto out;
1291 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1292 inode, name, namelen);
1293 kfree(name);
1294 iput(dir);
1295 if (ret)
1296 goto out;
1297 goto again;
1300 kfree(name);
1301 ref_ptr += namelen;
1302 if (key->type == BTRFS_INODE_EXTREF_KEY)
1303 ref_ptr += sizeof(struct btrfs_inode_extref);
1304 else
1305 ref_ptr += sizeof(struct btrfs_inode_ref);
1307 ret = 0;
1308 out:
1309 btrfs_release_path(path);
1310 return ret;
1314 * replay one inode back reference item found in the log tree.
1315 * eb, slot and key refer to the buffer and key found in the log tree.
1316 * root is the destination we are replaying into, and path is for temp
1317 * use by this function. (it should be released on return).
1319 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1320 struct btrfs_root *root,
1321 struct btrfs_root *log,
1322 struct btrfs_path *path,
1323 struct extent_buffer *eb, int slot,
1324 struct btrfs_key *key)
1326 struct inode *dir = NULL;
1327 struct inode *inode = NULL;
1328 unsigned long ref_ptr;
1329 unsigned long ref_end;
1330 char *name = NULL;
1331 int namelen;
1332 int ret;
1333 int search_done = 0;
1334 int log_ref_ver = 0;
1335 u64 parent_objectid;
1336 u64 inode_objectid;
1337 u64 ref_index = 0;
1338 int ref_struct_size;
1340 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1341 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1343 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1344 struct btrfs_inode_extref *r;
1346 ref_struct_size = sizeof(struct btrfs_inode_extref);
1347 log_ref_ver = 1;
1348 r = (struct btrfs_inode_extref *)ref_ptr;
1349 parent_objectid = btrfs_inode_extref_parent(eb, r);
1350 } else {
1351 ref_struct_size = sizeof(struct btrfs_inode_ref);
1352 parent_objectid = key->offset;
1354 inode_objectid = key->objectid;
1357 * it is possible that we didn't log all the parent directories
1358 * for a given inode. If we don't find the dir, just don't
1359 * copy the back ref in. The link count fixup code will take
1360 * care of the rest
1362 dir = read_one_inode(root, parent_objectid);
1363 if (!dir) {
1364 ret = -ENOENT;
1365 goto out;
1368 inode = read_one_inode(root, inode_objectid);
1369 if (!inode) {
1370 ret = -EIO;
1371 goto out;
1374 while (ref_ptr < ref_end) {
1375 if (log_ref_ver) {
1376 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1377 &ref_index, &parent_objectid);
1379 * parent object can change from one array
1380 * item to another.
1382 if (!dir)
1383 dir = read_one_inode(root, parent_objectid);
1384 if (!dir) {
1385 ret = -ENOENT;
1386 goto out;
1388 } else {
1389 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1390 &ref_index);
1392 if (ret)
1393 goto out;
1395 /* if we already have a perfect match, we're done */
1396 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1397 btrfs_ino(BTRFS_I(inode)), ref_index,
1398 name, namelen)) {
1400 * look for a conflicting back reference in the
1401 * metadata. if we find one we have to unlink that name
1402 * of the file before we add our new link. Later on, we
1403 * overwrite any existing back reference, and we don't
1404 * want to create dangling pointers in the directory.
1407 if (!search_done) {
1408 ret = __add_inode_ref(trans, root, path, log,
1409 BTRFS_I(dir),
1410 BTRFS_I(inode),
1411 inode_objectid,
1412 parent_objectid,
1413 ref_index, name, namelen,
1414 &search_done);
1415 if (ret) {
1416 if (ret == 1)
1417 ret = 0;
1418 goto out;
1422 /* insert our name */
1423 ret = btrfs_add_link(trans, BTRFS_I(dir),
1424 BTRFS_I(inode),
1425 name, namelen, 0, ref_index);
1426 if (ret)
1427 goto out;
1429 btrfs_update_inode(trans, root, inode);
1432 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1433 kfree(name);
1434 name = NULL;
1435 if (log_ref_ver) {
1436 iput(dir);
1437 dir = NULL;
1442 * Before we overwrite the inode reference item in the subvolume tree
1443 * with the item from the log tree, we must unlink all names from the
1444 * parent directory that are in the subvolume's tree inode reference
1445 * item, otherwise we end up with an inconsistent subvolume tree where
1446 * dir index entries exist for a name but there is no inode reference
1447 * item with the same name.
1449 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1450 key);
1451 if (ret)
1452 goto out;
1454 /* finally write the back reference in the inode */
1455 ret = overwrite_item(trans, root, path, eb, slot, key);
1456 out:
1457 btrfs_release_path(path);
1458 kfree(name);
1459 iput(dir);
1460 iput(inode);
1461 return ret;
1464 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1465 struct btrfs_root *root, u64 ino)
1467 int ret;
1469 ret = btrfs_insert_orphan_item(trans, root, ino);
1470 if (ret == -EEXIST)
1471 ret = 0;
1473 return ret;
1476 static int count_inode_extrefs(struct btrfs_root *root,
1477 struct btrfs_inode *inode, struct btrfs_path *path)
1479 int ret = 0;
1480 int name_len;
1481 unsigned int nlink = 0;
1482 u32 item_size;
1483 u32 cur_offset = 0;
1484 u64 inode_objectid = btrfs_ino(inode);
1485 u64 offset = 0;
1486 unsigned long ptr;
1487 struct btrfs_inode_extref *extref;
1488 struct extent_buffer *leaf;
1490 while (1) {
1491 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1492 &extref, &offset);
1493 if (ret)
1494 break;
1496 leaf = path->nodes[0];
1497 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1498 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1499 cur_offset = 0;
1501 while (cur_offset < item_size) {
1502 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1503 name_len = btrfs_inode_extref_name_len(leaf, extref);
1505 nlink++;
1507 cur_offset += name_len + sizeof(*extref);
1510 offset++;
1511 btrfs_release_path(path);
1513 btrfs_release_path(path);
1515 if (ret < 0 && ret != -ENOENT)
1516 return ret;
1517 return nlink;
1520 static int count_inode_refs(struct btrfs_root *root,
1521 struct btrfs_inode *inode, struct btrfs_path *path)
1523 int ret;
1524 struct btrfs_key key;
1525 unsigned int nlink = 0;
1526 unsigned long ptr;
1527 unsigned long ptr_end;
1528 int name_len;
1529 u64 ino = btrfs_ino(inode);
1531 key.objectid = ino;
1532 key.type = BTRFS_INODE_REF_KEY;
1533 key.offset = (u64)-1;
1535 while (1) {
1536 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1537 if (ret < 0)
1538 break;
1539 if (ret > 0) {
1540 if (path->slots[0] == 0)
1541 break;
1542 path->slots[0]--;
1544 process_slot:
1545 btrfs_item_key_to_cpu(path->nodes[0], &key,
1546 path->slots[0]);
1547 if (key.objectid != ino ||
1548 key.type != BTRFS_INODE_REF_KEY)
1549 break;
1550 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1551 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1552 path->slots[0]);
1553 while (ptr < ptr_end) {
1554 struct btrfs_inode_ref *ref;
1556 ref = (struct btrfs_inode_ref *)ptr;
1557 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1558 ref);
1559 ptr = (unsigned long)(ref + 1) + name_len;
1560 nlink++;
1563 if (key.offset == 0)
1564 break;
1565 if (path->slots[0] > 0) {
1566 path->slots[0]--;
1567 goto process_slot;
1569 key.offset--;
1570 btrfs_release_path(path);
1572 btrfs_release_path(path);
1574 return nlink;
1578 * There are a few corners where the link count of the file can't
1579 * be properly maintained during replay. So, instead of adding
1580 * lots of complexity to the log code, we just scan the backrefs
1581 * for any file that has been through replay.
1583 * The scan will update the link count on the inode to reflect the
1584 * number of back refs found. If it goes down to zero, the iput
1585 * will free the inode.
1587 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1588 struct btrfs_root *root,
1589 struct inode *inode)
1591 struct btrfs_path *path;
1592 int ret;
1593 u64 nlink = 0;
1594 u64 ino = btrfs_ino(BTRFS_I(inode));
1596 path = btrfs_alloc_path();
1597 if (!path)
1598 return -ENOMEM;
1600 ret = count_inode_refs(root, BTRFS_I(inode), path);
1601 if (ret < 0)
1602 goto out;
1604 nlink = ret;
1606 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1607 if (ret < 0)
1608 goto out;
1610 nlink += ret;
1612 ret = 0;
1614 if (nlink != inode->i_nlink) {
1615 set_nlink(inode, nlink);
1616 btrfs_update_inode(trans, root, inode);
1618 BTRFS_I(inode)->index_cnt = (u64)-1;
1620 if (inode->i_nlink == 0) {
1621 if (S_ISDIR(inode->i_mode)) {
1622 ret = replay_dir_deletes(trans, root, NULL, path,
1623 ino, 1);
1624 if (ret)
1625 goto out;
1627 ret = insert_orphan_item(trans, root, ino);
1630 out:
1631 btrfs_free_path(path);
1632 return ret;
1635 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1636 struct btrfs_root *root,
1637 struct btrfs_path *path)
1639 int ret;
1640 struct btrfs_key key;
1641 struct inode *inode;
1643 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1644 key.type = BTRFS_ORPHAN_ITEM_KEY;
1645 key.offset = (u64)-1;
1646 while (1) {
1647 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1648 if (ret < 0)
1649 break;
1651 if (ret == 1) {
1652 if (path->slots[0] == 0)
1653 break;
1654 path->slots[0]--;
1657 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1658 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1659 key.type != BTRFS_ORPHAN_ITEM_KEY)
1660 break;
1662 ret = btrfs_del_item(trans, root, path);
1663 if (ret)
1664 goto out;
1666 btrfs_release_path(path);
1667 inode = read_one_inode(root, key.offset);
1668 if (!inode)
1669 return -EIO;
1671 ret = fixup_inode_link_count(trans, root, inode);
1672 iput(inode);
1673 if (ret)
1674 goto out;
1677 * fixup on a directory may create new entries,
1678 * make sure we always look for the highset possible
1679 * offset
1681 key.offset = (u64)-1;
1683 ret = 0;
1684 out:
1685 btrfs_release_path(path);
1686 return ret;
1691 * record a given inode in the fixup dir so we can check its link
1692 * count when replay is done. The link count is incremented here
1693 * so the inode won't go away until we check it
1695 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1696 struct btrfs_root *root,
1697 struct btrfs_path *path,
1698 u64 objectid)
1700 struct btrfs_key key;
1701 int ret = 0;
1702 struct inode *inode;
1704 inode = read_one_inode(root, objectid);
1705 if (!inode)
1706 return -EIO;
1708 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1709 key.type = BTRFS_ORPHAN_ITEM_KEY;
1710 key.offset = objectid;
1712 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1714 btrfs_release_path(path);
1715 if (ret == 0) {
1716 if (!inode->i_nlink)
1717 set_nlink(inode, 1);
1718 else
1719 inc_nlink(inode);
1720 ret = btrfs_update_inode(trans, root, inode);
1721 } else if (ret == -EEXIST) {
1722 ret = 0;
1723 } else {
1724 BUG(); /* Logic Error */
1726 iput(inode);
1728 return ret;
1732 * when replaying the log for a directory, we only insert names
1733 * for inodes that actually exist. This means an fsync on a directory
1734 * does not implicitly fsync all the new files in it
1736 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1737 struct btrfs_root *root,
1738 u64 dirid, u64 index,
1739 char *name, int name_len,
1740 struct btrfs_key *location)
1742 struct inode *inode;
1743 struct inode *dir;
1744 int ret;
1746 inode = read_one_inode(root, location->objectid);
1747 if (!inode)
1748 return -ENOENT;
1750 dir = read_one_inode(root, dirid);
1751 if (!dir) {
1752 iput(inode);
1753 return -EIO;
1756 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1757 name_len, 1, index);
1759 /* FIXME, put inode into FIXUP list */
1761 iput(inode);
1762 iput(dir);
1763 return ret;
1767 * Return true if an inode reference exists in the log for the given name,
1768 * inode and parent inode.
1770 static bool name_in_log_ref(struct btrfs_root *log_root,
1771 const char *name, const int name_len,
1772 const u64 dirid, const u64 ino)
1774 struct btrfs_key search_key;
1776 search_key.objectid = ino;
1777 search_key.type = BTRFS_INODE_REF_KEY;
1778 search_key.offset = dirid;
1779 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1780 return true;
1782 search_key.type = BTRFS_INODE_EXTREF_KEY;
1783 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1784 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1785 return true;
1787 return false;
1791 * take a single entry in a log directory item and replay it into
1792 * the subvolume.
1794 * if a conflicting item exists in the subdirectory already,
1795 * the inode it points to is unlinked and put into the link count
1796 * fix up tree.
1798 * If a name from the log points to a file or directory that does
1799 * not exist in the FS, it is skipped. fsyncs on directories
1800 * do not force down inodes inside that directory, just changes to the
1801 * names or unlinks in a directory.
1803 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1804 * non-existing inode) and 1 if the name was replayed.
1806 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1807 struct btrfs_root *root,
1808 struct btrfs_path *path,
1809 struct extent_buffer *eb,
1810 struct btrfs_dir_item *di,
1811 struct btrfs_key *key)
1813 char *name;
1814 int name_len;
1815 struct btrfs_dir_item *dst_di;
1816 struct btrfs_key found_key;
1817 struct btrfs_key log_key;
1818 struct inode *dir;
1819 u8 log_type;
1820 int exists;
1821 int ret = 0;
1822 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1823 bool name_added = false;
1825 dir = read_one_inode(root, key->objectid);
1826 if (!dir)
1827 return -EIO;
1829 name_len = btrfs_dir_name_len(eb, di);
1830 name = kmalloc(name_len, GFP_NOFS);
1831 if (!name) {
1832 ret = -ENOMEM;
1833 goto out;
1836 log_type = btrfs_dir_type(eb, di);
1837 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1838 name_len);
1840 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1841 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1842 if (exists == 0)
1843 exists = 1;
1844 else
1845 exists = 0;
1846 btrfs_release_path(path);
1848 if (key->type == BTRFS_DIR_ITEM_KEY) {
1849 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1850 name, name_len, 1);
1851 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1852 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1853 key->objectid,
1854 key->offset, name,
1855 name_len, 1);
1856 } else {
1857 /* Corruption */
1858 ret = -EINVAL;
1859 goto out;
1861 if (IS_ERR_OR_NULL(dst_di)) {
1862 /* we need a sequence number to insert, so we only
1863 * do inserts for the BTRFS_DIR_INDEX_KEY types
1865 if (key->type != BTRFS_DIR_INDEX_KEY)
1866 goto out;
1867 goto insert;
1870 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1871 /* the existing item matches the logged item */
1872 if (found_key.objectid == log_key.objectid &&
1873 found_key.type == log_key.type &&
1874 found_key.offset == log_key.offset &&
1875 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1876 update_size = false;
1877 goto out;
1881 * don't drop the conflicting directory entry if the inode
1882 * for the new entry doesn't exist
1884 if (!exists)
1885 goto out;
1887 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1888 if (ret)
1889 goto out;
1891 if (key->type == BTRFS_DIR_INDEX_KEY)
1892 goto insert;
1893 out:
1894 btrfs_release_path(path);
1895 if (!ret && update_size) {
1896 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1897 ret = btrfs_update_inode(trans, root, dir);
1899 kfree(name);
1900 iput(dir);
1901 if (!ret && name_added)
1902 ret = 1;
1903 return ret;
1905 insert:
1906 if (name_in_log_ref(root->log_root, name, name_len,
1907 key->objectid, log_key.objectid)) {
1908 /* The dentry will be added later. */
1909 ret = 0;
1910 update_size = false;
1911 goto out;
1913 btrfs_release_path(path);
1914 ret = insert_one_name(trans, root, key->objectid, key->offset,
1915 name, name_len, &log_key);
1916 if (ret && ret != -ENOENT && ret != -EEXIST)
1917 goto out;
1918 if (!ret)
1919 name_added = true;
1920 update_size = false;
1921 ret = 0;
1922 goto out;
1926 * find all the names in a directory item and reconcile them into
1927 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1928 * one name in a directory item, but the same code gets used for
1929 * both directory index types
1931 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1932 struct btrfs_root *root,
1933 struct btrfs_path *path,
1934 struct extent_buffer *eb, int slot,
1935 struct btrfs_key *key)
1937 int ret = 0;
1938 u32 item_size = btrfs_item_size_nr(eb, slot);
1939 struct btrfs_dir_item *di;
1940 int name_len;
1941 unsigned long ptr;
1942 unsigned long ptr_end;
1943 struct btrfs_path *fixup_path = NULL;
1945 ptr = btrfs_item_ptr_offset(eb, slot);
1946 ptr_end = ptr + item_size;
1947 while (ptr < ptr_end) {
1948 di = (struct btrfs_dir_item *)ptr;
1949 name_len = btrfs_dir_name_len(eb, di);
1950 ret = replay_one_name(trans, root, path, eb, di, key);
1951 if (ret < 0)
1952 break;
1953 ptr = (unsigned long)(di + 1);
1954 ptr += name_len;
1957 * If this entry refers to a non-directory (directories can not
1958 * have a link count > 1) and it was added in the transaction
1959 * that was not committed, make sure we fixup the link count of
1960 * the inode it the entry points to. Otherwise something like
1961 * the following would result in a directory pointing to an
1962 * inode with a wrong link that does not account for this dir
1963 * entry:
1965 * mkdir testdir
1966 * touch testdir/foo
1967 * touch testdir/bar
1968 * sync
1970 * ln testdir/bar testdir/bar_link
1971 * ln testdir/foo testdir/foo_link
1972 * xfs_io -c "fsync" testdir/bar
1974 * <power failure>
1976 * mount fs, log replay happens
1978 * File foo would remain with a link count of 1 when it has two
1979 * entries pointing to it in the directory testdir. This would
1980 * make it impossible to ever delete the parent directory has
1981 * it would result in stale dentries that can never be deleted.
1983 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1984 struct btrfs_key di_key;
1986 if (!fixup_path) {
1987 fixup_path = btrfs_alloc_path();
1988 if (!fixup_path) {
1989 ret = -ENOMEM;
1990 break;
1994 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1995 ret = link_to_fixup_dir(trans, root, fixup_path,
1996 di_key.objectid);
1997 if (ret)
1998 break;
2000 ret = 0;
2002 btrfs_free_path(fixup_path);
2003 return ret;
2007 * directory replay has two parts. There are the standard directory
2008 * items in the log copied from the subvolume, and range items
2009 * created in the log while the subvolume was logged.
2011 * The range items tell us which parts of the key space the log
2012 * is authoritative for. During replay, if a key in the subvolume
2013 * directory is in a logged range item, but not actually in the log
2014 * that means it was deleted from the directory before the fsync
2015 * and should be removed.
2017 static noinline int find_dir_range(struct btrfs_root *root,
2018 struct btrfs_path *path,
2019 u64 dirid, int key_type,
2020 u64 *start_ret, u64 *end_ret)
2022 struct btrfs_key key;
2023 u64 found_end;
2024 struct btrfs_dir_log_item *item;
2025 int ret;
2026 int nritems;
2028 if (*start_ret == (u64)-1)
2029 return 1;
2031 key.objectid = dirid;
2032 key.type = key_type;
2033 key.offset = *start_ret;
2035 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2036 if (ret < 0)
2037 goto out;
2038 if (ret > 0) {
2039 if (path->slots[0] == 0)
2040 goto out;
2041 path->slots[0]--;
2043 if (ret != 0)
2044 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2046 if (key.type != key_type || key.objectid != dirid) {
2047 ret = 1;
2048 goto next;
2050 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2051 struct btrfs_dir_log_item);
2052 found_end = btrfs_dir_log_end(path->nodes[0], item);
2054 if (*start_ret >= key.offset && *start_ret <= found_end) {
2055 ret = 0;
2056 *start_ret = key.offset;
2057 *end_ret = found_end;
2058 goto out;
2060 ret = 1;
2061 next:
2062 /* check the next slot in the tree to see if it is a valid item */
2063 nritems = btrfs_header_nritems(path->nodes[0]);
2064 path->slots[0]++;
2065 if (path->slots[0] >= nritems) {
2066 ret = btrfs_next_leaf(root, path);
2067 if (ret)
2068 goto out;
2071 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2073 if (key.type != key_type || key.objectid != dirid) {
2074 ret = 1;
2075 goto out;
2077 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2078 struct btrfs_dir_log_item);
2079 found_end = btrfs_dir_log_end(path->nodes[0], item);
2080 *start_ret = key.offset;
2081 *end_ret = found_end;
2082 ret = 0;
2083 out:
2084 btrfs_release_path(path);
2085 return ret;
2089 * this looks for a given directory item in the log. If the directory
2090 * item is not in the log, the item is removed and the inode it points
2091 * to is unlinked
2093 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2094 struct btrfs_root *root,
2095 struct btrfs_root *log,
2096 struct btrfs_path *path,
2097 struct btrfs_path *log_path,
2098 struct inode *dir,
2099 struct btrfs_key *dir_key)
2101 struct btrfs_fs_info *fs_info = root->fs_info;
2102 int ret;
2103 struct extent_buffer *eb;
2104 int slot;
2105 u32 item_size;
2106 struct btrfs_dir_item *di;
2107 struct btrfs_dir_item *log_di;
2108 int name_len;
2109 unsigned long ptr;
2110 unsigned long ptr_end;
2111 char *name;
2112 struct inode *inode;
2113 struct btrfs_key location;
2115 again:
2116 eb = path->nodes[0];
2117 slot = path->slots[0];
2118 item_size = btrfs_item_size_nr(eb, slot);
2119 ptr = btrfs_item_ptr_offset(eb, slot);
2120 ptr_end = ptr + item_size;
2121 while (ptr < ptr_end) {
2122 di = (struct btrfs_dir_item *)ptr;
2123 name_len = btrfs_dir_name_len(eb, di);
2124 name = kmalloc(name_len, GFP_NOFS);
2125 if (!name) {
2126 ret = -ENOMEM;
2127 goto out;
2129 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2130 name_len);
2131 log_di = NULL;
2132 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2133 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2134 dir_key->objectid,
2135 name, name_len, 0);
2136 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2137 log_di = btrfs_lookup_dir_index_item(trans, log,
2138 log_path,
2139 dir_key->objectid,
2140 dir_key->offset,
2141 name, name_len, 0);
2143 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2144 btrfs_dir_item_key_to_cpu(eb, di, &location);
2145 btrfs_release_path(path);
2146 btrfs_release_path(log_path);
2147 inode = read_one_inode(root, location.objectid);
2148 if (!inode) {
2149 kfree(name);
2150 return -EIO;
2153 ret = link_to_fixup_dir(trans, root,
2154 path, location.objectid);
2155 if (ret) {
2156 kfree(name);
2157 iput(inode);
2158 goto out;
2161 inc_nlink(inode);
2162 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2163 BTRFS_I(inode), name, name_len);
2164 if (!ret)
2165 ret = btrfs_run_delayed_items(trans, fs_info);
2166 kfree(name);
2167 iput(inode);
2168 if (ret)
2169 goto out;
2171 /* there might still be more names under this key
2172 * check and repeat if required
2174 ret = btrfs_search_slot(NULL, root, dir_key, path,
2175 0, 0);
2176 if (ret == 0)
2177 goto again;
2178 ret = 0;
2179 goto out;
2180 } else if (IS_ERR(log_di)) {
2181 kfree(name);
2182 return PTR_ERR(log_di);
2184 btrfs_release_path(log_path);
2185 kfree(name);
2187 ptr = (unsigned long)(di + 1);
2188 ptr += name_len;
2190 ret = 0;
2191 out:
2192 btrfs_release_path(path);
2193 btrfs_release_path(log_path);
2194 return ret;
2197 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2198 struct btrfs_root *root,
2199 struct btrfs_root *log,
2200 struct btrfs_path *path,
2201 const u64 ino)
2203 struct btrfs_key search_key;
2204 struct btrfs_path *log_path;
2205 int i;
2206 int nritems;
2207 int ret;
2209 log_path = btrfs_alloc_path();
2210 if (!log_path)
2211 return -ENOMEM;
2213 search_key.objectid = ino;
2214 search_key.type = BTRFS_XATTR_ITEM_KEY;
2215 search_key.offset = 0;
2216 again:
2217 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2218 if (ret < 0)
2219 goto out;
2220 process_leaf:
2221 nritems = btrfs_header_nritems(path->nodes[0]);
2222 for (i = path->slots[0]; i < nritems; i++) {
2223 struct btrfs_key key;
2224 struct btrfs_dir_item *di;
2225 struct btrfs_dir_item *log_di;
2226 u32 total_size;
2227 u32 cur;
2229 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2230 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2231 ret = 0;
2232 goto out;
2235 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2236 total_size = btrfs_item_size_nr(path->nodes[0], i);
2237 cur = 0;
2238 while (cur < total_size) {
2239 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2240 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2241 u32 this_len = sizeof(*di) + name_len + data_len;
2242 char *name;
2244 name = kmalloc(name_len, GFP_NOFS);
2245 if (!name) {
2246 ret = -ENOMEM;
2247 goto out;
2249 read_extent_buffer(path->nodes[0], name,
2250 (unsigned long)(di + 1), name_len);
2252 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2253 name, name_len, 0);
2254 btrfs_release_path(log_path);
2255 if (!log_di) {
2256 /* Doesn't exist in log tree, so delete it. */
2257 btrfs_release_path(path);
2258 di = btrfs_lookup_xattr(trans, root, path, ino,
2259 name, name_len, -1);
2260 kfree(name);
2261 if (IS_ERR(di)) {
2262 ret = PTR_ERR(di);
2263 goto out;
2265 ASSERT(di);
2266 ret = btrfs_delete_one_dir_name(trans, root,
2267 path, di);
2268 if (ret)
2269 goto out;
2270 btrfs_release_path(path);
2271 search_key = key;
2272 goto again;
2274 kfree(name);
2275 if (IS_ERR(log_di)) {
2276 ret = PTR_ERR(log_di);
2277 goto out;
2279 cur += this_len;
2280 di = (struct btrfs_dir_item *)((char *)di + this_len);
2283 ret = btrfs_next_leaf(root, path);
2284 if (ret > 0)
2285 ret = 0;
2286 else if (ret == 0)
2287 goto process_leaf;
2288 out:
2289 btrfs_free_path(log_path);
2290 btrfs_release_path(path);
2291 return ret;
2296 * deletion replay happens before we copy any new directory items
2297 * out of the log or out of backreferences from inodes. It
2298 * scans the log to find ranges of keys that log is authoritative for,
2299 * and then scans the directory to find items in those ranges that are
2300 * not present in the log.
2302 * Anything we don't find in the log is unlinked and removed from the
2303 * directory.
2305 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2306 struct btrfs_root *root,
2307 struct btrfs_root *log,
2308 struct btrfs_path *path,
2309 u64 dirid, int del_all)
2311 u64 range_start;
2312 u64 range_end;
2313 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2314 int ret = 0;
2315 struct btrfs_key dir_key;
2316 struct btrfs_key found_key;
2317 struct btrfs_path *log_path;
2318 struct inode *dir;
2320 dir_key.objectid = dirid;
2321 dir_key.type = BTRFS_DIR_ITEM_KEY;
2322 log_path = btrfs_alloc_path();
2323 if (!log_path)
2324 return -ENOMEM;
2326 dir = read_one_inode(root, dirid);
2327 /* it isn't an error if the inode isn't there, that can happen
2328 * because we replay the deletes before we copy in the inode item
2329 * from the log
2331 if (!dir) {
2332 btrfs_free_path(log_path);
2333 return 0;
2335 again:
2336 range_start = 0;
2337 range_end = 0;
2338 while (1) {
2339 if (del_all)
2340 range_end = (u64)-1;
2341 else {
2342 ret = find_dir_range(log, path, dirid, key_type,
2343 &range_start, &range_end);
2344 if (ret != 0)
2345 break;
2348 dir_key.offset = range_start;
2349 while (1) {
2350 int nritems;
2351 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2352 0, 0);
2353 if (ret < 0)
2354 goto out;
2356 nritems = btrfs_header_nritems(path->nodes[0]);
2357 if (path->slots[0] >= nritems) {
2358 ret = btrfs_next_leaf(root, path);
2359 if (ret)
2360 break;
2362 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2363 path->slots[0]);
2364 if (found_key.objectid != dirid ||
2365 found_key.type != dir_key.type)
2366 goto next_type;
2368 if (found_key.offset > range_end)
2369 break;
2371 ret = check_item_in_log(trans, root, log, path,
2372 log_path, dir,
2373 &found_key);
2374 if (ret)
2375 goto out;
2376 if (found_key.offset == (u64)-1)
2377 break;
2378 dir_key.offset = found_key.offset + 1;
2380 btrfs_release_path(path);
2381 if (range_end == (u64)-1)
2382 break;
2383 range_start = range_end + 1;
2386 next_type:
2387 ret = 0;
2388 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2389 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2390 dir_key.type = BTRFS_DIR_INDEX_KEY;
2391 btrfs_release_path(path);
2392 goto again;
2394 out:
2395 btrfs_release_path(path);
2396 btrfs_free_path(log_path);
2397 iput(dir);
2398 return ret;
2402 * the process_func used to replay items from the log tree. This
2403 * gets called in two different stages. The first stage just looks
2404 * for inodes and makes sure they are all copied into the subvolume.
2406 * The second stage copies all the other item types from the log into
2407 * the subvolume. The two stage approach is slower, but gets rid of
2408 * lots of complexity around inodes referencing other inodes that exist
2409 * only in the log (references come from either directory items or inode
2410 * back refs).
2412 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2413 struct walk_control *wc, u64 gen)
2415 int nritems;
2416 struct btrfs_path *path;
2417 struct btrfs_root *root = wc->replay_dest;
2418 struct btrfs_key key;
2419 int level;
2420 int i;
2421 int ret;
2423 ret = btrfs_read_buffer(eb, gen);
2424 if (ret)
2425 return ret;
2427 level = btrfs_header_level(eb);
2429 if (level != 0)
2430 return 0;
2432 path = btrfs_alloc_path();
2433 if (!path)
2434 return -ENOMEM;
2436 nritems = btrfs_header_nritems(eb);
2437 for (i = 0; i < nritems; i++) {
2438 btrfs_item_key_to_cpu(eb, &key, i);
2440 /* inode keys are done during the first stage */
2441 if (key.type == BTRFS_INODE_ITEM_KEY &&
2442 wc->stage == LOG_WALK_REPLAY_INODES) {
2443 struct btrfs_inode_item *inode_item;
2444 u32 mode;
2446 inode_item = btrfs_item_ptr(eb, i,
2447 struct btrfs_inode_item);
2448 ret = replay_xattr_deletes(wc->trans, root, log,
2449 path, key.objectid);
2450 if (ret)
2451 break;
2452 mode = btrfs_inode_mode(eb, inode_item);
2453 if (S_ISDIR(mode)) {
2454 ret = replay_dir_deletes(wc->trans,
2455 root, log, path, key.objectid, 0);
2456 if (ret)
2457 break;
2459 ret = overwrite_item(wc->trans, root, path,
2460 eb, i, &key);
2461 if (ret)
2462 break;
2464 /* for regular files, make sure corresponding
2465 * orphan item exist. extents past the new EOF
2466 * will be truncated later by orphan cleanup.
2468 if (S_ISREG(mode)) {
2469 ret = insert_orphan_item(wc->trans, root,
2470 key.objectid);
2471 if (ret)
2472 break;
2475 ret = link_to_fixup_dir(wc->trans, root,
2476 path, key.objectid);
2477 if (ret)
2478 break;
2481 if (key.type == BTRFS_DIR_INDEX_KEY &&
2482 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2483 ret = replay_one_dir_item(wc->trans, root, path,
2484 eb, i, &key);
2485 if (ret)
2486 break;
2489 if (wc->stage < LOG_WALK_REPLAY_ALL)
2490 continue;
2492 /* these keys are simply copied */
2493 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2494 ret = overwrite_item(wc->trans, root, path,
2495 eb, i, &key);
2496 if (ret)
2497 break;
2498 } else if (key.type == BTRFS_INODE_REF_KEY ||
2499 key.type == BTRFS_INODE_EXTREF_KEY) {
2500 ret = add_inode_ref(wc->trans, root, log, path,
2501 eb, i, &key);
2502 if (ret && ret != -ENOENT)
2503 break;
2504 ret = 0;
2505 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2506 ret = replay_one_extent(wc->trans, root, path,
2507 eb, i, &key);
2508 if (ret)
2509 break;
2510 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2511 ret = replay_one_dir_item(wc->trans, root, path,
2512 eb, i, &key);
2513 if (ret)
2514 break;
2517 btrfs_free_path(path);
2518 return ret;
2521 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2522 struct btrfs_root *root,
2523 struct btrfs_path *path, int *level,
2524 struct walk_control *wc)
2526 struct btrfs_fs_info *fs_info = root->fs_info;
2527 u64 root_owner;
2528 u64 bytenr;
2529 u64 ptr_gen;
2530 struct extent_buffer *next;
2531 struct extent_buffer *cur;
2532 struct extent_buffer *parent;
2533 u32 blocksize;
2534 int ret = 0;
2536 WARN_ON(*level < 0);
2537 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2539 while (*level > 0) {
2540 WARN_ON(*level < 0);
2541 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2542 cur = path->nodes[*level];
2544 WARN_ON(btrfs_header_level(cur) != *level);
2546 if (path->slots[*level] >=
2547 btrfs_header_nritems(cur))
2548 break;
2550 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2551 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2552 blocksize = fs_info->nodesize;
2554 parent = path->nodes[*level];
2555 root_owner = btrfs_header_owner(parent);
2557 next = btrfs_find_create_tree_block(fs_info, bytenr);
2558 if (IS_ERR(next))
2559 return PTR_ERR(next);
2561 if (*level == 1) {
2562 ret = wc->process_func(root, next, wc, ptr_gen);
2563 if (ret) {
2564 free_extent_buffer(next);
2565 return ret;
2568 path->slots[*level]++;
2569 if (wc->free) {
2570 ret = btrfs_read_buffer(next, ptr_gen);
2571 if (ret) {
2572 free_extent_buffer(next);
2573 return ret;
2576 if (trans) {
2577 btrfs_tree_lock(next);
2578 btrfs_set_lock_blocking(next);
2579 clean_tree_block(fs_info, next);
2580 btrfs_wait_tree_block_writeback(next);
2581 btrfs_tree_unlock(next);
2582 } else {
2583 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2584 clear_extent_buffer_dirty(next);
2587 WARN_ON(root_owner !=
2588 BTRFS_TREE_LOG_OBJECTID);
2589 ret = btrfs_free_and_pin_reserved_extent(
2590 fs_info, bytenr,
2591 blocksize);
2592 if (ret) {
2593 free_extent_buffer(next);
2594 return ret;
2597 free_extent_buffer(next);
2598 continue;
2600 ret = btrfs_read_buffer(next, ptr_gen);
2601 if (ret) {
2602 free_extent_buffer(next);
2603 return ret;
2606 WARN_ON(*level <= 0);
2607 if (path->nodes[*level-1])
2608 free_extent_buffer(path->nodes[*level-1]);
2609 path->nodes[*level-1] = next;
2610 *level = btrfs_header_level(next);
2611 path->slots[*level] = 0;
2612 cond_resched();
2614 WARN_ON(*level < 0);
2615 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2617 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2619 cond_resched();
2620 return 0;
2623 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2624 struct btrfs_root *root,
2625 struct btrfs_path *path, int *level,
2626 struct walk_control *wc)
2628 struct btrfs_fs_info *fs_info = root->fs_info;
2629 u64 root_owner;
2630 int i;
2631 int slot;
2632 int ret;
2634 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2635 slot = path->slots[i];
2636 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2637 path->slots[i]++;
2638 *level = i;
2639 WARN_ON(*level == 0);
2640 return 0;
2641 } else {
2642 struct extent_buffer *parent;
2643 if (path->nodes[*level] == root->node)
2644 parent = path->nodes[*level];
2645 else
2646 parent = path->nodes[*level + 1];
2648 root_owner = btrfs_header_owner(parent);
2649 ret = wc->process_func(root, path->nodes[*level], wc,
2650 btrfs_header_generation(path->nodes[*level]));
2651 if (ret)
2652 return ret;
2654 if (wc->free) {
2655 struct extent_buffer *next;
2657 next = path->nodes[*level];
2659 if (trans) {
2660 btrfs_tree_lock(next);
2661 btrfs_set_lock_blocking(next);
2662 clean_tree_block(fs_info, next);
2663 btrfs_wait_tree_block_writeback(next);
2664 btrfs_tree_unlock(next);
2665 } else {
2666 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2667 clear_extent_buffer_dirty(next);
2670 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2671 ret = btrfs_free_and_pin_reserved_extent(
2672 fs_info,
2673 path->nodes[*level]->start,
2674 path->nodes[*level]->len);
2675 if (ret)
2676 return ret;
2678 free_extent_buffer(path->nodes[*level]);
2679 path->nodes[*level] = NULL;
2680 *level = i + 1;
2683 return 1;
2687 * drop the reference count on the tree rooted at 'snap'. This traverses
2688 * the tree freeing any blocks that have a ref count of zero after being
2689 * decremented.
2691 static int walk_log_tree(struct btrfs_trans_handle *trans,
2692 struct btrfs_root *log, struct walk_control *wc)
2694 struct btrfs_fs_info *fs_info = log->fs_info;
2695 int ret = 0;
2696 int wret;
2697 int level;
2698 struct btrfs_path *path;
2699 int orig_level;
2701 path = btrfs_alloc_path();
2702 if (!path)
2703 return -ENOMEM;
2705 level = btrfs_header_level(log->node);
2706 orig_level = level;
2707 path->nodes[level] = log->node;
2708 extent_buffer_get(log->node);
2709 path->slots[level] = 0;
2711 while (1) {
2712 wret = walk_down_log_tree(trans, log, path, &level, wc);
2713 if (wret > 0)
2714 break;
2715 if (wret < 0) {
2716 ret = wret;
2717 goto out;
2720 wret = walk_up_log_tree(trans, log, path, &level, wc);
2721 if (wret > 0)
2722 break;
2723 if (wret < 0) {
2724 ret = wret;
2725 goto out;
2729 /* was the root node processed? if not, catch it here */
2730 if (path->nodes[orig_level]) {
2731 ret = wc->process_func(log, path->nodes[orig_level], wc,
2732 btrfs_header_generation(path->nodes[orig_level]));
2733 if (ret)
2734 goto out;
2735 if (wc->free) {
2736 struct extent_buffer *next;
2738 next = path->nodes[orig_level];
2740 if (trans) {
2741 btrfs_tree_lock(next);
2742 btrfs_set_lock_blocking(next);
2743 clean_tree_block(fs_info, next);
2744 btrfs_wait_tree_block_writeback(next);
2745 btrfs_tree_unlock(next);
2746 } else {
2747 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2748 clear_extent_buffer_dirty(next);
2751 WARN_ON(log->root_key.objectid !=
2752 BTRFS_TREE_LOG_OBJECTID);
2753 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2754 next->start, next->len);
2755 if (ret)
2756 goto out;
2760 out:
2761 btrfs_free_path(path);
2762 return ret;
2766 * helper function to update the item for a given subvolumes log root
2767 * in the tree of log roots
2769 static int update_log_root(struct btrfs_trans_handle *trans,
2770 struct btrfs_root *log)
2772 struct btrfs_fs_info *fs_info = log->fs_info;
2773 int ret;
2775 if (log->log_transid == 1) {
2776 /* insert root item on the first sync */
2777 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2778 &log->root_key, &log->root_item);
2779 } else {
2780 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2781 &log->root_key, &log->root_item);
2783 return ret;
2786 static void wait_log_commit(struct btrfs_root *root, int transid)
2788 DEFINE_WAIT(wait);
2789 int index = transid % 2;
2792 * we only allow two pending log transactions at a time,
2793 * so we know that if ours is more than 2 older than the
2794 * current transaction, we're done
2796 for (;;) {
2797 prepare_to_wait(&root->log_commit_wait[index],
2798 &wait, TASK_UNINTERRUPTIBLE);
2800 if (!(root->log_transid_committed < transid &&
2801 atomic_read(&root->log_commit[index])))
2802 break;
2804 mutex_unlock(&root->log_mutex);
2805 schedule();
2806 mutex_lock(&root->log_mutex);
2808 finish_wait(&root->log_commit_wait[index], &wait);
2811 static void wait_for_writer(struct btrfs_root *root)
2813 DEFINE_WAIT(wait);
2815 for (;;) {
2816 prepare_to_wait(&root->log_writer_wait, &wait,
2817 TASK_UNINTERRUPTIBLE);
2818 if (!atomic_read(&root->log_writers))
2819 break;
2821 mutex_unlock(&root->log_mutex);
2822 schedule();
2823 mutex_lock(&root->log_mutex);
2825 finish_wait(&root->log_writer_wait, &wait);
2828 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2829 struct btrfs_log_ctx *ctx)
2831 if (!ctx)
2832 return;
2834 mutex_lock(&root->log_mutex);
2835 list_del_init(&ctx->list);
2836 mutex_unlock(&root->log_mutex);
2840 * Invoked in log mutex context, or be sure there is no other task which
2841 * can access the list.
2843 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2844 int index, int error)
2846 struct btrfs_log_ctx *ctx;
2847 struct btrfs_log_ctx *safe;
2849 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2850 list_del_init(&ctx->list);
2851 ctx->log_ret = error;
2854 INIT_LIST_HEAD(&root->log_ctxs[index]);
2858 * btrfs_sync_log does sends a given tree log down to the disk and
2859 * updates the super blocks to record it. When this call is done,
2860 * you know that any inodes previously logged are safely on disk only
2861 * if it returns 0.
2863 * Any other return value means you need to call btrfs_commit_transaction.
2864 * Some of the edge cases for fsyncing directories that have had unlinks
2865 * or renames done in the past mean that sometimes the only safe
2866 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2867 * that has happened.
2869 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2870 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2872 int index1;
2873 int index2;
2874 int mark;
2875 int ret;
2876 struct btrfs_fs_info *fs_info = root->fs_info;
2877 struct btrfs_root *log = root->log_root;
2878 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2879 int log_transid = 0;
2880 struct btrfs_log_ctx root_log_ctx;
2881 struct blk_plug plug;
2883 mutex_lock(&root->log_mutex);
2884 log_transid = ctx->log_transid;
2885 if (root->log_transid_committed >= log_transid) {
2886 mutex_unlock(&root->log_mutex);
2887 return ctx->log_ret;
2890 index1 = log_transid % 2;
2891 if (atomic_read(&root->log_commit[index1])) {
2892 wait_log_commit(root, log_transid);
2893 mutex_unlock(&root->log_mutex);
2894 return ctx->log_ret;
2896 ASSERT(log_transid == root->log_transid);
2897 atomic_set(&root->log_commit[index1], 1);
2899 /* wait for previous tree log sync to complete */
2900 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2901 wait_log_commit(root, log_transid - 1);
2903 while (1) {
2904 int batch = atomic_read(&root->log_batch);
2905 /* when we're on an ssd, just kick the log commit out */
2906 if (!btrfs_test_opt(fs_info, SSD) &&
2907 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2908 mutex_unlock(&root->log_mutex);
2909 schedule_timeout_uninterruptible(1);
2910 mutex_lock(&root->log_mutex);
2912 wait_for_writer(root);
2913 if (batch == atomic_read(&root->log_batch))
2914 break;
2917 /* bail out if we need to do a full commit */
2918 if (btrfs_need_log_full_commit(fs_info, trans)) {
2919 ret = -EAGAIN;
2920 btrfs_free_logged_extents(log, log_transid);
2921 mutex_unlock(&root->log_mutex);
2922 goto out;
2925 if (log_transid % 2 == 0)
2926 mark = EXTENT_DIRTY;
2927 else
2928 mark = EXTENT_NEW;
2930 /* we start IO on all the marked extents here, but we don't actually
2931 * wait for them until later.
2933 blk_start_plug(&plug);
2934 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2935 if (ret) {
2936 blk_finish_plug(&plug);
2937 btrfs_abort_transaction(trans, ret);
2938 btrfs_free_logged_extents(log, log_transid);
2939 btrfs_set_log_full_commit(fs_info, trans);
2940 mutex_unlock(&root->log_mutex);
2941 goto out;
2944 btrfs_set_root_node(&log->root_item, log->node);
2946 root->log_transid++;
2947 log->log_transid = root->log_transid;
2948 root->log_start_pid = 0;
2950 * IO has been started, blocks of the log tree have WRITTEN flag set
2951 * in their headers. new modifications of the log will be written to
2952 * new positions. so it's safe to allow log writers to go in.
2954 mutex_unlock(&root->log_mutex);
2956 btrfs_init_log_ctx(&root_log_ctx, NULL);
2958 mutex_lock(&log_root_tree->log_mutex);
2959 atomic_inc(&log_root_tree->log_batch);
2960 atomic_inc(&log_root_tree->log_writers);
2962 index2 = log_root_tree->log_transid % 2;
2963 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2964 root_log_ctx.log_transid = log_root_tree->log_transid;
2966 mutex_unlock(&log_root_tree->log_mutex);
2968 ret = update_log_root(trans, log);
2970 mutex_lock(&log_root_tree->log_mutex);
2971 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2973 * Implicit memory barrier after atomic_dec_and_test
2975 if (waitqueue_active(&log_root_tree->log_writer_wait))
2976 wake_up(&log_root_tree->log_writer_wait);
2979 if (ret) {
2980 if (!list_empty(&root_log_ctx.list))
2981 list_del_init(&root_log_ctx.list);
2983 blk_finish_plug(&plug);
2984 btrfs_set_log_full_commit(fs_info, trans);
2986 if (ret != -ENOSPC) {
2987 btrfs_abort_transaction(trans, ret);
2988 mutex_unlock(&log_root_tree->log_mutex);
2989 goto out;
2991 btrfs_wait_tree_log_extents(log, mark);
2992 btrfs_free_logged_extents(log, log_transid);
2993 mutex_unlock(&log_root_tree->log_mutex);
2994 ret = -EAGAIN;
2995 goto out;
2998 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2999 blk_finish_plug(&plug);
3000 list_del_init(&root_log_ctx.list);
3001 mutex_unlock(&log_root_tree->log_mutex);
3002 ret = root_log_ctx.log_ret;
3003 goto out;
3006 index2 = root_log_ctx.log_transid % 2;
3007 if (atomic_read(&log_root_tree->log_commit[index2])) {
3008 blk_finish_plug(&plug);
3009 ret = btrfs_wait_tree_log_extents(log, mark);
3010 btrfs_wait_logged_extents(trans, log, log_transid);
3011 wait_log_commit(log_root_tree,
3012 root_log_ctx.log_transid);
3013 mutex_unlock(&log_root_tree->log_mutex);
3014 if (!ret)
3015 ret = root_log_ctx.log_ret;
3016 goto out;
3018 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3019 atomic_set(&log_root_tree->log_commit[index2], 1);
3021 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3022 wait_log_commit(log_root_tree,
3023 root_log_ctx.log_transid - 1);
3026 wait_for_writer(log_root_tree);
3029 * now that we've moved on to the tree of log tree roots,
3030 * check the full commit flag again
3032 if (btrfs_need_log_full_commit(fs_info, trans)) {
3033 blk_finish_plug(&plug);
3034 btrfs_wait_tree_log_extents(log, mark);
3035 btrfs_free_logged_extents(log, log_transid);
3036 mutex_unlock(&log_root_tree->log_mutex);
3037 ret = -EAGAIN;
3038 goto out_wake_log_root;
3041 ret = btrfs_write_marked_extents(fs_info,
3042 &log_root_tree->dirty_log_pages,
3043 EXTENT_DIRTY | EXTENT_NEW);
3044 blk_finish_plug(&plug);
3045 if (ret) {
3046 btrfs_set_log_full_commit(fs_info, trans);
3047 btrfs_abort_transaction(trans, ret);
3048 btrfs_free_logged_extents(log, log_transid);
3049 mutex_unlock(&log_root_tree->log_mutex);
3050 goto out_wake_log_root;
3052 ret = btrfs_wait_tree_log_extents(log, mark);
3053 if (!ret)
3054 ret = btrfs_wait_tree_log_extents(log_root_tree,
3055 EXTENT_NEW | EXTENT_DIRTY);
3056 if (ret) {
3057 btrfs_set_log_full_commit(fs_info, trans);
3058 btrfs_free_logged_extents(log, log_transid);
3059 mutex_unlock(&log_root_tree->log_mutex);
3060 goto out_wake_log_root;
3062 btrfs_wait_logged_extents(trans, log, log_transid);
3064 btrfs_set_super_log_root(fs_info->super_for_commit,
3065 log_root_tree->node->start);
3066 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3067 btrfs_header_level(log_root_tree->node));
3069 log_root_tree->log_transid++;
3070 mutex_unlock(&log_root_tree->log_mutex);
3073 * nobody else is going to jump in and write the the ctree
3074 * super here because the log_commit atomic below is protecting
3075 * us. We must be called with a transaction handle pinning
3076 * the running transaction open, so a full commit can't hop
3077 * in and cause problems either.
3079 ret = write_all_supers(fs_info, 1);
3080 if (ret) {
3081 btrfs_set_log_full_commit(fs_info, trans);
3082 btrfs_abort_transaction(trans, ret);
3083 goto out_wake_log_root;
3086 mutex_lock(&root->log_mutex);
3087 if (root->last_log_commit < log_transid)
3088 root->last_log_commit = log_transid;
3089 mutex_unlock(&root->log_mutex);
3091 out_wake_log_root:
3092 mutex_lock(&log_root_tree->log_mutex);
3093 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3095 log_root_tree->log_transid_committed++;
3096 atomic_set(&log_root_tree->log_commit[index2], 0);
3097 mutex_unlock(&log_root_tree->log_mutex);
3100 * The barrier before waitqueue_active is implied by mutex_unlock
3102 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3103 wake_up(&log_root_tree->log_commit_wait[index2]);
3104 out:
3105 mutex_lock(&root->log_mutex);
3106 btrfs_remove_all_log_ctxs(root, index1, ret);
3107 root->log_transid_committed++;
3108 atomic_set(&root->log_commit[index1], 0);
3109 mutex_unlock(&root->log_mutex);
3112 * The barrier before waitqueue_active is implied by mutex_unlock
3114 if (waitqueue_active(&root->log_commit_wait[index1]))
3115 wake_up(&root->log_commit_wait[index1]);
3116 return ret;
3119 static void free_log_tree(struct btrfs_trans_handle *trans,
3120 struct btrfs_root *log)
3122 int ret;
3123 u64 start;
3124 u64 end;
3125 struct walk_control wc = {
3126 .free = 1,
3127 .process_func = process_one_buffer
3130 ret = walk_log_tree(trans, log, &wc);
3131 /* I don't think this can happen but just in case */
3132 if (ret)
3133 btrfs_abort_transaction(trans, ret);
3135 while (1) {
3136 ret = find_first_extent_bit(&log->dirty_log_pages,
3137 0, &start, &end,
3138 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3139 NULL);
3140 if (ret)
3141 break;
3143 clear_extent_bits(&log->dirty_log_pages, start, end,
3144 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3148 * We may have short-circuited the log tree with the full commit logic
3149 * and left ordered extents on our list, so clear these out to keep us
3150 * from leaking inodes and memory.
3152 btrfs_free_logged_extents(log, 0);
3153 btrfs_free_logged_extents(log, 1);
3155 free_extent_buffer(log->node);
3156 kfree(log);
3160 * free all the extents used by the tree log. This should be called
3161 * at commit time of the full transaction
3163 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3165 if (root->log_root) {
3166 free_log_tree(trans, root->log_root);
3167 root->log_root = NULL;
3169 return 0;
3172 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3173 struct btrfs_fs_info *fs_info)
3175 if (fs_info->log_root_tree) {
3176 free_log_tree(trans, fs_info->log_root_tree);
3177 fs_info->log_root_tree = NULL;
3179 return 0;
3183 * If both a file and directory are logged, and unlinks or renames are
3184 * mixed in, we have a few interesting corners:
3186 * create file X in dir Y
3187 * link file X to X.link in dir Y
3188 * fsync file X
3189 * unlink file X but leave X.link
3190 * fsync dir Y
3192 * After a crash we would expect only X.link to exist. But file X
3193 * didn't get fsync'd again so the log has back refs for X and X.link.
3195 * We solve this by removing directory entries and inode backrefs from the
3196 * log when a file that was logged in the current transaction is
3197 * unlinked. Any later fsync will include the updated log entries, and
3198 * we'll be able to reconstruct the proper directory items from backrefs.
3200 * This optimizations allows us to avoid relogging the entire inode
3201 * or the entire directory.
3203 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3204 struct btrfs_root *root,
3205 const char *name, int name_len,
3206 struct btrfs_inode *dir, u64 index)
3208 struct btrfs_root *log;
3209 struct btrfs_dir_item *di;
3210 struct btrfs_path *path;
3211 int ret;
3212 int err = 0;
3213 int bytes_del = 0;
3214 u64 dir_ino = btrfs_ino(dir);
3216 if (dir->logged_trans < trans->transid)
3217 return 0;
3219 ret = join_running_log_trans(root);
3220 if (ret)
3221 return 0;
3223 mutex_lock(&dir->log_mutex);
3225 log = root->log_root;
3226 path = btrfs_alloc_path();
3227 if (!path) {
3228 err = -ENOMEM;
3229 goto out_unlock;
3232 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3233 name, name_len, -1);
3234 if (IS_ERR(di)) {
3235 err = PTR_ERR(di);
3236 goto fail;
3238 if (di) {
3239 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3240 bytes_del += name_len;
3241 if (ret) {
3242 err = ret;
3243 goto fail;
3246 btrfs_release_path(path);
3247 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3248 index, name, name_len, -1);
3249 if (IS_ERR(di)) {
3250 err = PTR_ERR(di);
3251 goto fail;
3253 if (di) {
3254 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3255 bytes_del += name_len;
3256 if (ret) {
3257 err = ret;
3258 goto fail;
3262 /* update the directory size in the log to reflect the names
3263 * we have removed
3265 if (bytes_del) {
3266 struct btrfs_key key;
3268 key.objectid = dir_ino;
3269 key.offset = 0;
3270 key.type = BTRFS_INODE_ITEM_KEY;
3271 btrfs_release_path(path);
3273 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3274 if (ret < 0) {
3275 err = ret;
3276 goto fail;
3278 if (ret == 0) {
3279 struct btrfs_inode_item *item;
3280 u64 i_size;
3282 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3283 struct btrfs_inode_item);
3284 i_size = btrfs_inode_size(path->nodes[0], item);
3285 if (i_size > bytes_del)
3286 i_size -= bytes_del;
3287 else
3288 i_size = 0;
3289 btrfs_set_inode_size(path->nodes[0], item, i_size);
3290 btrfs_mark_buffer_dirty(path->nodes[0]);
3291 } else
3292 ret = 0;
3293 btrfs_release_path(path);
3295 fail:
3296 btrfs_free_path(path);
3297 out_unlock:
3298 mutex_unlock(&dir->log_mutex);
3299 if (ret == -ENOSPC) {
3300 btrfs_set_log_full_commit(root->fs_info, trans);
3301 ret = 0;
3302 } else if (ret < 0)
3303 btrfs_abort_transaction(trans, ret);
3305 btrfs_end_log_trans(root);
3307 return err;
3310 /* see comments for btrfs_del_dir_entries_in_log */
3311 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3312 struct btrfs_root *root,
3313 const char *name, int name_len,
3314 struct btrfs_inode *inode, u64 dirid)
3316 struct btrfs_fs_info *fs_info = root->fs_info;
3317 struct btrfs_root *log;
3318 u64 index;
3319 int ret;
3321 if (inode->logged_trans < trans->transid)
3322 return 0;
3324 ret = join_running_log_trans(root);
3325 if (ret)
3326 return 0;
3327 log = root->log_root;
3328 mutex_lock(&inode->log_mutex);
3330 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3331 dirid, &index);
3332 mutex_unlock(&inode->log_mutex);
3333 if (ret == -ENOSPC) {
3334 btrfs_set_log_full_commit(fs_info, trans);
3335 ret = 0;
3336 } else if (ret < 0 && ret != -ENOENT)
3337 btrfs_abort_transaction(trans, ret);
3338 btrfs_end_log_trans(root);
3340 return ret;
3344 * creates a range item in the log for 'dirid'. first_offset and
3345 * last_offset tell us which parts of the key space the log should
3346 * be considered authoritative for.
3348 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3349 struct btrfs_root *log,
3350 struct btrfs_path *path,
3351 int key_type, u64 dirid,
3352 u64 first_offset, u64 last_offset)
3354 int ret;
3355 struct btrfs_key key;
3356 struct btrfs_dir_log_item *item;
3358 key.objectid = dirid;
3359 key.offset = first_offset;
3360 if (key_type == BTRFS_DIR_ITEM_KEY)
3361 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3362 else
3363 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3364 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3365 if (ret)
3366 return ret;
3368 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3369 struct btrfs_dir_log_item);
3370 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3371 btrfs_mark_buffer_dirty(path->nodes[0]);
3372 btrfs_release_path(path);
3373 return 0;
3377 * log all the items included in the current transaction for a given
3378 * directory. This also creates the range items in the log tree required
3379 * to replay anything deleted before the fsync
3381 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3382 struct btrfs_root *root, struct btrfs_inode *inode,
3383 struct btrfs_path *path,
3384 struct btrfs_path *dst_path, int key_type,
3385 struct btrfs_log_ctx *ctx,
3386 u64 min_offset, u64 *last_offset_ret)
3388 struct btrfs_key min_key;
3389 struct btrfs_root *log = root->log_root;
3390 struct extent_buffer *src;
3391 int err = 0;
3392 int ret;
3393 int i;
3394 int nritems;
3395 u64 first_offset = min_offset;
3396 u64 last_offset = (u64)-1;
3397 u64 ino = btrfs_ino(inode);
3399 log = root->log_root;
3401 min_key.objectid = ino;
3402 min_key.type = key_type;
3403 min_key.offset = min_offset;
3405 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3408 * we didn't find anything from this transaction, see if there
3409 * is anything at all
3411 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3412 min_key.objectid = ino;
3413 min_key.type = key_type;
3414 min_key.offset = (u64)-1;
3415 btrfs_release_path(path);
3416 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3417 if (ret < 0) {
3418 btrfs_release_path(path);
3419 return ret;
3421 ret = btrfs_previous_item(root, path, ino, key_type);
3423 /* if ret == 0 there are items for this type,
3424 * create a range to tell us the last key of this type.
3425 * otherwise, there are no items in this directory after
3426 * *min_offset, and we create a range to indicate that.
3428 if (ret == 0) {
3429 struct btrfs_key tmp;
3430 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3431 path->slots[0]);
3432 if (key_type == tmp.type)
3433 first_offset = max(min_offset, tmp.offset) + 1;
3435 goto done;
3438 /* go backward to find any previous key */
3439 ret = btrfs_previous_item(root, path, ino, key_type);
3440 if (ret == 0) {
3441 struct btrfs_key tmp;
3442 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3443 if (key_type == tmp.type) {
3444 first_offset = tmp.offset;
3445 ret = overwrite_item(trans, log, dst_path,
3446 path->nodes[0], path->slots[0],
3447 &tmp);
3448 if (ret) {
3449 err = ret;
3450 goto done;
3454 btrfs_release_path(path);
3456 /* find the first key from this transaction again */
3457 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3458 if (WARN_ON(ret != 0))
3459 goto done;
3462 * we have a block from this transaction, log every item in it
3463 * from our directory
3465 while (1) {
3466 struct btrfs_key tmp;
3467 src = path->nodes[0];
3468 nritems = btrfs_header_nritems(src);
3469 for (i = path->slots[0]; i < nritems; i++) {
3470 struct btrfs_dir_item *di;
3472 btrfs_item_key_to_cpu(src, &min_key, i);
3474 if (min_key.objectid != ino || min_key.type != key_type)
3475 goto done;
3476 ret = overwrite_item(trans, log, dst_path, src, i,
3477 &min_key);
3478 if (ret) {
3479 err = ret;
3480 goto done;
3484 * We must make sure that when we log a directory entry,
3485 * the corresponding inode, after log replay, has a
3486 * matching link count. For example:
3488 * touch foo
3489 * mkdir mydir
3490 * sync
3491 * ln foo mydir/bar
3492 * xfs_io -c "fsync" mydir
3493 * <crash>
3494 * <mount fs and log replay>
3496 * Would result in a fsync log that when replayed, our
3497 * file inode would have a link count of 1, but we get
3498 * two directory entries pointing to the same inode.
3499 * After removing one of the names, it would not be
3500 * possible to remove the other name, which resulted
3501 * always in stale file handle errors, and would not
3502 * be possible to rmdir the parent directory, since
3503 * its i_size could never decrement to the value
3504 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3506 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3507 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3508 if (ctx &&
3509 (btrfs_dir_transid(src, di) == trans->transid ||
3510 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3511 tmp.type != BTRFS_ROOT_ITEM_KEY)
3512 ctx->log_new_dentries = true;
3514 path->slots[0] = nritems;
3517 * look ahead to the next item and see if it is also
3518 * from this directory and from this transaction
3520 ret = btrfs_next_leaf(root, path);
3521 if (ret == 1) {
3522 last_offset = (u64)-1;
3523 goto done;
3525 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3526 if (tmp.objectid != ino || tmp.type != key_type) {
3527 last_offset = (u64)-1;
3528 goto done;
3530 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3531 ret = overwrite_item(trans, log, dst_path,
3532 path->nodes[0], path->slots[0],
3533 &tmp);
3534 if (ret)
3535 err = ret;
3536 else
3537 last_offset = tmp.offset;
3538 goto done;
3541 done:
3542 btrfs_release_path(path);
3543 btrfs_release_path(dst_path);
3545 if (err == 0) {
3546 *last_offset_ret = last_offset;
3548 * insert the log range keys to indicate where the log
3549 * is valid
3551 ret = insert_dir_log_key(trans, log, path, key_type,
3552 ino, first_offset, last_offset);
3553 if (ret)
3554 err = ret;
3556 return err;
3560 * logging directories is very similar to logging inodes, We find all the items
3561 * from the current transaction and write them to the log.
3563 * The recovery code scans the directory in the subvolume, and if it finds a
3564 * key in the range logged that is not present in the log tree, then it means
3565 * that dir entry was unlinked during the transaction.
3567 * In order for that scan to work, we must include one key smaller than
3568 * the smallest logged by this transaction and one key larger than the largest
3569 * key logged by this transaction.
3571 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3572 struct btrfs_root *root, struct btrfs_inode *inode,
3573 struct btrfs_path *path,
3574 struct btrfs_path *dst_path,
3575 struct btrfs_log_ctx *ctx)
3577 u64 min_key;
3578 u64 max_key;
3579 int ret;
3580 int key_type = BTRFS_DIR_ITEM_KEY;
3582 again:
3583 min_key = 0;
3584 max_key = 0;
3585 while (1) {
3586 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3587 ctx, min_key, &max_key);
3588 if (ret)
3589 return ret;
3590 if (max_key == (u64)-1)
3591 break;
3592 min_key = max_key + 1;
3595 if (key_type == BTRFS_DIR_ITEM_KEY) {
3596 key_type = BTRFS_DIR_INDEX_KEY;
3597 goto again;
3599 return 0;
3603 * a helper function to drop items from the log before we relog an
3604 * inode. max_key_type indicates the highest item type to remove.
3605 * This cannot be run for file data extents because it does not
3606 * free the extents they point to.
3608 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3609 struct btrfs_root *log,
3610 struct btrfs_path *path,
3611 u64 objectid, int max_key_type)
3613 int ret;
3614 struct btrfs_key key;
3615 struct btrfs_key found_key;
3616 int start_slot;
3618 key.objectid = objectid;
3619 key.type = max_key_type;
3620 key.offset = (u64)-1;
3622 while (1) {
3623 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3624 BUG_ON(ret == 0); /* Logic error */
3625 if (ret < 0)
3626 break;
3628 if (path->slots[0] == 0)
3629 break;
3631 path->slots[0]--;
3632 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3633 path->slots[0]);
3635 if (found_key.objectid != objectid)
3636 break;
3638 found_key.offset = 0;
3639 found_key.type = 0;
3640 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3641 &start_slot);
3643 ret = btrfs_del_items(trans, log, path, start_slot,
3644 path->slots[0] - start_slot + 1);
3646 * If start slot isn't 0 then we don't need to re-search, we've
3647 * found the last guy with the objectid in this tree.
3649 if (ret || start_slot != 0)
3650 break;
3651 btrfs_release_path(path);
3653 btrfs_release_path(path);
3654 if (ret > 0)
3655 ret = 0;
3656 return ret;
3659 static void fill_inode_item(struct btrfs_trans_handle *trans,
3660 struct extent_buffer *leaf,
3661 struct btrfs_inode_item *item,
3662 struct inode *inode, int log_inode_only,
3663 u64 logged_isize)
3665 struct btrfs_map_token token;
3667 btrfs_init_map_token(&token);
3669 if (log_inode_only) {
3670 /* set the generation to zero so the recover code
3671 * can tell the difference between an logging
3672 * just to say 'this inode exists' and a logging
3673 * to say 'update this inode with these values'
3675 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3676 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3677 } else {
3678 btrfs_set_token_inode_generation(leaf, item,
3679 BTRFS_I(inode)->generation,
3680 &token);
3681 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3684 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3685 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3686 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3687 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3689 btrfs_set_token_timespec_sec(leaf, &item->atime,
3690 inode->i_atime.tv_sec, &token);
3691 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3692 inode->i_atime.tv_nsec, &token);
3694 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3695 inode->i_mtime.tv_sec, &token);
3696 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3697 inode->i_mtime.tv_nsec, &token);
3699 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3700 inode->i_ctime.tv_sec, &token);
3701 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3702 inode->i_ctime.tv_nsec, &token);
3704 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3705 &token);
3707 btrfs_set_token_inode_sequence(leaf, item,
3708 inode_peek_iversion(inode), &token);
3709 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3710 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3711 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3712 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3715 static int log_inode_item(struct btrfs_trans_handle *trans,
3716 struct btrfs_root *log, struct btrfs_path *path,
3717 struct btrfs_inode *inode)
3719 struct btrfs_inode_item *inode_item;
3720 int ret;
3722 ret = btrfs_insert_empty_item(trans, log, path,
3723 &inode->location, sizeof(*inode_item));
3724 if (ret && ret != -EEXIST)
3725 return ret;
3726 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3727 struct btrfs_inode_item);
3728 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3729 0, 0);
3730 btrfs_release_path(path);
3731 return 0;
3734 static noinline int copy_items(struct btrfs_trans_handle *trans,
3735 struct btrfs_inode *inode,
3736 struct btrfs_path *dst_path,
3737 struct btrfs_path *src_path, u64 *last_extent,
3738 int start_slot, int nr, int inode_only,
3739 u64 logged_isize)
3741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3742 unsigned long src_offset;
3743 unsigned long dst_offset;
3744 struct btrfs_root *log = inode->root->log_root;
3745 struct btrfs_file_extent_item *extent;
3746 struct btrfs_inode_item *inode_item;
3747 struct extent_buffer *src = src_path->nodes[0];
3748 struct btrfs_key first_key, last_key, key;
3749 int ret;
3750 struct btrfs_key *ins_keys;
3751 u32 *ins_sizes;
3752 char *ins_data;
3753 int i;
3754 struct list_head ordered_sums;
3755 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3756 bool has_extents = false;
3757 bool need_find_last_extent = true;
3758 bool done = false;
3760 INIT_LIST_HEAD(&ordered_sums);
3762 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3763 nr * sizeof(u32), GFP_NOFS);
3764 if (!ins_data)
3765 return -ENOMEM;
3767 first_key.objectid = (u64)-1;
3769 ins_sizes = (u32 *)ins_data;
3770 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3772 for (i = 0; i < nr; i++) {
3773 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3774 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3776 ret = btrfs_insert_empty_items(trans, log, dst_path,
3777 ins_keys, ins_sizes, nr);
3778 if (ret) {
3779 kfree(ins_data);
3780 return ret;
3783 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3784 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3785 dst_path->slots[0]);
3787 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3789 if (i == nr - 1)
3790 last_key = ins_keys[i];
3792 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3793 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3794 dst_path->slots[0],
3795 struct btrfs_inode_item);
3796 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3797 &inode->vfs_inode,
3798 inode_only == LOG_INODE_EXISTS,
3799 logged_isize);
3800 } else {
3801 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3802 src_offset, ins_sizes[i]);
3806 * We set need_find_last_extent here in case we know we were
3807 * processing other items and then walk into the first extent in
3808 * the inode. If we don't hit an extent then nothing changes,
3809 * we'll do the last search the next time around.
3811 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3812 has_extents = true;
3813 if (first_key.objectid == (u64)-1)
3814 first_key = ins_keys[i];
3815 } else {
3816 need_find_last_extent = false;
3819 /* take a reference on file data extents so that truncates
3820 * or deletes of this inode don't have to relog the inode
3821 * again
3823 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3824 !skip_csum) {
3825 int found_type;
3826 extent = btrfs_item_ptr(src, start_slot + i,
3827 struct btrfs_file_extent_item);
3829 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3830 continue;
3832 found_type = btrfs_file_extent_type(src, extent);
3833 if (found_type == BTRFS_FILE_EXTENT_REG) {
3834 u64 ds, dl, cs, cl;
3835 ds = btrfs_file_extent_disk_bytenr(src,
3836 extent);
3837 /* ds == 0 is a hole */
3838 if (ds == 0)
3839 continue;
3841 dl = btrfs_file_extent_disk_num_bytes(src,
3842 extent);
3843 cs = btrfs_file_extent_offset(src, extent);
3844 cl = btrfs_file_extent_num_bytes(src,
3845 extent);
3846 if (btrfs_file_extent_compression(src,
3847 extent)) {
3848 cs = 0;
3849 cl = dl;
3852 ret = btrfs_lookup_csums_range(
3853 fs_info->csum_root,
3854 ds + cs, ds + cs + cl - 1,
3855 &ordered_sums, 0);
3856 if (ret) {
3857 btrfs_release_path(dst_path);
3858 kfree(ins_data);
3859 return ret;
3865 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3866 btrfs_release_path(dst_path);
3867 kfree(ins_data);
3870 * we have to do this after the loop above to avoid changing the
3871 * log tree while trying to change the log tree.
3873 ret = 0;
3874 while (!list_empty(&ordered_sums)) {
3875 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3876 struct btrfs_ordered_sum,
3877 list);
3878 if (!ret)
3879 ret = btrfs_csum_file_blocks(trans, log, sums);
3880 list_del(&sums->list);
3881 kfree(sums);
3884 if (!has_extents)
3885 return ret;
3887 if (need_find_last_extent && *last_extent == first_key.offset) {
3889 * We don't have any leafs between our current one and the one
3890 * we processed before that can have file extent items for our
3891 * inode (and have a generation number smaller than our current
3892 * transaction id).
3894 need_find_last_extent = false;
3898 * Because we use btrfs_search_forward we could skip leaves that were
3899 * not modified and then assume *last_extent is valid when it really
3900 * isn't. So back up to the previous leaf and read the end of the last
3901 * extent before we go and fill in holes.
3903 if (need_find_last_extent) {
3904 u64 len;
3906 ret = btrfs_prev_leaf(inode->root, src_path);
3907 if (ret < 0)
3908 return ret;
3909 if (ret)
3910 goto fill_holes;
3911 if (src_path->slots[0])
3912 src_path->slots[0]--;
3913 src = src_path->nodes[0];
3914 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3915 if (key.objectid != btrfs_ino(inode) ||
3916 key.type != BTRFS_EXTENT_DATA_KEY)
3917 goto fill_holes;
3918 extent = btrfs_item_ptr(src, src_path->slots[0],
3919 struct btrfs_file_extent_item);
3920 if (btrfs_file_extent_type(src, extent) ==
3921 BTRFS_FILE_EXTENT_INLINE) {
3922 len = btrfs_file_extent_inline_len(src,
3923 src_path->slots[0],
3924 extent);
3925 *last_extent = ALIGN(key.offset + len,
3926 fs_info->sectorsize);
3927 } else {
3928 len = btrfs_file_extent_num_bytes(src, extent);
3929 *last_extent = key.offset + len;
3932 fill_holes:
3933 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3934 * things could have happened
3936 * 1) A merge could have happened, so we could currently be on a leaf
3937 * that holds what we were copying in the first place.
3938 * 2) A split could have happened, and now not all of the items we want
3939 * are on the same leaf.
3941 * So we need to adjust how we search for holes, we need to drop the
3942 * path and re-search for the first extent key we found, and then walk
3943 * forward until we hit the last one we copied.
3945 if (need_find_last_extent) {
3946 /* btrfs_prev_leaf could return 1 without releasing the path */
3947 btrfs_release_path(src_path);
3948 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3949 src_path, 0, 0);
3950 if (ret < 0)
3951 return ret;
3952 ASSERT(ret == 0);
3953 src = src_path->nodes[0];
3954 i = src_path->slots[0];
3955 } else {
3956 i = start_slot;
3960 * Ok so here we need to go through and fill in any holes we may have
3961 * to make sure that holes are punched for those areas in case they had
3962 * extents previously.
3964 while (!done) {
3965 u64 offset, len;
3966 u64 extent_end;
3968 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3969 ret = btrfs_next_leaf(inode->root, src_path);
3970 if (ret < 0)
3971 return ret;
3972 ASSERT(ret == 0);
3973 src = src_path->nodes[0];
3974 i = 0;
3977 btrfs_item_key_to_cpu(src, &key, i);
3978 if (!btrfs_comp_cpu_keys(&key, &last_key))
3979 done = true;
3980 if (key.objectid != btrfs_ino(inode) ||
3981 key.type != BTRFS_EXTENT_DATA_KEY) {
3982 i++;
3983 continue;
3985 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3986 if (btrfs_file_extent_type(src, extent) ==
3987 BTRFS_FILE_EXTENT_INLINE) {
3988 len = btrfs_file_extent_inline_len(src, i, extent);
3989 extent_end = ALIGN(key.offset + len,
3990 fs_info->sectorsize);
3991 } else {
3992 len = btrfs_file_extent_num_bytes(src, extent);
3993 extent_end = key.offset + len;
3995 i++;
3997 if (*last_extent == key.offset) {
3998 *last_extent = extent_end;
3999 continue;
4001 offset = *last_extent;
4002 len = key.offset - *last_extent;
4003 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4004 offset, 0, 0, len, 0, len, 0, 0, 0);
4005 if (ret)
4006 break;
4007 *last_extent = extent_end;
4010 * Need to let the callers know we dropped the path so they should
4011 * re-search.
4013 if (!ret && need_find_last_extent)
4014 ret = 1;
4015 return ret;
4018 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4020 struct extent_map *em1, *em2;
4022 em1 = list_entry(a, struct extent_map, list);
4023 em2 = list_entry(b, struct extent_map, list);
4025 if (em1->start < em2->start)
4026 return -1;
4027 else if (em1->start > em2->start)
4028 return 1;
4029 return 0;
4032 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4033 struct inode *inode,
4034 struct btrfs_root *root,
4035 const struct extent_map *em,
4036 const struct list_head *logged_list,
4037 bool *ordered_io_error)
4039 struct btrfs_fs_info *fs_info = root->fs_info;
4040 struct btrfs_ordered_extent *ordered;
4041 struct btrfs_root *log = root->log_root;
4042 u64 mod_start = em->mod_start;
4043 u64 mod_len = em->mod_len;
4044 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
4045 u64 csum_offset;
4046 u64 csum_len;
4047 LIST_HEAD(ordered_sums);
4048 int ret = 0;
4050 *ordered_io_error = false;
4052 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4053 em->block_start == EXTENT_MAP_HOLE)
4054 return 0;
4057 * Wait far any ordered extent that covers our extent map. If it
4058 * finishes without an error, first check and see if our csums are on
4059 * our outstanding ordered extents.
4061 list_for_each_entry(ordered, logged_list, log_list) {
4062 struct btrfs_ordered_sum *sum;
4064 if (!mod_len)
4065 break;
4067 if (ordered->file_offset + ordered->len <= mod_start ||
4068 mod_start + mod_len <= ordered->file_offset)
4069 continue;
4071 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4072 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4073 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4074 const u64 start = ordered->file_offset;
4075 const u64 end = ordered->file_offset + ordered->len - 1;
4077 WARN_ON(ordered->inode != inode);
4078 filemap_fdatawrite_range(inode->i_mapping, start, end);
4081 wait_event(ordered->wait,
4082 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4083 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4085 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
4087 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4088 * i_mapping flags, so that the next fsync won't get
4089 * an outdated io error too.
4091 filemap_check_errors(inode->i_mapping);
4092 *ordered_io_error = true;
4093 break;
4096 * We are going to copy all the csums on this ordered extent, so
4097 * go ahead and adjust mod_start and mod_len in case this
4098 * ordered extent has already been logged.
4100 if (ordered->file_offset > mod_start) {
4101 if (ordered->file_offset + ordered->len >=
4102 mod_start + mod_len)
4103 mod_len = ordered->file_offset - mod_start;
4105 * If we have this case
4107 * |--------- logged extent ---------|
4108 * |----- ordered extent ----|
4110 * Just don't mess with mod_start and mod_len, we'll
4111 * just end up logging more csums than we need and it
4112 * will be ok.
4114 } else {
4115 if (ordered->file_offset + ordered->len <
4116 mod_start + mod_len) {
4117 mod_len = (mod_start + mod_len) -
4118 (ordered->file_offset + ordered->len);
4119 mod_start = ordered->file_offset +
4120 ordered->len;
4121 } else {
4122 mod_len = 0;
4126 if (skip_csum)
4127 continue;
4130 * To keep us from looping for the above case of an ordered
4131 * extent that falls inside of the logged extent.
4133 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4134 &ordered->flags))
4135 continue;
4137 list_for_each_entry(sum, &ordered->list, list) {
4138 ret = btrfs_csum_file_blocks(trans, log, sum);
4139 if (ret)
4140 break;
4144 if (*ordered_io_error || !mod_len || ret || skip_csum)
4145 return ret;
4147 if (em->compress_type) {
4148 csum_offset = 0;
4149 csum_len = max(em->block_len, em->orig_block_len);
4150 } else {
4151 csum_offset = mod_start - em->start;
4152 csum_len = mod_len;
4155 /* block start is already adjusted for the file extent offset. */
4156 ret = btrfs_lookup_csums_range(fs_info->csum_root,
4157 em->block_start + csum_offset,
4158 em->block_start + csum_offset +
4159 csum_len - 1, &ordered_sums, 0);
4160 if (ret)
4161 return ret;
4163 while (!list_empty(&ordered_sums)) {
4164 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4165 struct btrfs_ordered_sum,
4166 list);
4167 if (!ret)
4168 ret = btrfs_csum_file_blocks(trans, log, sums);
4169 list_del(&sums->list);
4170 kfree(sums);
4173 return ret;
4176 static int log_one_extent(struct btrfs_trans_handle *trans,
4177 struct btrfs_inode *inode, struct btrfs_root *root,
4178 const struct extent_map *em,
4179 struct btrfs_path *path,
4180 const struct list_head *logged_list,
4181 struct btrfs_log_ctx *ctx)
4183 struct btrfs_root *log = root->log_root;
4184 struct btrfs_file_extent_item *fi;
4185 struct extent_buffer *leaf;
4186 struct btrfs_map_token token;
4187 struct btrfs_key key;
4188 u64 extent_offset = em->start - em->orig_start;
4189 u64 block_len;
4190 int ret;
4191 int extent_inserted = 0;
4192 bool ordered_io_err = false;
4194 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4195 logged_list, &ordered_io_err);
4196 if (ret)
4197 return ret;
4199 if (ordered_io_err) {
4200 ctx->io_err = -EIO;
4201 return ctx->io_err;
4204 btrfs_init_map_token(&token);
4206 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4207 em->start + em->len, NULL, 0, 1,
4208 sizeof(*fi), &extent_inserted);
4209 if (ret)
4210 return ret;
4212 if (!extent_inserted) {
4213 key.objectid = btrfs_ino(inode);
4214 key.type = BTRFS_EXTENT_DATA_KEY;
4215 key.offset = em->start;
4217 ret = btrfs_insert_empty_item(trans, log, path, &key,
4218 sizeof(*fi));
4219 if (ret)
4220 return ret;
4222 leaf = path->nodes[0];
4223 fi = btrfs_item_ptr(leaf, path->slots[0],
4224 struct btrfs_file_extent_item);
4226 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4227 &token);
4228 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4229 btrfs_set_token_file_extent_type(leaf, fi,
4230 BTRFS_FILE_EXTENT_PREALLOC,
4231 &token);
4232 else
4233 btrfs_set_token_file_extent_type(leaf, fi,
4234 BTRFS_FILE_EXTENT_REG,
4235 &token);
4237 block_len = max(em->block_len, em->orig_block_len);
4238 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4239 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4240 em->block_start,
4241 &token);
4242 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4243 &token);
4244 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4245 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4246 em->block_start -
4247 extent_offset, &token);
4248 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4249 &token);
4250 } else {
4251 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4252 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4253 &token);
4256 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4257 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4258 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4259 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4260 &token);
4261 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4262 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4263 btrfs_mark_buffer_dirty(leaf);
4265 btrfs_release_path(path);
4267 return ret;
4270 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4271 struct btrfs_root *root,
4272 struct btrfs_inode *inode,
4273 struct btrfs_path *path,
4274 struct list_head *logged_list,
4275 struct btrfs_log_ctx *ctx,
4276 const u64 start,
4277 const u64 end)
4279 struct extent_map *em, *n;
4280 struct list_head extents;
4281 struct extent_map_tree *tree = &inode->extent_tree;
4282 u64 logged_start, logged_end;
4283 u64 test_gen;
4284 int ret = 0;
4285 int num = 0;
4287 INIT_LIST_HEAD(&extents);
4289 down_write(&inode->dio_sem);
4290 write_lock(&tree->lock);
4291 test_gen = root->fs_info->last_trans_committed;
4292 logged_start = start;
4293 logged_end = end;
4295 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4296 list_del_init(&em->list);
4298 * Just an arbitrary number, this can be really CPU intensive
4299 * once we start getting a lot of extents, and really once we
4300 * have a bunch of extents we just want to commit since it will
4301 * be faster.
4303 if (++num > 32768) {
4304 list_del_init(&tree->modified_extents);
4305 ret = -EFBIG;
4306 goto process;
4309 if (em->generation <= test_gen)
4310 continue;
4312 if (em->start < logged_start)
4313 logged_start = em->start;
4314 if ((em->start + em->len - 1) > logged_end)
4315 logged_end = em->start + em->len - 1;
4317 /* Need a ref to keep it from getting evicted from cache */
4318 refcount_inc(&em->refs);
4319 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4320 list_add_tail(&em->list, &extents);
4321 num++;
4324 list_sort(NULL, &extents, extent_cmp);
4325 btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
4327 * Some ordered extents started by fsync might have completed
4328 * before we could collect them into the list logged_list, which
4329 * means they're gone, not in our logged_list nor in the inode's
4330 * ordered tree. We want the application/user space to know an
4331 * error happened while attempting to persist file data so that
4332 * it can take proper action. If such error happened, we leave
4333 * without writing to the log tree and the fsync must report the
4334 * file data write error and not commit the current transaction.
4336 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
4337 if (ret)
4338 ctx->io_err = ret;
4339 process:
4340 while (!list_empty(&extents)) {
4341 em = list_entry(extents.next, struct extent_map, list);
4343 list_del_init(&em->list);
4346 * If we had an error we just need to delete everybody from our
4347 * private list.
4349 if (ret) {
4350 clear_em_logging(tree, em);
4351 free_extent_map(em);
4352 continue;
4355 write_unlock(&tree->lock);
4357 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4358 ctx);
4359 write_lock(&tree->lock);
4360 clear_em_logging(tree, em);
4361 free_extent_map(em);
4363 WARN_ON(!list_empty(&extents));
4364 write_unlock(&tree->lock);
4365 up_write(&inode->dio_sem);
4367 btrfs_release_path(path);
4368 return ret;
4371 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4372 struct btrfs_path *path, u64 *size_ret)
4374 struct btrfs_key key;
4375 int ret;
4377 key.objectid = btrfs_ino(inode);
4378 key.type = BTRFS_INODE_ITEM_KEY;
4379 key.offset = 0;
4381 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4382 if (ret < 0) {
4383 return ret;
4384 } else if (ret > 0) {
4385 *size_ret = 0;
4386 } else {
4387 struct btrfs_inode_item *item;
4389 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4390 struct btrfs_inode_item);
4391 *size_ret = btrfs_inode_size(path->nodes[0], item);
4394 btrfs_release_path(path);
4395 return 0;
4399 * At the moment we always log all xattrs. This is to figure out at log replay
4400 * time which xattrs must have their deletion replayed. If a xattr is missing
4401 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4402 * because if a xattr is deleted, the inode is fsynced and a power failure
4403 * happens, causing the log to be replayed the next time the fs is mounted,
4404 * we want the xattr to not exist anymore (same behaviour as other filesystems
4405 * with a journal, ext3/4, xfs, f2fs, etc).
4407 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4408 struct btrfs_root *root,
4409 struct btrfs_inode *inode,
4410 struct btrfs_path *path,
4411 struct btrfs_path *dst_path)
4413 int ret;
4414 struct btrfs_key key;
4415 const u64 ino = btrfs_ino(inode);
4416 int ins_nr = 0;
4417 int start_slot = 0;
4419 key.objectid = ino;
4420 key.type = BTRFS_XATTR_ITEM_KEY;
4421 key.offset = 0;
4423 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4424 if (ret < 0)
4425 return ret;
4427 while (true) {
4428 int slot = path->slots[0];
4429 struct extent_buffer *leaf = path->nodes[0];
4430 int nritems = btrfs_header_nritems(leaf);
4432 if (slot >= nritems) {
4433 if (ins_nr > 0) {
4434 u64 last_extent = 0;
4436 ret = copy_items(trans, inode, dst_path, path,
4437 &last_extent, start_slot,
4438 ins_nr, 1, 0);
4439 /* can't be 1, extent items aren't processed */
4440 ASSERT(ret <= 0);
4441 if (ret < 0)
4442 return ret;
4443 ins_nr = 0;
4445 ret = btrfs_next_leaf(root, path);
4446 if (ret < 0)
4447 return ret;
4448 else if (ret > 0)
4449 break;
4450 continue;
4453 btrfs_item_key_to_cpu(leaf, &key, slot);
4454 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4455 break;
4457 if (ins_nr == 0)
4458 start_slot = slot;
4459 ins_nr++;
4460 path->slots[0]++;
4461 cond_resched();
4463 if (ins_nr > 0) {
4464 u64 last_extent = 0;
4466 ret = copy_items(trans, inode, dst_path, path,
4467 &last_extent, start_slot,
4468 ins_nr, 1, 0);
4469 /* can't be 1, extent items aren't processed */
4470 ASSERT(ret <= 0);
4471 if (ret < 0)
4472 return ret;
4475 return 0;
4479 * If the no holes feature is enabled we need to make sure any hole between the
4480 * last extent and the i_size of our inode is explicitly marked in the log. This
4481 * is to make sure that doing something like:
4483 * 1) create file with 128Kb of data
4484 * 2) truncate file to 64Kb
4485 * 3) truncate file to 256Kb
4486 * 4) fsync file
4487 * 5) <crash/power failure>
4488 * 6) mount fs and trigger log replay
4490 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4491 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4492 * file correspond to a hole. The presence of explicit holes in a log tree is
4493 * what guarantees that log replay will remove/adjust file extent items in the
4494 * fs/subvol tree.
4496 * Here we do not need to care about holes between extents, that is already done
4497 * by copy_items(). We also only need to do this in the full sync path, where we
4498 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4499 * lookup the list of modified extent maps and if any represents a hole, we
4500 * insert a corresponding extent representing a hole in the log tree.
4502 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4503 struct btrfs_root *root,
4504 struct btrfs_inode *inode,
4505 struct btrfs_path *path)
4507 struct btrfs_fs_info *fs_info = root->fs_info;
4508 int ret;
4509 struct btrfs_key key;
4510 u64 hole_start;
4511 u64 hole_size;
4512 struct extent_buffer *leaf;
4513 struct btrfs_root *log = root->log_root;
4514 const u64 ino = btrfs_ino(inode);
4515 const u64 i_size = i_size_read(&inode->vfs_inode);
4517 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4518 return 0;
4520 key.objectid = ino;
4521 key.type = BTRFS_EXTENT_DATA_KEY;
4522 key.offset = (u64)-1;
4524 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4525 ASSERT(ret != 0);
4526 if (ret < 0)
4527 return ret;
4529 ASSERT(path->slots[0] > 0);
4530 path->slots[0]--;
4531 leaf = path->nodes[0];
4532 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4534 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4535 /* inode does not have any extents */
4536 hole_start = 0;
4537 hole_size = i_size;
4538 } else {
4539 struct btrfs_file_extent_item *extent;
4540 u64 len;
4543 * If there's an extent beyond i_size, an explicit hole was
4544 * already inserted by copy_items().
4546 if (key.offset >= i_size)
4547 return 0;
4549 extent = btrfs_item_ptr(leaf, path->slots[0],
4550 struct btrfs_file_extent_item);
4552 if (btrfs_file_extent_type(leaf, extent) ==
4553 BTRFS_FILE_EXTENT_INLINE) {
4554 len = btrfs_file_extent_inline_len(leaf,
4555 path->slots[0],
4556 extent);
4557 ASSERT(len == i_size ||
4558 (len == fs_info->sectorsize &&
4559 btrfs_file_extent_compression(leaf, extent) !=
4560 BTRFS_COMPRESS_NONE));
4561 return 0;
4564 len = btrfs_file_extent_num_bytes(leaf, extent);
4565 /* Last extent goes beyond i_size, no need to log a hole. */
4566 if (key.offset + len > i_size)
4567 return 0;
4568 hole_start = key.offset + len;
4569 hole_size = i_size - hole_start;
4571 btrfs_release_path(path);
4573 /* Last extent ends at i_size. */
4574 if (hole_size == 0)
4575 return 0;
4577 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4578 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4579 hole_size, 0, hole_size, 0, 0, 0);
4580 return ret;
4584 * When we are logging a new inode X, check if it doesn't have a reference that
4585 * matches the reference from some other inode Y created in a past transaction
4586 * and that was renamed in the current transaction. If we don't do this, then at
4587 * log replay time we can lose inode Y (and all its files if it's a directory):
4589 * mkdir /mnt/x
4590 * echo "hello world" > /mnt/x/foobar
4591 * sync
4592 * mv /mnt/x /mnt/y
4593 * mkdir /mnt/x # or touch /mnt/x
4594 * xfs_io -c fsync /mnt/x
4595 * <power fail>
4596 * mount fs, trigger log replay
4598 * After the log replay procedure, we would lose the first directory and all its
4599 * files (file foobar).
4600 * For the case where inode Y is not a directory we simply end up losing it:
4602 * echo "123" > /mnt/foo
4603 * sync
4604 * mv /mnt/foo /mnt/bar
4605 * echo "abc" > /mnt/foo
4606 * xfs_io -c fsync /mnt/foo
4607 * <power fail>
4609 * We also need this for cases where a snapshot entry is replaced by some other
4610 * entry (file or directory) otherwise we end up with an unreplayable log due to
4611 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4612 * if it were a regular entry:
4614 * mkdir /mnt/x
4615 * btrfs subvolume snapshot /mnt /mnt/x/snap
4616 * btrfs subvolume delete /mnt/x/snap
4617 * rmdir /mnt/x
4618 * mkdir /mnt/x
4619 * fsync /mnt/x or fsync some new file inside it
4620 * <power fail>
4622 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4623 * the same transaction.
4625 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4626 const int slot,
4627 const struct btrfs_key *key,
4628 struct btrfs_inode *inode,
4629 u64 *other_ino)
4631 int ret;
4632 struct btrfs_path *search_path;
4633 char *name = NULL;
4634 u32 name_len = 0;
4635 u32 item_size = btrfs_item_size_nr(eb, slot);
4636 u32 cur_offset = 0;
4637 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4639 search_path = btrfs_alloc_path();
4640 if (!search_path)
4641 return -ENOMEM;
4642 search_path->search_commit_root = 1;
4643 search_path->skip_locking = 1;
4645 while (cur_offset < item_size) {
4646 u64 parent;
4647 u32 this_name_len;
4648 u32 this_len;
4649 unsigned long name_ptr;
4650 struct btrfs_dir_item *di;
4652 if (key->type == BTRFS_INODE_REF_KEY) {
4653 struct btrfs_inode_ref *iref;
4655 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4656 parent = key->offset;
4657 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4658 name_ptr = (unsigned long)(iref + 1);
4659 this_len = sizeof(*iref) + this_name_len;
4660 } else {
4661 struct btrfs_inode_extref *extref;
4663 extref = (struct btrfs_inode_extref *)(ptr +
4664 cur_offset);
4665 parent = btrfs_inode_extref_parent(eb, extref);
4666 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4667 name_ptr = (unsigned long)&extref->name;
4668 this_len = sizeof(*extref) + this_name_len;
4671 if (this_name_len > name_len) {
4672 char *new_name;
4674 new_name = krealloc(name, this_name_len, GFP_NOFS);
4675 if (!new_name) {
4676 ret = -ENOMEM;
4677 goto out;
4679 name_len = this_name_len;
4680 name = new_name;
4683 read_extent_buffer(eb, name, name_ptr, this_name_len);
4684 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4685 parent, name, this_name_len, 0);
4686 if (di && !IS_ERR(di)) {
4687 struct btrfs_key di_key;
4689 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4690 di, &di_key);
4691 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4692 ret = 1;
4693 *other_ino = di_key.objectid;
4694 } else {
4695 ret = -EAGAIN;
4697 goto out;
4698 } else if (IS_ERR(di)) {
4699 ret = PTR_ERR(di);
4700 goto out;
4702 btrfs_release_path(search_path);
4704 cur_offset += this_len;
4706 ret = 0;
4707 out:
4708 btrfs_free_path(search_path);
4709 kfree(name);
4710 return ret;
4713 /* log a single inode in the tree log.
4714 * At least one parent directory for this inode must exist in the tree
4715 * or be logged already.
4717 * Any items from this inode changed by the current transaction are copied
4718 * to the log tree. An extra reference is taken on any extents in this
4719 * file, allowing us to avoid a whole pile of corner cases around logging
4720 * blocks that have been removed from the tree.
4722 * See LOG_INODE_ALL and related defines for a description of what inode_only
4723 * does.
4725 * This handles both files and directories.
4727 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4728 struct btrfs_root *root, struct btrfs_inode *inode,
4729 int inode_only,
4730 const loff_t start,
4731 const loff_t end,
4732 struct btrfs_log_ctx *ctx)
4734 struct btrfs_fs_info *fs_info = root->fs_info;
4735 struct btrfs_path *path;
4736 struct btrfs_path *dst_path;
4737 struct btrfs_key min_key;
4738 struct btrfs_key max_key;
4739 struct btrfs_root *log = root->log_root;
4740 LIST_HEAD(logged_list);
4741 u64 last_extent = 0;
4742 int err = 0;
4743 int ret;
4744 int nritems;
4745 int ins_start_slot = 0;
4746 int ins_nr;
4747 bool fast_search = false;
4748 u64 ino = btrfs_ino(inode);
4749 struct extent_map_tree *em_tree = &inode->extent_tree;
4750 u64 logged_isize = 0;
4751 bool need_log_inode_item = true;
4752 bool xattrs_logged = false;
4754 path = btrfs_alloc_path();
4755 if (!path)
4756 return -ENOMEM;
4757 dst_path = btrfs_alloc_path();
4758 if (!dst_path) {
4759 btrfs_free_path(path);
4760 return -ENOMEM;
4763 min_key.objectid = ino;
4764 min_key.type = BTRFS_INODE_ITEM_KEY;
4765 min_key.offset = 0;
4767 max_key.objectid = ino;
4770 /* today the code can only do partial logging of directories */
4771 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4772 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4773 &inode->runtime_flags) &&
4774 inode_only >= LOG_INODE_EXISTS))
4775 max_key.type = BTRFS_XATTR_ITEM_KEY;
4776 else
4777 max_key.type = (u8)-1;
4778 max_key.offset = (u64)-1;
4781 * Only run delayed items if we are a dir or a new file.
4782 * Otherwise commit the delayed inode only, which is needed in
4783 * order for the log replay code to mark inodes for link count
4784 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4786 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4787 inode->generation > fs_info->last_trans_committed)
4788 ret = btrfs_commit_inode_delayed_items(trans, inode);
4789 else
4790 ret = btrfs_commit_inode_delayed_inode(inode);
4792 if (ret) {
4793 btrfs_free_path(path);
4794 btrfs_free_path(dst_path);
4795 return ret;
4798 if (inode_only == LOG_OTHER_INODE) {
4799 inode_only = LOG_INODE_EXISTS;
4800 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4801 } else {
4802 mutex_lock(&inode->log_mutex);
4806 * a brute force approach to making sure we get the most uptodate
4807 * copies of everything.
4809 if (S_ISDIR(inode->vfs_inode.i_mode)) {
4810 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4812 if (inode_only == LOG_INODE_EXISTS)
4813 max_key_type = BTRFS_XATTR_ITEM_KEY;
4814 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4815 } else {
4816 if (inode_only == LOG_INODE_EXISTS) {
4818 * Make sure the new inode item we write to the log has
4819 * the same isize as the current one (if it exists).
4820 * This is necessary to prevent data loss after log
4821 * replay, and also to prevent doing a wrong expanding
4822 * truncate - for e.g. create file, write 4K into offset
4823 * 0, fsync, write 4K into offset 4096, add hard link,
4824 * fsync some other file (to sync log), power fail - if
4825 * we use the inode's current i_size, after log replay
4826 * we get a 8Kb file, with the last 4Kb extent as a hole
4827 * (zeroes), as if an expanding truncate happened,
4828 * instead of getting a file of 4Kb only.
4830 err = logged_inode_size(log, inode, path, &logged_isize);
4831 if (err)
4832 goto out_unlock;
4834 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4835 &inode->runtime_flags)) {
4836 if (inode_only == LOG_INODE_EXISTS) {
4837 max_key.type = BTRFS_XATTR_ITEM_KEY;
4838 ret = drop_objectid_items(trans, log, path, ino,
4839 max_key.type);
4840 } else {
4841 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4842 &inode->runtime_flags);
4843 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4844 &inode->runtime_flags);
4845 while(1) {
4846 ret = btrfs_truncate_inode_items(trans,
4847 log, &inode->vfs_inode, 0, 0);
4848 if (ret != -EAGAIN)
4849 break;
4852 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4853 &inode->runtime_flags) ||
4854 inode_only == LOG_INODE_EXISTS) {
4855 if (inode_only == LOG_INODE_ALL)
4856 fast_search = true;
4857 max_key.type = BTRFS_XATTR_ITEM_KEY;
4858 ret = drop_objectid_items(trans, log, path, ino,
4859 max_key.type);
4860 } else {
4861 if (inode_only == LOG_INODE_ALL)
4862 fast_search = true;
4863 goto log_extents;
4867 if (ret) {
4868 err = ret;
4869 goto out_unlock;
4872 while (1) {
4873 ins_nr = 0;
4874 ret = btrfs_search_forward(root, &min_key,
4875 path, trans->transid);
4876 if (ret < 0) {
4877 err = ret;
4878 goto out_unlock;
4880 if (ret != 0)
4881 break;
4882 again:
4883 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4884 if (min_key.objectid != ino)
4885 break;
4886 if (min_key.type > max_key.type)
4887 break;
4889 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4890 need_log_inode_item = false;
4892 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4893 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4894 inode->generation == trans->transid) {
4895 u64 other_ino = 0;
4897 ret = btrfs_check_ref_name_override(path->nodes[0],
4898 path->slots[0], &min_key, inode,
4899 &other_ino);
4900 if (ret < 0) {
4901 err = ret;
4902 goto out_unlock;
4903 } else if (ret > 0 && ctx &&
4904 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
4905 struct btrfs_key inode_key;
4906 struct inode *other_inode;
4908 if (ins_nr > 0) {
4909 ins_nr++;
4910 } else {
4911 ins_nr = 1;
4912 ins_start_slot = path->slots[0];
4914 ret = copy_items(trans, inode, dst_path, path,
4915 &last_extent, ins_start_slot,
4916 ins_nr, inode_only,
4917 logged_isize);
4918 if (ret < 0) {
4919 err = ret;
4920 goto out_unlock;
4922 ins_nr = 0;
4923 btrfs_release_path(path);
4924 inode_key.objectid = other_ino;
4925 inode_key.type = BTRFS_INODE_ITEM_KEY;
4926 inode_key.offset = 0;
4927 other_inode = btrfs_iget(fs_info->sb,
4928 &inode_key, root,
4929 NULL);
4931 * If the other inode that had a conflicting dir
4932 * entry was deleted in the current transaction,
4933 * we don't need to do more work nor fallback to
4934 * a transaction commit.
4936 if (IS_ERR(other_inode) &&
4937 PTR_ERR(other_inode) == -ENOENT) {
4938 goto next_key;
4939 } else if (IS_ERR(other_inode)) {
4940 err = PTR_ERR(other_inode);
4941 goto out_unlock;
4944 * We are safe logging the other inode without
4945 * acquiring its i_mutex as long as we log with
4946 * the LOG_INODE_EXISTS mode. We're safe against
4947 * concurrent renames of the other inode as well
4948 * because during a rename we pin the log and
4949 * update the log with the new name before we
4950 * unpin it.
4952 err = btrfs_log_inode(trans, root,
4953 BTRFS_I(other_inode),
4954 LOG_OTHER_INODE, 0, LLONG_MAX,
4955 ctx);
4956 iput(other_inode);
4957 if (err)
4958 goto out_unlock;
4959 else
4960 goto next_key;
4964 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4965 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4966 if (ins_nr == 0)
4967 goto next_slot;
4968 ret = copy_items(trans, inode, dst_path, path,
4969 &last_extent, ins_start_slot,
4970 ins_nr, inode_only, logged_isize);
4971 if (ret < 0) {
4972 err = ret;
4973 goto out_unlock;
4975 ins_nr = 0;
4976 if (ret) {
4977 btrfs_release_path(path);
4978 continue;
4980 goto next_slot;
4983 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4984 ins_nr++;
4985 goto next_slot;
4986 } else if (!ins_nr) {
4987 ins_start_slot = path->slots[0];
4988 ins_nr = 1;
4989 goto next_slot;
4992 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4993 ins_start_slot, ins_nr, inode_only,
4994 logged_isize);
4995 if (ret < 0) {
4996 err = ret;
4997 goto out_unlock;
4999 if (ret) {
5000 ins_nr = 0;
5001 btrfs_release_path(path);
5002 continue;
5004 ins_nr = 1;
5005 ins_start_slot = path->slots[0];
5006 next_slot:
5008 nritems = btrfs_header_nritems(path->nodes[0]);
5009 path->slots[0]++;
5010 if (path->slots[0] < nritems) {
5011 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5012 path->slots[0]);
5013 goto again;
5015 if (ins_nr) {
5016 ret = copy_items(trans, inode, dst_path, path,
5017 &last_extent, ins_start_slot,
5018 ins_nr, inode_only, logged_isize);
5019 if (ret < 0) {
5020 err = ret;
5021 goto out_unlock;
5023 ret = 0;
5024 ins_nr = 0;
5026 btrfs_release_path(path);
5027 next_key:
5028 if (min_key.offset < (u64)-1) {
5029 min_key.offset++;
5030 } else if (min_key.type < max_key.type) {
5031 min_key.type++;
5032 min_key.offset = 0;
5033 } else {
5034 break;
5037 if (ins_nr) {
5038 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5039 ins_start_slot, ins_nr, inode_only,
5040 logged_isize);
5041 if (ret < 0) {
5042 err = ret;
5043 goto out_unlock;
5045 ret = 0;
5046 ins_nr = 0;
5049 btrfs_release_path(path);
5050 btrfs_release_path(dst_path);
5051 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5052 if (err)
5053 goto out_unlock;
5054 xattrs_logged = true;
5055 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5056 btrfs_release_path(path);
5057 btrfs_release_path(dst_path);
5058 err = btrfs_log_trailing_hole(trans, root, inode, path);
5059 if (err)
5060 goto out_unlock;
5062 log_extents:
5063 btrfs_release_path(path);
5064 btrfs_release_path(dst_path);
5065 if (need_log_inode_item) {
5066 err = log_inode_item(trans, log, dst_path, inode);
5067 if (!err && !xattrs_logged) {
5068 err = btrfs_log_all_xattrs(trans, root, inode, path,
5069 dst_path);
5070 btrfs_release_path(path);
5072 if (err)
5073 goto out_unlock;
5075 if (fast_search) {
5076 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5077 &logged_list, ctx, start, end);
5078 if (ret) {
5079 err = ret;
5080 goto out_unlock;
5082 } else if (inode_only == LOG_INODE_ALL) {
5083 struct extent_map *em, *n;
5085 write_lock(&em_tree->lock);
5087 * We can't just remove every em if we're called for a ranged
5088 * fsync - that is, one that doesn't cover the whole possible
5089 * file range (0 to LLONG_MAX). This is because we can have
5090 * em's that fall outside the range we're logging and therefore
5091 * their ordered operations haven't completed yet
5092 * (btrfs_finish_ordered_io() not invoked yet). This means we
5093 * didn't get their respective file extent item in the fs/subvol
5094 * tree yet, and need to let the next fast fsync (one which
5095 * consults the list of modified extent maps) find the em so
5096 * that it logs a matching file extent item and waits for the
5097 * respective ordered operation to complete (if it's still
5098 * running).
5100 * Removing every em outside the range we're logging would make
5101 * the next fast fsync not log their matching file extent items,
5102 * therefore making us lose data after a log replay.
5104 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5105 list) {
5106 const u64 mod_end = em->mod_start + em->mod_len - 1;
5108 if (em->mod_start >= start && mod_end <= end)
5109 list_del_init(&em->list);
5111 write_unlock(&em_tree->lock);
5114 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5115 ret = log_directory_changes(trans, root, inode, path, dst_path,
5116 ctx);
5117 if (ret) {
5118 err = ret;
5119 goto out_unlock;
5123 spin_lock(&inode->lock);
5124 inode->logged_trans = trans->transid;
5125 inode->last_log_commit = inode->last_sub_trans;
5126 spin_unlock(&inode->lock);
5127 out_unlock:
5128 if (unlikely(err))
5129 btrfs_put_logged_extents(&logged_list);
5130 else
5131 btrfs_submit_logged_extents(&logged_list, log);
5132 mutex_unlock(&inode->log_mutex);
5134 btrfs_free_path(path);
5135 btrfs_free_path(dst_path);
5136 return err;
5140 * Check if we must fallback to a transaction commit when logging an inode.
5141 * This must be called after logging the inode and is used only in the context
5142 * when fsyncing an inode requires the need to log some other inode - in which
5143 * case we can't lock the i_mutex of each other inode we need to log as that
5144 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5145 * log inodes up or down in the hierarchy) or rename operations for example. So
5146 * we take the log_mutex of the inode after we have logged it and then check for
5147 * its last_unlink_trans value - this is safe because any task setting
5148 * last_unlink_trans must take the log_mutex and it must do this before it does
5149 * the actual unlink operation, so if we do this check before a concurrent task
5150 * sets last_unlink_trans it means we've logged a consistent version/state of
5151 * all the inode items, otherwise we are not sure and must do a transaction
5152 * commit (the concurrent task might have only updated last_unlink_trans before
5153 * we logged the inode or it might have also done the unlink).
5155 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5156 struct btrfs_inode *inode)
5158 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5159 bool ret = false;
5161 mutex_lock(&inode->log_mutex);
5162 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5164 * Make sure any commits to the log are forced to be full
5165 * commits.
5167 btrfs_set_log_full_commit(fs_info, trans);
5168 ret = true;
5170 mutex_unlock(&inode->log_mutex);
5172 return ret;
5176 * follow the dentry parent pointers up the chain and see if any
5177 * of the directories in it require a full commit before they can
5178 * be logged. Returns zero if nothing special needs to be done or 1 if
5179 * a full commit is required.
5181 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5182 struct btrfs_inode *inode,
5183 struct dentry *parent,
5184 struct super_block *sb,
5185 u64 last_committed)
5187 int ret = 0;
5188 struct dentry *old_parent = NULL;
5189 struct btrfs_inode *orig_inode = inode;
5192 * for regular files, if its inode is already on disk, we don't
5193 * have to worry about the parents at all. This is because
5194 * we can use the last_unlink_trans field to record renames
5195 * and other fun in this file.
5197 if (S_ISREG(inode->vfs_inode.i_mode) &&
5198 inode->generation <= last_committed &&
5199 inode->last_unlink_trans <= last_committed)
5200 goto out;
5202 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5203 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5204 goto out;
5205 inode = BTRFS_I(d_inode(parent));
5208 while (1) {
5210 * If we are logging a directory then we start with our inode,
5211 * not our parent's inode, so we need to skip setting the
5212 * logged_trans so that further down in the log code we don't
5213 * think this inode has already been logged.
5215 if (inode != orig_inode)
5216 inode->logged_trans = trans->transid;
5217 smp_mb();
5219 if (btrfs_must_commit_transaction(trans, inode)) {
5220 ret = 1;
5221 break;
5224 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5225 break;
5227 if (IS_ROOT(parent)) {
5228 inode = BTRFS_I(d_inode(parent));
5229 if (btrfs_must_commit_transaction(trans, inode))
5230 ret = 1;
5231 break;
5234 parent = dget_parent(parent);
5235 dput(old_parent);
5236 old_parent = parent;
5237 inode = BTRFS_I(d_inode(parent));
5240 dput(old_parent);
5241 out:
5242 return ret;
5245 struct btrfs_dir_list {
5246 u64 ino;
5247 struct list_head list;
5251 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5252 * details about the why it is needed.
5253 * This is a recursive operation - if an existing dentry corresponds to a
5254 * directory, that directory's new entries are logged too (same behaviour as
5255 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5256 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5257 * complains about the following circular lock dependency / possible deadlock:
5259 * CPU0 CPU1
5260 * ---- ----
5261 * lock(&type->i_mutex_dir_key#3/2);
5262 * lock(sb_internal#2);
5263 * lock(&type->i_mutex_dir_key#3/2);
5264 * lock(&sb->s_type->i_mutex_key#14);
5266 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5267 * sb_start_intwrite() in btrfs_start_transaction().
5268 * Not locking i_mutex of the inodes is still safe because:
5270 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5271 * that while logging the inode new references (names) are added or removed
5272 * from the inode, leaving the logged inode item with a link count that does
5273 * not match the number of logged inode reference items. This is fine because
5274 * at log replay time we compute the real number of links and correct the
5275 * link count in the inode item (see replay_one_buffer() and
5276 * link_to_fixup_dir());
5278 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5279 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5280 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5281 * has a size that doesn't match the sum of the lengths of all the logged
5282 * names. This does not result in a problem because if a dir_item key is
5283 * logged but its matching dir_index key is not logged, at log replay time we
5284 * don't use it to replay the respective name (see replay_one_name()). On the
5285 * other hand if only the dir_index key ends up being logged, the respective
5286 * name is added to the fs/subvol tree with both the dir_item and dir_index
5287 * keys created (see replay_one_name()).
5288 * The directory's inode item with a wrong i_size is not a problem as well,
5289 * since we don't use it at log replay time to set the i_size in the inode
5290 * item of the fs/subvol tree (see overwrite_item()).
5292 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5293 struct btrfs_root *root,
5294 struct btrfs_inode *start_inode,
5295 struct btrfs_log_ctx *ctx)
5297 struct btrfs_fs_info *fs_info = root->fs_info;
5298 struct btrfs_root *log = root->log_root;
5299 struct btrfs_path *path;
5300 LIST_HEAD(dir_list);
5301 struct btrfs_dir_list *dir_elem;
5302 int ret = 0;
5304 path = btrfs_alloc_path();
5305 if (!path)
5306 return -ENOMEM;
5308 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5309 if (!dir_elem) {
5310 btrfs_free_path(path);
5311 return -ENOMEM;
5313 dir_elem->ino = btrfs_ino(start_inode);
5314 list_add_tail(&dir_elem->list, &dir_list);
5316 while (!list_empty(&dir_list)) {
5317 struct extent_buffer *leaf;
5318 struct btrfs_key min_key;
5319 int nritems;
5320 int i;
5322 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5323 list);
5324 if (ret)
5325 goto next_dir_inode;
5327 min_key.objectid = dir_elem->ino;
5328 min_key.type = BTRFS_DIR_ITEM_KEY;
5329 min_key.offset = 0;
5330 again:
5331 btrfs_release_path(path);
5332 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5333 if (ret < 0) {
5334 goto next_dir_inode;
5335 } else if (ret > 0) {
5336 ret = 0;
5337 goto next_dir_inode;
5340 process_leaf:
5341 leaf = path->nodes[0];
5342 nritems = btrfs_header_nritems(leaf);
5343 for (i = path->slots[0]; i < nritems; i++) {
5344 struct btrfs_dir_item *di;
5345 struct btrfs_key di_key;
5346 struct inode *di_inode;
5347 struct btrfs_dir_list *new_dir_elem;
5348 int log_mode = LOG_INODE_EXISTS;
5349 int type;
5351 btrfs_item_key_to_cpu(leaf, &min_key, i);
5352 if (min_key.objectid != dir_elem->ino ||
5353 min_key.type != BTRFS_DIR_ITEM_KEY)
5354 goto next_dir_inode;
5356 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5357 type = btrfs_dir_type(leaf, di);
5358 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5359 type != BTRFS_FT_DIR)
5360 continue;
5361 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5362 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5363 continue;
5365 btrfs_release_path(path);
5366 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5367 if (IS_ERR(di_inode)) {
5368 ret = PTR_ERR(di_inode);
5369 goto next_dir_inode;
5372 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5373 iput(di_inode);
5374 break;
5377 ctx->log_new_dentries = false;
5378 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5379 log_mode = LOG_INODE_ALL;
5380 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5381 log_mode, 0, LLONG_MAX, ctx);
5382 if (!ret &&
5383 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5384 ret = 1;
5385 iput(di_inode);
5386 if (ret)
5387 goto next_dir_inode;
5388 if (ctx->log_new_dentries) {
5389 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5390 GFP_NOFS);
5391 if (!new_dir_elem) {
5392 ret = -ENOMEM;
5393 goto next_dir_inode;
5395 new_dir_elem->ino = di_key.objectid;
5396 list_add_tail(&new_dir_elem->list, &dir_list);
5398 break;
5400 if (i == nritems) {
5401 ret = btrfs_next_leaf(log, path);
5402 if (ret < 0) {
5403 goto next_dir_inode;
5404 } else if (ret > 0) {
5405 ret = 0;
5406 goto next_dir_inode;
5408 goto process_leaf;
5410 if (min_key.offset < (u64)-1) {
5411 min_key.offset++;
5412 goto again;
5414 next_dir_inode:
5415 list_del(&dir_elem->list);
5416 kfree(dir_elem);
5419 btrfs_free_path(path);
5420 return ret;
5423 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5424 struct btrfs_inode *inode,
5425 struct btrfs_log_ctx *ctx)
5427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5428 int ret;
5429 struct btrfs_path *path;
5430 struct btrfs_key key;
5431 struct btrfs_root *root = inode->root;
5432 const u64 ino = btrfs_ino(inode);
5434 path = btrfs_alloc_path();
5435 if (!path)
5436 return -ENOMEM;
5437 path->skip_locking = 1;
5438 path->search_commit_root = 1;
5440 key.objectid = ino;
5441 key.type = BTRFS_INODE_REF_KEY;
5442 key.offset = 0;
5443 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5444 if (ret < 0)
5445 goto out;
5447 while (true) {
5448 struct extent_buffer *leaf = path->nodes[0];
5449 int slot = path->slots[0];
5450 u32 cur_offset = 0;
5451 u32 item_size;
5452 unsigned long ptr;
5454 if (slot >= btrfs_header_nritems(leaf)) {
5455 ret = btrfs_next_leaf(root, path);
5456 if (ret < 0)
5457 goto out;
5458 else if (ret > 0)
5459 break;
5460 continue;
5463 btrfs_item_key_to_cpu(leaf, &key, slot);
5464 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5465 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5466 break;
5468 item_size = btrfs_item_size_nr(leaf, slot);
5469 ptr = btrfs_item_ptr_offset(leaf, slot);
5470 while (cur_offset < item_size) {
5471 struct btrfs_key inode_key;
5472 struct inode *dir_inode;
5474 inode_key.type = BTRFS_INODE_ITEM_KEY;
5475 inode_key.offset = 0;
5477 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5478 struct btrfs_inode_extref *extref;
5480 extref = (struct btrfs_inode_extref *)
5481 (ptr + cur_offset);
5482 inode_key.objectid = btrfs_inode_extref_parent(
5483 leaf, extref);
5484 cur_offset += sizeof(*extref);
5485 cur_offset += btrfs_inode_extref_name_len(leaf,
5486 extref);
5487 } else {
5488 inode_key.objectid = key.offset;
5489 cur_offset = item_size;
5492 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5493 root, NULL);
5494 /* If parent inode was deleted, skip it. */
5495 if (IS_ERR(dir_inode))
5496 continue;
5498 if (ctx)
5499 ctx->log_new_dentries = false;
5500 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5501 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5502 if (!ret &&
5503 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5504 ret = 1;
5505 if (!ret && ctx && ctx->log_new_dentries)
5506 ret = log_new_dir_dentries(trans, root,
5507 BTRFS_I(dir_inode), ctx);
5508 iput(dir_inode);
5509 if (ret)
5510 goto out;
5512 path->slots[0]++;
5514 ret = 0;
5515 out:
5516 btrfs_free_path(path);
5517 return ret;
5521 * helper function around btrfs_log_inode to make sure newly created
5522 * parent directories also end up in the log. A minimal inode and backref
5523 * only logging is done of any parent directories that are older than
5524 * the last committed transaction
5526 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5527 struct btrfs_root *root,
5528 struct btrfs_inode *inode,
5529 struct dentry *parent,
5530 const loff_t start,
5531 const loff_t end,
5532 int inode_only,
5533 struct btrfs_log_ctx *ctx)
5535 struct btrfs_fs_info *fs_info = root->fs_info;
5536 struct super_block *sb;
5537 struct dentry *old_parent = NULL;
5538 int ret = 0;
5539 u64 last_committed = fs_info->last_trans_committed;
5540 bool log_dentries = false;
5541 struct btrfs_inode *orig_inode = inode;
5543 sb = inode->vfs_inode.i_sb;
5545 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5546 ret = 1;
5547 goto end_no_trans;
5551 * The prev transaction commit doesn't complete, we need do
5552 * full commit by ourselves.
5554 if (fs_info->last_trans_log_full_commit >
5555 fs_info->last_trans_committed) {
5556 ret = 1;
5557 goto end_no_trans;
5560 if (root != inode->root || btrfs_root_refs(&root->root_item) == 0) {
5561 ret = 1;
5562 goto end_no_trans;
5565 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5566 last_committed);
5567 if (ret)
5568 goto end_no_trans;
5570 if (btrfs_inode_in_log(inode, trans->transid)) {
5571 ret = BTRFS_NO_LOG_SYNC;
5572 goto end_no_trans;
5575 ret = start_log_trans(trans, root, ctx);
5576 if (ret)
5577 goto end_no_trans;
5579 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5580 if (ret)
5581 goto end_trans;
5584 * for regular files, if its inode is already on disk, we don't
5585 * have to worry about the parents at all. This is because
5586 * we can use the last_unlink_trans field to record renames
5587 * and other fun in this file.
5589 if (S_ISREG(inode->vfs_inode.i_mode) &&
5590 inode->generation <= last_committed &&
5591 inode->last_unlink_trans <= last_committed) {
5592 ret = 0;
5593 goto end_trans;
5596 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5597 log_dentries = true;
5600 * On unlink we must make sure all our current and old parent directory
5601 * inodes are fully logged. This is to prevent leaving dangling
5602 * directory index entries in directories that were our parents but are
5603 * not anymore. Not doing this results in old parent directory being
5604 * impossible to delete after log replay (rmdir will always fail with
5605 * error -ENOTEMPTY).
5607 * Example 1:
5609 * mkdir testdir
5610 * touch testdir/foo
5611 * ln testdir/foo testdir/bar
5612 * sync
5613 * unlink testdir/bar
5614 * xfs_io -c fsync testdir/foo
5615 * <power failure>
5616 * mount fs, triggers log replay
5618 * If we don't log the parent directory (testdir), after log replay the
5619 * directory still has an entry pointing to the file inode using the bar
5620 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5621 * the file inode has a link count of 1.
5623 * Example 2:
5625 * mkdir testdir
5626 * touch foo
5627 * ln foo testdir/foo2
5628 * ln foo testdir/foo3
5629 * sync
5630 * unlink testdir/foo3
5631 * xfs_io -c fsync foo
5632 * <power failure>
5633 * mount fs, triggers log replay
5635 * Similar as the first example, after log replay the parent directory
5636 * testdir still has an entry pointing to the inode file with name foo3
5637 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5638 * and has a link count of 2.
5640 if (inode->last_unlink_trans > last_committed) {
5641 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5642 if (ret)
5643 goto end_trans;
5646 while (1) {
5647 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5648 break;
5650 inode = BTRFS_I(d_inode(parent));
5651 if (root != inode->root)
5652 break;
5654 if (inode->generation > last_committed) {
5655 ret = btrfs_log_inode(trans, root, inode,
5656 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5657 if (ret)
5658 goto end_trans;
5660 if (IS_ROOT(parent))
5661 break;
5663 parent = dget_parent(parent);
5664 dput(old_parent);
5665 old_parent = parent;
5667 if (log_dentries)
5668 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5669 else
5670 ret = 0;
5671 end_trans:
5672 dput(old_parent);
5673 if (ret < 0) {
5674 btrfs_set_log_full_commit(fs_info, trans);
5675 ret = 1;
5678 if (ret)
5679 btrfs_remove_log_ctx(root, ctx);
5680 btrfs_end_log_trans(root);
5681 end_no_trans:
5682 return ret;
5686 * it is not safe to log dentry if the chunk root has added new
5687 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5688 * If this returns 1, you must commit the transaction to safely get your
5689 * data on disk.
5691 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5692 struct btrfs_root *root, struct dentry *dentry,
5693 const loff_t start,
5694 const loff_t end,
5695 struct btrfs_log_ctx *ctx)
5697 struct dentry *parent = dget_parent(dentry);
5698 int ret;
5700 ret = btrfs_log_inode_parent(trans, root, BTRFS_I(d_inode(dentry)),
5701 parent, start, end, LOG_INODE_ALL, ctx);
5702 dput(parent);
5704 return ret;
5708 * should be called during mount to recover any replay any log trees
5709 * from the FS
5711 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5713 int ret;
5714 struct btrfs_path *path;
5715 struct btrfs_trans_handle *trans;
5716 struct btrfs_key key;
5717 struct btrfs_key found_key;
5718 struct btrfs_key tmp_key;
5719 struct btrfs_root *log;
5720 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5721 struct walk_control wc = {
5722 .process_func = process_one_buffer,
5723 .stage = 0,
5726 path = btrfs_alloc_path();
5727 if (!path)
5728 return -ENOMEM;
5730 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5732 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5733 if (IS_ERR(trans)) {
5734 ret = PTR_ERR(trans);
5735 goto error;
5738 wc.trans = trans;
5739 wc.pin = 1;
5741 ret = walk_log_tree(trans, log_root_tree, &wc);
5742 if (ret) {
5743 btrfs_handle_fs_error(fs_info, ret,
5744 "Failed to pin buffers while recovering log root tree.");
5745 goto error;
5748 again:
5749 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5750 key.offset = (u64)-1;
5751 key.type = BTRFS_ROOT_ITEM_KEY;
5753 while (1) {
5754 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5756 if (ret < 0) {
5757 btrfs_handle_fs_error(fs_info, ret,
5758 "Couldn't find tree log root.");
5759 goto error;
5761 if (ret > 0) {
5762 if (path->slots[0] == 0)
5763 break;
5764 path->slots[0]--;
5766 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5767 path->slots[0]);
5768 btrfs_release_path(path);
5769 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5770 break;
5772 log = btrfs_read_fs_root(log_root_tree, &found_key);
5773 if (IS_ERR(log)) {
5774 ret = PTR_ERR(log);
5775 btrfs_handle_fs_error(fs_info, ret,
5776 "Couldn't read tree log root.");
5777 goto error;
5780 tmp_key.objectid = found_key.offset;
5781 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5782 tmp_key.offset = (u64)-1;
5784 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5785 if (IS_ERR(wc.replay_dest)) {
5786 ret = PTR_ERR(wc.replay_dest);
5787 free_extent_buffer(log->node);
5788 free_extent_buffer(log->commit_root);
5789 kfree(log);
5790 btrfs_handle_fs_error(fs_info, ret,
5791 "Couldn't read target root for tree log recovery.");
5792 goto error;
5795 wc.replay_dest->log_root = log;
5796 btrfs_record_root_in_trans(trans, wc.replay_dest);
5797 ret = walk_log_tree(trans, log, &wc);
5799 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5800 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5801 path);
5804 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5805 struct btrfs_root *root = wc.replay_dest;
5807 btrfs_release_path(path);
5810 * We have just replayed everything, and the highest
5811 * objectid of fs roots probably has changed in case
5812 * some inode_item's got replayed.
5814 * root->objectid_mutex is not acquired as log replay
5815 * could only happen during mount.
5817 ret = btrfs_find_highest_objectid(root,
5818 &root->highest_objectid);
5821 key.offset = found_key.offset - 1;
5822 wc.replay_dest->log_root = NULL;
5823 free_extent_buffer(log->node);
5824 free_extent_buffer(log->commit_root);
5825 kfree(log);
5827 if (ret)
5828 goto error;
5830 if (found_key.offset == 0)
5831 break;
5833 btrfs_release_path(path);
5835 /* step one is to pin it all, step two is to replay just inodes */
5836 if (wc.pin) {
5837 wc.pin = 0;
5838 wc.process_func = replay_one_buffer;
5839 wc.stage = LOG_WALK_REPLAY_INODES;
5840 goto again;
5842 /* step three is to replay everything */
5843 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5844 wc.stage++;
5845 goto again;
5848 btrfs_free_path(path);
5850 /* step 4: commit the transaction, which also unpins the blocks */
5851 ret = btrfs_commit_transaction(trans);
5852 if (ret)
5853 return ret;
5855 free_extent_buffer(log_root_tree->node);
5856 log_root_tree->log_root = NULL;
5857 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5858 kfree(log_root_tree);
5860 return 0;
5861 error:
5862 if (wc.trans)
5863 btrfs_end_transaction(wc.trans);
5864 btrfs_free_path(path);
5865 return ret;
5869 * there are some corner cases where we want to force a full
5870 * commit instead of allowing a directory to be logged.
5872 * They revolve around files there were unlinked from the directory, and
5873 * this function updates the parent directory so that a full commit is
5874 * properly done if it is fsync'd later after the unlinks are done.
5876 * Must be called before the unlink operations (updates to the subvolume tree,
5877 * inodes, etc) are done.
5879 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5880 struct btrfs_inode *dir, struct btrfs_inode *inode,
5881 int for_rename)
5884 * when we're logging a file, if it hasn't been renamed
5885 * or unlinked, and its inode is fully committed on disk,
5886 * we don't have to worry about walking up the directory chain
5887 * to log its parents.
5889 * So, we use the last_unlink_trans field to put this transid
5890 * into the file. When the file is logged we check it and
5891 * don't log the parents if the file is fully on disk.
5893 mutex_lock(&inode->log_mutex);
5894 inode->last_unlink_trans = trans->transid;
5895 mutex_unlock(&inode->log_mutex);
5898 * if this directory was already logged any new
5899 * names for this file/dir will get recorded
5901 smp_mb();
5902 if (dir->logged_trans == trans->transid)
5903 return;
5906 * if the inode we're about to unlink was logged,
5907 * the log will be properly updated for any new names
5909 if (inode->logged_trans == trans->transid)
5910 return;
5913 * when renaming files across directories, if the directory
5914 * there we're unlinking from gets fsync'd later on, there's
5915 * no way to find the destination directory later and fsync it
5916 * properly. So, we have to be conservative and force commits
5917 * so the new name gets discovered.
5919 if (for_rename)
5920 goto record;
5922 /* we can safely do the unlink without any special recording */
5923 return;
5925 record:
5926 mutex_lock(&dir->log_mutex);
5927 dir->last_unlink_trans = trans->transid;
5928 mutex_unlock(&dir->log_mutex);
5932 * Make sure that if someone attempts to fsync the parent directory of a deleted
5933 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5934 * that after replaying the log tree of the parent directory's root we will not
5935 * see the snapshot anymore and at log replay time we will not see any log tree
5936 * corresponding to the deleted snapshot's root, which could lead to replaying
5937 * it after replaying the log tree of the parent directory (which would replay
5938 * the snapshot delete operation).
5940 * Must be called before the actual snapshot destroy operation (updates to the
5941 * parent root and tree of tree roots trees, etc) are done.
5943 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5944 struct btrfs_inode *dir)
5946 mutex_lock(&dir->log_mutex);
5947 dir->last_unlink_trans = trans->transid;
5948 mutex_unlock(&dir->log_mutex);
5952 * Call this after adding a new name for a file and it will properly
5953 * update the log to reflect the new name.
5955 * It will return zero if all goes well, and it will return 1 if a
5956 * full transaction commit is required.
5958 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5959 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
5960 struct dentry *parent)
5962 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5963 struct btrfs_root *root = inode->root;
5966 * this will force the logging code to walk the dentry chain
5967 * up for the file
5969 if (!S_ISDIR(inode->vfs_inode.i_mode))
5970 inode->last_unlink_trans = trans->transid;
5973 * if this inode hasn't been logged and directory we're renaming it
5974 * from hasn't been logged, we don't need to log it
5976 if (inode->logged_trans <= fs_info->last_trans_committed &&
5977 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
5978 return 0;
5980 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5981 LLONG_MAX, LOG_INODE_EXISTS, NULL);