bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / fs / dcache.c
blob8945e6cabd93f7ce42709f93b90db94dceb74273
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/rculist_bl.h>
37 #include <linux/prefetch.h>
38 #include <linux/ratelimit.h>
39 #include <linux/list_lru.h>
40 #include "internal.h"
41 #include "mount.h"
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_u.d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
51 * dentry->d_sb->s_dentry_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_u.d_alias, d_inode
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dentry->d_sb->s_dentry_lru_lock
67 * dcache_hash_bucket lock
68 * s_roots lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 EXPORT_SYMBOL(rename_lock);
88 static struct kmem_cache *dentry_cache __read_mostly;
90 const struct qstr empty_name = QSTR_INIT("", 0);
91 EXPORT_SYMBOL(empty_name);
92 const struct qstr slash_name = QSTR_INIT("/", 1);
93 EXPORT_SYMBOL(slash_name);
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
104 static unsigned int d_hash_shift __read_mostly;
106 static struct hlist_bl_head *dentry_hashtable __read_mostly;
108 static inline struct hlist_bl_head *d_hash(unsigned int hash)
110 return dentry_hashtable + (hash >> d_hash_shift);
113 #define IN_LOOKUP_SHIFT 10
114 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
116 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
117 unsigned int hash)
119 hash += (unsigned long) parent / L1_CACHE_BYTES;
120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
124 /* Statistics gathering. */
125 struct dentry_stat_t dentry_stat = {
126 .age_limit = 45,
129 static DEFINE_PER_CPU(long, nr_dentry);
130 static DEFINE_PER_CPU(long, nr_dentry_unused);
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
146 static long get_nr_dentry(void)
148 int i;
149 long sum = 0;
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry, i);
152 return sum < 0 ? 0 : sum;
155 static long get_nr_dentry_unused(void)
157 int i;
158 long sum = 0;
159 for_each_possible_cpu(i)
160 sum += per_cpu(nr_dentry_unused, i);
161 return sum < 0 ? 0 : sum;
164 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
165 size_t *lenp, loff_t *ppos)
167 dentry_stat.nr_dentry = get_nr_dentry();
168 dentry_stat.nr_unused = get_nr_dentry_unused();
169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
171 #endif
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
177 #ifdef CONFIG_DCACHE_WORD_ACCESS
179 #include <asm/word-at-a-time.h>
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
189 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
191 unsigned long a,b,mask;
193 for (;;) {
194 a = read_word_at_a_time(cs);
195 b = load_unaligned_zeropad(ct);
196 if (tcount < sizeof(unsigned long))
197 break;
198 if (unlikely(a != b))
199 return 1;
200 cs += sizeof(unsigned long);
201 ct += sizeof(unsigned long);
202 tcount -= sizeof(unsigned long);
203 if (!tcount)
204 return 0;
206 mask = bytemask_from_count(tcount);
207 return unlikely(!!((a ^ b) & mask));
210 #else
212 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
214 do {
215 if (*cs != *ct)
216 return 1;
217 cs++;
218 ct++;
219 tcount--;
220 } while (tcount);
221 return 0;
224 #endif
226 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
229 * Be careful about RCU walk racing with rename:
230 * use 'READ_ONCE' to fetch the name pointer.
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
244 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
246 return dentry_string_cmp(cs, ct, tcount);
249 struct external_name {
250 union {
251 atomic_t count;
252 struct rcu_head head;
253 } u;
254 unsigned char name[];
257 static inline struct external_name *external_name(struct dentry *dentry)
259 return container_of(dentry->d_name.name, struct external_name, name[0]);
262 static void __d_free(struct rcu_head *head)
264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
266 kmem_cache_free(dentry_cache, dentry);
269 static void __d_free_external(struct rcu_head *head)
271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
272 kfree(external_name(dentry));
273 kmem_cache_free(dentry_cache, dentry);
276 static inline int dname_external(const struct dentry *dentry)
278 return dentry->d_name.name != dentry->d_iname;
281 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
283 spin_lock(&dentry->d_lock);
284 if (unlikely(dname_external(dentry))) {
285 struct external_name *p = external_name(dentry);
286 atomic_inc(&p->u.count);
287 spin_unlock(&dentry->d_lock);
288 name->name = p->name;
289 } else {
290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
291 spin_unlock(&dentry->d_lock);
292 name->name = name->inline_name;
295 EXPORT_SYMBOL(take_dentry_name_snapshot);
297 void release_dentry_name_snapshot(struct name_snapshot *name)
299 if (unlikely(name->name != name->inline_name)) {
300 struct external_name *p;
301 p = container_of(name->name, struct external_name, name[0]);
302 if (unlikely(atomic_dec_and_test(&p->u.count)))
303 kfree_rcu(p, u.head);
306 EXPORT_SYMBOL(release_dentry_name_snapshot);
308 static inline void __d_set_inode_and_type(struct dentry *dentry,
309 struct inode *inode,
310 unsigned type_flags)
312 unsigned flags;
314 dentry->d_inode = inode;
315 flags = READ_ONCE(dentry->d_flags);
316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
317 flags |= type_flags;
318 WRITE_ONCE(dentry->d_flags, flags);
321 static inline void __d_clear_type_and_inode(struct dentry *dentry)
323 unsigned flags = READ_ONCE(dentry->d_flags);
325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
326 WRITE_ONCE(dentry->d_flags, flags);
327 dentry->d_inode = NULL;
330 static void dentry_free(struct dentry *dentry)
332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
333 if (unlikely(dname_external(dentry))) {
334 struct external_name *p = external_name(dentry);
335 if (likely(atomic_dec_and_test(&p->u.count))) {
336 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
337 return;
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry->d_flags & DCACHE_RCUACCESS))
342 __d_free(&dentry->d_u.d_rcu);
343 else
344 call_rcu(&dentry->d_u.d_rcu, __d_free);
348 * Release the dentry's inode, using the filesystem
349 * d_iput() operation if defined.
351 static void dentry_unlink_inode(struct dentry * dentry)
352 __releases(dentry->d_lock)
353 __releases(dentry->d_inode->i_lock)
355 struct inode *inode = dentry->d_inode;
356 bool hashed = !d_unhashed(dentry);
358 if (hashed)
359 raw_write_seqcount_begin(&dentry->d_seq);
360 __d_clear_type_and_inode(dentry);
361 hlist_del_init(&dentry->d_u.d_alias);
362 if (hashed)
363 raw_write_seqcount_end(&dentry->d_seq);
364 spin_unlock(&dentry->d_lock);
365 spin_unlock(&inode->i_lock);
366 if (!inode->i_nlink)
367 fsnotify_inoderemove(inode);
368 if (dentry->d_op && dentry->d_op->d_iput)
369 dentry->d_op->d_iput(dentry, inode);
370 else
371 iput(inode);
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
388 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389 static void d_lru_add(struct dentry *dentry)
391 D_FLAG_VERIFY(dentry, 0);
392 dentry->d_flags |= DCACHE_LRU_LIST;
393 this_cpu_inc(nr_dentry_unused);
394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
397 static void d_lru_del(struct dentry *dentry)
399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
400 dentry->d_flags &= ~DCACHE_LRU_LIST;
401 this_cpu_dec(nr_dentry_unused);
402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 static void d_shrink_del(struct dentry *dentry)
407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
408 list_del_init(&dentry->d_lru);
409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 this_cpu_dec(nr_dentry_unused);
413 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415 D_FLAG_VERIFY(dentry, 0);
416 list_add(&dentry->d_lru, list);
417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
418 this_cpu_inc(nr_dentry_unused);
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
425 * private list.
427 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
430 dentry->d_flags &= ~DCACHE_LRU_LIST;
431 this_cpu_dec(nr_dentry_unused);
432 list_lru_isolate(lru, &dentry->d_lru);
435 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
436 struct list_head *list)
438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
439 dentry->d_flags |= DCACHE_SHRINK_LIST;
440 list_lru_isolate_move(lru, &dentry->d_lru, list);
444 * dentry_lru_(add|del)_list) must be called with d_lock held.
446 static void dentry_lru_add(struct dentry *dentry)
448 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
449 d_lru_add(dentry);
450 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
451 dentry->d_flags |= DCACHE_REFERENCED;
455 * d_drop - drop a dentry
456 * @dentry: dentry to drop
458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459 * be found through a VFS lookup any more. Note that this is different from
460 * deleting the dentry - d_delete will try to mark the dentry negative if
461 * possible, giving a successful _negative_ lookup, while d_drop will
462 * just make the cache lookup fail.
464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465 * reason (NFS timeouts or autofs deletes).
467 * __d_drop requires dentry->d_lock
468 * ___d_drop doesn't mark dentry as "unhashed"
469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
471 static void ___d_drop(struct dentry *dentry)
473 if (!d_unhashed(dentry)) {
474 struct hlist_bl_head *b;
476 * Hashed dentries are normally on the dentry hashtable,
477 * with the exception of those newly allocated by
478 * d_obtain_root, which are always IS_ROOT:
480 if (unlikely(IS_ROOT(dentry)))
481 b = &dentry->d_sb->s_roots;
482 else
483 b = d_hash(dentry->d_name.hash);
485 hlist_bl_lock(b);
486 __hlist_bl_del(&dentry->d_hash);
487 hlist_bl_unlock(b);
488 /* After this call, in-progress rcu-walk path lookup will fail. */
489 write_seqcount_invalidate(&dentry->d_seq);
493 void __d_drop(struct dentry *dentry)
495 ___d_drop(dentry);
496 dentry->d_hash.pprev = NULL;
498 EXPORT_SYMBOL(__d_drop);
500 void d_drop(struct dentry *dentry)
502 spin_lock(&dentry->d_lock);
503 __d_drop(dentry);
504 spin_unlock(&dentry->d_lock);
506 EXPORT_SYMBOL(d_drop);
508 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
510 struct dentry *next;
512 * Inform d_walk() and shrink_dentry_list() that we are no longer
513 * attached to the dentry tree
515 dentry->d_flags |= DCACHE_DENTRY_KILLED;
516 if (unlikely(list_empty(&dentry->d_child)))
517 return;
518 __list_del_entry(&dentry->d_child);
520 * Cursors can move around the list of children. While we'd been
521 * a normal list member, it didn't matter - ->d_child.next would've
522 * been updated. However, from now on it won't be and for the
523 * things like d_walk() it might end up with a nasty surprise.
524 * Normally d_walk() doesn't care about cursors moving around -
525 * ->d_lock on parent prevents that and since a cursor has no children
526 * of its own, we get through it without ever unlocking the parent.
527 * There is one exception, though - if we ascend from a child that
528 * gets killed as soon as we unlock it, the next sibling is found
529 * using the value left in its ->d_child.next. And if _that_
530 * pointed to a cursor, and cursor got moved (e.g. by lseek())
531 * before d_walk() regains parent->d_lock, we'll end up skipping
532 * everything the cursor had been moved past.
534 * Solution: make sure that the pointer left behind in ->d_child.next
535 * points to something that won't be moving around. I.e. skip the
536 * cursors.
538 while (dentry->d_child.next != &parent->d_subdirs) {
539 next = list_entry(dentry->d_child.next, struct dentry, d_child);
540 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
541 break;
542 dentry->d_child.next = next->d_child.next;
546 static void __dentry_kill(struct dentry *dentry)
548 struct dentry *parent = NULL;
549 bool can_free = true;
550 if (!IS_ROOT(dentry))
551 parent = dentry->d_parent;
554 * The dentry is now unrecoverably dead to the world.
556 lockref_mark_dead(&dentry->d_lockref);
559 * inform the fs via d_prune that this dentry is about to be
560 * unhashed and destroyed.
562 if (dentry->d_flags & DCACHE_OP_PRUNE)
563 dentry->d_op->d_prune(dentry);
565 if (dentry->d_flags & DCACHE_LRU_LIST) {
566 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
567 d_lru_del(dentry);
569 /* if it was on the hash then remove it */
570 __d_drop(dentry);
571 dentry_unlist(dentry, parent);
572 if (parent)
573 spin_unlock(&parent->d_lock);
574 if (dentry->d_inode)
575 dentry_unlink_inode(dentry);
576 else
577 spin_unlock(&dentry->d_lock);
578 this_cpu_dec(nr_dentry);
579 if (dentry->d_op && dentry->d_op->d_release)
580 dentry->d_op->d_release(dentry);
582 spin_lock(&dentry->d_lock);
583 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
584 dentry->d_flags |= DCACHE_MAY_FREE;
585 can_free = false;
587 spin_unlock(&dentry->d_lock);
588 if (likely(can_free))
589 dentry_free(dentry);
593 * Finish off a dentry we've decided to kill.
594 * dentry->d_lock must be held, returns with it unlocked.
595 * If ref is non-zero, then decrement the refcount too.
596 * Returns dentry requiring refcount drop, or NULL if we're done.
598 static struct dentry *dentry_kill(struct dentry *dentry)
599 __releases(dentry->d_lock)
601 struct inode *inode = dentry->d_inode;
602 struct dentry *parent = NULL;
604 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
605 goto failed;
607 if (!IS_ROOT(dentry)) {
608 parent = dentry->d_parent;
609 if (unlikely(!spin_trylock(&parent->d_lock))) {
610 if (inode)
611 spin_unlock(&inode->i_lock);
612 goto failed;
616 __dentry_kill(dentry);
617 return parent;
619 failed:
620 spin_unlock(&dentry->d_lock);
621 return dentry; /* try again with same dentry */
624 static inline struct dentry *lock_parent(struct dentry *dentry)
626 struct dentry *parent = dentry->d_parent;
627 if (IS_ROOT(dentry))
628 return NULL;
629 if (unlikely(dentry->d_lockref.count < 0))
630 return NULL;
631 if (likely(spin_trylock(&parent->d_lock)))
632 return parent;
633 rcu_read_lock();
634 spin_unlock(&dentry->d_lock);
635 again:
636 parent = READ_ONCE(dentry->d_parent);
637 spin_lock(&parent->d_lock);
639 * We can't blindly lock dentry until we are sure
640 * that we won't violate the locking order.
641 * Any changes of dentry->d_parent must have
642 * been done with parent->d_lock held, so
643 * spin_lock() above is enough of a barrier
644 * for checking if it's still our child.
646 if (unlikely(parent != dentry->d_parent)) {
647 spin_unlock(&parent->d_lock);
648 goto again;
650 if (parent != dentry) {
651 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
652 if (unlikely(dentry->d_lockref.count < 0)) {
653 spin_unlock(&parent->d_lock);
654 parent = NULL;
656 } else {
657 parent = NULL;
659 rcu_read_unlock();
660 return parent;
664 * Try to do a lockless dput(), and return whether that was successful.
666 * If unsuccessful, we return false, having already taken the dentry lock.
668 * The caller needs to hold the RCU read lock, so that the dentry is
669 * guaranteed to stay around even if the refcount goes down to zero!
671 static inline bool fast_dput(struct dentry *dentry)
673 int ret;
674 unsigned int d_flags;
677 * If we have a d_op->d_delete() operation, we sould not
678 * let the dentry count go to zero, so use "put_or_lock".
680 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
681 return lockref_put_or_lock(&dentry->d_lockref);
684 * .. otherwise, we can try to just decrement the
685 * lockref optimistically.
687 ret = lockref_put_return(&dentry->d_lockref);
690 * If the lockref_put_return() failed due to the lock being held
691 * by somebody else, the fast path has failed. We will need to
692 * get the lock, and then check the count again.
694 if (unlikely(ret < 0)) {
695 spin_lock(&dentry->d_lock);
696 if (dentry->d_lockref.count > 1) {
697 dentry->d_lockref.count--;
698 spin_unlock(&dentry->d_lock);
699 return 1;
701 return 0;
705 * If we weren't the last ref, we're done.
707 if (ret)
708 return 1;
711 * Careful, careful. The reference count went down
712 * to zero, but we don't hold the dentry lock, so
713 * somebody else could get it again, and do another
714 * dput(), and we need to not race with that.
716 * However, there is a very special and common case
717 * where we don't care, because there is nothing to
718 * do: the dentry is still hashed, it does not have
719 * a 'delete' op, and it's referenced and already on
720 * the LRU list.
722 * NOTE! Since we aren't locked, these values are
723 * not "stable". However, it is sufficient that at
724 * some point after we dropped the reference the
725 * dentry was hashed and the flags had the proper
726 * value. Other dentry users may have re-gotten
727 * a reference to the dentry and change that, but
728 * our work is done - we can leave the dentry
729 * around with a zero refcount.
731 smp_rmb();
732 d_flags = READ_ONCE(dentry->d_flags);
733 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
735 /* Nothing to do? Dropping the reference was all we needed? */
736 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
737 return 1;
740 * Not the fast normal case? Get the lock. We've already decremented
741 * the refcount, but we'll need to re-check the situation after
742 * getting the lock.
744 spin_lock(&dentry->d_lock);
747 * Did somebody else grab a reference to it in the meantime, and
748 * we're no longer the last user after all? Alternatively, somebody
749 * else could have killed it and marked it dead. Either way, we
750 * don't need to do anything else.
752 if (dentry->d_lockref.count) {
753 spin_unlock(&dentry->d_lock);
754 return 1;
758 * Re-get the reference we optimistically dropped. We hold the
759 * lock, and we just tested that it was zero, so we can just
760 * set it to 1.
762 dentry->d_lockref.count = 1;
763 return 0;
768 * This is dput
770 * This is complicated by the fact that we do not want to put
771 * dentries that are no longer on any hash chain on the unused
772 * list: we'd much rather just get rid of them immediately.
774 * However, that implies that we have to traverse the dentry
775 * tree upwards to the parents which might _also_ now be
776 * scheduled for deletion (it may have been only waiting for
777 * its last child to go away).
779 * This tail recursion is done by hand as we don't want to depend
780 * on the compiler to always get this right (gcc generally doesn't).
781 * Real recursion would eat up our stack space.
785 * dput - release a dentry
786 * @dentry: dentry to release
788 * Release a dentry. This will drop the usage count and if appropriate
789 * call the dentry unlink method as well as removing it from the queues and
790 * releasing its resources. If the parent dentries were scheduled for release
791 * they too may now get deleted.
793 void dput(struct dentry *dentry)
795 if (unlikely(!dentry))
796 return;
798 repeat:
799 might_sleep();
801 rcu_read_lock();
802 if (likely(fast_dput(dentry))) {
803 rcu_read_unlock();
804 return;
807 /* Slow case: now with the dentry lock held */
808 rcu_read_unlock();
810 WARN_ON(d_in_lookup(dentry));
812 /* Unreachable? Get rid of it */
813 if (unlikely(d_unhashed(dentry)))
814 goto kill_it;
816 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
817 goto kill_it;
819 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
820 if (dentry->d_op->d_delete(dentry))
821 goto kill_it;
824 dentry_lru_add(dentry);
826 dentry->d_lockref.count--;
827 spin_unlock(&dentry->d_lock);
828 return;
830 kill_it:
831 dentry = dentry_kill(dentry);
832 if (dentry) {
833 cond_resched();
834 goto repeat;
837 EXPORT_SYMBOL(dput);
840 /* This must be called with d_lock held */
841 static inline void __dget_dlock(struct dentry *dentry)
843 dentry->d_lockref.count++;
846 static inline void __dget(struct dentry *dentry)
848 lockref_get(&dentry->d_lockref);
851 struct dentry *dget_parent(struct dentry *dentry)
853 int gotref;
854 struct dentry *ret;
857 * Do optimistic parent lookup without any
858 * locking.
860 rcu_read_lock();
861 ret = READ_ONCE(dentry->d_parent);
862 gotref = lockref_get_not_zero(&ret->d_lockref);
863 rcu_read_unlock();
864 if (likely(gotref)) {
865 if (likely(ret == READ_ONCE(dentry->d_parent)))
866 return ret;
867 dput(ret);
870 repeat:
872 * Don't need rcu_dereference because we re-check it was correct under
873 * the lock.
875 rcu_read_lock();
876 ret = dentry->d_parent;
877 spin_lock(&ret->d_lock);
878 if (unlikely(ret != dentry->d_parent)) {
879 spin_unlock(&ret->d_lock);
880 rcu_read_unlock();
881 goto repeat;
883 rcu_read_unlock();
884 BUG_ON(!ret->d_lockref.count);
885 ret->d_lockref.count++;
886 spin_unlock(&ret->d_lock);
887 return ret;
889 EXPORT_SYMBOL(dget_parent);
892 * d_find_alias - grab a hashed alias of inode
893 * @inode: inode in question
895 * If inode has a hashed alias, or is a directory and has any alias,
896 * acquire the reference to alias and return it. Otherwise return NULL.
897 * Notice that if inode is a directory there can be only one alias and
898 * it can be unhashed only if it has no children, or if it is the root
899 * of a filesystem, or if the directory was renamed and d_revalidate
900 * was the first vfs operation to notice.
902 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
903 * any other hashed alias over that one.
905 static struct dentry *__d_find_alias(struct inode *inode)
907 struct dentry *alias, *discon_alias;
909 again:
910 discon_alias = NULL;
911 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
912 spin_lock(&alias->d_lock);
913 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
914 if (IS_ROOT(alias) &&
915 (alias->d_flags & DCACHE_DISCONNECTED)) {
916 discon_alias = alias;
917 } else {
918 __dget_dlock(alias);
919 spin_unlock(&alias->d_lock);
920 return alias;
923 spin_unlock(&alias->d_lock);
925 if (discon_alias) {
926 alias = discon_alias;
927 spin_lock(&alias->d_lock);
928 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
929 __dget_dlock(alias);
930 spin_unlock(&alias->d_lock);
931 return alias;
933 spin_unlock(&alias->d_lock);
934 goto again;
936 return NULL;
939 struct dentry *d_find_alias(struct inode *inode)
941 struct dentry *de = NULL;
943 if (!hlist_empty(&inode->i_dentry)) {
944 spin_lock(&inode->i_lock);
945 de = __d_find_alias(inode);
946 spin_unlock(&inode->i_lock);
948 return de;
950 EXPORT_SYMBOL(d_find_alias);
953 * Try to kill dentries associated with this inode.
954 * WARNING: you must own a reference to inode.
956 void d_prune_aliases(struct inode *inode)
958 struct dentry *dentry;
959 restart:
960 spin_lock(&inode->i_lock);
961 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
962 spin_lock(&dentry->d_lock);
963 if (!dentry->d_lockref.count) {
964 struct dentry *parent = lock_parent(dentry);
965 if (likely(!dentry->d_lockref.count)) {
966 __dentry_kill(dentry);
967 dput(parent);
968 goto restart;
970 if (parent)
971 spin_unlock(&parent->d_lock);
973 spin_unlock(&dentry->d_lock);
975 spin_unlock(&inode->i_lock);
977 EXPORT_SYMBOL(d_prune_aliases);
979 static void shrink_dentry_list(struct list_head *list)
981 struct dentry *dentry, *parent;
983 while (!list_empty(list)) {
984 struct inode *inode;
985 dentry = list_entry(list->prev, struct dentry, d_lru);
986 spin_lock(&dentry->d_lock);
987 parent = lock_parent(dentry);
990 * The dispose list is isolated and dentries are not accounted
991 * to the LRU here, so we can simply remove it from the list
992 * here regardless of whether it is referenced or not.
994 d_shrink_del(dentry);
997 * We found an inuse dentry which was not removed from
998 * the LRU because of laziness during lookup. Do not free it.
1000 if (dentry->d_lockref.count > 0) {
1001 spin_unlock(&dentry->d_lock);
1002 if (parent)
1003 spin_unlock(&parent->d_lock);
1004 continue;
1008 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1009 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1010 spin_unlock(&dentry->d_lock);
1011 if (parent)
1012 spin_unlock(&parent->d_lock);
1013 if (can_free)
1014 dentry_free(dentry);
1015 continue;
1018 inode = dentry->d_inode;
1019 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1020 d_shrink_add(dentry, list);
1021 spin_unlock(&dentry->d_lock);
1022 if (parent)
1023 spin_unlock(&parent->d_lock);
1024 continue;
1027 __dentry_kill(dentry);
1030 * We need to prune ancestors too. This is necessary to prevent
1031 * quadratic behavior of shrink_dcache_parent(), but is also
1032 * expected to be beneficial in reducing dentry cache
1033 * fragmentation.
1035 dentry = parent;
1036 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1037 parent = lock_parent(dentry);
1038 if (dentry->d_lockref.count != 1) {
1039 dentry->d_lockref.count--;
1040 spin_unlock(&dentry->d_lock);
1041 if (parent)
1042 spin_unlock(&parent->d_lock);
1043 break;
1045 inode = dentry->d_inode; /* can't be NULL */
1046 if (unlikely(!spin_trylock(&inode->i_lock))) {
1047 spin_unlock(&dentry->d_lock);
1048 if (parent)
1049 spin_unlock(&parent->d_lock);
1050 cpu_relax();
1051 continue;
1053 __dentry_kill(dentry);
1054 dentry = parent;
1059 static enum lru_status dentry_lru_isolate(struct list_head *item,
1060 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1062 struct list_head *freeable = arg;
1063 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1067 * we are inverting the lru lock/dentry->d_lock here,
1068 * so use a trylock. If we fail to get the lock, just skip
1069 * it
1071 if (!spin_trylock(&dentry->d_lock))
1072 return LRU_SKIP;
1075 * Referenced dentries are still in use. If they have active
1076 * counts, just remove them from the LRU. Otherwise give them
1077 * another pass through the LRU.
1079 if (dentry->d_lockref.count) {
1080 d_lru_isolate(lru, dentry);
1081 spin_unlock(&dentry->d_lock);
1082 return LRU_REMOVED;
1085 if (dentry->d_flags & DCACHE_REFERENCED) {
1086 dentry->d_flags &= ~DCACHE_REFERENCED;
1087 spin_unlock(&dentry->d_lock);
1090 * The list move itself will be made by the common LRU code. At
1091 * this point, we've dropped the dentry->d_lock but keep the
1092 * lru lock. This is safe to do, since every list movement is
1093 * protected by the lru lock even if both locks are held.
1095 * This is guaranteed by the fact that all LRU management
1096 * functions are intermediated by the LRU API calls like
1097 * list_lru_add and list_lru_del. List movement in this file
1098 * only ever occur through this functions or through callbacks
1099 * like this one, that are called from the LRU API.
1101 * The only exceptions to this are functions like
1102 * shrink_dentry_list, and code that first checks for the
1103 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1104 * operating only with stack provided lists after they are
1105 * properly isolated from the main list. It is thus, always a
1106 * local access.
1108 return LRU_ROTATE;
1111 d_lru_shrink_move(lru, dentry, freeable);
1112 spin_unlock(&dentry->d_lock);
1114 return LRU_REMOVED;
1118 * prune_dcache_sb - shrink the dcache
1119 * @sb: superblock
1120 * @sc: shrink control, passed to list_lru_shrink_walk()
1122 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1123 * is done when we need more memory and called from the superblock shrinker
1124 * function.
1126 * This function may fail to free any resources if all the dentries are in
1127 * use.
1129 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1131 LIST_HEAD(dispose);
1132 long freed;
1134 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1135 dentry_lru_isolate, &dispose);
1136 shrink_dentry_list(&dispose);
1137 return freed;
1140 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1141 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1143 struct list_head *freeable = arg;
1144 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1147 * we are inverting the lru lock/dentry->d_lock here,
1148 * so use a trylock. If we fail to get the lock, just skip
1149 * it
1151 if (!spin_trylock(&dentry->d_lock))
1152 return LRU_SKIP;
1154 d_lru_shrink_move(lru, dentry, freeable);
1155 spin_unlock(&dentry->d_lock);
1157 return LRU_REMOVED;
1162 * shrink_dcache_sb - shrink dcache for a superblock
1163 * @sb: superblock
1165 * Shrink the dcache for the specified super block. This is used to free
1166 * the dcache before unmounting a file system.
1168 void shrink_dcache_sb(struct super_block *sb)
1170 long freed;
1172 do {
1173 LIST_HEAD(dispose);
1175 freed = list_lru_walk(&sb->s_dentry_lru,
1176 dentry_lru_isolate_shrink, &dispose, 1024);
1178 this_cpu_sub(nr_dentry_unused, freed);
1179 shrink_dentry_list(&dispose);
1180 cond_resched();
1181 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1183 EXPORT_SYMBOL(shrink_dcache_sb);
1186 * enum d_walk_ret - action to talke during tree walk
1187 * @D_WALK_CONTINUE: contrinue walk
1188 * @D_WALK_QUIT: quit walk
1189 * @D_WALK_NORETRY: quit when retry is needed
1190 * @D_WALK_SKIP: skip this dentry and its children
1192 enum d_walk_ret {
1193 D_WALK_CONTINUE,
1194 D_WALK_QUIT,
1195 D_WALK_NORETRY,
1196 D_WALK_SKIP,
1200 * d_walk - walk the dentry tree
1201 * @parent: start of walk
1202 * @data: data passed to @enter() and @finish()
1203 * @enter: callback when first entering the dentry
1204 * @finish: callback when successfully finished the walk
1206 * The @enter() and @finish() callbacks are called with d_lock held.
1208 static void d_walk(struct dentry *parent, void *data,
1209 enum d_walk_ret (*enter)(void *, struct dentry *),
1210 void (*finish)(void *))
1212 struct dentry *this_parent;
1213 struct list_head *next;
1214 unsigned seq = 0;
1215 enum d_walk_ret ret;
1216 bool retry = true;
1218 again:
1219 read_seqbegin_or_lock(&rename_lock, &seq);
1220 this_parent = parent;
1221 spin_lock(&this_parent->d_lock);
1223 ret = enter(data, this_parent);
1224 switch (ret) {
1225 case D_WALK_CONTINUE:
1226 break;
1227 case D_WALK_QUIT:
1228 case D_WALK_SKIP:
1229 goto out_unlock;
1230 case D_WALK_NORETRY:
1231 retry = false;
1232 break;
1234 repeat:
1235 next = this_parent->d_subdirs.next;
1236 resume:
1237 while (next != &this_parent->d_subdirs) {
1238 struct list_head *tmp = next;
1239 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1240 next = tmp->next;
1242 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1243 continue;
1245 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1247 ret = enter(data, dentry);
1248 switch (ret) {
1249 case D_WALK_CONTINUE:
1250 break;
1251 case D_WALK_QUIT:
1252 spin_unlock(&dentry->d_lock);
1253 goto out_unlock;
1254 case D_WALK_NORETRY:
1255 retry = false;
1256 break;
1257 case D_WALK_SKIP:
1258 spin_unlock(&dentry->d_lock);
1259 continue;
1262 if (!list_empty(&dentry->d_subdirs)) {
1263 spin_unlock(&this_parent->d_lock);
1264 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1265 this_parent = dentry;
1266 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1267 goto repeat;
1269 spin_unlock(&dentry->d_lock);
1272 * All done at this level ... ascend and resume the search.
1274 rcu_read_lock();
1275 ascend:
1276 if (this_parent != parent) {
1277 struct dentry *child = this_parent;
1278 this_parent = child->d_parent;
1280 spin_unlock(&child->d_lock);
1281 spin_lock(&this_parent->d_lock);
1283 /* might go back up the wrong parent if we have had a rename. */
1284 if (need_seqretry(&rename_lock, seq))
1285 goto rename_retry;
1286 /* go into the first sibling still alive */
1287 do {
1288 next = child->d_child.next;
1289 if (next == &this_parent->d_subdirs)
1290 goto ascend;
1291 child = list_entry(next, struct dentry, d_child);
1292 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1293 rcu_read_unlock();
1294 goto resume;
1296 if (need_seqretry(&rename_lock, seq))
1297 goto rename_retry;
1298 rcu_read_unlock();
1299 if (finish)
1300 finish(data);
1302 out_unlock:
1303 spin_unlock(&this_parent->d_lock);
1304 done_seqretry(&rename_lock, seq);
1305 return;
1307 rename_retry:
1308 spin_unlock(&this_parent->d_lock);
1309 rcu_read_unlock();
1310 BUG_ON(seq & 1);
1311 if (!retry)
1312 return;
1313 seq = 1;
1314 goto again;
1317 struct check_mount {
1318 struct vfsmount *mnt;
1319 unsigned int mounted;
1322 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1324 struct check_mount *info = data;
1325 struct path path = { .mnt = info->mnt, .dentry = dentry };
1327 if (likely(!d_mountpoint(dentry)))
1328 return D_WALK_CONTINUE;
1329 if (__path_is_mountpoint(&path)) {
1330 info->mounted = 1;
1331 return D_WALK_QUIT;
1333 return D_WALK_CONTINUE;
1337 * path_has_submounts - check for mounts over a dentry in the
1338 * current namespace.
1339 * @parent: path to check.
1341 * Return true if the parent or its subdirectories contain
1342 * a mount point in the current namespace.
1344 int path_has_submounts(const struct path *parent)
1346 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1348 read_seqlock_excl(&mount_lock);
1349 d_walk(parent->dentry, &data, path_check_mount, NULL);
1350 read_sequnlock_excl(&mount_lock);
1352 return data.mounted;
1354 EXPORT_SYMBOL(path_has_submounts);
1357 * Called by mount code to set a mountpoint and check if the mountpoint is
1358 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1359 * subtree can become unreachable).
1361 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1362 * this reason take rename_lock and d_lock on dentry and ancestors.
1364 int d_set_mounted(struct dentry *dentry)
1366 struct dentry *p;
1367 int ret = -ENOENT;
1368 write_seqlock(&rename_lock);
1369 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1370 /* Need exclusion wrt. d_invalidate() */
1371 spin_lock(&p->d_lock);
1372 if (unlikely(d_unhashed(p))) {
1373 spin_unlock(&p->d_lock);
1374 goto out;
1376 spin_unlock(&p->d_lock);
1378 spin_lock(&dentry->d_lock);
1379 if (!d_unlinked(dentry)) {
1380 ret = -EBUSY;
1381 if (!d_mountpoint(dentry)) {
1382 dentry->d_flags |= DCACHE_MOUNTED;
1383 ret = 0;
1386 spin_unlock(&dentry->d_lock);
1387 out:
1388 write_sequnlock(&rename_lock);
1389 return ret;
1393 * Search the dentry child list of the specified parent,
1394 * and move any unused dentries to the end of the unused
1395 * list for prune_dcache(). We descend to the next level
1396 * whenever the d_subdirs list is non-empty and continue
1397 * searching.
1399 * It returns zero iff there are no unused children,
1400 * otherwise it returns the number of children moved to
1401 * the end of the unused list. This may not be the total
1402 * number of unused children, because select_parent can
1403 * drop the lock and return early due to latency
1404 * constraints.
1407 struct select_data {
1408 struct dentry *start;
1409 struct list_head dispose;
1410 int found;
1413 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1415 struct select_data *data = _data;
1416 enum d_walk_ret ret = D_WALK_CONTINUE;
1418 if (data->start == dentry)
1419 goto out;
1421 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1422 data->found++;
1423 } else {
1424 if (dentry->d_flags & DCACHE_LRU_LIST)
1425 d_lru_del(dentry);
1426 if (!dentry->d_lockref.count) {
1427 d_shrink_add(dentry, &data->dispose);
1428 data->found++;
1432 * We can return to the caller if we have found some (this
1433 * ensures forward progress). We'll be coming back to find
1434 * the rest.
1436 if (!list_empty(&data->dispose))
1437 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1438 out:
1439 return ret;
1443 * shrink_dcache_parent - prune dcache
1444 * @parent: parent of entries to prune
1446 * Prune the dcache to remove unused children of the parent dentry.
1448 void shrink_dcache_parent(struct dentry *parent)
1450 for (;;) {
1451 struct select_data data;
1453 INIT_LIST_HEAD(&data.dispose);
1454 data.start = parent;
1455 data.found = 0;
1457 d_walk(parent, &data, select_collect, NULL);
1458 if (!data.found)
1459 break;
1461 shrink_dentry_list(&data.dispose);
1462 cond_resched();
1465 EXPORT_SYMBOL(shrink_dcache_parent);
1467 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1469 /* it has busy descendents; complain about those instead */
1470 if (!list_empty(&dentry->d_subdirs))
1471 return D_WALK_CONTINUE;
1473 /* root with refcount 1 is fine */
1474 if (dentry == _data && dentry->d_lockref.count == 1)
1475 return D_WALK_CONTINUE;
1477 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1478 " still in use (%d) [unmount of %s %s]\n",
1479 dentry,
1480 dentry->d_inode ?
1481 dentry->d_inode->i_ino : 0UL,
1482 dentry,
1483 dentry->d_lockref.count,
1484 dentry->d_sb->s_type->name,
1485 dentry->d_sb->s_id);
1486 WARN_ON(1);
1487 return D_WALK_CONTINUE;
1490 static void do_one_tree(struct dentry *dentry)
1492 shrink_dcache_parent(dentry);
1493 d_walk(dentry, dentry, umount_check, NULL);
1494 d_drop(dentry);
1495 dput(dentry);
1499 * destroy the dentries attached to a superblock on unmounting
1501 void shrink_dcache_for_umount(struct super_block *sb)
1503 struct dentry *dentry;
1505 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1507 dentry = sb->s_root;
1508 sb->s_root = NULL;
1509 do_one_tree(dentry);
1511 while (!hlist_bl_empty(&sb->s_roots)) {
1512 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1513 do_one_tree(dentry);
1517 struct detach_data {
1518 struct select_data select;
1519 struct dentry *mountpoint;
1521 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1523 struct detach_data *data = _data;
1525 if (d_mountpoint(dentry)) {
1526 __dget_dlock(dentry);
1527 data->mountpoint = dentry;
1528 return D_WALK_QUIT;
1531 return select_collect(&data->select, dentry);
1534 static void check_and_drop(void *_data)
1536 struct detach_data *data = _data;
1538 if (!data->mountpoint && list_empty(&data->select.dispose))
1539 __d_drop(data->select.start);
1543 * d_invalidate - detach submounts, prune dcache, and drop
1544 * @dentry: dentry to invalidate (aka detach, prune and drop)
1546 * no dcache lock.
1548 * The final d_drop is done as an atomic operation relative to
1549 * rename_lock ensuring there are no races with d_set_mounted. This
1550 * ensures there are no unhashed dentries on the path to a mountpoint.
1552 void d_invalidate(struct dentry *dentry)
1555 * If it's already been dropped, return OK.
1557 spin_lock(&dentry->d_lock);
1558 if (d_unhashed(dentry)) {
1559 spin_unlock(&dentry->d_lock);
1560 return;
1562 spin_unlock(&dentry->d_lock);
1564 /* Negative dentries can be dropped without further checks */
1565 if (!dentry->d_inode) {
1566 d_drop(dentry);
1567 return;
1570 for (;;) {
1571 struct detach_data data;
1573 data.mountpoint = NULL;
1574 INIT_LIST_HEAD(&data.select.dispose);
1575 data.select.start = dentry;
1576 data.select.found = 0;
1578 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1580 if (!list_empty(&data.select.dispose))
1581 shrink_dentry_list(&data.select.dispose);
1582 else if (!data.mountpoint)
1583 return;
1585 if (data.mountpoint) {
1586 detach_mounts(data.mountpoint);
1587 dput(data.mountpoint);
1589 cond_resched();
1592 EXPORT_SYMBOL(d_invalidate);
1595 * __d_alloc - allocate a dcache entry
1596 * @sb: filesystem it will belong to
1597 * @name: qstr of the name
1599 * Allocates a dentry. It returns %NULL if there is insufficient memory
1600 * available. On a success the dentry is returned. The name passed in is
1601 * copied and the copy passed in may be reused after this call.
1604 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1606 struct dentry *dentry;
1607 char *dname;
1608 int err;
1610 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1611 if (!dentry)
1612 return NULL;
1615 * We guarantee that the inline name is always NUL-terminated.
1616 * This way the memcpy() done by the name switching in rename
1617 * will still always have a NUL at the end, even if we might
1618 * be overwriting an internal NUL character
1620 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1621 if (unlikely(!name)) {
1622 name = &slash_name;
1623 dname = dentry->d_iname;
1624 } else if (name->len > DNAME_INLINE_LEN-1) {
1625 size_t size = offsetof(struct external_name, name[1]);
1626 struct external_name *p = kmalloc(size + name->len,
1627 GFP_KERNEL_ACCOUNT);
1628 if (!p) {
1629 kmem_cache_free(dentry_cache, dentry);
1630 return NULL;
1632 atomic_set(&p->u.count, 1);
1633 dname = p->name;
1634 } else {
1635 dname = dentry->d_iname;
1638 dentry->d_name.len = name->len;
1639 dentry->d_name.hash = name->hash;
1640 memcpy(dname, name->name, name->len);
1641 dname[name->len] = 0;
1643 /* Make sure we always see the terminating NUL character */
1644 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1646 dentry->d_lockref.count = 1;
1647 dentry->d_flags = 0;
1648 spin_lock_init(&dentry->d_lock);
1649 seqcount_init(&dentry->d_seq);
1650 dentry->d_inode = NULL;
1651 dentry->d_parent = dentry;
1652 dentry->d_sb = sb;
1653 dentry->d_op = NULL;
1654 dentry->d_fsdata = NULL;
1655 INIT_HLIST_BL_NODE(&dentry->d_hash);
1656 INIT_LIST_HEAD(&dentry->d_lru);
1657 INIT_LIST_HEAD(&dentry->d_subdirs);
1658 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1659 INIT_LIST_HEAD(&dentry->d_child);
1660 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1662 if (dentry->d_op && dentry->d_op->d_init) {
1663 err = dentry->d_op->d_init(dentry);
1664 if (err) {
1665 if (dname_external(dentry))
1666 kfree(external_name(dentry));
1667 kmem_cache_free(dentry_cache, dentry);
1668 return NULL;
1672 this_cpu_inc(nr_dentry);
1674 return dentry;
1678 * d_alloc - allocate a dcache entry
1679 * @parent: parent of entry to allocate
1680 * @name: qstr of the name
1682 * Allocates a dentry. It returns %NULL if there is insufficient memory
1683 * available. On a success the dentry is returned. The name passed in is
1684 * copied and the copy passed in may be reused after this call.
1686 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1688 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1689 if (!dentry)
1690 return NULL;
1691 dentry->d_flags |= DCACHE_RCUACCESS;
1692 spin_lock(&parent->d_lock);
1694 * don't need child lock because it is not subject
1695 * to concurrency here
1697 __dget_dlock(parent);
1698 dentry->d_parent = parent;
1699 list_add(&dentry->d_child, &parent->d_subdirs);
1700 spin_unlock(&parent->d_lock);
1702 return dentry;
1704 EXPORT_SYMBOL(d_alloc);
1706 struct dentry *d_alloc_anon(struct super_block *sb)
1708 return __d_alloc(sb, NULL);
1710 EXPORT_SYMBOL(d_alloc_anon);
1712 struct dentry *d_alloc_cursor(struct dentry * parent)
1714 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1715 if (dentry) {
1716 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1717 dentry->d_parent = dget(parent);
1719 return dentry;
1723 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1724 * @sb: the superblock
1725 * @name: qstr of the name
1727 * For a filesystem that just pins its dentries in memory and never
1728 * performs lookups at all, return an unhashed IS_ROOT dentry.
1730 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1732 return __d_alloc(sb, name);
1734 EXPORT_SYMBOL(d_alloc_pseudo);
1736 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1738 struct qstr q;
1740 q.name = name;
1741 q.hash_len = hashlen_string(parent, name);
1742 return d_alloc(parent, &q);
1744 EXPORT_SYMBOL(d_alloc_name);
1746 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1748 WARN_ON_ONCE(dentry->d_op);
1749 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1750 DCACHE_OP_COMPARE |
1751 DCACHE_OP_REVALIDATE |
1752 DCACHE_OP_WEAK_REVALIDATE |
1753 DCACHE_OP_DELETE |
1754 DCACHE_OP_REAL));
1755 dentry->d_op = op;
1756 if (!op)
1757 return;
1758 if (op->d_hash)
1759 dentry->d_flags |= DCACHE_OP_HASH;
1760 if (op->d_compare)
1761 dentry->d_flags |= DCACHE_OP_COMPARE;
1762 if (op->d_revalidate)
1763 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1764 if (op->d_weak_revalidate)
1765 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1766 if (op->d_delete)
1767 dentry->d_flags |= DCACHE_OP_DELETE;
1768 if (op->d_prune)
1769 dentry->d_flags |= DCACHE_OP_PRUNE;
1770 if (op->d_real)
1771 dentry->d_flags |= DCACHE_OP_REAL;
1774 EXPORT_SYMBOL(d_set_d_op);
1778 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1779 * @dentry - The dentry to mark
1781 * Mark a dentry as falling through to the lower layer (as set with
1782 * d_pin_lower()). This flag may be recorded on the medium.
1784 void d_set_fallthru(struct dentry *dentry)
1786 spin_lock(&dentry->d_lock);
1787 dentry->d_flags |= DCACHE_FALLTHRU;
1788 spin_unlock(&dentry->d_lock);
1790 EXPORT_SYMBOL(d_set_fallthru);
1792 static unsigned d_flags_for_inode(struct inode *inode)
1794 unsigned add_flags = DCACHE_REGULAR_TYPE;
1796 if (!inode)
1797 return DCACHE_MISS_TYPE;
1799 if (S_ISDIR(inode->i_mode)) {
1800 add_flags = DCACHE_DIRECTORY_TYPE;
1801 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1802 if (unlikely(!inode->i_op->lookup))
1803 add_flags = DCACHE_AUTODIR_TYPE;
1804 else
1805 inode->i_opflags |= IOP_LOOKUP;
1807 goto type_determined;
1810 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1811 if (unlikely(inode->i_op->get_link)) {
1812 add_flags = DCACHE_SYMLINK_TYPE;
1813 goto type_determined;
1815 inode->i_opflags |= IOP_NOFOLLOW;
1818 if (unlikely(!S_ISREG(inode->i_mode)))
1819 add_flags = DCACHE_SPECIAL_TYPE;
1821 type_determined:
1822 if (unlikely(IS_AUTOMOUNT(inode)))
1823 add_flags |= DCACHE_NEED_AUTOMOUNT;
1824 return add_flags;
1827 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1829 unsigned add_flags = d_flags_for_inode(inode);
1830 WARN_ON(d_in_lookup(dentry));
1832 spin_lock(&dentry->d_lock);
1833 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1834 raw_write_seqcount_begin(&dentry->d_seq);
1835 __d_set_inode_and_type(dentry, inode, add_flags);
1836 raw_write_seqcount_end(&dentry->d_seq);
1837 fsnotify_update_flags(dentry);
1838 spin_unlock(&dentry->d_lock);
1842 * d_instantiate - fill in inode information for a dentry
1843 * @entry: dentry to complete
1844 * @inode: inode to attach to this dentry
1846 * Fill in inode information in the entry.
1848 * This turns negative dentries into productive full members
1849 * of society.
1851 * NOTE! This assumes that the inode count has been incremented
1852 * (or otherwise set) by the caller to indicate that it is now
1853 * in use by the dcache.
1856 void d_instantiate(struct dentry *entry, struct inode * inode)
1858 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1859 if (inode) {
1860 security_d_instantiate(entry, inode);
1861 spin_lock(&inode->i_lock);
1862 __d_instantiate(entry, inode);
1863 spin_unlock(&inode->i_lock);
1866 EXPORT_SYMBOL(d_instantiate);
1869 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1870 * @entry: dentry to complete
1871 * @inode: inode to attach to this dentry
1873 * Fill in inode information in the entry. If a directory alias is found, then
1874 * return an error (and drop inode). Together with d_materialise_unique() this
1875 * guarantees that a directory inode may never have more than one alias.
1877 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1879 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1881 security_d_instantiate(entry, inode);
1882 spin_lock(&inode->i_lock);
1883 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1884 spin_unlock(&inode->i_lock);
1885 iput(inode);
1886 return -EBUSY;
1888 __d_instantiate(entry, inode);
1889 spin_unlock(&inode->i_lock);
1891 return 0;
1893 EXPORT_SYMBOL(d_instantiate_no_diralias);
1895 struct dentry *d_make_root(struct inode *root_inode)
1897 struct dentry *res = NULL;
1899 if (root_inode) {
1900 res = d_alloc_anon(root_inode->i_sb);
1901 if (res)
1902 d_instantiate(res, root_inode);
1903 else
1904 iput(root_inode);
1906 return res;
1908 EXPORT_SYMBOL(d_make_root);
1910 static struct dentry * __d_find_any_alias(struct inode *inode)
1912 struct dentry *alias;
1914 if (hlist_empty(&inode->i_dentry))
1915 return NULL;
1916 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1917 __dget(alias);
1918 return alias;
1922 * d_find_any_alias - find any alias for a given inode
1923 * @inode: inode to find an alias for
1925 * If any aliases exist for the given inode, take and return a
1926 * reference for one of them. If no aliases exist, return %NULL.
1928 struct dentry *d_find_any_alias(struct inode *inode)
1930 struct dentry *de;
1932 spin_lock(&inode->i_lock);
1933 de = __d_find_any_alias(inode);
1934 spin_unlock(&inode->i_lock);
1935 return de;
1937 EXPORT_SYMBOL(d_find_any_alias);
1939 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1940 struct inode *inode,
1941 bool disconnected)
1943 struct dentry *res;
1944 unsigned add_flags;
1946 security_d_instantiate(dentry, inode);
1947 spin_lock(&inode->i_lock);
1948 res = __d_find_any_alias(inode);
1949 if (res) {
1950 spin_unlock(&inode->i_lock);
1951 dput(dentry);
1952 goto out_iput;
1955 /* attach a disconnected dentry */
1956 add_flags = d_flags_for_inode(inode);
1958 if (disconnected)
1959 add_flags |= DCACHE_DISCONNECTED;
1961 spin_lock(&dentry->d_lock);
1962 __d_set_inode_and_type(dentry, inode, add_flags);
1963 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1964 if (!disconnected) {
1965 hlist_bl_lock(&dentry->d_sb->s_roots);
1966 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1967 hlist_bl_unlock(&dentry->d_sb->s_roots);
1969 spin_unlock(&dentry->d_lock);
1970 spin_unlock(&inode->i_lock);
1972 return dentry;
1974 out_iput:
1975 iput(inode);
1976 return res;
1979 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1981 return __d_instantiate_anon(dentry, inode, true);
1983 EXPORT_SYMBOL(d_instantiate_anon);
1985 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1987 struct dentry *tmp;
1988 struct dentry *res;
1990 if (!inode)
1991 return ERR_PTR(-ESTALE);
1992 if (IS_ERR(inode))
1993 return ERR_CAST(inode);
1995 res = d_find_any_alias(inode);
1996 if (res)
1997 goto out_iput;
1999 tmp = d_alloc_anon(inode->i_sb);
2000 if (!tmp) {
2001 res = ERR_PTR(-ENOMEM);
2002 goto out_iput;
2005 return __d_instantiate_anon(tmp, inode, disconnected);
2007 out_iput:
2008 iput(inode);
2009 return res;
2013 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2014 * @inode: inode to allocate the dentry for
2016 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2017 * similar open by handle operations. The returned dentry may be anonymous,
2018 * or may have a full name (if the inode was already in the cache).
2020 * When called on a directory inode, we must ensure that the inode only ever
2021 * has one dentry. If a dentry is found, that is returned instead of
2022 * allocating a new one.
2024 * On successful return, the reference to the inode has been transferred
2025 * to the dentry. In case of an error the reference on the inode is released.
2026 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2027 * be passed in and the error will be propagated to the return value,
2028 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2030 struct dentry *d_obtain_alias(struct inode *inode)
2032 return __d_obtain_alias(inode, true);
2034 EXPORT_SYMBOL(d_obtain_alias);
2037 * d_obtain_root - find or allocate a dentry for a given inode
2038 * @inode: inode to allocate the dentry for
2040 * Obtain an IS_ROOT dentry for the root of a filesystem.
2042 * We must ensure that directory inodes only ever have one dentry. If a
2043 * dentry is found, that is returned instead of allocating a new one.
2045 * On successful return, the reference to the inode has been transferred
2046 * to the dentry. In case of an error the reference on the inode is
2047 * released. A %NULL or IS_ERR inode may be passed in and will be the
2048 * error will be propagate to the return value, with a %NULL @inode
2049 * replaced by ERR_PTR(-ESTALE).
2051 struct dentry *d_obtain_root(struct inode *inode)
2053 return __d_obtain_alias(inode, false);
2055 EXPORT_SYMBOL(d_obtain_root);
2058 * d_add_ci - lookup or allocate new dentry with case-exact name
2059 * @inode: the inode case-insensitive lookup has found
2060 * @dentry: the negative dentry that was passed to the parent's lookup func
2061 * @name: the case-exact name to be associated with the returned dentry
2063 * This is to avoid filling the dcache with case-insensitive names to the
2064 * same inode, only the actual correct case is stored in the dcache for
2065 * case-insensitive filesystems.
2067 * For a case-insensitive lookup match and if the the case-exact dentry
2068 * already exists in in the dcache, use it and return it.
2070 * If no entry exists with the exact case name, allocate new dentry with
2071 * the exact case, and return the spliced entry.
2073 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2074 struct qstr *name)
2076 struct dentry *found, *res;
2079 * First check if a dentry matching the name already exists,
2080 * if not go ahead and create it now.
2082 found = d_hash_and_lookup(dentry->d_parent, name);
2083 if (found) {
2084 iput(inode);
2085 return found;
2087 if (d_in_lookup(dentry)) {
2088 found = d_alloc_parallel(dentry->d_parent, name,
2089 dentry->d_wait);
2090 if (IS_ERR(found) || !d_in_lookup(found)) {
2091 iput(inode);
2092 return found;
2094 } else {
2095 found = d_alloc(dentry->d_parent, name);
2096 if (!found) {
2097 iput(inode);
2098 return ERR_PTR(-ENOMEM);
2101 res = d_splice_alias(inode, found);
2102 if (res) {
2103 dput(found);
2104 return res;
2106 return found;
2108 EXPORT_SYMBOL(d_add_ci);
2111 static inline bool d_same_name(const struct dentry *dentry,
2112 const struct dentry *parent,
2113 const struct qstr *name)
2115 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2116 if (dentry->d_name.len != name->len)
2117 return false;
2118 return dentry_cmp(dentry, name->name, name->len) == 0;
2120 return parent->d_op->d_compare(dentry,
2121 dentry->d_name.len, dentry->d_name.name,
2122 name) == 0;
2126 * __d_lookup_rcu - search for a dentry (racy, store-free)
2127 * @parent: parent dentry
2128 * @name: qstr of name we wish to find
2129 * @seqp: returns d_seq value at the point where the dentry was found
2130 * Returns: dentry, or NULL
2132 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2133 * resolution (store-free path walking) design described in
2134 * Documentation/filesystems/path-lookup.txt.
2136 * This is not to be used outside core vfs.
2138 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2139 * held, and rcu_read_lock held. The returned dentry must not be stored into
2140 * without taking d_lock and checking d_seq sequence count against @seq
2141 * returned here.
2143 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2144 * function.
2146 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2147 * the returned dentry, so long as its parent's seqlock is checked after the
2148 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2149 * is formed, giving integrity down the path walk.
2151 * NOTE! The caller *has* to check the resulting dentry against the sequence
2152 * number we've returned before using any of the resulting dentry state!
2154 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2155 const struct qstr *name,
2156 unsigned *seqp)
2158 u64 hashlen = name->hash_len;
2159 const unsigned char *str = name->name;
2160 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2161 struct hlist_bl_node *node;
2162 struct dentry *dentry;
2165 * Note: There is significant duplication with __d_lookup_rcu which is
2166 * required to prevent single threaded performance regressions
2167 * especially on architectures where smp_rmb (in seqcounts) are costly.
2168 * Keep the two functions in sync.
2172 * The hash list is protected using RCU.
2174 * Carefully use d_seq when comparing a candidate dentry, to avoid
2175 * races with d_move().
2177 * It is possible that concurrent renames can mess up our list
2178 * walk here and result in missing our dentry, resulting in the
2179 * false-negative result. d_lookup() protects against concurrent
2180 * renames using rename_lock seqlock.
2182 * See Documentation/filesystems/path-lookup.txt for more details.
2184 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2185 unsigned seq;
2187 seqretry:
2189 * The dentry sequence count protects us from concurrent
2190 * renames, and thus protects parent and name fields.
2192 * The caller must perform a seqcount check in order
2193 * to do anything useful with the returned dentry.
2195 * NOTE! We do a "raw" seqcount_begin here. That means that
2196 * we don't wait for the sequence count to stabilize if it
2197 * is in the middle of a sequence change. If we do the slow
2198 * dentry compare, we will do seqretries until it is stable,
2199 * and if we end up with a successful lookup, we actually
2200 * want to exit RCU lookup anyway.
2202 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2203 * we are still guaranteed NUL-termination of ->d_name.name.
2205 seq = raw_seqcount_begin(&dentry->d_seq);
2206 if (dentry->d_parent != parent)
2207 continue;
2208 if (d_unhashed(dentry))
2209 continue;
2211 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2212 int tlen;
2213 const char *tname;
2214 if (dentry->d_name.hash != hashlen_hash(hashlen))
2215 continue;
2216 tlen = dentry->d_name.len;
2217 tname = dentry->d_name.name;
2218 /* we want a consistent (name,len) pair */
2219 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2220 cpu_relax();
2221 goto seqretry;
2223 if (parent->d_op->d_compare(dentry,
2224 tlen, tname, name) != 0)
2225 continue;
2226 } else {
2227 if (dentry->d_name.hash_len != hashlen)
2228 continue;
2229 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2230 continue;
2232 *seqp = seq;
2233 return dentry;
2235 return NULL;
2239 * d_lookup - search for a dentry
2240 * @parent: parent dentry
2241 * @name: qstr of name we wish to find
2242 * Returns: dentry, or NULL
2244 * d_lookup searches the children of the parent dentry for the name in
2245 * question. If the dentry is found its reference count is incremented and the
2246 * dentry is returned. The caller must use dput to free the entry when it has
2247 * finished using it. %NULL is returned if the dentry does not exist.
2249 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2251 struct dentry *dentry;
2252 unsigned seq;
2254 do {
2255 seq = read_seqbegin(&rename_lock);
2256 dentry = __d_lookup(parent, name);
2257 if (dentry)
2258 break;
2259 } while (read_seqretry(&rename_lock, seq));
2260 return dentry;
2262 EXPORT_SYMBOL(d_lookup);
2265 * __d_lookup - search for a dentry (racy)
2266 * @parent: parent dentry
2267 * @name: qstr of name we wish to find
2268 * Returns: dentry, or NULL
2270 * __d_lookup is like d_lookup, however it may (rarely) return a
2271 * false-negative result due to unrelated rename activity.
2273 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2274 * however it must be used carefully, eg. with a following d_lookup in
2275 * the case of failure.
2277 * __d_lookup callers must be commented.
2279 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2281 unsigned int hash = name->hash;
2282 struct hlist_bl_head *b = d_hash(hash);
2283 struct hlist_bl_node *node;
2284 struct dentry *found = NULL;
2285 struct dentry *dentry;
2288 * Note: There is significant duplication with __d_lookup_rcu which is
2289 * required to prevent single threaded performance regressions
2290 * especially on architectures where smp_rmb (in seqcounts) are costly.
2291 * Keep the two functions in sync.
2295 * The hash list is protected using RCU.
2297 * Take d_lock when comparing a candidate dentry, to avoid races
2298 * with d_move().
2300 * It is possible that concurrent renames can mess up our list
2301 * walk here and result in missing our dentry, resulting in the
2302 * false-negative result. d_lookup() protects against concurrent
2303 * renames using rename_lock seqlock.
2305 * See Documentation/filesystems/path-lookup.txt for more details.
2307 rcu_read_lock();
2309 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2311 if (dentry->d_name.hash != hash)
2312 continue;
2314 spin_lock(&dentry->d_lock);
2315 if (dentry->d_parent != parent)
2316 goto next;
2317 if (d_unhashed(dentry))
2318 goto next;
2320 if (!d_same_name(dentry, parent, name))
2321 goto next;
2323 dentry->d_lockref.count++;
2324 found = dentry;
2325 spin_unlock(&dentry->d_lock);
2326 break;
2327 next:
2328 spin_unlock(&dentry->d_lock);
2330 rcu_read_unlock();
2332 return found;
2336 * d_hash_and_lookup - hash the qstr then search for a dentry
2337 * @dir: Directory to search in
2338 * @name: qstr of name we wish to find
2340 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2342 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2345 * Check for a fs-specific hash function. Note that we must
2346 * calculate the standard hash first, as the d_op->d_hash()
2347 * routine may choose to leave the hash value unchanged.
2349 name->hash = full_name_hash(dir, name->name, name->len);
2350 if (dir->d_flags & DCACHE_OP_HASH) {
2351 int err = dir->d_op->d_hash(dir, name);
2352 if (unlikely(err < 0))
2353 return ERR_PTR(err);
2355 return d_lookup(dir, name);
2357 EXPORT_SYMBOL(d_hash_and_lookup);
2360 * When a file is deleted, we have two options:
2361 * - turn this dentry into a negative dentry
2362 * - unhash this dentry and free it.
2364 * Usually, we want to just turn this into
2365 * a negative dentry, but if anybody else is
2366 * currently using the dentry or the inode
2367 * we can't do that and we fall back on removing
2368 * it from the hash queues and waiting for
2369 * it to be deleted later when it has no users
2373 * d_delete - delete a dentry
2374 * @dentry: The dentry to delete
2376 * Turn the dentry into a negative dentry if possible, otherwise
2377 * remove it from the hash queues so it can be deleted later
2380 void d_delete(struct dentry * dentry)
2382 struct inode *inode;
2383 int isdir = 0;
2385 * Are we the only user?
2387 again:
2388 spin_lock(&dentry->d_lock);
2389 inode = dentry->d_inode;
2390 isdir = S_ISDIR(inode->i_mode);
2391 if (dentry->d_lockref.count == 1) {
2392 if (!spin_trylock(&inode->i_lock)) {
2393 spin_unlock(&dentry->d_lock);
2394 cpu_relax();
2395 goto again;
2397 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2398 dentry_unlink_inode(dentry);
2399 fsnotify_nameremove(dentry, isdir);
2400 return;
2403 if (!d_unhashed(dentry))
2404 __d_drop(dentry);
2406 spin_unlock(&dentry->d_lock);
2408 fsnotify_nameremove(dentry, isdir);
2410 EXPORT_SYMBOL(d_delete);
2412 static void __d_rehash(struct dentry *entry)
2414 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2416 hlist_bl_lock(b);
2417 hlist_bl_add_head_rcu(&entry->d_hash, b);
2418 hlist_bl_unlock(b);
2422 * d_rehash - add an entry back to the hash
2423 * @entry: dentry to add to the hash
2425 * Adds a dentry to the hash according to its name.
2428 void d_rehash(struct dentry * entry)
2430 spin_lock(&entry->d_lock);
2431 __d_rehash(entry);
2432 spin_unlock(&entry->d_lock);
2434 EXPORT_SYMBOL(d_rehash);
2436 static inline unsigned start_dir_add(struct inode *dir)
2439 for (;;) {
2440 unsigned n = dir->i_dir_seq;
2441 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2442 return n;
2443 cpu_relax();
2447 static inline void end_dir_add(struct inode *dir, unsigned n)
2449 smp_store_release(&dir->i_dir_seq, n + 2);
2452 static void d_wait_lookup(struct dentry *dentry)
2454 if (d_in_lookup(dentry)) {
2455 DECLARE_WAITQUEUE(wait, current);
2456 add_wait_queue(dentry->d_wait, &wait);
2457 do {
2458 set_current_state(TASK_UNINTERRUPTIBLE);
2459 spin_unlock(&dentry->d_lock);
2460 schedule();
2461 spin_lock(&dentry->d_lock);
2462 } while (d_in_lookup(dentry));
2466 struct dentry *d_alloc_parallel(struct dentry *parent,
2467 const struct qstr *name,
2468 wait_queue_head_t *wq)
2470 unsigned int hash = name->hash;
2471 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2472 struct hlist_bl_node *node;
2473 struct dentry *new = d_alloc(parent, name);
2474 struct dentry *dentry;
2475 unsigned seq, r_seq, d_seq;
2477 if (unlikely(!new))
2478 return ERR_PTR(-ENOMEM);
2480 retry:
2481 rcu_read_lock();
2482 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2483 r_seq = read_seqbegin(&rename_lock);
2484 dentry = __d_lookup_rcu(parent, name, &d_seq);
2485 if (unlikely(dentry)) {
2486 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2487 rcu_read_unlock();
2488 goto retry;
2490 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2491 rcu_read_unlock();
2492 dput(dentry);
2493 goto retry;
2495 rcu_read_unlock();
2496 dput(new);
2497 return dentry;
2499 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2500 rcu_read_unlock();
2501 goto retry;
2504 if (unlikely(seq & 1)) {
2505 rcu_read_unlock();
2506 goto retry;
2509 hlist_bl_lock(b);
2510 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2511 hlist_bl_unlock(b);
2512 rcu_read_unlock();
2513 goto retry;
2516 * No changes for the parent since the beginning of d_lookup().
2517 * Since all removals from the chain happen with hlist_bl_lock(),
2518 * any potential in-lookup matches are going to stay here until
2519 * we unlock the chain. All fields are stable in everything
2520 * we encounter.
2522 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2523 if (dentry->d_name.hash != hash)
2524 continue;
2525 if (dentry->d_parent != parent)
2526 continue;
2527 if (!d_same_name(dentry, parent, name))
2528 continue;
2529 hlist_bl_unlock(b);
2530 /* now we can try to grab a reference */
2531 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2532 rcu_read_unlock();
2533 goto retry;
2536 rcu_read_unlock();
2538 * somebody is likely to be still doing lookup for it;
2539 * wait for them to finish
2541 spin_lock(&dentry->d_lock);
2542 d_wait_lookup(dentry);
2544 * it's not in-lookup anymore; in principle we should repeat
2545 * everything from dcache lookup, but it's likely to be what
2546 * d_lookup() would've found anyway. If it is, just return it;
2547 * otherwise we really have to repeat the whole thing.
2549 if (unlikely(dentry->d_name.hash != hash))
2550 goto mismatch;
2551 if (unlikely(dentry->d_parent != parent))
2552 goto mismatch;
2553 if (unlikely(d_unhashed(dentry)))
2554 goto mismatch;
2555 if (unlikely(!d_same_name(dentry, parent, name)))
2556 goto mismatch;
2557 /* OK, it *is* a hashed match; return it */
2558 spin_unlock(&dentry->d_lock);
2559 dput(new);
2560 return dentry;
2562 rcu_read_unlock();
2563 /* we can't take ->d_lock here; it's OK, though. */
2564 new->d_flags |= DCACHE_PAR_LOOKUP;
2565 new->d_wait = wq;
2566 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2567 hlist_bl_unlock(b);
2568 return new;
2569 mismatch:
2570 spin_unlock(&dentry->d_lock);
2571 dput(dentry);
2572 goto retry;
2574 EXPORT_SYMBOL(d_alloc_parallel);
2576 void __d_lookup_done(struct dentry *dentry)
2578 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2579 dentry->d_name.hash);
2580 hlist_bl_lock(b);
2581 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2582 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2583 wake_up_all(dentry->d_wait);
2584 dentry->d_wait = NULL;
2585 hlist_bl_unlock(b);
2586 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2587 INIT_LIST_HEAD(&dentry->d_lru);
2589 EXPORT_SYMBOL(__d_lookup_done);
2591 /* inode->i_lock held if inode is non-NULL */
2593 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2595 struct inode *dir = NULL;
2596 unsigned n;
2597 spin_lock(&dentry->d_lock);
2598 if (unlikely(d_in_lookup(dentry))) {
2599 dir = dentry->d_parent->d_inode;
2600 n = start_dir_add(dir);
2601 __d_lookup_done(dentry);
2603 if (inode) {
2604 unsigned add_flags = d_flags_for_inode(inode);
2605 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2606 raw_write_seqcount_begin(&dentry->d_seq);
2607 __d_set_inode_and_type(dentry, inode, add_flags);
2608 raw_write_seqcount_end(&dentry->d_seq);
2609 fsnotify_update_flags(dentry);
2611 __d_rehash(dentry);
2612 if (dir)
2613 end_dir_add(dir, n);
2614 spin_unlock(&dentry->d_lock);
2615 if (inode)
2616 spin_unlock(&inode->i_lock);
2620 * d_add - add dentry to hash queues
2621 * @entry: dentry to add
2622 * @inode: The inode to attach to this dentry
2624 * This adds the entry to the hash queues and initializes @inode.
2625 * The entry was actually filled in earlier during d_alloc().
2628 void d_add(struct dentry *entry, struct inode *inode)
2630 if (inode) {
2631 security_d_instantiate(entry, inode);
2632 spin_lock(&inode->i_lock);
2634 __d_add(entry, inode);
2636 EXPORT_SYMBOL(d_add);
2639 * d_exact_alias - find and hash an exact unhashed alias
2640 * @entry: dentry to add
2641 * @inode: The inode to go with this dentry
2643 * If an unhashed dentry with the same name/parent and desired
2644 * inode already exists, hash and return it. Otherwise, return
2645 * NULL.
2647 * Parent directory should be locked.
2649 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2651 struct dentry *alias;
2652 unsigned int hash = entry->d_name.hash;
2654 spin_lock(&inode->i_lock);
2655 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2657 * Don't need alias->d_lock here, because aliases with
2658 * d_parent == entry->d_parent are not subject to name or
2659 * parent changes, because the parent inode i_mutex is held.
2661 if (alias->d_name.hash != hash)
2662 continue;
2663 if (alias->d_parent != entry->d_parent)
2664 continue;
2665 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2666 continue;
2667 spin_lock(&alias->d_lock);
2668 if (!d_unhashed(alias)) {
2669 spin_unlock(&alias->d_lock);
2670 alias = NULL;
2671 } else {
2672 __dget_dlock(alias);
2673 __d_rehash(alias);
2674 spin_unlock(&alias->d_lock);
2676 spin_unlock(&inode->i_lock);
2677 return alias;
2679 spin_unlock(&inode->i_lock);
2680 return NULL;
2682 EXPORT_SYMBOL(d_exact_alias);
2685 * dentry_update_name_case - update case insensitive dentry with a new name
2686 * @dentry: dentry to be updated
2687 * @name: new name
2689 * Update a case insensitive dentry with new case of name.
2691 * dentry must have been returned by d_lookup with name @name. Old and new
2692 * name lengths must match (ie. no d_compare which allows mismatched name
2693 * lengths).
2695 * Parent inode i_mutex must be held over d_lookup and into this call (to
2696 * keep renames and concurrent inserts, and readdir(2) away).
2698 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2700 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2701 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2703 spin_lock(&dentry->d_lock);
2704 write_seqcount_begin(&dentry->d_seq);
2705 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2706 write_seqcount_end(&dentry->d_seq);
2707 spin_unlock(&dentry->d_lock);
2709 EXPORT_SYMBOL(dentry_update_name_case);
2711 static void swap_names(struct dentry *dentry, struct dentry *target)
2713 if (unlikely(dname_external(target))) {
2714 if (unlikely(dname_external(dentry))) {
2716 * Both external: swap the pointers
2718 swap(target->d_name.name, dentry->d_name.name);
2719 } else {
2721 * dentry:internal, target:external. Steal target's
2722 * storage and make target internal.
2724 memcpy(target->d_iname, dentry->d_name.name,
2725 dentry->d_name.len + 1);
2726 dentry->d_name.name = target->d_name.name;
2727 target->d_name.name = target->d_iname;
2729 } else {
2730 if (unlikely(dname_external(dentry))) {
2732 * dentry:external, target:internal. Give dentry's
2733 * storage to target and make dentry internal
2735 memcpy(dentry->d_iname, target->d_name.name,
2736 target->d_name.len + 1);
2737 target->d_name.name = dentry->d_name.name;
2738 dentry->d_name.name = dentry->d_iname;
2739 } else {
2741 * Both are internal.
2743 unsigned int i;
2744 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2745 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2746 swap(((long *) &dentry->d_iname)[i],
2747 ((long *) &target->d_iname)[i]);
2751 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2754 static void copy_name(struct dentry *dentry, struct dentry *target)
2756 struct external_name *old_name = NULL;
2757 if (unlikely(dname_external(dentry)))
2758 old_name = external_name(dentry);
2759 if (unlikely(dname_external(target))) {
2760 atomic_inc(&external_name(target)->u.count);
2761 dentry->d_name = target->d_name;
2762 } else {
2763 memcpy(dentry->d_iname, target->d_name.name,
2764 target->d_name.len + 1);
2765 dentry->d_name.name = dentry->d_iname;
2766 dentry->d_name.hash_len = target->d_name.hash_len;
2768 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2769 kfree_rcu(old_name, u.head);
2772 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2775 * XXXX: do we really need to take target->d_lock?
2777 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2778 spin_lock(&target->d_parent->d_lock);
2779 else {
2780 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2781 spin_lock(&dentry->d_parent->d_lock);
2782 spin_lock_nested(&target->d_parent->d_lock,
2783 DENTRY_D_LOCK_NESTED);
2784 } else {
2785 spin_lock(&target->d_parent->d_lock);
2786 spin_lock_nested(&dentry->d_parent->d_lock,
2787 DENTRY_D_LOCK_NESTED);
2790 if (target < dentry) {
2791 spin_lock_nested(&target->d_lock, 2);
2792 spin_lock_nested(&dentry->d_lock, 3);
2793 } else {
2794 spin_lock_nested(&dentry->d_lock, 2);
2795 spin_lock_nested(&target->d_lock, 3);
2799 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2801 if (target->d_parent != dentry->d_parent)
2802 spin_unlock(&dentry->d_parent->d_lock);
2803 if (target->d_parent != target)
2804 spin_unlock(&target->d_parent->d_lock);
2805 spin_unlock(&target->d_lock);
2806 spin_unlock(&dentry->d_lock);
2810 * When switching names, the actual string doesn't strictly have to
2811 * be preserved in the target - because we're dropping the target
2812 * anyway. As such, we can just do a simple memcpy() to copy over
2813 * the new name before we switch, unless we are going to rehash
2814 * it. Note that if we *do* unhash the target, we are not allowed
2815 * to rehash it without giving it a new name/hash key - whether
2816 * we swap or overwrite the names here, resulting name won't match
2817 * the reality in filesystem; it's only there for d_path() purposes.
2818 * Note that all of this is happening under rename_lock, so the
2819 * any hash lookup seeing it in the middle of manipulations will
2820 * be discarded anyway. So we do not care what happens to the hash
2821 * key in that case.
2824 * __d_move - move a dentry
2825 * @dentry: entry to move
2826 * @target: new dentry
2827 * @exchange: exchange the two dentries
2829 * Update the dcache to reflect the move of a file name. Negative
2830 * dcache entries should not be moved in this way. Caller must hold
2831 * rename_lock, the i_mutex of the source and target directories,
2832 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2834 static void __d_move(struct dentry *dentry, struct dentry *target,
2835 bool exchange)
2837 struct inode *dir = NULL;
2838 unsigned n;
2839 if (!dentry->d_inode)
2840 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2842 BUG_ON(d_ancestor(dentry, target));
2843 BUG_ON(d_ancestor(target, dentry));
2845 dentry_lock_for_move(dentry, target);
2846 if (unlikely(d_in_lookup(target))) {
2847 dir = target->d_parent->d_inode;
2848 n = start_dir_add(dir);
2849 __d_lookup_done(target);
2852 write_seqcount_begin(&dentry->d_seq);
2853 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2855 /* unhash both */
2856 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2857 ___d_drop(dentry);
2858 ___d_drop(target);
2860 /* Switch the names.. */
2861 if (exchange)
2862 swap_names(dentry, target);
2863 else
2864 copy_name(dentry, target);
2866 /* rehash in new place(s) */
2867 __d_rehash(dentry);
2868 if (exchange)
2869 __d_rehash(target);
2870 else
2871 target->d_hash.pprev = NULL;
2873 /* ... and switch them in the tree */
2874 if (IS_ROOT(dentry)) {
2875 /* splicing a tree */
2876 dentry->d_flags |= DCACHE_RCUACCESS;
2877 dentry->d_parent = target->d_parent;
2878 target->d_parent = target;
2879 list_del_init(&target->d_child);
2880 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2881 } else {
2882 /* swapping two dentries */
2883 swap(dentry->d_parent, target->d_parent);
2884 list_move(&target->d_child, &target->d_parent->d_subdirs);
2885 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2886 if (exchange)
2887 fsnotify_update_flags(target);
2888 fsnotify_update_flags(dentry);
2891 write_seqcount_end(&target->d_seq);
2892 write_seqcount_end(&dentry->d_seq);
2894 if (dir)
2895 end_dir_add(dir, n);
2896 dentry_unlock_for_move(dentry, target);
2900 * d_move - move a dentry
2901 * @dentry: entry to move
2902 * @target: new dentry
2904 * Update the dcache to reflect the move of a file name. Negative
2905 * dcache entries should not be moved in this way. See the locking
2906 * requirements for __d_move.
2908 void d_move(struct dentry *dentry, struct dentry *target)
2910 write_seqlock(&rename_lock);
2911 __d_move(dentry, target, false);
2912 write_sequnlock(&rename_lock);
2914 EXPORT_SYMBOL(d_move);
2917 * d_exchange - exchange two dentries
2918 * @dentry1: first dentry
2919 * @dentry2: second dentry
2921 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2923 write_seqlock(&rename_lock);
2925 WARN_ON(!dentry1->d_inode);
2926 WARN_ON(!dentry2->d_inode);
2927 WARN_ON(IS_ROOT(dentry1));
2928 WARN_ON(IS_ROOT(dentry2));
2930 __d_move(dentry1, dentry2, true);
2932 write_sequnlock(&rename_lock);
2936 * d_ancestor - search for an ancestor
2937 * @p1: ancestor dentry
2938 * @p2: child dentry
2940 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2941 * an ancestor of p2, else NULL.
2943 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2945 struct dentry *p;
2947 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2948 if (p->d_parent == p1)
2949 return p;
2951 return NULL;
2955 * This helper attempts to cope with remotely renamed directories
2957 * It assumes that the caller is already holding
2958 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2960 * Note: If ever the locking in lock_rename() changes, then please
2961 * remember to update this too...
2963 static int __d_unalias(struct inode *inode,
2964 struct dentry *dentry, struct dentry *alias)
2966 struct mutex *m1 = NULL;
2967 struct rw_semaphore *m2 = NULL;
2968 int ret = -ESTALE;
2970 /* If alias and dentry share a parent, then no extra locks required */
2971 if (alias->d_parent == dentry->d_parent)
2972 goto out_unalias;
2974 /* See lock_rename() */
2975 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2976 goto out_err;
2977 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2978 if (!inode_trylock_shared(alias->d_parent->d_inode))
2979 goto out_err;
2980 m2 = &alias->d_parent->d_inode->i_rwsem;
2981 out_unalias:
2982 __d_move(alias, dentry, false);
2983 ret = 0;
2984 out_err:
2985 if (m2)
2986 up_read(m2);
2987 if (m1)
2988 mutex_unlock(m1);
2989 return ret;
2993 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2994 * @inode: the inode which may have a disconnected dentry
2995 * @dentry: a negative dentry which we want to point to the inode.
2997 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2998 * place of the given dentry and return it, else simply d_add the inode
2999 * to the dentry and return NULL.
3001 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3002 * we should error out: directories can't have multiple aliases.
3004 * This is needed in the lookup routine of any filesystem that is exportable
3005 * (via knfsd) so that we can build dcache paths to directories effectively.
3007 * If a dentry was found and moved, then it is returned. Otherwise NULL
3008 * is returned. This matches the expected return value of ->lookup.
3010 * Cluster filesystems may call this function with a negative, hashed dentry.
3011 * In that case, we know that the inode will be a regular file, and also this
3012 * will only occur during atomic_open. So we need to check for the dentry
3013 * being already hashed only in the final case.
3015 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3017 if (IS_ERR(inode))
3018 return ERR_CAST(inode);
3020 BUG_ON(!d_unhashed(dentry));
3022 if (!inode)
3023 goto out;
3025 security_d_instantiate(dentry, inode);
3026 spin_lock(&inode->i_lock);
3027 if (S_ISDIR(inode->i_mode)) {
3028 struct dentry *new = __d_find_any_alias(inode);
3029 if (unlikely(new)) {
3030 /* The reference to new ensures it remains an alias */
3031 spin_unlock(&inode->i_lock);
3032 write_seqlock(&rename_lock);
3033 if (unlikely(d_ancestor(new, dentry))) {
3034 write_sequnlock(&rename_lock);
3035 dput(new);
3036 new = ERR_PTR(-ELOOP);
3037 pr_warn_ratelimited(
3038 "VFS: Lookup of '%s' in %s %s"
3039 " would have caused loop\n",
3040 dentry->d_name.name,
3041 inode->i_sb->s_type->name,
3042 inode->i_sb->s_id);
3043 } else if (!IS_ROOT(new)) {
3044 int err = __d_unalias(inode, dentry, new);
3045 write_sequnlock(&rename_lock);
3046 if (err) {
3047 dput(new);
3048 new = ERR_PTR(err);
3050 } else {
3051 __d_move(new, dentry, false);
3052 write_sequnlock(&rename_lock);
3054 iput(inode);
3055 return new;
3058 out:
3059 __d_add(dentry, inode);
3060 return NULL;
3062 EXPORT_SYMBOL(d_splice_alias);
3064 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3066 *buflen -= namelen;
3067 if (*buflen < 0)
3068 return -ENAMETOOLONG;
3069 *buffer -= namelen;
3070 memcpy(*buffer, str, namelen);
3071 return 0;
3075 * prepend_name - prepend a pathname in front of current buffer pointer
3076 * @buffer: buffer pointer
3077 * @buflen: allocated length of the buffer
3078 * @name: name string and length qstr structure
3080 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
3081 * make sure that either the old or the new name pointer and length are
3082 * fetched. However, there may be mismatch between length and pointer.
3083 * The length cannot be trusted, we need to copy it byte-by-byte until
3084 * the length is reached or a null byte is found. It also prepends "/" at
3085 * the beginning of the name. The sequence number check at the caller will
3086 * retry it again when a d_move() does happen. So any garbage in the buffer
3087 * due to mismatched pointer and length will be discarded.
3089 * Load acquire is needed to make sure that we see that terminating NUL.
3091 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3093 const char *dname = smp_load_acquire(&name->name); /* ^^^ */
3094 u32 dlen = READ_ONCE(name->len);
3095 char *p;
3097 *buflen -= dlen + 1;
3098 if (*buflen < 0)
3099 return -ENAMETOOLONG;
3100 p = *buffer -= dlen + 1;
3101 *p++ = '/';
3102 while (dlen--) {
3103 char c = *dname++;
3104 if (!c)
3105 break;
3106 *p++ = c;
3108 return 0;
3112 * prepend_path - Prepend path string to a buffer
3113 * @path: the dentry/vfsmount to report
3114 * @root: root vfsmnt/dentry
3115 * @buffer: pointer to the end of the buffer
3116 * @buflen: pointer to buffer length
3118 * The function will first try to write out the pathname without taking any
3119 * lock other than the RCU read lock to make sure that dentries won't go away.
3120 * It only checks the sequence number of the global rename_lock as any change
3121 * in the dentry's d_seq will be preceded by changes in the rename_lock
3122 * sequence number. If the sequence number had been changed, it will restart
3123 * the whole pathname back-tracing sequence again by taking the rename_lock.
3124 * In this case, there is no need to take the RCU read lock as the recursive
3125 * parent pointer references will keep the dentry chain alive as long as no
3126 * rename operation is performed.
3128 static int prepend_path(const struct path *path,
3129 const struct path *root,
3130 char **buffer, int *buflen)
3132 struct dentry *dentry;
3133 struct vfsmount *vfsmnt;
3134 struct mount *mnt;
3135 int error = 0;
3136 unsigned seq, m_seq = 0;
3137 char *bptr;
3138 int blen;
3140 rcu_read_lock();
3141 restart_mnt:
3142 read_seqbegin_or_lock(&mount_lock, &m_seq);
3143 seq = 0;
3144 rcu_read_lock();
3145 restart:
3146 bptr = *buffer;
3147 blen = *buflen;
3148 error = 0;
3149 dentry = path->dentry;
3150 vfsmnt = path->mnt;
3151 mnt = real_mount(vfsmnt);
3152 read_seqbegin_or_lock(&rename_lock, &seq);
3153 while (dentry != root->dentry || vfsmnt != root->mnt) {
3154 struct dentry * parent;
3156 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3157 struct mount *parent = READ_ONCE(mnt->mnt_parent);
3158 /* Escaped? */
3159 if (dentry != vfsmnt->mnt_root) {
3160 bptr = *buffer;
3161 blen = *buflen;
3162 error = 3;
3163 break;
3165 /* Global root? */
3166 if (mnt != parent) {
3167 dentry = READ_ONCE(mnt->mnt_mountpoint);
3168 mnt = parent;
3169 vfsmnt = &mnt->mnt;
3170 continue;
3172 if (!error)
3173 error = is_mounted(vfsmnt) ? 1 : 2;
3174 break;
3176 parent = dentry->d_parent;
3177 prefetch(parent);
3178 error = prepend_name(&bptr, &blen, &dentry->d_name);
3179 if (error)
3180 break;
3182 dentry = parent;
3184 if (!(seq & 1))
3185 rcu_read_unlock();
3186 if (need_seqretry(&rename_lock, seq)) {
3187 seq = 1;
3188 goto restart;
3190 done_seqretry(&rename_lock, seq);
3192 if (!(m_seq & 1))
3193 rcu_read_unlock();
3194 if (need_seqretry(&mount_lock, m_seq)) {
3195 m_seq = 1;
3196 goto restart_mnt;
3198 done_seqretry(&mount_lock, m_seq);
3200 if (error >= 0 && bptr == *buffer) {
3201 if (--blen < 0)
3202 error = -ENAMETOOLONG;
3203 else
3204 *--bptr = '/';
3206 *buffer = bptr;
3207 *buflen = blen;
3208 return error;
3212 * __d_path - return the path of a dentry
3213 * @path: the dentry/vfsmount to report
3214 * @root: root vfsmnt/dentry
3215 * @buf: buffer to return value in
3216 * @buflen: buffer length
3218 * Convert a dentry into an ASCII path name.
3220 * Returns a pointer into the buffer or an error code if the
3221 * path was too long.
3223 * "buflen" should be positive.
3225 * If the path is not reachable from the supplied root, return %NULL.
3227 char *__d_path(const struct path *path,
3228 const struct path *root,
3229 char *buf, int buflen)
3231 char *res = buf + buflen;
3232 int error;
3234 prepend(&res, &buflen, "\0", 1);
3235 error = prepend_path(path, root, &res, &buflen);
3237 if (error < 0)
3238 return ERR_PTR(error);
3239 if (error > 0)
3240 return NULL;
3241 return res;
3244 char *d_absolute_path(const struct path *path,
3245 char *buf, int buflen)
3247 struct path root = {};
3248 char *res = buf + buflen;
3249 int error;
3251 prepend(&res, &buflen, "\0", 1);
3252 error = prepend_path(path, &root, &res, &buflen);
3254 if (error > 1)
3255 error = -EINVAL;
3256 if (error < 0)
3257 return ERR_PTR(error);
3258 return res;
3262 * same as __d_path but appends "(deleted)" for unlinked files.
3264 static int path_with_deleted(const struct path *path,
3265 const struct path *root,
3266 char **buf, int *buflen)
3268 prepend(buf, buflen, "\0", 1);
3269 if (d_unlinked(path->dentry)) {
3270 int error = prepend(buf, buflen, " (deleted)", 10);
3271 if (error)
3272 return error;
3275 return prepend_path(path, root, buf, buflen);
3278 static int prepend_unreachable(char **buffer, int *buflen)
3280 return prepend(buffer, buflen, "(unreachable)", 13);
3283 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3285 unsigned seq;
3287 do {
3288 seq = read_seqcount_begin(&fs->seq);
3289 *root = fs->root;
3290 } while (read_seqcount_retry(&fs->seq, seq));
3294 * d_path - return the path of a dentry
3295 * @path: path to report
3296 * @buf: buffer to return value in
3297 * @buflen: buffer length
3299 * Convert a dentry into an ASCII path name. If the entry has been deleted
3300 * the string " (deleted)" is appended. Note that this is ambiguous.
3302 * Returns a pointer into the buffer or an error code if the path was
3303 * too long. Note: Callers should use the returned pointer, not the passed
3304 * in buffer, to use the name! The implementation often starts at an offset
3305 * into the buffer, and may leave 0 bytes at the start.
3307 * "buflen" should be positive.
3309 char *d_path(const struct path *path, char *buf, int buflen)
3311 char *res = buf + buflen;
3312 struct path root;
3313 int error;
3316 * We have various synthetic filesystems that never get mounted. On
3317 * these filesystems dentries are never used for lookup purposes, and
3318 * thus don't need to be hashed. They also don't need a name until a
3319 * user wants to identify the object in /proc/pid/fd/. The little hack
3320 * below allows us to generate a name for these objects on demand:
3322 * Some pseudo inodes are mountable. When they are mounted
3323 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3324 * and instead have d_path return the mounted path.
3326 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3327 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3328 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3330 rcu_read_lock();
3331 get_fs_root_rcu(current->fs, &root);
3332 error = path_with_deleted(path, &root, &res, &buflen);
3333 rcu_read_unlock();
3335 if (error < 0)
3336 res = ERR_PTR(error);
3337 return res;
3339 EXPORT_SYMBOL(d_path);
3342 * Helper function for dentry_operations.d_dname() members
3344 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3345 const char *fmt, ...)
3347 va_list args;
3348 char temp[64];
3349 int sz;
3351 va_start(args, fmt);
3352 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3353 va_end(args);
3355 if (sz > sizeof(temp) || sz > buflen)
3356 return ERR_PTR(-ENAMETOOLONG);
3358 buffer += buflen - sz;
3359 return memcpy(buffer, temp, sz);
3362 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3364 char *end = buffer + buflen;
3365 /* these dentries are never renamed, so d_lock is not needed */
3366 if (prepend(&end, &buflen, " (deleted)", 11) ||
3367 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3368 prepend(&end, &buflen, "/", 1))
3369 end = ERR_PTR(-ENAMETOOLONG);
3370 return end;
3372 EXPORT_SYMBOL(simple_dname);
3375 * Write full pathname from the root of the filesystem into the buffer.
3377 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3379 struct dentry *dentry;
3380 char *end, *retval;
3381 int len, seq = 0;
3382 int error = 0;
3384 if (buflen < 2)
3385 goto Elong;
3387 rcu_read_lock();
3388 restart:
3389 dentry = d;
3390 end = buf + buflen;
3391 len = buflen;
3392 prepend(&end, &len, "\0", 1);
3393 /* Get '/' right */
3394 retval = end-1;
3395 *retval = '/';
3396 read_seqbegin_or_lock(&rename_lock, &seq);
3397 while (!IS_ROOT(dentry)) {
3398 struct dentry *parent = dentry->d_parent;
3400 prefetch(parent);
3401 error = prepend_name(&end, &len, &dentry->d_name);
3402 if (error)
3403 break;
3405 retval = end;
3406 dentry = parent;
3408 if (!(seq & 1))
3409 rcu_read_unlock();
3410 if (need_seqretry(&rename_lock, seq)) {
3411 seq = 1;
3412 goto restart;
3414 done_seqretry(&rename_lock, seq);
3415 if (error)
3416 goto Elong;
3417 return retval;
3418 Elong:
3419 return ERR_PTR(-ENAMETOOLONG);
3422 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3424 return __dentry_path(dentry, buf, buflen);
3426 EXPORT_SYMBOL(dentry_path_raw);
3428 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3430 char *p = NULL;
3431 char *retval;
3433 if (d_unlinked(dentry)) {
3434 p = buf + buflen;
3435 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3436 goto Elong;
3437 buflen++;
3439 retval = __dentry_path(dentry, buf, buflen);
3440 if (!IS_ERR(retval) && p)
3441 *p = '/'; /* restore '/' overriden with '\0' */
3442 return retval;
3443 Elong:
3444 return ERR_PTR(-ENAMETOOLONG);
3447 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3448 struct path *pwd)
3450 unsigned seq;
3452 do {
3453 seq = read_seqcount_begin(&fs->seq);
3454 *root = fs->root;
3455 *pwd = fs->pwd;
3456 } while (read_seqcount_retry(&fs->seq, seq));
3460 * NOTE! The user-level library version returns a
3461 * character pointer. The kernel system call just
3462 * returns the length of the buffer filled (which
3463 * includes the ending '\0' character), or a negative
3464 * error value. So libc would do something like
3466 * char *getcwd(char * buf, size_t size)
3468 * int retval;
3470 * retval = sys_getcwd(buf, size);
3471 * if (retval >= 0)
3472 * return buf;
3473 * errno = -retval;
3474 * return NULL;
3477 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3479 int error;
3480 struct path pwd, root;
3481 char *page = __getname();
3483 if (!page)
3484 return -ENOMEM;
3486 rcu_read_lock();
3487 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3489 error = -ENOENT;
3490 if (!d_unlinked(pwd.dentry)) {
3491 unsigned long len;
3492 char *cwd = page + PATH_MAX;
3493 int buflen = PATH_MAX;
3495 prepend(&cwd, &buflen, "\0", 1);
3496 error = prepend_path(&pwd, &root, &cwd, &buflen);
3497 rcu_read_unlock();
3499 if (error < 0)
3500 goto out;
3502 /* Unreachable from current root */
3503 if (error > 0) {
3504 error = prepend_unreachable(&cwd, &buflen);
3505 if (error)
3506 goto out;
3509 error = -ERANGE;
3510 len = PATH_MAX + page - cwd;
3511 if (len <= size) {
3512 error = len;
3513 if (copy_to_user(buf, cwd, len))
3514 error = -EFAULT;
3516 } else {
3517 rcu_read_unlock();
3520 out:
3521 __putname(page);
3522 return error;
3526 * Test whether new_dentry is a subdirectory of old_dentry.
3528 * Trivially implemented using the dcache structure
3532 * is_subdir - is new dentry a subdirectory of old_dentry
3533 * @new_dentry: new dentry
3534 * @old_dentry: old dentry
3536 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3537 * Returns false otherwise.
3538 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3541 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3543 bool result;
3544 unsigned seq;
3546 if (new_dentry == old_dentry)
3547 return true;
3549 do {
3550 /* for restarting inner loop in case of seq retry */
3551 seq = read_seqbegin(&rename_lock);
3553 * Need rcu_readlock to protect against the d_parent trashing
3554 * due to d_move
3556 rcu_read_lock();
3557 if (d_ancestor(old_dentry, new_dentry))
3558 result = true;
3559 else
3560 result = false;
3561 rcu_read_unlock();
3562 } while (read_seqretry(&rename_lock, seq));
3564 return result;
3566 EXPORT_SYMBOL(is_subdir);
3568 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3570 struct dentry *root = data;
3571 if (dentry != root) {
3572 if (d_unhashed(dentry) || !dentry->d_inode)
3573 return D_WALK_SKIP;
3575 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3576 dentry->d_flags |= DCACHE_GENOCIDE;
3577 dentry->d_lockref.count--;
3580 return D_WALK_CONTINUE;
3583 void d_genocide(struct dentry *parent)
3585 d_walk(parent, parent, d_genocide_kill, NULL);
3588 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3590 inode_dec_link_count(inode);
3591 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3592 !hlist_unhashed(&dentry->d_u.d_alias) ||
3593 !d_unlinked(dentry));
3594 spin_lock(&dentry->d_parent->d_lock);
3595 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3596 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3597 (unsigned long long)inode->i_ino);
3598 spin_unlock(&dentry->d_lock);
3599 spin_unlock(&dentry->d_parent->d_lock);
3600 d_instantiate(dentry, inode);
3602 EXPORT_SYMBOL(d_tmpfile);
3604 static __initdata unsigned long dhash_entries;
3605 static int __init set_dhash_entries(char *str)
3607 if (!str)
3608 return 0;
3609 dhash_entries = simple_strtoul(str, &str, 0);
3610 return 1;
3612 __setup("dhash_entries=", set_dhash_entries);
3614 static void __init dcache_init_early(void)
3616 /* If hashes are distributed across NUMA nodes, defer
3617 * hash allocation until vmalloc space is available.
3619 if (hashdist)
3620 return;
3622 dentry_hashtable =
3623 alloc_large_system_hash("Dentry cache",
3624 sizeof(struct hlist_bl_head),
3625 dhash_entries,
3627 HASH_EARLY | HASH_ZERO,
3628 &d_hash_shift,
3629 NULL,
3632 d_hash_shift = 32 - d_hash_shift;
3635 static void __init dcache_init(void)
3638 * A constructor could be added for stable state like the lists,
3639 * but it is probably not worth it because of the cache nature
3640 * of the dcache.
3642 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3643 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3644 d_iname);
3646 /* Hash may have been set up in dcache_init_early */
3647 if (!hashdist)
3648 return;
3650 dentry_hashtable =
3651 alloc_large_system_hash("Dentry cache",
3652 sizeof(struct hlist_bl_head),
3653 dhash_entries,
3655 HASH_ZERO,
3656 &d_hash_shift,
3657 NULL,
3660 d_hash_shift = 32 - d_hash_shift;
3663 /* SLAB cache for __getname() consumers */
3664 struct kmem_cache *names_cachep __read_mostly;
3665 EXPORT_SYMBOL(names_cachep);
3667 EXPORT_SYMBOL(d_genocide);
3669 void __init vfs_caches_init_early(void)
3671 int i;
3673 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3674 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3676 dcache_init_early();
3677 inode_init_early();
3680 void __init vfs_caches_init(void)
3682 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3683 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3685 dcache_init();
3686 inode_init();
3687 files_init();
3688 files_maxfiles_init();
3689 mnt_init();
3690 bdev_cache_init();
3691 chrdev_init();