1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
28 static const struct bpf_verifier_ops
* const bpf_verifier_ops
[] = {
29 #define BPF_PROG_TYPE(_id, _name) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #include <linux/bpf_types.h>
37 /* bpf_check() is a static code analyzer that walks eBPF program
38 * instruction by instruction and updates register/stack state.
39 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 * The first pass is depth-first-search to check that the program is a DAG.
42 * It rejects the following programs:
43 * - larger than BPF_MAXINSNS insns
44 * - if loop is present (detected via back-edge)
45 * - unreachable insns exist (shouldn't be a forest. program = one function)
46 * - out of bounds or malformed jumps
47 * The second pass is all possible path descent from the 1st insn.
48 * Since it's analyzing all pathes through the program, the length of the
49 * analysis is limited to 64k insn, which may be hit even if total number of
50 * insn is less then 4K, but there are too many branches that change stack/regs.
51 * Number of 'branches to be analyzed' is limited to 1k
53 * On entry to each instruction, each register has a type, and the instruction
54 * changes the types of the registers depending on instruction semantics.
55 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * All registers are 64-bit.
59 * R0 - return register
60 * R1-R5 argument passing registers
61 * R6-R9 callee saved registers
62 * R10 - frame pointer read-only
64 * At the start of BPF program the register R1 contains a pointer to bpf_context
65 * and has type PTR_TO_CTX.
67 * Verifier tracks arithmetic operations on pointers in case:
68 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
69 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
70 * 1st insn copies R10 (which has FRAME_PTR) type into R1
71 * and 2nd arithmetic instruction is pattern matched to recognize
72 * that it wants to construct a pointer to some element within stack.
73 * So after 2nd insn, the register R1 has type PTR_TO_STACK
74 * (and -20 constant is saved for further stack bounds checking).
75 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 * Most of the time the registers have SCALAR_VALUE type, which
78 * means the register has some value, but it's not a valid pointer.
79 * (like pointer plus pointer becomes SCALAR_VALUE type)
81 * When verifier sees load or store instructions the type of base register
82 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
83 * types recognized by check_mem_access() function.
85 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
86 * and the range of [ptr, ptr + map's value_size) is accessible.
88 * registers used to pass values to function calls are checked against
89 * function argument constraints.
91 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
92 * It means that the register type passed to this function must be
93 * PTR_TO_STACK and it will be used inside the function as
94 * 'pointer to map element key'
96 * For example the argument constraints for bpf_map_lookup_elem():
97 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
98 * .arg1_type = ARG_CONST_MAP_PTR,
99 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 * ret_type says that this function returns 'pointer to map elem value or null'
102 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
103 * 2nd argument should be a pointer to stack, which will be used inside
104 * the helper function as a pointer to map element key.
106 * On the kernel side the helper function looks like:
107 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
110 * void *key = (void *) (unsigned long) r2;
113 * here kernel can access 'key' and 'map' pointers safely, knowing that
114 * [key, key + map->key_size) bytes are valid and were initialized on
115 * the stack of eBPF program.
118 * Corresponding eBPF program may look like:
119 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
120 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
121 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
122 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
123 * here verifier looks at prototype of map_lookup_elem() and sees:
124 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
125 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
128 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
129 * and were initialized prior to this call.
130 * If it's ok, then verifier allows this BPF_CALL insn and looks at
131 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
132 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
133 * returns ether pointer to map value or NULL.
135 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
136 * insn, the register holding that pointer in the true branch changes state to
137 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
138 * branch. See check_cond_jmp_op().
140 * After the call R0 is set to return type of the function and registers R1-R5
141 * are set to NOT_INIT to indicate that they are no longer readable.
144 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
145 struct bpf_verifier_stack_elem
{
146 /* verifer state is 'st'
147 * before processing instruction 'insn_idx'
148 * and after processing instruction 'prev_insn_idx'
150 struct bpf_verifier_state st
;
153 struct bpf_verifier_stack_elem
*next
;
156 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
157 #define BPF_COMPLEXITY_LIMIT_STACK 1024
159 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
161 struct bpf_call_arg_meta
{
162 struct bpf_map
*map_ptr
;
169 static DEFINE_MUTEX(bpf_verifier_lock
);
171 /* log_level controls verbosity level of eBPF verifier.
172 * bpf_verifier_log_write() is used to dump the verification trace to the log,
173 * so the user can figure out what's wrong with the program
175 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env
*env
,
176 const char *fmt
, ...)
178 struct bpf_verifer_log
*log
= &env
->log
;
182 if (!log
->level
|| !log
->ubuf
|| bpf_verifier_log_full(log
))
186 n
= vscnprintf(log
->kbuf
, BPF_VERIFIER_TMP_LOG_SIZE
, fmt
, args
);
189 WARN_ONCE(n
>= BPF_VERIFIER_TMP_LOG_SIZE
- 1,
190 "verifier log line truncated - local buffer too short\n");
192 n
= min(log
->len_total
- log
->len_used
- 1, n
);
195 if (!copy_to_user(log
->ubuf
+ log
->len_used
, log
->kbuf
, n
+ 1))
200 EXPORT_SYMBOL_GPL(bpf_verifier_log_write
);
201 /* Historically bpf_verifier_log_write was called verbose, but the name was too
202 * generic for symbol export. The function was renamed, but not the calls in
203 * the verifier to avoid complicating backports. Hence the alias below.
205 static __printf(2, 3) void verbose(struct bpf_verifier_env
*env
,
206 const char *fmt
, ...)
207 __attribute__((alias("bpf_verifier_log_write")));
209 static bool type_is_pkt_pointer(enum bpf_reg_type type
)
211 return type
== PTR_TO_PACKET
||
212 type
== PTR_TO_PACKET_META
;
215 /* string representation of 'enum bpf_reg_type' */
216 static const char * const reg_type_str
[] = {
218 [SCALAR_VALUE
] = "inv",
219 [PTR_TO_CTX
] = "ctx",
220 [CONST_PTR_TO_MAP
] = "map_ptr",
221 [PTR_TO_MAP_VALUE
] = "map_value",
222 [PTR_TO_MAP_VALUE_OR_NULL
] = "map_value_or_null",
223 [PTR_TO_STACK
] = "fp",
224 [PTR_TO_PACKET
] = "pkt",
225 [PTR_TO_PACKET_META
] = "pkt_meta",
226 [PTR_TO_PACKET_END
] = "pkt_end",
229 static void print_liveness(struct bpf_verifier_env
*env
,
230 enum bpf_reg_liveness live
)
232 if (live
& (REG_LIVE_READ
| REG_LIVE_WRITTEN
))
234 if (live
& REG_LIVE_READ
)
236 if (live
& REG_LIVE_WRITTEN
)
240 static struct bpf_func_state
*func(struct bpf_verifier_env
*env
,
241 const struct bpf_reg_state
*reg
)
243 struct bpf_verifier_state
*cur
= env
->cur_state
;
245 return cur
->frame
[reg
->frameno
];
248 static void print_verifier_state(struct bpf_verifier_env
*env
,
249 const struct bpf_func_state
*state
)
251 const struct bpf_reg_state
*reg
;
256 verbose(env
, " frame%d:", state
->frameno
);
257 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
258 reg
= &state
->regs
[i
];
262 verbose(env
, " R%d", i
);
263 print_liveness(env
, reg
->live
);
264 verbose(env
, "=%s", reg_type_str
[t
]);
265 if ((t
== SCALAR_VALUE
|| t
== PTR_TO_STACK
) &&
266 tnum_is_const(reg
->var_off
)) {
267 /* reg->off should be 0 for SCALAR_VALUE */
268 verbose(env
, "%lld", reg
->var_off
.value
+ reg
->off
);
269 if (t
== PTR_TO_STACK
)
270 verbose(env
, ",call_%d", func(env
, reg
)->callsite
);
272 verbose(env
, "(id=%d", reg
->id
);
273 if (t
!= SCALAR_VALUE
)
274 verbose(env
, ",off=%d", reg
->off
);
275 if (type_is_pkt_pointer(t
))
276 verbose(env
, ",r=%d", reg
->range
);
277 else if (t
== CONST_PTR_TO_MAP
||
278 t
== PTR_TO_MAP_VALUE
||
279 t
== PTR_TO_MAP_VALUE_OR_NULL
)
280 verbose(env
, ",ks=%d,vs=%d",
281 reg
->map_ptr
->key_size
,
282 reg
->map_ptr
->value_size
);
283 if (tnum_is_const(reg
->var_off
)) {
284 /* Typically an immediate SCALAR_VALUE, but
285 * could be a pointer whose offset is too big
288 verbose(env
, ",imm=%llx", reg
->var_off
.value
);
290 if (reg
->smin_value
!= reg
->umin_value
&&
291 reg
->smin_value
!= S64_MIN
)
292 verbose(env
, ",smin_value=%lld",
293 (long long)reg
->smin_value
);
294 if (reg
->smax_value
!= reg
->umax_value
&&
295 reg
->smax_value
!= S64_MAX
)
296 verbose(env
, ",smax_value=%lld",
297 (long long)reg
->smax_value
);
298 if (reg
->umin_value
!= 0)
299 verbose(env
, ",umin_value=%llu",
300 (unsigned long long)reg
->umin_value
);
301 if (reg
->umax_value
!= U64_MAX
)
302 verbose(env
, ",umax_value=%llu",
303 (unsigned long long)reg
->umax_value
);
304 if (!tnum_is_unknown(reg
->var_off
)) {
307 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
308 verbose(env
, ",var_off=%s", tn_buf
);
314 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
315 if (state
->stack
[i
].slot_type
[0] == STACK_SPILL
) {
316 verbose(env
, " fp%d",
317 (-i
- 1) * BPF_REG_SIZE
);
318 print_liveness(env
, state
->stack
[i
].spilled_ptr
.live
);
320 reg_type_str
[state
->stack
[i
].spilled_ptr
.type
]);
322 if (state
->stack
[i
].slot_type
[0] == STACK_ZERO
)
323 verbose(env
, " fp%d=0", (-i
- 1) * BPF_REG_SIZE
);
328 static int copy_stack_state(struct bpf_func_state
*dst
,
329 const struct bpf_func_state
*src
)
333 if (WARN_ON_ONCE(dst
->allocated_stack
< src
->allocated_stack
)) {
334 /* internal bug, make state invalid to reject the program */
335 memset(dst
, 0, sizeof(*dst
));
338 memcpy(dst
->stack
, src
->stack
,
339 sizeof(*src
->stack
) * (src
->allocated_stack
/ BPF_REG_SIZE
));
343 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
344 * make it consume minimal amount of memory. check_stack_write() access from
345 * the program calls into realloc_func_state() to grow the stack size.
346 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
347 * which this function copies over. It points to previous bpf_verifier_state
348 * which is never reallocated
350 static int realloc_func_state(struct bpf_func_state
*state
, int size
,
353 u32 old_size
= state
->allocated_stack
;
354 struct bpf_stack_state
*new_stack
;
355 int slot
= size
/ BPF_REG_SIZE
;
357 if (size
<= old_size
|| !size
) {
360 state
->allocated_stack
= slot
* BPF_REG_SIZE
;
361 if (!size
&& old_size
) {
367 new_stack
= kmalloc_array(slot
, sizeof(struct bpf_stack_state
),
373 memcpy(new_stack
, state
->stack
,
374 sizeof(*new_stack
) * (old_size
/ BPF_REG_SIZE
));
375 memset(new_stack
+ old_size
/ BPF_REG_SIZE
, 0,
376 sizeof(*new_stack
) * (size
- old_size
) / BPF_REG_SIZE
);
378 state
->allocated_stack
= slot
* BPF_REG_SIZE
;
380 state
->stack
= new_stack
;
384 static void free_func_state(struct bpf_func_state
*state
)
392 static void free_verifier_state(struct bpf_verifier_state
*state
,
397 for (i
= 0; i
<= state
->curframe
; i
++) {
398 free_func_state(state
->frame
[i
]);
399 state
->frame
[i
] = NULL
;
405 /* copy verifier state from src to dst growing dst stack space
406 * when necessary to accommodate larger src stack
408 static int copy_func_state(struct bpf_func_state
*dst
,
409 const struct bpf_func_state
*src
)
413 err
= realloc_func_state(dst
, src
->allocated_stack
, false);
416 memcpy(dst
, src
, offsetof(struct bpf_func_state
, allocated_stack
));
417 return copy_stack_state(dst
, src
);
420 static int copy_verifier_state(struct bpf_verifier_state
*dst_state
,
421 const struct bpf_verifier_state
*src
)
423 struct bpf_func_state
*dst
;
426 /* if dst has more stack frames then src frame, free them */
427 for (i
= src
->curframe
+ 1; i
<= dst_state
->curframe
; i
++) {
428 free_func_state(dst_state
->frame
[i
]);
429 dst_state
->frame
[i
] = NULL
;
431 dst_state
->curframe
= src
->curframe
;
432 dst_state
->parent
= src
->parent
;
433 for (i
= 0; i
<= src
->curframe
; i
++) {
434 dst
= dst_state
->frame
[i
];
436 dst
= kzalloc(sizeof(*dst
), GFP_KERNEL
);
439 dst_state
->frame
[i
] = dst
;
441 err
= copy_func_state(dst
, src
->frame
[i
]);
448 static int pop_stack(struct bpf_verifier_env
*env
, int *prev_insn_idx
,
451 struct bpf_verifier_state
*cur
= env
->cur_state
;
452 struct bpf_verifier_stack_elem
*elem
, *head
= env
->head
;
455 if (env
->head
== NULL
)
459 err
= copy_verifier_state(cur
, &head
->st
);
464 *insn_idx
= head
->insn_idx
;
466 *prev_insn_idx
= head
->prev_insn_idx
;
468 free_verifier_state(&head
->st
, false);
475 static struct bpf_verifier_state
*push_stack(struct bpf_verifier_env
*env
,
476 int insn_idx
, int prev_insn_idx
)
478 struct bpf_verifier_state
*cur
= env
->cur_state
;
479 struct bpf_verifier_stack_elem
*elem
;
482 elem
= kzalloc(sizeof(struct bpf_verifier_stack_elem
), GFP_KERNEL
);
486 elem
->insn_idx
= insn_idx
;
487 elem
->prev_insn_idx
= prev_insn_idx
;
488 elem
->next
= env
->head
;
491 err
= copy_verifier_state(&elem
->st
, cur
);
494 if (env
->stack_size
> BPF_COMPLEXITY_LIMIT_STACK
) {
495 verbose(env
, "BPF program is too complex\n");
500 free_verifier_state(env
->cur_state
, true);
501 env
->cur_state
= NULL
;
502 /* pop all elements and return */
503 while (!pop_stack(env
, NULL
, NULL
));
507 #define CALLER_SAVED_REGS 6
508 static const int caller_saved
[CALLER_SAVED_REGS
] = {
509 BPF_REG_0
, BPF_REG_1
, BPF_REG_2
, BPF_REG_3
, BPF_REG_4
, BPF_REG_5
511 #define CALLEE_SAVED_REGS 5
512 static const int callee_saved
[CALLEE_SAVED_REGS
] = {
513 BPF_REG_6
, BPF_REG_7
, BPF_REG_8
, BPF_REG_9
516 static void __mark_reg_not_init(struct bpf_reg_state
*reg
);
518 /* Mark the unknown part of a register (variable offset or scalar value) as
519 * known to have the value @imm.
521 static void __mark_reg_known(struct bpf_reg_state
*reg
, u64 imm
)
524 reg
->var_off
= tnum_const(imm
);
525 reg
->smin_value
= (s64
)imm
;
526 reg
->smax_value
= (s64
)imm
;
527 reg
->umin_value
= imm
;
528 reg
->umax_value
= imm
;
531 /* Mark the 'variable offset' part of a register as zero. This should be
532 * used only on registers holding a pointer type.
534 static void __mark_reg_known_zero(struct bpf_reg_state
*reg
)
536 __mark_reg_known(reg
, 0);
539 static void __mark_reg_const_zero(struct bpf_reg_state
*reg
)
541 __mark_reg_known(reg
, 0);
543 reg
->type
= SCALAR_VALUE
;
546 static void mark_reg_known_zero(struct bpf_verifier_env
*env
,
547 struct bpf_reg_state
*regs
, u32 regno
)
549 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
550 verbose(env
, "mark_reg_known_zero(regs, %u)\n", regno
);
551 /* Something bad happened, let's kill all regs */
552 for (regno
= 0; regno
< MAX_BPF_REG
; regno
++)
553 __mark_reg_not_init(regs
+ regno
);
556 __mark_reg_known_zero(regs
+ regno
);
559 static bool reg_is_pkt_pointer(const struct bpf_reg_state
*reg
)
561 return type_is_pkt_pointer(reg
->type
);
564 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state
*reg
)
566 return reg_is_pkt_pointer(reg
) ||
567 reg
->type
== PTR_TO_PACKET_END
;
570 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
571 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state
*reg
,
572 enum bpf_reg_type which
)
574 /* The register can already have a range from prior markings.
575 * This is fine as long as it hasn't been advanced from its
578 return reg
->type
== which
&&
581 tnum_equals_const(reg
->var_off
, 0);
584 /* Attempts to improve min/max values based on var_off information */
585 static void __update_reg_bounds(struct bpf_reg_state
*reg
)
587 /* min signed is max(sign bit) | min(other bits) */
588 reg
->smin_value
= max_t(s64
, reg
->smin_value
,
589 reg
->var_off
.value
| (reg
->var_off
.mask
& S64_MIN
));
590 /* max signed is min(sign bit) | max(other bits) */
591 reg
->smax_value
= min_t(s64
, reg
->smax_value
,
592 reg
->var_off
.value
| (reg
->var_off
.mask
& S64_MAX
));
593 reg
->umin_value
= max(reg
->umin_value
, reg
->var_off
.value
);
594 reg
->umax_value
= min(reg
->umax_value
,
595 reg
->var_off
.value
| reg
->var_off
.mask
);
598 /* Uses signed min/max values to inform unsigned, and vice-versa */
599 static void __reg_deduce_bounds(struct bpf_reg_state
*reg
)
601 /* Learn sign from signed bounds.
602 * If we cannot cross the sign boundary, then signed and unsigned bounds
603 * are the same, so combine. This works even in the negative case, e.g.
604 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
606 if (reg
->smin_value
>= 0 || reg
->smax_value
< 0) {
607 reg
->smin_value
= reg
->umin_value
= max_t(u64
, reg
->smin_value
,
609 reg
->smax_value
= reg
->umax_value
= min_t(u64
, reg
->smax_value
,
613 /* Learn sign from unsigned bounds. Signed bounds cross the sign
614 * boundary, so we must be careful.
616 if ((s64
)reg
->umax_value
>= 0) {
617 /* Positive. We can't learn anything from the smin, but smax
618 * is positive, hence safe.
620 reg
->smin_value
= reg
->umin_value
;
621 reg
->smax_value
= reg
->umax_value
= min_t(u64
, reg
->smax_value
,
623 } else if ((s64
)reg
->umin_value
< 0) {
624 /* Negative. We can't learn anything from the smax, but smin
625 * is negative, hence safe.
627 reg
->smin_value
= reg
->umin_value
= max_t(u64
, reg
->smin_value
,
629 reg
->smax_value
= reg
->umax_value
;
633 /* Attempts to improve var_off based on unsigned min/max information */
634 static void __reg_bound_offset(struct bpf_reg_state
*reg
)
636 reg
->var_off
= tnum_intersect(reg
->var_off
,
637 tnum_range(reg
->umin_value
,
641 /* Reset the min/max bounds of a register */
642 static void __mark_reg_unbounded(struct bpf_reg_state
*reg
)
644 reg
->smin_value
= S64_MIN
;
645 reg
->smax_value
= S64_MAX
;
647 reg
->umax_value
= U64_MAX
;
650 /* Mark a register as having a completely unknown (scalar) value. */
651 static void __mark_reg_unknown(struct bpf_reg_state
*reg
)
653 reg
->type
= SCALAR_VALUE
;
656 reg
->var_off
= tnum_unknown
;
658 __mark_reg_unbounded(reg
);
661 static void mark_reg_unknown(struct bpf_verifier_env
*env
,
662 struct bpf_reg_state
*regs
, u32 regno
)
664 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
665 verbose(env
, "mark_reg_unknown(regs, %u)\n", regno
);
666 /* Something bad happened, let's kill all regs except FP */
667 for (regno
= 0; regno
< BPF_REG_FP
; regno
++)
668 __mark_reg_not_init(regs
+ regno
);
671 __mark_reg_unknown(regs
+ regno
);
674 static void __mark_reg_not_init(struct bpf_reg_state
*reg
)
676 __mark_reg_unknown(reg
);
677 reg
->type
= NOT_INIT
;
680 static void mark_reg_not_init(struct bpf_verifier_env
*env
,
681 struct bpf_reg_state
*regs
, u32 regno
)
683 if (WARN_ON(regno
>= MAX_BPF_REG
)) {
684 verbose(env
, "mark_reg_not_init(regs, %u)\n", regno
);
685 /* Something bad happened, let's kill all regs except FP */
686 for (regno
= 0; regno
< BPF_REG_FP
; regno
++)
687 __mark_reg_not_init(regs
+ regno
);
690 __mark_reg_not_init(regs
+ regno
);
693 static void init_reg_state(struct bpf_verifier_env
*env
,
694 struct bpf_func_state
*state
)
696 struct bpf_reg_state
*regs
= state
->regs
;
699 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
700 mark_reg_not_init(env
, regs
, i
);
701 regs
[i
].live
= REG_LIVE_NONE
;
705 regs
[BPF_REG_FP
].type
= PTR_TO_STACK
;
706 mark_reg_known_zero(env
, regs
, BPF_REG_FP
);
707 regs
[BPF_REG_FP
].frameno
= state
->frameno
;
709 /* 1st arg to a function */
710 regs
[BPF_REG_1
].type
= PTR_TO_CTX
;
711 mark_reg_known_zero(env
, regs
, BPF_REG_1
);
714 #define BPF_MAIN_FUNC (-1)
715 static void init_func_state(struct bpf_verifier_env
*env
,
716 struct bpf_func_state
*state
,
717 int callsite
, int frameno
, int subprogno
)
719 state
->callsite
= callsite
;
720 state
->frameno
= frameno
;
721 state
->subprogno
= subprogno
;
722 init_reg_state(env
, state
);
726 SRC_OP
, /* register is used as source operand */
727 DST_OP
, /* register is used as destination operand */
728 DST_OP_NO_MARK
/* same as above, check only, don't mark */
731 static int cmp_subprogs(const void *a
, const void *b
)
733 return *(int *)a
- *(int *)b
;
736 static int find_subprog(struct bpf_verifier_env
*env
, int off
)
740 p
= bsearch(&off
, env
->subprog_starts
, env
->subprog_cnt
,
741 sizeof(env
->subprog_starts
[0]), cmp_subprogs
);
744 return p
- env
->subprog_starts
;
748 static int add_subprog(struct bpf_verifier_env
*env
, int off
)
750 int insn_cnt
= env
->prog
->len
;
753 if (off
>= insn_cnt
|| off
< 0) {
754 verbose(env
, "call to invalid destination\n");
757 ret
= find_subprog(env
, off
);
760 if (env
->subprog_cnt
>= BPF_MAX_SUBPROGS
) {
761 verbose(env
, "too many subprograms\n");
764 env
->subprog_starts
[env
->subprog_cnt
++] = off
;
765 sort(env
->subprog_starts
, env
->subprog_cnt
,
766 sizeof(env
->subprog_starts
[0]), cmp_subprogs
, NULL
);
770 static int check_subprogs(struct bpf_verifier_env
*env
)
772 int i
, ret
, subprog_start
, subprog_end
, off
, cur_subprog
= 0;
773 struct bpf_insn
*insn
= env
->prog
->insnsi
;
774 int insn_cnt
= env
->prog
->len
;
776 /* determine subprog starts. The end is one before the next starts */
777 for (i
= 0; i
< insn_cnt
; i
++) {
778 if (insn
[i
].code
!= (BPF_JMP
| BPF_CALL
))
780 if (insn
[i
].src_reg
!= BPF_PSEUDO_CALL
)
782 if (!env
->allow_ptr_leaks
) {
783 verbose(env
, "function calls to other bpf functions are allowed for root only\n");
786 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
787 verbose(env
, "function calls in offloaded programs are not supported yet\n");
790 ret
= add_subprog(env
, i
+ insn
[i
].imm
+ 1);
795 if (env
->log
.level
> 1)
796 for (i
= 0; i
< env
->subprog_cnt
; i
++)
797 verbose(env
, "func#%d @%d\n", i
, env
->subprog_starts
[i
]);
799 /* now check that all jumps are within the same subprog */
801 if (env
->subprog_cnt
== cur_subprog
)
802 subprog_end
= insn_cnt
;
804 subprog_end
= env
->subprog_starts
[cur_subprog
++];
805 for (i
= 0; i
< insn_cnt
; i
++) {
806 u8 code
= insn
[i
].code
;
808 if (BPF_CLASS(code
) != BPF_JMP
)
810 if (BPF_OP(code
) == BPF_EXIT
|| BPF_OP(code
) == BPF_CALL
)
812 off
= i
+ insn
[i
].off
+ 1;
813 if (off
< subprog_start
|| off
>= subprog_end
) {
814 verbose(env
, "jump out of range from insn %d to %d\n", i
, off
);
818 if (i
== subprog_end
- 1) {
819 /* to avoid fall-through from one subprog into another
820 * the last insn of the subprog should be either exit
821 * or unconditional jump back
823 if (code
!= (BPF_JMP
| BPF_EXIT
) &&
824 code
!= (BPF_JMP
| BPF_JA
)) {
825 verbose(env
, "last insn is not an exit or jmp\n");
828 subprog_start
= subprog_end
;
829 if (env
->subprog_cnt
== cur_subprog
)
830 subprog_end
= insn_cnt
;
832 subprog_end
= env
->subprog_starts
[cur_subprog
++];
839 struct bpf_verifier_state
*skip_callee(struct bpf_verifier_env
*env
,
840 const struct bpf_verifier_state
*state
,
841 struct bpf_verifier_state
*parent
,
844 struct bpf_verifier_state
*tmp
= NULL
;
846 /* 'parent' could be a state of caller and
847 * 'state' could be a state of callee. In such case
848 * parent->curframe < state->curframe
849 * and it's ok for r1 - r5 registers
851 * 'parent' could be a callee's state after it bpf_exit-ed.
852 * In such case parent->curframe > state->curframe
853 * and it's ok for r0 only
855 if (parent
->curframe
== state
->curframe
||
856 (parent
->curframe
< state
->curframe
&&
857 regno
>= BPF_REG_1
&& regno
<= BPF_REG_5
) ||
858 (parent
->curframe
> state
->curframe
&&
862 if (parent
->curframe
> state
->curframe
&&
863 regno
>= BPF_REG_6
) {
864 /* for callee saved regs we have to skip the whole chain
865 * of states that belong to callee and mark as LIVE_READ
866 * the registers before the call
869 while (tmp
&& tmp
->curframe
!= state
->curframe
) {
880 verbose(env
, "verifier bug regno %d tmp %p\n", regno
, tmp
);
881 verbose(env
, "regno %d parent frame %d current frame %d\n",
882 regno
, parent
->curframe
, state
->curframe
);
886 static int mark_reg_read(struct bpf_verifier_env
*env
,
887 const struct bpf_verifier_state
*state
,
888 struct bpf_verifier_state
*parent
,
891 bool writes
= parent
== state
->parent
; /* Observe write marks */
893 if (regno
== BPF_REG_FP
)
894 /* We don't need to worry about FP liveness because it's read-only */
898 /* if read wasn't screened by an earlier write ... */
899 if (writes
&& state
->frame
[state
->curframe
]->regs
[regno
].live
& REG_LIVE_WRITTEN
)
901 parent
= skip_callee(env
, state
, parent
, regno
);
904 /* ... then we depend on parent's value */
905 parent
->frame
[parent
->curframe
]->regs
[regno
].live
|= REG_LIVE_READ
;
907 parent
= state
->parent
;
913 static int check_reg_arg(struct bpf_verifier_env
*env
, u32 regno
,
916 struct bpf_verifier_state
*vstate
= env
->cur_state
;
917 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
918 struct bpf_reg_state
*regs
= state
->regs
;
920 if (regno
>= MAX_BPF_REG
) {
921 verbose(env
, "R%d is invalid\n", regno
);
926 /* check whether register used as source operand can be read */
927 if (regs
[regno
].type
== NOT_INIT
) {
928 verbose(env
, "R%d !read_ok\n", regno
);
931 return mark_reg_read(env
, vstate
, vstate
->parent
, regno
);
933 /* check whether register used as dest operand can be written to */
934 if (regno
== BPF_REG_FP
) {
935 verbose(env
, "frame pointer is read only\n");
938 regs
[regno
].live
|= REG_LIVE_WRITTEN
;
940 mark_reg_unknown(env
, regs
, regno
);
945 static bool is_spillable_regtype(enum bpf_reg_type type
)
948 case PTR_TO_MAP_VALUE
:
949 case PTR_TO_MAP_VALUE_OR_NULL
:
953 case PTR_TO_PACKET_META
:
954 case PTR_TO_PACKET_END
:
955 case CONST_PTR_TO_MAP
:
962 /* Does this register contain a constant zero? */
963 static bool register_is_null(struct bpf_reg_state
*reg
)
965 return reg
->type
== SCALAR_VALUE
&& tnum_equals_const(reg
->var_off
, 0);
968 /* check_stack_read/write functions track spill/fill of registers,
969 * stack boundary and alignment are checked in check_mem_access()
971 static int check_stack_write(struct bpf_verifier_env
*env
,
972 struct bpf_func_state
*state
, /* func where register points to */
973 int off
, int size
, int value_regno
, int insn_idx
)
975 struct bpf_func_state
*cur
; /* state of the current function */
976 int i
, slot
= -off
- 1, spi
= slot
/ BPF_REG_SIZE
, err
;
977 enum bpf_reg_type type
;
979 err
= realloc_func_state(state
, round_up(slot
+ 1, BPF_REG_SIZE
),
983 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
984 * so it's aligned access and [off, off + size) are within stack limits
986 if (!env
->allow_ptr_leaks
&&
987 state
->stack
[spi
].slot_type
[0] == STACK_SPILL
&&
988 size
!= BPF_REG_SIZE
) {
989 verbose(env
, "attempt to corrupt spilled pointer on stack\n");
993 cur
= env
->cur_state
->frame
[env
->cur_state
->curframe
];
994 if (value_regno
>= 0 &&
995 is_spillable_regtype((type
= cur
->regs
[value_regno
].type
))) {
997 /* register containing pointer is being spilled into stack */
998 if (size
!= BPF_REG_SIZE
) {
999 verbose(env
, "invalid size of register spill\n");
1003 if (state
!= cur
&& type
== PTR_TO_STACK
) {
1004 verbose(env
, "cannot spill pointers to stack into stack frame of the caller\n");
1008 /* save register state */
1009 state
->stack
[spi
].spilled_ptr
= cur
->regs
[value_regno
];
1010 state
->stack
[spi
].spilled_ptr
.live
|= REG_LIVE_WRITTEN
;
1012 for (i
= 0; i
< BPF_REG_SIZE
; i
++) {
1013 if (state
->stack
[spi
].slot_type
[i
] == STACK_MISC
&&
1014 !env
->allow_ptr_leaks
) {
1015 int *poff
= &env
->insn_aux_data
[insn_idx
].sanitize_stack_off
;
1016 int soff
= (-spi
- 1) * BPF_REG_SIZE
;
1018 /* detected reuse of integer stack slot with a pointer
1019 * which means either llvm is reusing stack slot or
1020 * an attacker is trying to exploit CVE-2018-3639
1021 * (speculative store bypass)
1022 * Have to sanitize that slot with preemptive
1025 if (*poff
&& *poff
!= soff
) {
1026 /* disallow programs where single insn stores
1027 * into two different stack slots, since verifier
1028 * cannot sanitize them
1031 "insn %d cannot access two stack slots fp%d and fp%d",
1032 insn_idx
, *poff
, soff
);
1037 state
->stack
[spi
].slot_type
[i
] = STACK_SPILL
;
1040 u8 type
= STACK_MISC
;
1042 /* regular write of data into stack */
1043 state
->stack
[spi
].spilled_ptr
= (struct bpf_reg_state
) {};
1045 /* only mark the slot as written if all 8 bytes were written
1046 * otherwise read propagation may incorrectly stop too soon
1047 * when stack slots are partially written.
1048 * This heuristic means that read propagation will be
1049 * conservative, since it will add reg_live_read marks
1050 * to stack slots all the way to first state when programs
1051 * writes+reads less than 8 bytes
1053 if (size
== BPF_REG_SIZE
)
1054 state
->stack
[spi
].spilled_ptr
.live
|= REG_LIVE_WRITTEN
;
1056 /* when we zero initialize stack slots mark them as such */
1057 if (value_regno
>= 0 &&
1058 register_is_null(&cur
->regs
[value_regno
]))
1061 for (i
= 0; i
< size
; i
++)
1062 state
->stack
[spi
].slot_type
[(slot
- i
) % BPF_REG_SIZE
] =
1068 /* registers of every function are unique and mark_reg_read() propagates
1069 * the liveness in the following cases:
1070 * - from callee into caller for R1 - R5 that were used as arguments
1071 * - from caller into callee for R0 that used as result of the call
1072 * - from caller to the same caller skipping states of the callee for R6 - R9,
1073 * since R6 - R9 are callee saved by implicit function prologue and
1074 * caller's R6 != callee's R6, so when we propagate liveness up to
1075 * parent states we need to skip callee states for R6 - R9.
1077 * stack slot marking is different, since stacks of caller and callee are
1078 * accessible in both (since caller can pass a pointer to caller's stack to
1079 * callee which can pass it to another function), hence mark_stack_slot_read()
1080 * has to propagate the stack liveness to all parent states at given frame number.
1090 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1091 * to mark liveness at the f1's frame and not f2's frame.
1092 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1093 * to propagate liveness to f2 states at f1's frame level and further into
1094 * f1 states at f1's frame level until write into that stack slot
1096 static void mark_stack_slot_read(struct bpf_verifier_env
*env
,
1097 const struct bpf_verifier_state
*state
,
1098 struct bpf_verifier_state
*parent
,
1099 int slot
, int frameno
)
1101 bool writes
= parent
== state
->parent
; /* Observe write marks */
1104 if (parent
->frame
[frameno
]->allocated_stack
<= slot
* BPF_REG_SIZE
)
1105 /* since LIVE_WRITTEN mark is only done for full 8-byte
1106 * write the read marks are conservative and parent
1107 * state may not even have the stack allocated. In such case
1108 * end the propagation, since the loop reached beginning
1112 /* if read wasn't screened by an earlier write ... */
1113 if (writes
&& state
->frame
[frameno
]->stack
[slot
].spilled_ptr
.live
& REG_LIVE_WRITTEN
)
1115 /* ... then we depend on parent's value */
1116 parent
->frame
[frameno
]->stack
[slot
].spilled_ptr
.live
|= REG_LIVE_READ
;
1118 parent
= state
->parent
;
1123 static int check_stack_read(struct bpf_verifier_env
*env
,
1124 struct bpf_func_state
*reg_state
/* func where register points to */,
1125 int off
, int size
, int value_regno
)
1127 struct bpf_verifier_state
*vstate
= env
->cur_state
;
1128 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
1129 int i
, slot
= -off
- 1, spi
= slot
/ BPF_REG_SIZE
;
1132 if (reg_state
->allocated_stack
<= slot
) {
1133 verbose(env
, "invalid read from stack off %d+0 size %d\n",
1137 stype
= reg_state
->stack
[spi
].slot_type
;
1139 if (stype
[0] == STACK_SPILL
) {
1140 if (size
!= BPF_REG_SIZE
) {
1141 verbose(env
, "invalid size of register spill\n");
1144 for (i
= 1; i
< BPF_REG_SIZE
; i
++) {
1145 if (stype
[(slot
- i
) % BPF_REG_SIZE
] != STACK_SPILL
) {
1146 verbose(env
, "corrupted spill memory\n");
1151 if (value_regno
>= 0) {
1152 /* restore register state from stack */
1153 state
->regs
[value_regno
] = reg_state
->stack
[spi
].spilled_ptr
;
1154 /* mark reg as written since spilled pointer state likely
1155 * has its liveness marks cleared by is_state_visited()
1156 * which resets stack/reg liveness for state transitions
1158 state
->regs
[value_regno
].live
|= REG_LIVE_WRITTEN
;
1160 mark_stack_slot_read(env
, vstate
, vstate
->parent
, spi
,
1161 reg_state
->frameno
);
1166 for (i
= 0; i
< size
; i
++) {
1167 if (stype
[(slot
- i
) % BPF_REG_SIZE
] == STACK_MISC
)
1169 if (stype
[(slot
- i
) % BPF_REG_SIZE
] == STACK_ZERO
) {
1173 verbose(env
, "invalid read from stack off %d+%d size %d\n",
1177 mark_stack_slot_read(env
, vstate
, vstate
->parent
, spi
,
1178 reg_state
->frameno
);
1179 if (value_regno
>= 0) {
1180 if (zeros
== size
) {
1181 /* any size read into register is zero extended,
1182 * so the whole register == const_zero
1184 __mark_reg_const_zero(&state
->regs
[value_regno
]);
1186 /* have read misc data from the stack */
1187 mark_reg_unknown(env
, state
->regs
, value_regno
);
1189 state
->regs
[value_regno
].live
|= REG_LIVE_WRITTEN
;
1195 /* check read/write into map element returned by bpf_map_lookup_elem() */
1196 static int __check_map_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
1197 int size
, bool zero_size_allowed
)
1199 struct bpf_reg_state
*regs
= cur_regs(env
);
1200 struct bpf_map
*map
= regs
[regno
].map_ptr
;
1202 if (off
< 0 || size
< 0 || (size
== 0 && !zero_size_allowed
) ||
1203 off
+ size
> map
->value_size
) {
1204 verbose(env
, "invalid access to map value, value_size=%d off=%d size=%d\n",
1205 map
->value_size
, off
, size
);
1211 /* check read/write into a map element with possible variable offset */
1212 static int check_map_access(struct bpf_verifier_env
*env
, u32 regno
,
1213 int off
, int size
, bool zero_size_allowed
)
1215 struct bpf_verifier_state
*vstate
= env
->cur_state
;
1216 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
1217 struct bpf_reg_state
*reg
= &state
->regs
[regno
];
1220 /* We may have adjusted the register to this map value, so we
1221 * need to try adding each of min_value and max_value to off
1222 * to make sure our theoretical access will be safe.
1225 print_verifier_state(env
, state
);
1226 /* The minimum value is only important with signed
1227 * comparisons where we can't assume the floor of a
1228 * value is 0. If we are using signed variables for our
1229 * index'es we need to make sure that whatever we use
1230 * will have a set floor within our range.
1232 if (reg
->smin_value
< 0) {
1233 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1237 err
= __check_map_access(env
, regno
, reg
->smin_value
+ off
, size
,
1240 verbose(env
, "R%d min value is outside of the array range\n",
1245 /* If we haven't set a max value then we need to bail since we can't be
1246 * sure we won't do bad things.
1247 * If reg->umax_value + off could overflow, treat that as unbounded too.
1249 if (reg
->umax_value
>= BPF_MAX_VAR_OFF
) {
1250 verbose(env
, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1254 err
= __check_map_access(env
, regno
, reg
->umax_value
+ off
, size
,
1257 verbose(env
, "R%d max value is outside of the array range\n",
1262 #define MAX_PACKET_OFF 0xffff
1264 static bool may_access_direct_pkt_data(struct bpf_verifier_env
*env
,
1265 const struct bpf_call_arg_meta
*meta
,
1266 enum bpf_access_type t
)
1268 switch (env
->prog
->type
) {
1269 case BPF_PROG_TYPE_LWT_IN
:
1270 case BPF_PROG_TYPE_LWT_OUT
:
1271 /* dst_input() and dst_output() can't write for now */
1275 case BPF_PROG_TYPE_SCHED_CLS
:
1276 case BPF_PROG_TYPE_SCHED_ACT
:
1277 case BPF_PROG_TYPE_XDP
:
1278 case BPF_PROG_TYPE_LWT_XMIT
:
1279 case BPF_PROG_TYPE_SK_SKB
:
1281 return meta
->pkt_access
;
1283 env
->seen_direct_write
= true;
1290 static int __check_packet_access(struct bpf_verifier_env
*env
, u32 regno
,
1291 int off
, int size
, bool zero_size_allowed
)
1293 struct bpf_reg_state
*regs
= cur_regs(env
);
1294 struct bpf_reg_state
*reg
= ®s
[regno
];
1296 if (off
< 0 || size
< 0 || (size
== 0 && !zero_size_allowed
) ||
1297 (u64
)off
+ size
> reg
->range
) {
1298 verbose(env
, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1299 off
, size
, regno
, reg
->id
, reg
->off
, reg
->range
);
1305 static int check_packet_access(struct bpf_verifier_env
*env
, u32 regno
, int off
,
1306 int size
, bool zero_size_allowed
)
1308 struct bpf_reg_state
*regs
= cur_regs(env
);
1309 struct bpf_reg_state
*reg
= ®s
[regno
];
1312 /* We may have added a variable offset to the packet pointer; but any
1313 * reg->range we have comes after that. We are only checking the fixed
1317 /* We don't allow negative numbers, because we aren't tracking enough
1318 * detail to prove they're safe.
1320 if (reg
->smin_value
< 0) {
1321 verbose(env
, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1325 err
= __check_packet_access(env
, regno
, off
, size
, zero_size_allowed
);
1327 verbose(env
, "R%d offset is outside of the packet\n", regno
);
1333 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1334 static int check_ctx_access(struct bpf_verifier_env
*env
, int insn_idx
, int off
, int size
,
1335 enum bpf_access_type t
, enum bpf_reg_type
*reg_type
)
1337 struct bpf_insn_access_aux info
= {
1338 .reg_type
= *reg_type
,
1341 if (env
->ops
->is_valid_access
&&
1342 env
->ops
->is_valid_access(off
, size
, t
, &info
)) {
1343 /* A non zero info.ctx_field_size indicates that this field is a
1344 * candidate for later verifier transformation to load the whole
1345 * field and then apply a mask when accessed with a narrower
1346 * access than actual ctx access size. A zero info.ctx_field_size
1347 * will only allow for whole field access and rejects any other
1348 * type of narrower access.
1350 *reg_type
= info
.reg_type
;
1352 env
->insn_aux_data
[insn_idx
].ctx_field_size
= info
.ctx_field_size
;
1353 /* remember the offset of last byte accessed in ctx */
1354 if (env
->prog
->aux
->max_ctx_offset
< off
+ size
)
1355 env
->prog
->aux
->max_ctx_offset
= off
+ size
;
1359 verbose(env
, "invalid bpf_context access off=%d size=%d\n", off
, size
);
1363 static bool __is_pointer_value(bool allow_ptr_leaks
,
1364 const struct bpf_reg_state
*reg
)
1366 if (allow_ptr_leaks
)
1369 return reg
->type
!= SCALAR_VALUE
;
1372 static bool is_pointer_value(struct bpf_verifier_env
*env
, int regno
)
1374 return __is_pointer_value(env
->allow_ptr_leaks
, cur_regs(env
) + regno
);
1377 static bool is_ctx_reg(struct bpf_verifier_env
*env
, int regno
)
1379 const struct bpf_reg_state
*reg
= cur_regs(env
) + regno
;
1381 return reg
->type
== PTR_TO_CTX
;
1384 static bool is_pkt_reg(struct bpf_verifier_env
*env
, int regno
)
1386 const struct bpf_reg_state
*reg
= cur_regs(env
) + regno
;
1388 return type_is_pkt_pointer(reg
->type
);
1391 static int check_pkt_ptr_alignment(struct bpf_verifier_env
*env
,
1392 const struct bpf_reg_state
*reg
,
1393 int off
, int size
, bool strict
)
1395 struct tnum reg_off
;
1398 /* Byte size accesses are always allowed. */
1399 if (!strict
|| size
== 1)
1402 /* For platforms that do not have a Kconfig enabling
1403 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1404 * NET_IP_ALIGN is universally set to '2'. And on platforms
1405 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1406 * to this code only in strict mode where we want to emulate
1407 * the NET_IP_ALIGN==2 checking. Therefore use an
1408 * unconditional IP align value of '2'.
1412 reg_off
= tnum_add(reg
->var_off
, tnum_const(ip_align
+ reg
->off
+ off
));
1413 if (!tnum_is_aligned(reg_off
, size
)) {
1416 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1418 "misaligned packet access off %d+%s+%d+%d size %d\n",
1419 ip_align
, tn_buf
, reg
->off
, off
, size
);
1426 static int check_generic_ptr_alignment(struct bpf_verifier_env
*env
,
1427 const struct bpf_reg_state
*reg
,
1428 const char *pointer_desc
,
1429 int off
, int size
, bool strict
)
1431 struct tnum reg_off
;
1433 /* Byte size accesses are always allowed. */
1434 if (!strict
|| size
== 1)
1437 reg_off
= tnum_add(reg
->var_off
, tnum_const(reg
->off
+ off
));
1438 if (!tnum_is_aligned(reg_off
, size
)) {
1441 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1442 verbose(env
, "misaligned %saccess off %s+%d+%d size %d\n",
1443 pointer_desc
, tn_buf
, reg
->off
, off
, size
);
1450 static int check_ptr_alignment(struct bpf_verifier_env
*env
,
1451 const struct bpf_reg_state
*reg
, int off
,
1452 int size
, bool strict_alignment_once
)
1454 bool strict
= env
->strict_alignment
|| strict_alignment_once
;
1455 const char *pointer_desc
= "";
1457 switch (reg
->type
) {
1459 case PTR_TO_PACKET_META
:
1460 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1461 * right in front, treat it the very same way.
1463 return check_pkt_ptr_alignment(env
, reg
, off
, size
, strict
);
1464 case PTR_TO_MAP_VALUE
:
1465 pointer_desc
= "value ";
1468 pointer_desc
= "context ";
1471 pointer_desc
= "stack ";
1472 /* The stack spill tracking logic in check_stack_write()
1473 * and check_stack_read() relies on stack accesses being
1481 return check_generic_ptr_alignment(env
, reg
, pointer_desc
, off
, size
,
1485 static int update_stack_depth(struct bpf_verifier_env
*env
,
1486 const struct bpf_func_state
*func
,
1489 u16 stack
= env
->subprog_stack_depth
[func
->subprogno
];
1494 /* update known max for given subprogram */
1495 env
->subprog_stack_depth
[func
->subprogno
] = -off
;
1499 /* starting from main bpf function walk all instructions of the function
1500 * and recursively walk all callees that given function can call.
1501 * Ignore jump and exit insns.
1502 * Since recursion is prevented by check_cfg() this algorithm
1503 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1505 static int check_max_stack_depth(struct bpf_verifier_env
*env
)
1507 int depth
= 0, frame
= 0, subprog
= 0, i
= 0, subprog_end
;
1508 struct bpf_insn
*insn
= env
->prog
->insnsi
;
1509 int insn_cnt
= env
->prog
->len
;
1510 int ret_insn
[MAX_CALL_FRAMES
];
1511 int ret_prog
[MAX_CALL_FRAMES
];
1514 /* round up to 32-bytes, since this is granularity
1515 * of interpreter stack size
1517 depth
+= round_up(max_t(u32
, env
->subprog_stack_depth
[subprog
], 1), 32);
1518 if (depth
> MAX_BPF_STACK
) {
1519 verbose(env
, "combined stack size of %d calls is %d. Too large\n",
1524 if (env
->subprog_cnt
== subprog
)
1525 subprog_end
= insn_cnt
;
1527 subprog_end
= env
->subprog_starts
[subprog
];
1528 for (; i
< subprog_end
; i
++) {
1529 if (insn
[i
].code
!= (BPF_JMP
| BPF_CALL
))
1531 if (insn
[i
].src_reg
!= BPF_PSEUDO_CALL
)
1533 /* remember insn and function to return to */
1534 ret_insn
[frame
] = i
+ 1;
1535 ret_prog
[frame
] = subprog
;
1537 /* find the callee */
1538 i
= i
+ insn
[i
].imm
+ 1;
1539 subprog
= find_subprog(env
, i
);
1541 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1547 if (frame
>= MAX_CALL_FRAMES
) {
1548 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1553 /* end of for() loop means the last insn of the 'subprog'
1554 * was reached. Doesn't matter whether it was JA or EXIT
1558 depth
-= round_up(max_t(u32
, env
->subprog_stack_depth
[subprog
], 1), 32);
1560 i
= ret_insn
[frame
];
1561 subprog
= ret_prog
[frame
];
1565 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1566 static int get_callee_stack_depth(struct bpf_verifier_env
*env
,
1567 const struct bpf_insn
*insn
, int idx
)
1569 int start
= idx
+ insn
->imm
+ 1, subprog
;
1571 subprog
= find_subprog(env
, start
);
1573 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1578 return env
->subprog_stack_depth
[subprog
];
1582 /* truncate register to smaller size (in bytes)
1583 * must be called with size < BPF_REG_SIZE
1585 static void coerce_reg_to_size(struct bpf_reg_state
*reg
, int size
)
1589 /* clear high bits in bit representation */
1590 reg
->var_off
= tnum_cast(reg
->var_off
, size
);
1592 /* fix arithmetic bounds */
1593 mask
= ((u64
)1 << (size
* 8)) - 1;
1594 if ((reg
->umin_value
& ~mask
) == (reg
->umax_value
& ~mask
)) {
1595 reg
->umin_value
&= mask
;
1596 reg
->umax_value
&= mask
;
1598 reg
->umin_value
= 0;
1599 reg
->umax_value
= mask
;
1601 reg
->smin_value
= reg
->umin_value
;
1602 reg
->smax_value
= reg
->umax_value
;
1605 /* check whether memory at (regno + off) is accessible for t = (read | write)
1606 * if t==write, value_regno is a register which value is stored into memory
1607 * if t==read, value_regno is a register which will receive the value from memory
1608 * if t==write && value_regno==-1, some unknown value is stored into memory
1609 * if t==read && value_regno==-1, don't care what we read from memory
1611 static int check_mem_access(struct bpf_verifier_env
*env
, int insn_idx
, u32 regno
,
1612 int off
, int bpf_size
, enum bpf_access_type t
,
1613 int value_regno
, bool strict_alignment_once
)
1615 struct bpf_reg_state
*regs
= cur_regs(env
);
1616 struct bpf_reg_state
*reg
= regs
+ regno
;
1617 struct bpf_func_state
*state
;
1620 size
= bpf_size_to_bytes(bpf_size
);
1624 /* alignment checks will add in reg->off themselves */
1625 err
= check_ptr_alignment(env
, reg
, off
, size
, strict_alignment_once
);
1629 /* for access checks, reg->off is just part of off */
1632 if (reg
->type
== PTR_TO_MAP_VALUE
) {
1633 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
1634 is_pointer_value(env
, value_regno
)) {
1635 verbose(env
, "R%d leaks addr into map\n", value_regno
);
1639 err
= check_map_access(env
, regno
, off
, size
, false);
1640 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
1641 mark_reg_unknown(env
, regs
, value_regno
);
1643 } else if (reg
->type
== PTR_TO_CTX
) {
1644 enum bpf_reg_type reg_type
= SCALAR_VALUE
;
1646 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
1647 is_pointer_value(env
, value_regno
)) {
1648 verbose(env
, "R%d leaks addr into ctx\n", value_regno
);
1651 /* ctx accesses must be at a fixed offset, so that we can
1652 * determine what type of data were returned.
1656 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1657 regno
, reg
->off
, off
- reg
->off
);
1660 if (!tnum_is_const(reg
->var_off
) || reg
->var_off
.value
) {
1663 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1665 "variable ctx access var_off=%s off=%d size=%d",
1669 err
= check_ctx_access(env
, insn_idx
, off
, size
, t
, ®_type
);
1670 if (!err
&& t
== BPF_READ
&& value_regno
>= 0) {
1671 /* ctx access returns either a scalar, or a
1672 * PTR_TO_PACKET[_META,_END]. In the latter
1673 * case, we know the offset is zero.
1675 if (reg_type
== SCALAR_VALUE
)
1676 mark_reg_unknown(env
, regs
, value_regno
);
1678 mark_reg_known_zero(env
, regs
,
1680 regs
[value_regno
].id
= 0;
1681 regs
[value_regno
].off
= 0;
1682 regs
[value_regno
].range
= 0;
1683 regs
[value_regno
].type
= reg_type
;
1686 } else if (reg
->type
== PTR_TO_STACK
) {
1687 /* stack accesses must be at a fixed offset, so that we can
1688 * determine what type of data were returned.
1689 * See check_stack_read().
1691 if (!tnum_is_const(reg
->var_off
)) {
1694 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1695 verbose(env
, "variable stack access var_off=%s off=%d size=%d",
1699 off
+= reg
->var_off
.value
;
1700 if (off
>= 0 || off
< -MAX_BPF_STACK
) {
1701 verbose(env
, "invalid stack off=%d size=%d\n", off
,
1706 state
= func(env
, reg
);
1707 err
= update_stack_depth(env
, state
, off
);
1712 err
= check_stack_write(env
, state
, off
, size
,
1713 value_regno
, insn_idx
);
1715 err
= check_stack_read(env
, state
, off
, size
,
1717 } else if (reg_is_pkt_pointer(reg
)) {
1718 if (t
== BPF_WRITE
&& !may_access_direct_pkt_data(env
, NULL
, t
)) {
1719 verbose(env
, "cannot write into packet\n");
1722 if (t
== BPF_WRITE
&& value_regno
>= 0 &&
1723 is_pointer_value(env
, value_regno
)) {
1724 verbose(env
, "R%d leaks addr into packet\n",
1728 err
= check_packet_access(env
, regno
, off
, size
, false);
1729 if (!err
&& t
== BPF_READ
&& value_regno
>= 0)
1730 mark_reg_unknown(env
, regs
, value_regno
);
1732 verbose(env
, "R%d invalid mem access '%s'\n", regno
,
1733 reg_type_str
[reg
->type
]);
1737 if (!err
&& size
< BPF_REG_SIZE
&& value_regno
>= 0 && t
== BPF_READ
&&
1738 regs
[value_regno
].type
== SCALAR_VALUE
) {
1739 /* b/h/w load zero-extends, mark upper bits as known 0 */
1740 coerce_reg_to_size(®s
[value_regno
], size
);
1745 static int check_xadd(struct bpf_verifier_env
*env
, int insn_idx
, struct bpf_insn
*insn
)
1749 if ((BPF_SIZE(insn
->code
) != BPF_W
&& BPF_SIZE(insn
->code
) != BPF_DW
) ||
1751 verbose(env
, "BPF_XADD uses reserved fields\n");
1755 /* check src1 operand */
1756 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
1760 /* check src2 operand */
1761 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
1765 if (is_pointer_value(env
, insn
->src_reg
)) {
1766 verbose(env
, "R%d leaks addr into mem\n", insn
->src_reg
);
1770 if (is_ctx_reg(env
, insn
->dst_reg
) ||
1771 is_pkt_reg(env
, insn
->dst_reg
)) {
1772 verbose(env
, "BPF_XADD stores into R%d %s is not allowed\n",
1773 insn
->dst_reg
, is_ctx_reg(env
, insn
->dst_reg
) ?
1774 "context" : "packet");
1778 /* check whether atomic_add can read the memory */
1779 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
1780 BPF_SIZE(insn
->code
), BPF_READ
, -1, true);
1784 /* check whether atomic_add can write into the same memory */
1785 return check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
1786 BPF_SIZE(insn
->code
), BPF_WRITE
, -1, true);
1789 /* when register 'regno' is passed into function that will read 'access_size'
1790 * bytes from that pointer, make sure that it's within stack boundary
1791 * and all elements of stack are initialized.
1792 * Unlike most pointer bounds-checking functions, this one doesn't take an
1793 * 'off' argument, so it has to add in reg->off itself.
1795 static int check_stack_boundary(struct bpf_verifier_env
*env
, int regno
,
1796 int access_size
, bool zero_size_allowed
,
1797 struct bpf_call_arg_meta
*meta
)
1799 struct bpf_reg_state
*reg
= cur_regs(env
) + regno
;
1800 struct bpf_func_state
*state
= func(env
, reg
);
1801 int off
, i
, slot
, spi
;
1803 if (reg
->type
!= PTR_TO_STACK
) {
1804 /* Allow zero-byte read from NULL, regardless of pointer type */
1805 if (zero_size_allowed
&& access_size
== 0 &&
1806 register_is_null(reg
))
1809 verbose(env
, "R%d type=%s expected=%s\n", regno
,
1810 reg_type_str
[reg
->type
],
1811 reg_type_str
[PTR_TO_STACK
]);
1815 /* Only allow fixed-offset stack reads */
1816 if (!tnum_is_const(reg
->var_off
)) {
1819 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
1820 verbose(env
, "invalid variable stack read R%d var_off=%s\n",
1824 off
= reg
->off
+ reg
->var_off
.value
;
1825 if (off
>= 0 || off
< -MAX_BPF_STACK
|| off
+ access_size
> 0 ||
1826 access_size
< 0 || (access_size
== 0 && !zero_size_allowed
)) {
1827 verbose(env
, "invalid stack type R%d off=%d access_size=%d\n",
1828 regno
, off
, access_size
);
1832 if (meta
&& meta
->raw_mode
) {
1833 meta
->access_size
= access_size
;
1834 meta
->regno
= regno
;
1838 for (i
= 0; i
< access_size
; i
++) {
1841 slot
= -(off
+ i
) - 1;
1842 spi
= slot
/ BPF_REG_SIZE
;
1843 if (state
->allocated_stack
<= slot
)
1845 stype
= &state
->stack
[spi
].slot_type
[slot
% BPF_REG_SIZE
];
1846 if (*stype
== STACK_MISC
)
1848 if (*stype
== STACK_ZERO
) {
1849 /* helper can write anything into the stack */
1850 *stype
= STACK_MISC
;
1854 verbose(env
, "invalid indirect read from stack off %d+%d size %d\n",
1855 off
, i
, access_size
);
1858 /* reading any byte out of 8-byte 'spill_slot' will cause
1859 * the whole slot to be marked as 'read'
1861 mark_stack_slot_read(env
, env
->cur_state
, env
->cur_state
->parent
,
1862 spi
, state
->frameno
);
1864 return update_stack_depth(env
, state
, off
);
1867 static int check_helper_mem_access(struct bpf_verifier_env
*env
, int regno
,
1868 int access_size
, bool zero_size_allowed
,
1869 struct bpf_call_arg_meta
*meta
)
1871 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
1873 switch (reg
->type
) {
1875 case PTR_TO_PACKET_META
:
1876 return check_packet_access(env
, regno
, reg
->off
, access_size
,
1878 case PTR_TO_MAP_VALUE
:
1879 return check_map_access(env
, regno
, reg
->off
, access_size
,
1881 default: /* scalar_value|ptr_to_stack or invalid ptr */
1882 return check_stack_boundary(env
, regno
, access_size
,
1883 zero_size_allowed
, meta
);
1887 static bool arg_type_is_mem_ptr(enum bpf_arg_type type
)
1889 return type
== ARG_PTR_TO_MEM
||
1890 type
== ARG_PTR_TO_MEM_OR_NULL
||
1891 type
== ARG_PTR_TO_UNINIT_MEM
;
1894 static bool arg_type_is_mem_size(enum bpf_arg_type type
)
1896 return type
== ARG_CONST_SIZE
||
1897 type
== ARG_CONST_SIZE_OR_ZERO
;
1900 static int check_func_arg(struct bpf_verifier_env
*env
, u32 regno
,
1901 enum bpf_arg_type arg_type
,
1902 struct bpf_call_arg_meta
*meta
)
1904 struct bpf_reg_state
*regs
= cur_regs(env
), *reg
= ®s
[regno
];
1905 enum bpf_reg_type expected_type
, type
= reg
->type
;
1908 if (arg_type
== ARG_DONTCARE
)
1911 err
= check_reg_arg(env
, regno
, SRC_OP
);
1915 if (arg_type
== ARG_ANYTHING
) {
1916 if (is_pointer_value(env
, regno
)) {
1917 verbose(env
, "R%d leaks addr into helper function\n",
1924 if (type_is_pkt_pointer(type
) &&
1925 !may_access_direct_pkt_data(env
, meta
, BPF_READ
)) {
1926 verbose(env
, "helper access to the packet is not allowed\n");
1930 if (arg_type
== ARG_PTR_TO_MAP_KEY
||
1931 arg_type
== ARG_PTR_TO_MAP_VALUE
) {
1932 expected_type
= PTR_TO_STACK
;
1933 if (!type_is_pkt_pointer(type
) &&
1934 type
!= expected_type
)
1936 } else if (arg_type
== ARG_CONST_SIZE
||
1937 arg_type
== ARG_CONST_SIZE_OR_ZERO
) {
1938 expected_type
= SCALAR_VALUE
;
1939 if (type
!= expected_type
)
1941 } else if (arg_type
== ARG_CONST_MAP_PTR
) {
1942 expected_type
= CONST_PTR_TO_MAP
;
1943 if (type
!= expected_type
)
1945 } else if (arg_type
== ARG_PTR_TO_CTX
) {
1946 expected_type
= PTR_TO_CTX
;
1947 if (type
!= expected_type
)
1949 } else if (arg_type_is_mem_ptr(arg_type
)) {
1950 expected_type
= PTR_TO_STACK
;
1951 /* One exception here. In case function allows for NULL to be
1952 * passed in as argument, it's a SCALAR_VALUE type. Final test
1953 * happens during stack boundary checking.
1955 if (register_is_null(reg
) &&
1956 arg_type
== ARG_PTR_TO_MEM_OR_NULL
)
1957 /* final test in check_stack_boundary() */;
1958 else if (!type_is_pkt_pointer(type
) &&
1959 type
!= PTR_TO_MAP_VALUE
&&
1960 type
!= expected_type
)
1962 meta
->raw_mode
= arg_type
== ARG_PTR_TO_UNINIT_MEM
;
1964 verbose(env
, "unsupported arg_type %d\n", arg_type
);
1968 if (arg_type
== ARG_CONST_MAP_PTR
) {
1969 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1970 meta
->map_ptr
= reg
->map_ptr
;
1971 } else if (arg_type
== ARG_PTR_TO_MAP_KEY
) {
1972 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1973 * check that [key, key + map->key_size) are within
1974 * stack limits and initialized
1976 if (!meta
->map_ptr
) {
1977 /* in function declaration map_ptr must come before
1978 * map_key, so that it's verified and known before
1979 * we have to check map_key here. Otherwise it means
1980 * that kernel subsystem misconfigured verifier
1982 verbose(env
, "invalid map_ptr to access map->key\n");
1985 if (type_is_pkt_pointer(type
))
1986 err
= check_packet_access(env
, regno
, reg
->off
,
1987 meta
->map_ptr
->key_size
,
1990 err
= check_stack_boundary(env
, regno
,
1991 meta
->map_ptr
->key_size
,
1993 } else if (arg_type
== ARG_PTR_TO_MAP_VALUE
) {
1994 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1995 * check [value, value + map->value_size) validity
1997 if (!meta
->map_ptr
) {
1998 /* kernel subsystem misconfigured verifier */
1999 verbose(env
, "invalid map_ptr to access map->value\n");
2002 if (type_is_pkt_pointer(type
))
2003 err
= check_packet_access(env
, regno
, reg
->off
,
2004 meta
->map_ptr
->value_size
,
2007 err
= check_stack_boundary(env
, regno
,
2008 meta
->map_ptr
->value_size
,
2010 } else if (arg_type_is_mem_size(arg_type
)) {
2011 bool zero_size_allowed
= (arg_type
== ARG_CONST_SIZE_OR_ZERO
);
2013 /* The register is SCALAR_VALUE; the access check
2014 * happens using its boundaries.
2016 if (!tnum_is_const(reg
->var_off
))
2017 /* For unprivileged variable accesses, disable raw
2018 * mode so that the program is required to
2019 * initialize all the memory that the helper could
2020 * just partially fill up.
2024 if (reg
->smin_value
< 0) {
2025 verbose(env
, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2030 if (reg
->umin_value
== 0) {
2031 err
= check_helper_mem_access(env
, regno
- 1, 0,
2038 if (reg
->umax_value
>= BPF_MAX_VAR_SIZ
) {
2039 verbose(env
, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2043 err
= check_helper_mem_access(env
, regno
- 1,
2045 zero_size_allowed
, meta
);
2050 verbose(env
, "R%d type=%s expected=%s\n", regno
,
2051 reg_type_str
[type
], reg_type_str
[expected_type
]);
2055 static int check_map_func_compatibility(struct bpf_verifier_env
*env
,
2056 struct bpf_map
*map
, int func_id
)
2061 /* We need a two way check, first is from map perspective ... */
2062 switch (map
->map_type
) {
2063 case BPF_MAP_TYPE_PROG_ARRAY
:
2064 if (func_id
!= BPF_FUNC_tail_call
)
2067 case BPF_MAP_TYPE_PERF_EVENT_ARRAY
:
2068 if (func_id
!= BPF_FUNC_perf_event_read
&&
2069 func_id
!= BPF_FUNC_perf_event_output
&&
2070 func_id
!= BPF_FUNC_perf_event_read_value
)
2073 case BPF_MAP_TYPE_STACK_TRACE
:
2074 if (func_id
!= BPF_FUNC_get_stackid
)
2077 case BPF_MAP_TYPE_CGROUP_ARRAY
:
2078 if (func_id
!= BPF_FUNC_skb_under_cgroup
&&
2079 func_id
!= BPF_FUNC_current_task_under_cgroup
)
2082 /* devmap returns a pointer to a live net_device ifindex that we cannot
2083 * allow to be modified from bpf side. So do not allow lookup elements
2086 case BPF_MAP_TYPE_DEVMAP
:
2087 if (func_id
!= BPF_FUNC_redirect_map
)
2090 /* Restrict bpf side of cpumap, open when use-cases appear */
2091 case BPF_MAP_TYPE_CPUMAP
:
2092 if (func_id
!= BPF_FUNC_redirect_map
)
2095 case BPF_MAP_TYPE_ARRAY_OF_MAPS
:
2096 case BPF_MAP_TYPE_HASH_OF_MAPS
:
2097 if (func_id
!= BPF_FUNC_map_lookup_elem
)
2100 case BPF_MAP_TYPE_SOCKMAP
:
2101 if (func_id
!= BPF_FUNC_sk_redirect_map
&&
2102 func_id
!= BPF_FUNC_sock_map_update
&&
2103 func_id
!= BPF_FUNC_map_delete_elem
)
2110 /* ... and second from the function itself. */
2112 case BPF_FUNC_tail_call
:
2113 if (map
->map_type
!= BPF_MAP_TYPE_PROG_ARRAY
)
2115 if (env
->subprog_cnt
) {
2116 verbose(env
, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2120 case BPF_FUNC_perf_event_read
:
2121 case BPF_FUNC_perf_event_output
:
2122 case BPF_FUNC_perf_event_read_value
:
2123 if (map
->map_type
!= BPF_MAP_TYPE_PERF_EVENT_ARRAY
)
2126 case BPF_FUNC_get_stackid
:
2127 if (map
->map_type
!= BPF_MAP_TYPE_STACK_TRACE
)
2130 case BPF_FUNC_current_task_under_cgroup
:
2131 case BPF_FUNC_skb_under_cgroup
:
2132 if (map
->map_type
!= BPF_MAP_TYPE_CGROUP_ARRAY
)
2135 case BPF_FUNC_redirect_map
:
2136 if (map
->map_type
!= BPF_MAP_TYPE_DEVMAP
&&
2137 map
->map_type
!= BPF_MAP_TYPE_CPUMAP
)
2140 case BPF_FUNC_sk_redirect_map
:
2141 if (map
->map_type
!= BPF_MAP_TYPE_SOCKMAP
)
2144 case BPF_FUNC_sock_map_update
:
2145 if (map
->map_type
!= BPF_MAP_TYPE_SOCKMAP
)
2154 verbose(env
, "cannot pass map_type %d into func %s#%d\n",
2155 map
->map_type
, func_id_name(func_id
), func_id
);
2159 static bool check_raw_mode_ok(const struct bpf_func_proto
*fn
)
2163 if (fn
->arg1_type
== ARG_PTR_TO_UNINIT_MEM
)
2165 if (fn
->arg2_type
== ARG_PTR_TO_UNINIT_MEM
)
2167 if (fn
->arg3_type
== ARG_PTR_TO_UNINIT_MEM
)
2169 if (fn
->arg4_type
== ARG_PTR_TO_UNINIT_MEM
)
2171 if (fn
->arg5_type
== ARG_PTR_TO_UNINIT_MEM
)
2174 /* We only support one arg being in raw mode at the moment,
2175 * which is sufficient for the helper functions we have
2181 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr
,
2182 enum bpf_arg_type arg_next
)
2184 return (arg_type_is_mem_ptr(arg_curr
) &&
2185 !arg_type_is_mem_size(arg_next
)) ||
2186 (!arg_type_is_mem_ptr(arg_curr
) &&
2187 arg_type_is_mem_size(arg_next
));
2190 static bool check_arg_pair_ok(const struct bpf_func_proto
*fn
)
2192 /* bpf_xxx(..., buf, len) call will access 'len'
2193 * bytes from memory 'buf'. Both arg types need
2194 * to be paired, so make sure there's no buggy
2195 * helper function specification.
2197 if (arg_type_is_mem_size(fn
->arg1_type
) ||
2198 arg_type_is_mem_ptr(fn
->arg5_type
) ||
2199 check_args_pair_invalid(fn
->arg1_type
, fn
->arg2_type
) ||
2200 check_args_pair_invalid(fn
->arg2_type
, fn
->arg3_type
) ||
2201 check_args_pair_invalid(fn
->arg3_type
, fn
->arg4_type
) ||
2202 check_args_pair_invalid(fn
->arg4_type
, fn
->arg5_type
))
2208 static int check_func_proto(const struct bpf_func_proto
*fn
)
2210 return check_raw_mode_ok(fn
) &&
2211 check_arg_pair_ok(fn
) ? 0 : -EINVAL
;
2214 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2215 * are now invalid, so turn them into unknown SCALAR_VALUE.
2217 static void __clear_all_pkt_pointers(struct bpf_verifier_env
*env
,
2218 struct bpf_func_state
*state
)
2220 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
2223 for (i
= 0; i
< MAX_BPF_REG
; i
++)
2224 if (reg_is_pkt_pointer_any(®s
[i
]))
2225 mark_reg_unknown(env
, regs
, i
);
2227 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
2228 if (state
->stack
[i
].slot_type
[0] != STACK_SPILL
)
2230 reg
= &state
->stack
[i
].spilled_ptr
;
2231 if (reg_is_pkt_pointer_any(reg
))
2232 __mark_reg_unknown(reg
);
2236 static void clear_all_pkt_pointers(struct bpf_verifier_env
*env
)
2238 struct bpf_verifier_state
*vstate
= env
->cur_state
;
2241 for (i
= 0; i
<= vstate
->curframe
; i
++)
2242 __clear_all_pkt_pointers(env
, vstate
->frame
[i
]);
2245 static int check_func_call(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
,
2248 struct bpf_verifier_state
*state
= env
->cur_state
;
2249 struct bpf_func_state
*caller
, *callee
;
2250 int i
, subprog
, target_insn
;
2252 if (state
->curframe
+ 1 >= MAX_CALL_FRAMES
) {
2253 verbose(env
, "the call stack of %d frames is too deep\n",
2254 state
->curframe
+ 2);
2258 target_insn
= *insn_idx
+ insn
->imm
;
2259 subprog
= find_subprog(env
, target_insn
+ 1);
2261 verbose(env
, "verifier bug. No program starts at insn %d\n",
2266 caller
= state
->frame
[state
->curframe
];
2267 if (state
->frame
[state
->curframe
+ 1]) {
2268 verbose(env
, "verifier bug. Frame %d already allocated\n",
2269 state
->curframe
+ 1);
2273 callee
= kzalloc(sizeof(*callee
), GFP_KERNEL
);
2276 state
->frame
[state
->curframe
+ 1] = callee
;
2278 /* callee cannot access r0, r6 - r9 for reading and has to write
2279 * into its own stack before reading from it.
2280 * callee can read/write into caller's stack
2282 init_func_state(env
, callee
,
2283 /* remember the callsite, it will be used by bpf_exit */
2284 *insn_idx
/* callsite */,
2285 state
->curframe
+ 1 /* frameno within this callchain */,
2286 subprog
+ 1 /* subprog number within this prog */);
2288 /* copy r1 - r5 args that callee can access */
2289 for (i
= BPF_REG_1
; i
<= BPF_REG_5
; i
++)
2290 callee
->regs
[i
] = caller
->regs
[i
];
2292 /* after the call regsiters r0 - r5 were scratched */
2293 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
2294 mark_reg_not_init(env
, caller
->regs
, caller_saved
[i
]);
2295 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
2298 /* only increment it after check_reg_arg() finished */
2301 /* and go analyze first insn of the callee */
2302 *insn_idx
= target_insn
;
2304 if (env
->log
.level
) {
2305 verbose(env
, "caller:\n");
2306 print_verifier_state(env
, caller
);
2307 verbose(env
, "callee:\n");
2308 print_verifier_state(env
, callee
);
2313 static int prepare_func_exit(struct bpf_verifier_env
*env
, int *insn_idx
)
2315 struct bpf_verifier_state
*state
= env
->cur_state
;
2316 struct bpf_func_state
*caller
, *callee
;
2317 struct bpf_reg_state
*r0
;
2319 callee
= state
->frame
[state
->curframe
];
2320 r0
= &callee
->regs
[BPF_REG_0
];
2321 if (r0
->type
== PTR_TO_STACK
) {
2322 /* technically it's ok to return caller's stack pointer
2323 * (or caller's caller's pointer) back to the caller,
2324 * since these pointers are valid. Only current stack
2325 * pointer will be invalid as soon as function exits,
2326 * but let's be conservative
2328 verbose(env
, "cannot return stack pointer to the caller\n");
2333 caller
= state
->frame
[state
->curframe
];
2334 /* return to the caller whatever r0 had in the callee */
2335 caller
->regs
[BPF_REG_0
] = *r0
;
2337 *insn_idx
= callee
->callsite
+ 1;
2338 if (env
->log
.level
) {
2339 verbose(env
, "returning from callee:\n");
2340 print_verifier_state(env
, callee
);
2341 verbose(env
, "to caller at %d:\n", *insn_idx
);
2342 print_verifier_state(env
, caller
);
2344 /* clear everything in the callee */
2345 free_func_state(callee
);
2346 state
->frame
[state
->curframe
+ 1] = NULL
;
2350 static int check_helper_call(struct bpf_verifier_env
*env
, int func_id
, int insn_idx
)
2352 const struct bpf_func_proto
*fn
= NULL
;
2353 struct bpf_reg_state
*regs
;
2354 struct bpf_call_arg_meta meta
;
2358 /* find function prototype */
2359 if (func_id
< 0 || func_id
>= __BPF_FUNC_MAX_ID
) {
2360 verbose(env
, "invalid func %s#%d\n", func_id_name(func_id
),
2365 if (env
->ops
->get_func_proto
)
2366 fn
= env
->ops
->get_func_proto(func_id
);
2368 verbose(env
, "unknown func %s#%d\n", func_id_name(func_id
),
2373 /* eBPF programs must be GPL compatible to use GPL-ed functions */
2374 if (!env
->prog
->gpl_compatible
&& fn
->gpl_only
) {
2375 verbose(env
, "cannot call GPL only function from proprietary program\n");
2379 /* With LD_ABS/IND some JITs save/restore skb from r1. */
2380 changes_data
= bpf_helper_changes_pkt_data(fn
->func
);
2381 if (changes_data
&& fn
->arg1_type
!= ARG_PTR_TO_CTX
) {
2382 verbose(env
, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2383 func_id_name(func_id
), func_id
);
2387 memset(&meta
, 0, sizeof(meta
));
2388 meta
.pkt_access
= fn
->pkt_access
;
2390 err
= check_func_proto(fn
);
2392 verbose(env
, "kernel subsystem misconfigured func %s#%d\n",
2393 func_id_name(func_id
), func_id
);
2398 err
= check_func_arg(env
, BPF_REG_1
, fn
->arg1_type
, &meta
);
2401 err
= check_func_arg(env
, BPF_REG_2
, fn
->arg2_type
, &meta
);
2404 if (func_id
== BPF_FUNC_tail_call
) {
2405 if (meta
.map_ptr
== NULL
) {
2406 verbose(env
, "verifier bug\n");
2409 env
->insn_aux_data
[insn_idx
].map_ptr
= meta
.map_ptr
;
2411 err
= check_func_arg(env
, BPF_REG_3
, fn
->arg3_type
, &meta
);
2414 err
= check_func_arg(env
, BPF_REG_4
, fn
->arg4_type
, &meta
);
2417 err
= check_func_arg(env
, BPF_REG_5
, fn
->arg5_type
, &meta
);
2421 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2422 * is inferred from register state.
2424 for (i
= 0; i
< meta
.access_size
; i
++) {
2425 err
= check_mem_access(env
, insn_idx
, meta
.regno
, i
, BPF_B
,
2426 BPF_WRITE
, -1, false);
2431 regs
= cur_regs(env
);
2432 /* reset caller saved regs */
2433 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
2434 mark_reg_not_init(env
, regs
, caller_saved
[i
]);
2435 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
2438 /* update return register (already marked as written above) */
2439 if (fn
->ret_type
== RET_INTEGER
) {
2440 /* sets type to SCALAR_VALUE */
2441 mark_reg_unknown(env
, regs
, BPF_REG_0
);
2442 } else if (fn
->ret_type
== RET_VOID
) {
2443 regs
[BPF_REG_0
].type
= NOT_INIT
;
2444 } else if (fn
->ret_type
== RET_PTR_TO_MAP_VALUE_OR_NULL
) {
2445 struct bpf_insn_aux_data
*insn_aux
;
2447 regs
[BPF_REG_0
].type
= PTR_TO_MAP_VALUE_OR_NULL
;
2448 /* There is no offset yet applied, variable or fixed */
2449 mark_reg_known_zero(env
, regs
, BPF_REG_0
);
2450 regs
[BPF_REG_0
].off
= 0;
2451 /* remember map_ptr, so that check_map_access()
2452 * can check 'value_size' boundary of memory access
2453 * to map element returned from bpf_map_lookup_elem()
2455 if (meta
.map_ptr
== NULL
) {
2457 "kernel subsystem misconfigured verifier\n");
2460 regs
[BPF_REG_0
].map_ptr
= meta
.map_ptr
;
2461 regs
[BPF_REG_0
].id
= ++env
->id_gen
;
2462 insn_aux
= &env
->insn_aux_data
[insn_idx
];
2463 if (!insn_aux
->map_ptr
)
2464 insn_aux
->map_ptr
= meta
.map_ptr
;
2465 else if (insn_aux
->map_ptr
!= meta
.map_ptr
)
2466 insn_aux
->map_ptr
= BPF_MAP_PTR_POISON
;
2468 verbose(env
, "unknown return type %d of func %s#%d\n",
2469 fn
->ret_type
, func_id_name(func_id
), func_id
);
2473 err
= check_map_func_compatibility(env
, meta
.map_ptr
, func_id
);
2478 clear_all_pkt_pointers(env
);
2482 static bool signed_add_overflows(s64 a
, s64 b
)
2484 /* Do the add in u64, where overflow is well-defined */
2485 s64 res
= (s64
)((u64
)a
+ (u64
)b
);
2492 static bool signed_sub_overflows(s64 a
, s64 b
)
2494 /* Do the sub in u64, where overflow is well-defined */
2495 s64 res
= (s64
)((u64
)a
- (u64
)b
);
2502 static bool check_reg_sane_offset(struct bpf_verifier_env
*env
,
2503 const struct bpf_reg_state
*reg
,
2504 enum bpf_reg_type type
)
2506 bool known
= tnum_is_const(reg
->var_off
);
2507 s64 val
= reg
->var_off
.value
;
2508 s64 smin
= reg
->smin_value
;
2510 if (known
&& (val
>= BPF_MAX_VAR_OFF
|| val
<= -BPF_MAX_VAR_OFF
)) {
2511 verbose(env
, "math between %s pointer and %lld is not allowed\n",
2512 reg_type_str
[type
], val
);
2516 if (reg
->off
>= BPF_MAX_VAR_OFF
|| reg
->off
<= -BPF_MAX_VAR_OFF
) {
2517 verbose(env
, "%s pointer offset %d is not allowed\n",
2518 reg_type_str
[type
], reg
->off
);
2522 if (smin
== S64_MIN
) {
2523 verbose(env
, "math between %s pointer and register with unbounded min value is not allowed\n",
2524 reg_type_str
[type
]);
2528 if (smin
>= BPF_MAX_VAR_OFF
|| smin
<= -BPF_MAX_VAR_OFF
) {
2529 verbose(env
, "value %lld makes %s pointer be out of bounds\n",
2530 smin
, reg_type_str
[type
]);
2537 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2538 * Caller should also handle BPF_MOV case separately.
2539 * If we return -EACCES, caller may want to try again treating pointer as a
2540 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2542 static int adjust_ptr_min_max_vals(struct bpf_verifier_env
*env
,
2543 struct bpf_insn
*insn
,
2544 const struct bpf_reg_state
*ptr_reg
,
2545 const struct bpf_reg_state
*off_reg
)
2547 struct bpf_verifier_state
*vstate
= env
->cur_state
;
2548 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
2549 struct bpf_reg_state
*regs
= state
->regs
, *dst_reg
;
2550 bool known
= tnum_is_const(off_reg
->var_off
);
2551 s64 smin_val
= off_reg
->smin_value
, smax_val
= off_reg
->smax_value
,
2552 smin_ptr
= ptr_reg
->smin_value
, smax_ptr
= ptr_reg
->smax_value
;
2553 u64 umin_val
= off_reg
->umin_value
, umax_val
= off_reg
->umax_value
,
2554 umin_ptr
= ptr_reg
->umin_value
, umax_ptr
= ptr_reg
->umax_value
;
2555 u8 opcode
= BPF_OP(insn
->code
);
2556 u32 dst
= insn
->dst_reg
;
2558 dst_reg
= ®s
[dst
];
2560 if ((known
&& (smin_val
!= smax_val
|| umin_val
!= umax_val
)) ||
2561 smin_val
> smax_val
|| umin_val
> umax_val
) {
2562 /* Taint dst register if offset had invalid bounds derived from
2563 * e.g. dead branches.
2565 __mark_reg_unknown(dst_reg
);
2569 if (BPF_CLASS(insn
->code
) != BPF_ALU64
) {
2570 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
2572 "R%d 32-bit pointer arithmetic prohibited\n",
2577 if (ptr_reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
) {
2578 verbose(env
, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2582 if (ptr_reg
->type
== CONST_PTR_TO_MAP
) {
2583 verbose(env
, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2587 if (ptr_reg
->type
== PTR_TO_PACKET_END
) {
2588 verbose(env
, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2593 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2594 * The id may be overwritten later if we create a new variable offset.
2596 dst_reg
->type
= ptr_reg
->type
;
2597 dst_reg
->id
= ptr_reg
->id
;
2599 if (!check_reg_sane_offset(env
, off_reg
, ptr_reg
->type
) ||
2600 !check_reg_sane_offset(env
, ptr_reg
, ptr_reg
->type
))
2605 /* We can take a fixed offset as long as it doesn't overflow
2606 * the s32 'off' field
2608 if (known
&& (ptr_reg
->off
+ smin_val
==
2609 (s64
)(s32
)(ptr_reg
->off
+ smin_val
))) {
2610 /* pointer += K. Accumulate it into fixed offset */
2611 dst_reg
->smin_value
= smin_ptr
;
2612 dst_reg
->smax_value
= smax_ptr
;
2613 dst_reg
->umin_value
= umin_ptr
;
2614 dst_reg
->umax_value
= umax_ptr
;
2615 dst_reg
->var_off
= ptr_reg
->var_off
;
2616 dst_reg
->off
= ptr_reg
->off
+ smin_val
;
2617 dst_reg
->range
= ptr_reg
->range
;
2620 /* A new variable offset is created. Note that off_reg->off
2621 * == 0, since it's a scalar.
2622 * dst_reg gets the pointer type and since some positive
2623 * integer value was added to the pointer, give it a new 'id'
2624 * if it's a PTR_TO_PACKET.
2625 * this creates a new 'base' pointer, off_reg (variable) gets
2626 * added into the variable offset, and we copy the fixed offset
2629 if (signed_add_overflows(smin_ptr
, smin_val
) ||
2630 signed_add_overflows(smax_ptr
, smax_val
)) {
2631 dst_reg
->smin_value
= S64_MIN
;
2632 dst_reg
->smax_value
= S64_MAX
;
2634 dst_reg
->smin_value
= smin_ptr
+ smin_val
;
2635 dst_reg
->smax_value
= smax_ptr
+ smax_val
;
2637 if (umin_ptr
+ umin_val
< umin_ptr
||
2638 umax_ptr
+ umax_val
< umax_ptr
) {
2639 dst_reg
->umin_value
= 0;
2640 dst_reg
->umax_value
= U64_MAX
;
2642 dst_reg
->umin_value
= umin_ptr
+ umin_val
;
2643 dst_reg
->umax_value
= umax_ptr
+ umax_val
;
2645 dst_reg
->var_off
= tnum_add(ptr_reg
->var_off
, off_reg
->var_off
);
2646 dst_reg
->off
= ptr_reg
->off
;
2647 if (reg_is_pkt_pointer(ptr_reg
)) {
2648 dst_reg
->id
= ++env
->id_gen
;
2649 /* something was added to pkt_ptr, set range to zero */
2654 if (dst_reg
== off_reg
) {
2655 /* scalar -= pointer. Creates an unknown scalar */
2656 verbose(env
, "R%d tried to subtract pointer from scalar\n",
2660 /* We don't allow subtraction from FP, because (according to
2661 * test_verifier.c test "invalid fp arithmetic", JITs might not
2662 * be able to deal with it.
2664 if (ptr_reg
->type
== PTR_TO_STACK
) {
2665 verbose(env
, "R%d subtraction from stack pointer prohibited\n",
2669 if (known
&& (ptr_reg
->off
- smin_val
==
2670 (s64
)(s32
)(ptr_reg
->off
- smin_val
))) {
2671 /* pointer -= K. Subtract it from fixed offset */
2672 dst_reg
->smin_value
= smin_ptr
;
2673 dst_reg
->smax_value
= smax_ptr
;
2674 dst_reg
->umin_value
= umin_ptr
;
2675 dst_reg
->umax_value
= umax_ptr
;
2676 dst_reg
->var_off
= ptr_reg
->var_off
;
2677 dst_reg
->id
= ptr_reg
->id
;
2678 dst_reg
->off
= ptr_reg
->off
- smin_val
;
2679 dst_reg
->range
= ptr_reg
->range
;
2682 /* A new variable offset is created. If the subtrahend is known
2683 * nonnegative, then any reg->range we had before is still good.
2685 if (signed_sub_overflows(smin_ptr
, smax_val
) ||
2686 signed_sub_overflows(smax_ptr
, smin_val
)) {
2687 /* Overflow possible, we know nothing */
2688 dst_reg
->smin_value
= S64_MIN
;
2689 dst_reg
->smax_value
= S64_MAX
;
2691 dst_reg
->smin_value
= smin_ptr
- smax_val
;
2692 dst_reg
->smax_value
= smax_ptr
- smin_val
;
2694 if (umin_ptr
< umax_val
) {
2695 /* Overflow possible, we know nothing */
2696 dst_reg
->umin_value
= 0;
2697 dst_reg
->umax_value
= U64_MAX
;
2699 /* Cannot overflow (as long as bounds are consistent) */
2700 dst_reg
->umin_value
= umin_ptr
- umax_val
;
2701 dst_reg
->umax_value
= umax_ptr
- umin_val
;
2703 dst_reg
->var_off
= tnum_sub(ptr_reg
->var_off
, off_reg
->var_off
);
2704 dst_reg
->off
= ptr_reg
->off
;
2705 if (reg_is_pkt_pointer(ptr_reg
)) {
2706 dst_reg
->id
= ++env
->id_gen
;
2707 /* something was added to pkt_ptr, set range to zero */
2715 /* bitwise ops on pointers are troublesome, prohibit. */
2716 verbose(env
, "R%d bitwise operator %s on pointer prohibited\n",
2717 dst
, bpf_alu_string
[opcode
>> 4]);
2720 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2721 verbose(env
, "R%d pointer arithmetic with %s operator prohibited\n",
2722 dst
, bpf_alu_string
[opcode
>> 4]);
2726 if (!check_reg_sane_offset(env
, dst_reg
, ptr_reg
->type
))
2729 __update_reg_bounds(dst_reg
);
2730 __reg_deduce_bounds(dst_reg
);
2731 __reg_bound_offset(dst_reg
);
2735 /* WARNING: This function does calculations on 64-bit values, but the actual
2736 * execution may occur on 32-bit values. Therefore, things like bitshifts
2737 * need extra checks in the 32-bit case.
2739 static int adjust_scalar_min_max_vals(struct bpf_verifier_env
*env
,
2740 struct bpf_insn
*insn
,
2741 struct bpf_reg_state
*dst_reg
,
2742 struct bpf_reg_state src_reg
)
2744 struct bpf_reg_state
*regs
= cur_regs(env
);
2745 u8 opcode
= BPF_OP(insn
->code
);
2746 bool src_known
, dst_known
;
2747 s64 smin_val
, smax_val
;
2748 u64 umin_val
, umax_val
;
2749 u64 insn_bitness
= (BPF_CLASS(insn
->code
) == BPF_ALU64
) ? 64 : 32;
2751 smin_val
= src_reg
.smin_value
;
2752 smax_val
= src_reg
.smax_value
;
2753 umin_val
= src_reg
.umin_value
;
2754 umax_val
= src_reg
.umax_value
;
2755 src_known
= tnum_is_const(src_reg
.var_off
);
2756 dst_known
= tnum_is_const(dst_reg
->var_off
);
2758 if ((src_known
&& (smin_val
!= smax_val
|| umin_val
!= umax_val
)) ||
2759 smin_val
> smax_val
|| umin_val
> umax_val
) {
2760 /* Taint dst register if offset had invalid bounds derived from
2761 * e.g. dead branches.
2763 __mark_reg_unknown(dst_reg
);
2768 opcode
!= BPF_ADD
&& opcode
!= BPF_SUB
&& opcode
!= BPF_AND
) {
2769 __mark_reg_unknown(dst_reg
);
2775 if (signed_add_overflows(dst_reg
->smin_value
, smin_val
) ||
2776 signed_add_overflows(dst_reg
->smax_value
, smax_val
)) {
2777 dst_reg
->smin_value
= S64_MIN
;
2778 dst_reg
->smax_value
= S64_MAX
;
2780 dst_reg
->smin_value
+= smin_val
;
2781 dst_reg
->smax_value
+= smax_val
;
2783 if (dst_reg
->umin_value
+ umin_val
< umin_val
||
2784 dst_reg
->umax_value
+ umax_val
< umax_val
) {
2785 dst_reg
->umin_value
= 0;
2786 dst_reg
->umax_value
= U64_MAX
;
2788 dst_reg
->umin_value
+= umin_val
;
2789 dst_reg
->umax_value
+= umax_val
;
2791 dst_reg
->var_off
= tnum_add(dst_reg
->var_off
, src_reg
.var_off
);
2794 if (signed_sub_overflows(dst_reg
->smin_value
, smax_val
) ||
2795 signed_sub_overflows(dst_reg
->smax_value
, smin_val
)) {
2796 /* Overflow possible, we know nothing */
2797 dst_reg
->smin_value
= S64_MIN
;
2798 dst_reg
->smax_value
= S64_MAX
;
2800 dst_reg
->smin_value
-= smax_val
;
2801 dst_reg
->smax_value
-= smin_val
;
2803 if (dst_reg
->umin_value
< umax_val
) {
2804 /* Overflow possible, we know nothing */
2805 dst_reg
->umin_value
= 0;
2806 dst_reg
->umax_value
= U64_MAX
;
2808 /* Cannot overflow (as long as bounds are consistent) */
2809 dst_reg
->umin_value
-= umax_val
;
2810 dst_reg
->umax_value
-= umin_val
;
2812 dst_reg
->var_off
= tnum_sub(dst_reg
->var_off
, src_reg
.var_off
);
2815 dst_reg
->var_off
= tnum_mul(dst_reg
->var_off
, src_reg
.var_off
);
2816 if (smin_val
< 0 || dst_reg
->smin_value
< 0) {
2817 /* Ain't nobody got time to multiply that sign */
2818 __mark_reg_unbounded(dst_reg
);
2819 __update_reg_bounds(dst_reg
);
2822 /* Both values are positive, so we can work with unsigned and
2823 * copy the result to signed (unless it exceeds S64_MAX).
2825 if (umax_val
> U32_MAX
|| dst_reg
->umax_value
> U32_MAX
) {
2826 /* Potential overflow, we know nothing */
2827 __mark_reg_unbounded(dst_reg
);
2828 /* (except what we can learn from the var_off) */
2829 __update_reg_bounds(dst_reg
);
2832 dst_reg
->umin_value
*= umin_val
;
2833 dst_reg
->umax_value
*= umax_val
;
2834 if (dst_reg
->umax_value
> S64_MAX
) {
2835 /* Overflow possible, we know nothing */
2836 dst_reg
->smin_value
= S64_MIN
;
2837 dst_reg
->smax_value
= S64_MAX
;
2839 dst_reg
->smin_value
= dst_reg
->umin_value
;
2840 dst_reg
->smax_value
= dst_reg
->umax_value
;
2844 if (src_known
&& dst_known
) {
2845 __mark_reg_known(dst_reg
, dst_reg
->var_off
.value
&
2846 src_reg
.var_off
.value
);
2849 /* We get our minimum from the var_off, since that's inherently
2850 * bitwise. Our maximum is the minimum of the operands' maxima.
2852 dst_reg
->var_off
= tnum_and(dst_reg
->var_off
, src_reg
.var_off
);
2853 dst_reg
->umin_value
= dst_reg
->var_off
.value
;
2854 dst_reg
->umax_value
= min(dst_reg
->umax_value
, umax_val
);
2855 if (dst_reg
->smin_value
< 0 || smin_val
< 0) {
2856 /* Lose signed bounds when ANDing negative numbers,
2857 * ain't nobody got time for that.
2859 dst_reg
->smin_value
= S64_MIN
;
2860 dst_reg
->smax_value
= S64_MAX
;
2862 /* ANDing two positives gives a positive, so safe to
2863 * cast result into s64.
2865 dst_reg
->smin_value
= dst_reg
->umin_value
;
2866 dst_reg
->smax_value
= dst_reg
->umax_value
;
2868 /* We may learn something more from the var_off */
2869 __update_reg_bounds(dst_reg
);
2872 if (src_known
&& dst_known
) {
2873 __mark_reg_known(dst_reg
, dst_reg
->var_off
.value
|
2874 src_reg
.var_off
.value
);
2877 /* We get our maximum from the var_off, and our minimum is the
2878 * maximum of the operands' minima
2880 dst_reg
->var_off
= tnum_or(dst_reg
->var_off
, src_reg
.var_off
);
2881 dst_reg
->umin_value
= max(dst_reg
->umin_value
, umin_val
);
2882 dst_reg
->umax_value
= dst_reg
->var_off
.value
|
2883 dst_reg
->var_off
.mask
;
2884 if (dst_reg
->smin_value
< 0 || smin_val
< 0) {
2885 /* Lose signed bounds when ORing negative numbers,
2886 * ain't nobody got time for that.
2888 dst_reg
->smin_value
= S64_MIN
;
2889 dst_reg
->smax_value
= S64_MAX
;
2891 /* ORing two positives gives a positive, so safe to
2892 * cast result into s64.
2894 dst_reg
->smin_value
= dst_reg
->umin_value
;
2895 dst_reg
->smax_value
= dst_reg
->umax_value
;
2897 /* We may learn something more from the var_off */
2898 __update_reg_bounds(dst_reg
);
2901 if (umax_val
>= insn_bitness
) {
2902 /* Shifts greater than 31 or 63 are undefined.
2903 * This includes shifts by a negative number.
2905 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
2908 /* We lose all sign bit information (except what we can pick
2911 dst_reg
->smin_value
= S64_MIN
;
2912 dst_reg
->smax_value
= S64_MAX
;
2913 /* If we might shift our top bit out, then we know nothing */
2914 if (dst_reg
->umax_value
> 1ULL << (63 - umax_val
)) {
2915 dst_reg
->umin_value
= 0;
2916 dst_reg
->umax_value
= U64_MAX
;
2918 dst_reg
->umin_value
<<= umin_val
;
2919 dst_reg
->umax_value
<<= umax_val
;
2922 dst_reg
->var_off
= tnum_lshift(dst_reg
->var_off
, umin_val
);
2924 dst_reg
->var_off
= tnum_lshift(tnum_unknown
, umin_val
);
2925 /* We may learn something more from the var_off */
2926 __update_reg_bounds(dst_reg
);
2929 if (umax_val
>= insn_bitness
) {
2930 /* Shifts greater than 31 or 63 are undefined.
2931 * This includes shifts by a negative number.
2933 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
2936 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2937 * be negative, then either:
2938 * 1) src_reg might be zero, so the sign bit of the result is
2939 * unknown, so we lose our signed bounds
2940 * 2) it's known negative, thus the unsigned bounds capture the
2942 * 3) the signed bounds cross zero, so they tell us nothing
2944 * If the value in dst_reg is known nonnegative, then again the
2945 * unsigned bounts capture the signed bounds.
2946 * Thus, in all cases it suffices to blow away our signed bounds
2947 * and rely on inferring new ones from the unsigned bounds and
2948 * var_off of the result.
2950 dst_reg
->smin_value
= S64_MIN
;
2951 dst_reg
->smax_value
= S64_MAX
;
2953 dst_reg
->var_off
= tnum_rshift(dst_reg
->var_off
,
2956 dst_reg
->var_off
= tnum_rshift(tnum_unknown
, umin_val
);
2957 dst_reg
->umin_value
>>= umax_val
;
2958 dst_reg
->umax_value
>>= umin_val
;
2959 /* We may learn something more from the var_off */
2960 __update_reg_bounds(dst_reg
);
2963 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
2967 if (BPF_CLASS(insn
->code
) != BPF_ALU64
) {
2968 /* 32-bit ALU ops are (32,32)->32 */
2969 coerce_reg_to_size(dst_reg
, 4);
2970 coerce_reg_to_size(&src_reg
, 4);
2973 __reg_deduce_bounds(dst_reg
);
2974 __reg_bound_offset(dst_reg
);
2978 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2981 static int adjust_reg_min_max_vals(struct bpf_verifier_env
*env
,
2982 struct bpf_insn
*insn
)
2984 struct bpf_verifier_state
*vstate
= env
->cur_state
;
2985 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
2986 struct bpf_reg_state
*regs
= state
->regs
, *dst_reg
, *src_reg
;
2987 struct bpf_reg_state
*ptr_reg
= NULL
, off_reg
= {0};
2988 u8 opcode
= BPF_OP(insn
->code
);
2990 dst_reg
= ®s
[insn
->dst_reg
];
2992 if (dst_reg
->type
!= SCALAR_VALUE
)
2994 if (BPF_SRC(insn
->code
) == BPF_X
) {
2995 src_reg
= ®s
[insn
->src_reg
];
2996 if (src_reg
->type
!= SCALAR_VALUE
) {
2997 if (dst_reg
->type
!= SCALAR_VALUE
) {
2998 /* Combining two pointers by any ALU op yields
2999 * an arbitrary scalar. Disallow all math except
3000 * pointer subtraction
3002 if (opcode
== BPF_SUB
){
3003 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
3006 verbose(env
, "R%d pointer %s pointer prohibited\n",
3008 bpf_alu_string
[opcode
>> 4]);
3011 /* scalar += pointer
3012 * This is legal, but we have to reverse our
3013 * src/dest handling in computing the range
3015 return adjust_ptr_min_max_vals(env
, insn
,
3018 } else if (ptr_reg
) {
3019 /* pointer += scalar */
3020 return adjust_ptr_min_max_vals(env
, insn
,
3024 /* Pretend the src is a reg with a known value, since we only
3025 * need to be able to read from this state.
3027 off_reg
.type
= SCALAR_VALUE
;
3028 __mark_reg_known(&off_reg
, insn
->imm
);
3030 if (ptr_reg
) /* pointer += K */
3031 return adjust_ptr_min_max_vals(env
, insn
,
3035 /* Got here implies adding two SCALAR_VALUEs */
3036 if (WARN_ON_ONCE(ptr_reg
)) {
3037 print_verifier_state(env
, state
);
3038 verbose(env
, "verifier internal error: unexpected ptr_reg\n");
3041 if (WARN_ON(!src_reg
)) {
3042 print_verifier_state(env
, state
);
3043 verbose(env
, "verifier internal error: no src_reg\n");
3046 return adjust_scalar_min_max_vals(env
, insn
, dst_reg
, *src_reg
);
3049 /* check validity of 32-bit and 64-bit arithmetic operations */
3050 static int check_alu_op(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
3052 struct bpf_reg_state
*regs
= cur_regs(env
);
3053 u8 opcode
= BPF_OP(insn
->code
);
3056 if (opcode
== BPF_END
|| opcode
== BPF_NEG
) {
3057 if (opcode
== BPF_NEG
) {
3058 if (BPF_SRC(insn
->code
) != 0 ||
3059 insn
->src_reg
!= BPF_REG_0
||
3060 insn
->off
!= 0 || insn
->imm
!= 0) {
3061 verbose(env
, "BPF_NEG uses reserved fields\n");
3065 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
3066 (insn
->imm
!= 16 && insn
->imm
!= 32 && insn
->imm
!= 64) ||
3067 BPF_CLASS(insn
->code
) == BPF_ALU64
) {
3068 verbose(env
, "BPF_END uses reserved fields\n");
3073 /* check src operand */
3074 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
3078 if (is_pointer_value(env
, insn
->dst_reg
)) {
3079 verbose(env
, "R%d pointer arithmetic prohibited\n",
3084 /* check dest operand */
3085 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
3089 } else if (opcode
== BPF_MOV
) {
3091 if (BPF_SRC(insn
->code
) == BPF_X
) {
3092 if (insn
->imm
!= 0 || insn
->off
!= 0) {
3093 verbose(env
, "BPF_MOV uses reserved fields\n");
3097 /* check src operand */
3098 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3102 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
3103 verbose(env
, "BPF_MOV uses reserved fields\n");
3108 /* check dest operand */
3109 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
3113 if (BPF_SRC(insn
->code
) == BPF_X
) {
3114 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
3116 * copy register state to dest reg
3118 regs
[insn
->dst_reg
] = regs
[insn
->src_reg
];
3119 regs
[insn
->dst_reg
].live
|= REG_LIVE_WRITTEN
;
3122 if (is_pointer_value(env
, insn
->src_reg
)) {
3124 "R%d partial copy of pointer\n",
3128 mark_reg_unknown(env
, regs
, insn
->dst_reg
);
3129 coerce_reg_to_size(®s
[insn
->dst_reg
], 4);
3133 * remember the value we stored into this reg
3135 regs
[insn
->dst_reg
].type
= SCALAR_VALUE
;
3136 if (BPF_CLASS(insn
->code
) == BPF_ALU64
) {
3137 __mark_reg_known(regs
+ insn
->dst_reg
,
3140 __mark_reg_known(regs
+ insn
->dst_reg
,
3145 } else if (opcode
> BPF_END
) {
3146 verbose(env
, "invalid BPF_ALU opcode %x\n", opcode
);
3149 } else { /* all other ALU ops: and, sub, xor, add, ... */
3151 if (BPF_SRC(insn
->code
) == BPF_X
) {
3152 if (insn
->imm
!= 0 || insn
->off
!= 0) {
3153 verbose(env
, "BPF_ALU uses reserved fields\n");
3156 /* check src1 operand */
3157 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3161 if (insn
->src_reg
!= BPF_REG_0
|| insn
->off
!= 0) {
3162 verbose(env
, "BPF_ALU uses reserved fields\n");
3167 /* check src2 operand */
3168 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
3172 if ((opcode
== BPF_MOD
|| opcode
== BPF_DIV
) &&
3173 BPF_SRC(insn
->code
) == BPF_K
&& insn
->imm
== 0) {
3174 verbose(env
, "div by zero\n");
3178 if (opcode
== BPF_ARSH
&& BPF_CLASS(insn
->code
) != BPF_ALU64
) {
3179 verbose(env
, "BPF_ARSH not supported for 32 bit ALU\n");
3183 if ((opcode
== BPF_LSH
|| opcode
== BPF_RSH
||
3184 opcode
== BPF_ARSH
) && BPF_SRC(insn
->code
) == BPF_K
) {
3185 int size
= BPF_CLASS(insn
->code
) == BPF_ALU64
? 64 : 32;
3187 if (insn
->imm
< 0 || insn
->imm
>= size
) {
3188 verbose(env
, "invalid shift %d\n", insn
->imm
);
3193 /* check dest operand */
3194 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
3198 return adjust_reg_min_max_vals(env
, insn
);
3204 static void find_good_pkt_pointers(struct bpf_verifier_state
*vstate
,
3205 struct bpf_reg_state
*dst_reg
,
3206 enum bpf_reg_type type
,
3207 bool range_right_open
)
3209 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
3210 struct bpf_reg_state
*regs
= state
->regs
, *reg
;
3214 if (dst_reg
->off
< 0 ||
3215 (dst_reg
->off
== 0 && range_right_open
))
3216 /* This doesn't give us any range */
3219 if (dst_reg
->umax_value
> MAX_PACKET_OFF
||
3220 dst_reg
->umax_value
+ dst_reg
->off
> MAX_PACKET_OFF
)
3221 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3222 * than pkt_end, but that's because it's also less than pkt.
3226 new_range
= dst_reg
->off
;
3227 if (range_right_open
)
3230 /* Examples for register markings:
3232 * pkt_data in dst register:
3236 * if (r2 > pkt_end) goto <handle exception>
3241 * if (r2 < pkt_end) goto <access okay>
3242 * <handle exception>
3245 * r2 == dst_reg, pkt_end == src_reg
3246 * r2=pkt(id=n,off=8,r=0)
3247 * r3=pkt(id=n,off=0,r=0)
3249 * pkt_data in src register:
3253 * if (pkt_end >= r2) goto <access okay>
3254 * <handle exception>
3258 * if (pkt_end <= r2) goto <handle exception>
3262 * pkt_end == dst_reg, r2 == src_reg
3263 * r2=pkt(id=n,off=8,r=0)
3264 * r3=pkt(id=n,off=0,r=0)
3266 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3267 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3268 * and [r3, r3 + 8-1) respectively is safe to access depending on
3272 /* If our ids match, then we must have the same max_value. And we
3273 * don't care about the other reg's fixed offset, since if it's too big
3274 * the range won't allow anything.
3275 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3277 for (i
= 0; i
< MAX_BPF_REG
; i
++)
3278 if (regs
[i
].type
== type
&& regs
[i
].id
== dst_reg
->id
)
3279 /* keep the maximum range already checked */
3280 regs
[i
].range
= max(regs
[i
].range
, new_range
);
3282 for (j
= 0; j
<= vstate
->curframe
; j
++) {
3283 state
= vstate
->frame
[j
];
3284 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
3285 if (state
->stack
[i
].slot_type
[0] != STACK_SPILL
)
3287 reg
= &state
->stack
[i
].spilled_ptr
;
3288 if (reg
->type
== type
&& reg
->id
== dst_reg
->id
)
3289 reg
->range
= max(reg
->range
, new_range
);
3294 /* Adjusts the register min/max values in the case that the dst_reg is the
3295 * variable register that we are working on, and src_reg is a constant or we're
3296 * simply doing a BPF_K check.
3297 * In JEQ/JNE cases we also adjust the var_off values.
3299 static void reg_set_min_max(struct bpf_reg_state
*true_reg
,
3300 struct bpf_reg_state
*false_reg
, u64 val
,
3303 /* If the dst_reg is a pointer, we can't learn anything about its
3304 * variable offset from the compare (unless src_reg were a pointer into
3305 * the same object, but we don't bother with that.
3306 * Since false_reg and true_reg have the same type by construction, we
3307 * only need to check one of them for pointerness.
3309 if (__is_pointer_value(false, false_reg
))
3314 /* If this is false then we know nothing Jon Snow, but if it is
3315 * true then we know for sure.
3317 __mark_reg_known(true_reg
, val
);
3320 /* If this is true we know nothing Jon Snow, but if it is false
3321 * we know the value for sure;
3323 __mark_reg_known(false_reg
, val
);
3326 false_reg
->umax_value
= min(false_reg
->umax_value
, val
);
3327 true_reg
->umin_value
= max(true_reg
->umin_value
, val
+ 1);
3330 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
);
3331 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
+ 1);
3334 false_reg
->umin_value
= max(false_reg
->umin_value
, val
);
3335 true_reg
->umax_value
= min(true_reg
->umax_value
, val
- 1);
3338 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
);
3339 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
- 1);
3342 false_reg
->umax_value
= min(false_reg
->umax_value
, val
- 1);
3343 true_reg
->umin_value
= max(true_reg
->umin_value
, val
);
3346 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
- 1);
3347 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
);
3350 false_reg
->umin_value
= max(false_reg
->umin_value
, val
+ 1);
3351 true_reg
->umax_value
= min(true_reg
->umax_value
, val
);
3354 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
+ 1);
3355 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
);
3361 __reg_deduce_bounds(false_reg
);
3362 __reg_deduce_bounds(true_reg
);
3363 /* We might have learned some bits from the bounds. */
3364 __reg_bound_offset(false_reg
);
3365 __reg_bound_offset(true_reg
);
3366 /* Intersecting with the old var_off might have improved our bounds
3367 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3368 * then new var_off is (0; 0x7f...fc) which improves our umax.
3370 __update_reg_bounds(false_reg
);
3371 __update_reg_bounds(true_reg
);
3374 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3377 static void reg_set_min_max_inv(struct bpf_reg_state
*true_reg
,
3378 struct bpf_reg_state
*false_reg
, u64 val
,
3381 if (__is_pointer_value(false, false_reg
))
3386 /* If this is false then we know nothing Jon Snow, but if it is
3387 * true then we know for sure.
3389 __mark_reg_known(true_reg
, val
);
3392 /* If this is true we know nothing Jon Snow, but if it is false
3393 * we know the value for sure;
3395 __mark_reg_known(false_reg
, val
);
3398 true_reg
->umax_value
= min(true_reg
->umax_value
, val
- 1);
3399 false_reg
->umin_value
= max(false_reg
->umin_value
, val
);
3402 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
- 1);
3403 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
);
3406 true_reg
->umin_value
= max(true_reg
->umin_value
, val
+ 1);
3407 false_reg
->umax_value
= min(false_reg
->umax_value
, val
);
3410 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
+ 1);
3411 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
);
3414 true_reg
->umax_value
= min(true_reg
->umax_value
, val
);
3415 false_reg
->umin_value
= max(false_reg
->umin_value
, val
+ 1);
3418 true_reg
->smax_value
= min_t(s64
, true_reg
->smax_value
, val
);
3419 false_reg
->smin_value
= max_t(s64
, false_reg
->smin_value
, val
+ 1);
3422 true_reg
->umin_value
= max(true_reg
->umin_value
, val
);
3423 false_reg
->umax_value
= min(false_reg
->umax_value
, val
- 1);
3426 true_reg
->smin_value
= max_t(s64
, true_reg
->smin_value
, val
);
3427 false_reg
->smax_value
= min_t(s64
, false_reg
->smax_value
, val
- 1);
3433 __reg_deduce_bounds(false_reg
);
3434 __reg_deduce_bounds(true_reg
);
3435 /* We might have learned some bits from the bounds. */
3436 __reg_bound_offset(false_reg
);
3437 __reg_bound_offset(true_reg
);
3438 /* Intersecting with the old var_off might have improved our bounds
3439 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3440 * then new var_off is (0; 0x7f...fc) which improves our umax.
3442 __update_reg_bounds(false_reg
);
3443 __update_reg_bounds(true_reg
);
3446 /* Regs are known to be equal, so intersect their min/max/var_off */
3447 static void __reg_combine_min_max(struct bpf_reg_state
*src_reg
,
3448 struct bpf_reg_state
*dst_reg
)
3450 src_reg
->umin_value
= dst_reg
->umin_value
= max(src_reg
->umin_value
,
3451 dst_reg
->umin_value
);
3452 src_reg
->umax_value
= dst_reg
->umax_value
= min(src_reg
->umax_value
,
3453 dst_reg
->umax_value
);
3454 src_reg
->smin_value
= dst_reg
->smin_value
= max(src_reg
->smin_value
,
3455 dst_reg
->smin_value
);
3456 src_reg
->smax_value
= dst_reg
->smax_value
= min(src_reg
->smax_value
,
3457 dst_reg
->smax_value
);
3458 src_reg
->var_off
= dst_reg
->var_off
= tnum_intersect(src_reg
->var_off
,
3460 /* We might have learned new bounds from the var_off. */
3461 __update_reg_bounds(src_reg
);
3462 __update_reg_bounds(dst_reg
);
3463 /* We might have learned something about the sign bit. */
3464 __reg_deduce_bounds(src_reg
);
3465 __reg_deduce_bounds(dst_reg
);
3466 /* We might have learned some bits from the bounds. */
3467 __reg_bound_offset(src_reg
);
3468 __reg_bound_offset(dst_reg
);
3469 /* Intersecting with the old var_off might have improved our bounds
3470 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3471 * then new var_off is (0; 0x7f...fc) which improves our umax.
3473 __update_reg_bounds(src_reg
);
3474 __update_reg_bounds(dst_reg
);
3477 static void reg_combine_min_max(struct bpf_reg_state
*true_src
,
3478 struct bpf_reg_state
*true_dst
,
3479 struct bpf_reg_state
*false_src
,
3480 struct bpf_reg_state
*false_dst
,
3485 __reg_combine_min_max(true_src
, true_dst
);
3488 __reg_combine_min_max(false_src
, false_dst
);
3493 static void mark_map_reg(struct bpf_reg_state
*regs
, u32 regno
, u32 id
,
3496 struct bpf_reg_state
*reg
= ®s
[regno
];
3498 if (reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
&& reg
->id
== id
) {
3499 /* Old offset (both fixed and variable parts) should
3500 * have been known-zero, because we don't allow pointer
3501 * arithmetic on pointers that might be NULL.
3503 if (WARN_ON_ONCE(reg
->smin_value
|| reg
->smax_value
||
3504 !tnum_equals_const(reg
->var_off
, 0) ||
3506 __mark_reg_known_zero(reg
);
3510 reg
->type
= SCALAR_VALUE
;
3511 } else if (reg
->map_ptr
->inner_map_meta
) {
3512 reg
->type
= CONST_PTR_TO_MAP
;
3513 reg
->map_ptr
= reg
->map_ptr
->inner_map_meta
;
3515 reg
->type
= PTR_TO_MAP_VALUE
;
3517 /* We don't need id from this point onwards anymore, thus we
3518 * should better reset it, so that state pruning has chances
3525 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3526 * be folded together at some point.
3528 static void mark_map_regs(struct bpf_verifier_state
*vstate
, u32 regno
,
3531 struct bpf_func_state
*state
= vstate
->frame
[vstate
->curframe
];
3532 struct bpf_reg_state
*regs
= state
->regs
;
3533 u32 id
= regs
[regno
].id
;
3536 for (i
= 0; i
< MAX_BPF_REG
; i
++)
3537 mark_map_reg(regs
, i
, id
, is_null
);
3539 for (j
= 0; j
<= vstate
->curframe
; j
++) {
3540 state
= vstate
->frame
[j
];
3541 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
3542 if (state
->stack
[i
].slot_type
[0] != STACK_SPILL
)
3544 mark_map_reg(&state
->stack
[i
].spilled_ptr
, 0, id
, is_null
);
3549 static bool try_match_pkt_pointers(const struct bpf_insn
*insn
,
3550 struct bpf_reg_state
*dst_reg
,
3551 struct bpf_reg_state
*src_reg
,
3552 struct bpf_verifier_state
*this_branch
,
3553 struct bpf_verifier_state
*other_branch
)
3555 if (BPF_SRC(insn
->code
) != BPF_X
)
3558 switch (BPF_OP(insn
->code
)) {
3560 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3561 src_reg
->type
== PTR_TO_PACKET_END
) ||
3562 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3563 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3564 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3565 find_good_pkt_pointers(this_branch
, dst_reg
,
3566 dst_reg
->type
, false);
3567 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3568 src_reg
->type
== PTR_TO_PACKET
) ||
3569 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3570 src_reg
->type
== PTR_TO_PACKET_META
)) {
3571 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3572 find_good_pkt_pointers(other_branch
, src_reg
,
3573 src_reg
->type
, true);
3579 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3580 src_reg
->type
== PTR_TO_PACKET_END
) ||
3581 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3582 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3583 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3584 find_good_pkt_pointers(other_branch
, dst_reg
,
3585 dst_reg
->type
, true);
3586 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3587 src_reg
->type
== PTR_TO_PACKET
) ||
3588 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3589 src_reg
->type
== PTR_TO_PACKET_META
)) {
3590 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3591 find_good_pkt_pointers(this_branch
, src_reg
,
3592 src_reg
->type
, false);
3598 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3599 src_reg
->type
== PTR_TO_PACKET_END
) ||
3600 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3601 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3602 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3603 find_good_pkt_pointers(this_branch
, dst_reg
,
3604 dst_reg
->type
, true);
3605 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3606 src_reg
->type
== PTR_TO_PACKET
) ||
3607 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3608 src_reg
->type
== PTR_TO_PACKET_META
)) {
3609 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3610 find_good_pkt_pointers(other_branch
, src_reg
,
3611 src_reg
->type
, false);
3617 if ((dst_reg
->type
== PTR_TO_PACKET
&&
3618 src_reg
->type
== PTR_TO_PACKET_END
) ||
3619 (dst_reg
->type
== PTR_TO_PACKET_META
&&
3620 reg_is_init_pkt_pointer(src_reg
, PTR_TO_PACKET
))) {
3621 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3622 find_good_pkt_pointers(other_branch
, dst_reg
,
3623 dst_reg
->type
, false);
3624 } else if ((dst_reg
->type
== PTR_TO_PACKET_END
&&
3625 src_reg
->type
== PTR_TO_PACKET
) ||
3626 (reg_is_init_pkt_pointer(dst_reg
, PTR_TO_PACKET
) &&
3627 src_reg
->type
== PTR_TO_PACKET_META
)) {
3628 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3629 find_good_pkt_pointers(this_branch
, src_reg
,
3630 src_reg
->type
, true);
3642 static int check_cond_jmp_op(struct bpf_verifier_env
*env
,
3643 struct bpf_insn
*insn
, int *insn_idx
)
3645 struct bpf_verifier_state
*this_branch
= env
->cur_state
;
3646 struct bpf_verifier_state
*other_branch
;
3647 struct bpf_reg_state
*regs
= this_branch
->frame
[this_branch
->curframe
]->regs
;
3648 struct bpf_reg_state
*dst_reg
, *other_branch_regs
;
3649 u8 opcode
= BPF_OP(insn
->code
);
3652 if (opcode
> BPF_JSLE
) {
3653 verbose(env
, "invalid BPF_JMP opcode %x\n", opcode
);
3657 if (BPF_SRC(insn
->code
) == BPF_X
) {
3658 if (insn
->imm
!= 0) {
3659 verbose(env
, "BPF_JMP uses reserved fields\n");
3663 /* check src1 operand */
3664 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3668 if (is_pointer_value(env
, insn
->src_reg
)) {
3669 verbose(env
, "R%d pointer comparison prohibited\n",
3674 if (insn
->src_reg
!= BPF_REG_0
) {
3675 verbose(env
, "BPF_JMP uses reserved fields\n");
3680 /* check src2 operand */
3681 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
3685 dst_reg
= ®s
[insn
->dst_reg
];
3687 /* detect if R == 0 where R was initialized to zero earlier */
3688 if (BPF_SRC(insn
->code
) == BPF_K
&&
3689 (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
) &&
3690 dst_reg
->type
== SCALAR_VALUE
&&
3691 tnum_is_const(dst_reg
->var_off
)) {
3692 if ((opcode
== BPF_JEQ
&& dst_reg
->var_off
.value
== insn
->imm
) ||
3693 (opcode
== BPF_JNE
&& dst_reg
->var_off
.value
!= insn
->imm
)) {
3694 /* if (imm == imm) goto pc+off;
3695 * only follow the goto, ignore fall-through
3697 *insn_idx
+= insn
->off
;
3700 /* if (imm != imm) goto pc+off;
3701 * only follow fall-through branch, since
3702 * that's where the program will go
3708 other_branch
= push_stack(env
, *insn_idx
+ insn
->off
+ 1, *insn_idx
);
3711 other_branch_regs
= other_branch
->frame
[other_branch
->curframe
]->regs
;
3713 /* detect if we are comparing against a constant value so we can adjust
3714 * our min/max values for our dst register.
3715 * this is only legit if both are scalars (or pointers to the same
3716 * object, I suppose, but we don't support that right now), because
3717 * otherwise the different base pointers mean the offsets aren't
3720 if (BPF_SRC(insn
->code
) == BPF_X
) {
3721 if (dst_reg
->type
== SCALAR_VALUE
&&
3722 regs
[insn
->src_reg
].type
== SCALAR_VALUE
) {
3723 if (tnum_is_const(regs
[insn
->src_reg
].var_off
))
3724 reg_set_min_max(&other_branch_regs
[insn
->dst_reg
],
3725 dst_reg
, regs
[insn
->src_reg
].var_off
.value
,
3727 else if (tnum_is_const(dst_reg
->var_off
))
3728 reg_set_min_max_inv(&other_branch_regs
[insn
->src_reg
],
3729 ®s
[insn
->src_reg
],
3730 dst_reg
->var_off
.value
, opcode
);
3731 else if (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
)
3732 /* Comparing for equality, we can combine knowledge */
3733 reg_combine_min_max(&other_branch_regs
[insn
->src_reg
],
3734 &other_branch_regs
[insn
->dst_reg
],
3735 ®s
[insn
->src_reg
],
3736 ®s
[insn
->dst_reg
], opcode
);
3738 } else if (dst_reg
->type
== SCALAR_VALUE
) {
3739 reg_set_min_max(&other_branch_regs
[insn
->dst_reg
],
3740 dst_reg
, insn
->imm
, opcode
);
3743 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3744 if (BPF_SRC(insn
->code
) == BPF_K
&&
3745 insn
->imm
== 0 && (opcode
== BPF_JEQ
|| opcode
== BPF_JNE
) &&
3746 dst_reg
->type
== PTR_TO_MAP_VALUE_OR_NULL
) {
3747 /* Mark all identical map registers in each branch as either
3748 * safe or unknown depending R == 0 or R != 0 conditional.
3750 mark_map_regs(this_branch
, insn
->dst_reg
, opcode
== BPF_JNE
);
3751 mark_map_regs(other_branch
, insn
->dst_reg
, opcode
== BPF_JEQ
);
3752 } else if (!try_match_pkt_pointers(insn
, dst_reg
, ®s
[insn
->src_reg
],
3753 this_branch
, other_branch
) &&
3754 is_pointer_value(env
, insn
->dst_reg
)) {
3755 verbose(env
, "R%d pointer comparison prohibited\n",
3760 print_verifier_state(env
, this_branch
->frame
[this_branch
->curframe
]);
3764 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3765 static struct bpf_map
*ld_imm64_to_map_ptr(struct bpf_insn
*insn
)
3767 u64 imm64
= ((u64
) (u32
) insn
[0].imm
) | ((u64
) (u32
) insn
[1].imm
) << 32;
3769 return (struct bpf_map
*) (unsigned long) imm64
;
3772 /* verify BPF_LD_IMM64 instruction */
3773 static int check_ld_imm(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
3775 struct bpf_reg_state
*regs
= cur_regs(env
);
3778 if (BPF_SIZE(insn
->code
) != BPF_DW
) {
3779 verbose(env
, "invalid BPF_LD_IMM insn\n");
3782 if (insn
->off
!= 0) {
3783 verbose(env
, "BPF_LD_IMM64 uses reserved fields\n");
3787 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP
);
3791 if (insn
->src_reg
== 0) {
3792 u64 imm
= ((u64
)(insn
+ 1)->imm
<< 32) | (u32
)insn
->imm
;
3794 regs
[insn
->dst_reg
].type
= SCALAR_VALUE
;
3795 __mark_reg_known(®s
[insn
->dst_reg
], imm
);
3799 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3800 BUG_ON(insn
->src_reg
!= BPF_PSEUDO_MAP_FD
);
3802 regs
[insn
->dst_reg
].type
= CONST_PTR_TO_MAP
;
3803 regs
[insn
->dst_reg
].map_ptr
= ld_imm64_to_map_ptr(insn
);
3807 static bool may_access_skb(enum bpf_prog_type type
)
3810 case BPF_PROG_TYPE_SOCKET_FILTER
:
3811 case BPF_PROG_TYPE_SCHED_CLS
:
3812 case BPF_PROG_TYPE_SCHED_ACT
:
3819 /* verify safety of LD_ABS|LD_IND instructions:
3820 * - they can only appear in the programs where ctx == skb
3821 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3822 * preserve R6-R9, and store return value into R0
3825 * ctx == skb == R6 == CTX
3828 * SRC == any register
3829 * IMM == 32-bit immediate
3832 * R0 - 8/16/32-bit skb data converted to cpu endianness
3834 static int check_ld_abs(struct bpf_verifier_env
*env
, struct bpf_insn
*insn
)
3836 struct bpf_reg_state
*regs
= cur_regs(env
);
3837 u8 mode
= BPF_MODE(insn
->code
);
3840 if (!may_access_skb(env
->prog
->type
)) {
3841 verbose(env
, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3845 if (env
->subprog_cnt
) {
3846 /* when program has LD_ABS insn JITs and interpreter assume
3847 * that r1 == ctx == skb which is not the case for callees
3848 * that can have arbitrary arguments. It's problematic
3849 * for main prog as well since JITs would need to analyze
3850 * all functions in order to make proper register save/restore
3851 * decisions in the main prog. Hence disallow LD_ABS with calls
3853 verbose(env
, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3857 if (insn
->dst_reg
!= BPF_REG_0
|| insn
->off
!= 0 ||
3858 BPF_SIZE(insn
->code
) == BPF_DW
||
3859 (mode
== BPF_ABS
&& insn
->src_reg
!= BPF_REG_0
)) {
3860 verbose(env
, "BPF_LD_[ABS|IND] uses reserved fields\n");
3864 /* check whether implicit source operand (register R6) is readable */
3865 err
= check_reg_arg(env
, BPF_REG_6
, SRC_OP
);
3869 if (regs
[BPF_REG_6
].type
!= PTR_TO_CTX
) {
3871 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3875 if (mode
== BPF_IND
) {
3876 /* check explicit source operand */
3877 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
3882 /* reset caller saved regs to unreadable */
3883 for (i
= 0; i
< CALLER_SAVED_REGS
; i
++) {
3884 mark_reg_not_init(env
, regs
, caller_saved
[i
]);
3885 check_reg_arg(env
, caller_saved
[i
], DST_OP_NO_MARK
);
3888 /* mark destination R0 register as readable, since it contains
3889 * the value fetched from the packet.
3890 * Already marked as written above.
3892 mark_reg_unknown(env
, regs
, BPF_REG_0
);
3896 static int check_return_code(struct bpf_verifier_env
*env
)
3898 struct bpf_reg_state
*reg
;
3899 struct tnum range
= tnum_range(0, 1);
3901 switch (env
->prog
->type
) {
3902 case BPF_PROG_TYPE_CGROUP_SKB
:
3903 case BPF_PROG_TYPE_CGROUP_SOCK
:
3904 case BPF_PROG_TYPE_SOCK_OPS
:
3905 case BPF_PROG_TYPE_CGROUP_DEVICE
:
3911 reg
= cur_regs(env
) + BPF_REG_0
;
3912 if (reg
->type
!= SCALAR_VALUE
) {
3913 verbose(env
, "At program exit the register R0 is not a known value (%s)\n",
3914 reg_type_str
[reg
->type
]);
3918 if (!tnum_in(range
, reg
->var_off
)) {
3919 verbose(env
, "At program exit the register R0 ");
3920 if (!tnum_is_unknown(reg
->var_off
)) {
3923 tnum_strn(tn_buf
, sizeof(tn_buf
), reg
->var_off
);
3924 verbose(env
, "has value %s", tn_buf
);
3926 verbose(env
, "has unknown scalar value");
3928 verbose(env
, " should have been 0 or 1\n");
3934 /* non-recursive DFS pseudo code
3935 * 1 procedure DFS-iterative(G,v):
3936 * 2 label v as discovered
3937 * 3 let S be a stack
3939 * 5 while S is not empty
3941 * 7 if t is what we're looking for:
3943 * 9 for all edges e in G.adjacentEdges(t) do
3944 * 10 if edge e is already labelled
3945 * 11 continue with the next edge
3946 * 12 w <- G.adjacentVertex(t,e)
3947 * 13 if vertex w is not discovered and not explored
3948 * 14 label e as tree-edge
3949 * 15 label w as discovered
3952 * 18 else if vertex w is discovered
3953 * 19 label e as back-edge
3955 * 21 // vertex w is explored
3956 * 22 label e as forward- or cross-edge
3957 * 23 label t as explored
3962 * 0x11 - discovered and fall-through edge labelled
3963 * 0x12 - discovered and fall-through and branch edges labelled
3974 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3976 static int *insn_stack
; /* stack of insns to process */
3977 static int cur_stack
; /* current stack index */
3978 static int *insn_state
;
3980 /* t, w, e - match pseudo-code above:
3981 * t - index of current instruction
3982 * w - next instruction
3985 static int push_insn(int t
, int w
, int e
, struct bpf_verifier_env
*env
)
3987 if (e
== FALLTHROUGH
&& insn_state
[t
] >= (DISCOVERED
| FALLTHROUGH
))
3990 if (e
== BRANCH
&& insn_state
[t
] >= (DISCOVERED
| BRANCH
))
3993 if (w
< 0 || w
>= env
->prog
->len
) {
3994 verbose(env
, "jump out of range from insn %d to %d\n", t
, w
);
3999 /* mark branch target for state pruning */
4000 env
->explored_states
[w
] = STATE_LIST_MARK
;
4002 if (insn_state
[w
] == 0) {
4004 insn_state
[t
] = DISCOVERED
| e
;
4005 insn_state
[w
] = DISCOVERED
;
4006 if (cur_stack
>= env
->prog
->len
)
4008 insn_stack
[cur_stack
++] = w
;
4010 } else if ((insn_state
[w
] & 0xF0) == DISCOVERED
) {
4011 verbose(env
, "back-edge from insn %d to %d\n", t
, w
);
4013 } else if (insn_state
[w
] == EXPLORED
) {
4014 /* forward- or cross-edge */
4015 insn_state
[t
] = DISCOVERED
| e
;
4017 verbose(env
, "insn state internal bug\n");
4023 /* non-recursive depth-first-search to detect loops in BPF program
4024 * loop == back-edge in directed graph
4026 static int check_cfg(struct bpf_verifier_env
*env
)
4028 struct bpf_insn
*insns
= env
->prog
->insnsi
;
4029 int insn_cnt
= env
->prog
->len
;
4033 ret
= check_subprogs(env
);
4037 insn_state
= kcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
4041 insn_stack
= kcalloc(insn_cnt
, sizeof(int), GFP_KERNEL
);
4047 insn_state
[0] = DISCOVERED
; /* mark 1st insn as discovered */
4048 insn_stack
[0] = 0; /* 0 is the first instruction */
4054 t
= insn_stack
[cur_stack
- 1];
4056 if (BPF_CLASS(insns
[t
].code
) == BPF_JMP
) {
4057 u8 opcode
= BPF_OP(insns
[t
].code
);
4059 if (opcode
== BPF_EXIT
) {
4061 } else if (opcode
== BPF_CALL
) {
4062 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
4067 if (t
+ 1 < insn_cnt
)
4068 env
->explored_states
[t
+ 1] = STATE_LIST_MARK
;
4069 if (insns
[t
].src_reg
== BPF_PSEUDO_CALL
) {
4070 env
->explored_states
[t
] = STATE_LIST_MARK
;
4071 ret
= push_insn(t
, t
+ insns
[t
].imm
+ 1, BRANCH
, env
);
4077 } else if (opcode
== BPF_JA
) {
4078 if (BPF_SRC(insns
[t
].code
) != BPF_K
) {
4082 /* unconditional jump with single edge */
4083 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1,
4089 /* tell verifier to check for equivalent states
4090 * after every call and jump
4092 if (t
+ 1 < insn_cnt
)
4093 env
->explored_states
[t
+ 1] = STATE_LIST_MARK
;
4095 /* conditional jump with two edges */
4096 env
->explored_states
[t
] = STATE_LIST_MARK
;
4097 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
4103 ret
= push_insn(t
, t
+ insns
[t
].off
+ 1, BRANCH
, env
);
4110 /* all other non-branch instructions with single
4113 ret
= push_insn(t
, t
+ 1, FALLTHROUGH
, env
);
4121 insn_state
[t
] = EXPLORED
;
4122 if (cur_stack
-- <= 0) {
4123 verbose(env
, "pop stack internal bug\n");
4130 for (i
= 0; i
< insn_cnt
; i
++) {
4131 if (insn_state
[i
] != EXPLORED
) {
4132 verbose(env
, "unreachable insn %d\n", i
);
4137 ret
= 0; /* cfg looks good */
4145 /* check %cur's range satisfies %old's */
4146 static bool range_within(struct bpf_reg_state
*old
,
4147 struct bpf_reg_state
*cur
)
4149 return old
->umin_value
<= cur
->umin_value
&&
4150 old
->umax_value
>= cur
->umax_value
&&
4151 old
->smin_value
<= cur
->smin_value
&&
4152 old
->smax_value
>= cur
->smax_value
;
4155 /* Maximum number of register states that can exist at once */
4156 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4162 /* If in the old state two registers had the same id, then they need to have
4163 * the same id in the new state as well. But that id could be different from
4164 * the old state, so we need to track the mapping from old to new ids.
4165 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4166 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4167 * regs with a different old id could still have new id 9, we don't care about
4169 * So we look through our idmap to see if this old id has been seen before. If
4170 * so, we require the new id to match; otherwise, we add the id pair to the map.
4172 static bool check_ids(u32 old_id
, u32 cur_id
, struct idpair
*idmap
)
4176 for (i
= 0; i
< ID_MAP_SIZE
; i
++) {
4177 if (!idmap
[i
].old
) {
4178 /* Reached an empty slot; haven't seen this id before */
4179 idmap
[i
].old
= old_id
;
4180 idmap
[i
].cur
= cur_id
;
4183 if (idmap
[i
].old
== old_id
)
4184 return idmap
[i
].cur
== cur_id
;
4186 /* We ran out of idmap slots, which should be impossible */
4191 /* Returns true if (rold safe implies rcur safe) */
4192 static bool regsafe(struct bpf_reg_state
*rold
, struct bpf_reg_state
*rcur
,
4193 struct idpair
*idmap
)
4197 if (!(rold
->live
& REG_LIVE_READ
))
4198 /* explored state didn't use this */
4201 equal
= memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, frameno
)) == 0;
4203 if (rold
->type
== PTR_TO_STACK
)
4204 /* two stack pointers are equal only if they're pointing to
4205 * the same stack frame, since fp-8 in foo != fp-8 in bar
4207 return equal
&& rold
->frameno
== rcur
->frameno
;
4212 if (rold
->type
== NOT_INIT
)
4213 /* explored state can't have used this */
4215 if (rcur
->type
== NOT_INIT
)
4217 switch (rold
->type
) {
4219 if (rcur
->type
== SCALAR_VALUE
) {
4220 /* new val must satisfy old val knowledge */
4221 return range_within(rold
, rcur
) &&
4222 tnum_in(rold
->var_off
, rcur
->var_off
);
4224 /* We're trying to use a pointer in place of a scalar.
4225 * Even if the scalar was unbounded, this could lead to
4226 * pointer leaks because scalars are allowed to leak
4227 * while pointers are not. We could make this safe in
4228 * special cases if root is calling us, but it's
4229 * probably not worth the hassle.
4233 case PTR_TO_MAP_VALUE
:
4234 /* If the new min/max/var_off satisfy the old ones and
4235 * everything else matches, we are OK.
4236 * We don't care about the 'id' value, because nothing
4237 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4239 return memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, id
)) == 0 &&
4240 range_within(rold
, rcur
) &&
4241 tnum_in(rold
->var_off
, rcur
->var_off
);
4242 case PTR_TO_MAP_VALUE_OR_NULL
:
4243 /* a PTR_TO_MAP_VALUE could be safe to use as a
4244 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4245 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4246 * checked, doing so could have affected others with the same
4247 * id, and we can't check for that because we lost the id when
4248 * we converted to a PTR_TO_MAP_VALUE.
4250 if (rcur
->type
!= PTR_TO_MAP_VALUE_OR_NULL
)
4252 if (memcmp(rold
, rcur
, offsetof(struct bpf_reg_state
, id
)))
4254 /* Check our ids match any regs they're supposed to */
4255 return check_ids(rold
->id
, rcur
->id
, idmap
);
4256 case PTR_TO_PACKET_META
:
4258 if (rcur
->type
!= rold
->type
)
4260 /* We must have at least as much range as the old ptr
4261 * did, so that any accesses which were safe before are
4262 * still safe. This is true even if old range < old off,
4263 * since someone could have accessed through (ptr - k), or
4264 * even done ptr -= k in a register, to get a safe access.
4266 if (rold
->range
> rcur
->range
)
4268 /* If the offsets don't match, we can't trust our alignment;
4269 * nor can we be sure that we won't fall out of range.
4271 if (rold
->off
!= rcur
->off
)
4273 /* id relations must be preserved */
4274 if (rold
->id
&& !check_ids(rold
->id
, rcur
->id
, idmap
))
4276 /* new val must satisfy old val knowledge */
4277 return range_within(rold
, rcur
) &&
4278 tnum_in(rold
->var_off
, rcur
->var_off
);
4280 case CONST_PTR_TO_MAP
:
4281 case PTR_TO_PACKET_END
:
4282 /* Only valid matches are exact, which memcmp() above
4283 * would have accepted
4286 /* Don't know what's going on, just say it's not safe */
4290 /* Shouldn't get here; if we do, say it's not safe */
4295 static bool stacksafe(struct bpf_func_state
*old
,
4296 struct bpf_func_state
*cur
,
4297 struct idpair
*idmap
)
4301 /* if explored stack has more populated slots than current stack
4302 * such stacks are not equivalent
4304 if (old
->allocated_stack
> cur
->allocated_stack
)
4307 /* walk slots of the explored stack and ignore any additional
4308 * slots in the current stack, since explored(safe) state
4311 for (i
= 0; i
< old
->allocated_stack
; i
++) {
4312 spi
= i
/ BPF_REG_SIZE
;
4314 if (!(old
->stack
[spi
].spilled_ptr
.live
& REG_LIVE_READ
))
4315 /* explored state didn't use this */
4318 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_INVALID
)
4320 /* if old state was safe with misc data in the stack
4321 * it will be safe with zero-initialized stack.
4322 * The opposite is not true
4324 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_MISC
&&
4325 cur
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] == STACK_ZERO
)
4327 if (old
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
] !=
4328 cur
->stack
[spi
].slot_type
[i
% BPF_REG_SIZE
])
4329 /* Ex: old explored (safe) state has STACK_SPILL in
4330 * this stack slot, but current has has STACK_MISC ->
4331 * this verifier states are not equivalent,
4332 * return false to continue verification of this path
4335 if (i
% BPF_REG_SIZE
)
4337 if (old
->stack
[spi
].slot_type
[0] != STACK_SPILL
)
4339 if (!regsafe(&old
->stack
[spi
].spilled_ptr
,
4340 &cur
->stack
[spi
].spilled_ptr
,
4342 /* when explored and current stack slot are both storing
4343 * spilled registers, check that stored pointers types
4344 * are the same as well.
4345 * Ex: explored safe path could have stored
4346 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4347 * but current path has stored:
4348 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4349 * such verifier states are not equivalent.
4350 * return false to continue verification of this path
4357 /* compare two verifier states
4359 * all states stored in state_list are known to be valid, since
4360 * verifier reached 'bpf_exit' instruction through them
4362 * this function is called when verifier exploring different branches of
4363 * execution popped from the state stack. If it sees an old state that has
4364 * more strict register state and more strict stack state then this execution
4365 * branch doesn't need to be explored further, since verifier already
4366 * concluded that more strict state leads to valid finish.
4368 * Therefore two states are equivalent if register state is more conservative
4369 * and explored stack state is more conservative than the current one.
4372 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4373 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4375 * In other words if current stack state (one being explored) has more
4376 * valid slots than old one that already passed validation, it means
4377 * the verifier can stop exploring and conclude that current state is valid too
4379 * Similarly with registers. If explored state has register type as invalid
4380 * whereas register type in current state is meaningful, it means that
4381 * the current state will reach 'bpf_exit' instruction safely
4383 static bool func_states_equal(struct bpf_func_state
*old
,
4384 struct bpf_func_state
*cur
)
4386 struct idpair
*idmap
;
4390 idmap
= kcalloc(ID_MAP_SIZE
, sizeof(struct idpair
), GFP_KERNEL
);
4391 /* If we failed to allocate the idmap, just say it's not safe */
4395 for (i
= 0; i
< MAX_BPF_REG
; i
++) {
4396 if (!regsafe(&old
->regs
[i
], &cur
->regs
[i
], idmap
))
4400 if (!stacksafe(old
, cur
, idmap
))
4408 static bool states_equal(struct bpf_verifier_env
*env
,
4409 struct bpf_verifier_state
*old
,
4410 struct bpf_verifier_state
*cur
)
4414 if (old
->curframe
!= cur
->curframe
)
4417 /* for states to be equal callsites have to be the same
4418 * and all frame states need to be equivalent
4420 for (i
= 0; i
<= old
->curframe
; i
++) {
4421 if (old
->frame
[i
]->callsite
!= cur
->frame
[i
]->callsite
)
4423 if (!func_states_equal(old
->frame
[i
], cur
->frame
[i
]))
4429 /* A write screens off any subsequent reads; but write marks come from the
4430 * straight-line code between a state and its parent. When we arrive at an
4431 * equivalent state (jump target or such) we didn't arrive by the straight-line
4432 * code, so read marks in the state must propagate to the parent regardless
4433 * of the state's write marks. That's what 'parent == state->parent' comparison
4434 * in mark_reg_read() and mark_stack_slot_read() is for.
4436 static int propagate_liveness(struct bpf_verifier_env
*env
,
4437 const struct bpf_verifier_state
*vstate
,
4438 struct bpf_verifier_state
*vparent
)
4440 int i
, frame
, err
= 0;
4441 struct bpf_func_state
*state
, *parent
;
4443 if (vparent
->curframe
!= vstate
->curframe
) {
4444 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4445 vparent
->curframe
, vstate
->curframe
);
4448 /* Propagate read liveness of registers... */
4449 BUILD_BUG_ON(BPF_REG_FP
+ 1 != MAX_BPF_REG
);
4450 /* We don't need to worry about FP liveness because it's read-only */
4451 for (i
= 0; i
< BPF_REG_FP
; i
++) {
4452 if (vparent
->frame
[vparent
->curframe
]->regs
[i
].live
& REG_LIVE_READ
)
4454 if (vstate
->frame
[vstate
->curframe
]->regs
[i
].live
& REG_LIVE_READ
) {
4455 err
= mark_reg_read(env
, vstate
, vparent
, i
);
4461 /* ... and stack slots */
4462 for (frame
= 0; frame
<= vstate
->curframe
; frame
++) {
4463 state
= vstate
->frame
[frame
];
4464 parent
= vparent
->frame
[frame
];
4465 for (i
= 0; i
< state
->allocated_stack
/ BPF_REG_SIZE
&&
4466 i
< parent
->allocated_stack
/ BPF_REG_SIZE
; i
++) {
4467 if (parent
->stack
[i
].spilled_ptr
.live
& REG_LIVE_READ
)
4469 if (state
->stack
[i
].spilled_ptr
.live
& REG_LIVE_READ
)
4470 mark_stack_slot_read(env
, vstate
, vparent
, i
, frame
);
4476 static int is_state_visited(struct bpf_verifier_env
*env
, int insn_idx
)
4478 struct bpf_verifier_state_list
*new_sl
;
4479 struct bpf_verifier_state_list
*sl
;
4480 struct bpf_verifier_state
*cur
= env
->cur_state
;
4483 sl
= env
->explored_states
[insn_idx
];
4485 /* this 'insn_idx' instruction wasn't marked, so we will not
4486 * be doing state search here
4490 while (sl
!= STATE_LIST_MARK
) {
4491 if (states_equal(env
, &sl
->state
, cur
)) {
4492 /* reached equivalent register/stack state,
4494 * Registers read by the continuation are read by us.
4495 * If we have any write marks in env->cur_state, they
4496 * will prevent corresponding reads in the continuation
4497 * from reaching our parent (an explored_state). Our
4498 * own state will get the read marks recorded, but
4499 * they'll be immediately forgotten as we're pruning
4500 * this state and will pop a new one.
4502 err
= propagate_liveness(env
, &sl
->state
, cur
);
4510 /* there were no equivalent states, remember current one.
4511 * technically the current state is not proven to be safe yet,
4512 * but it will either reach outer most bpf_exit (which means it's safe)
4513 * or it will be rejected. Since there are no loops, we won't be
4514 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4515 * again on the way to bpf_exit
4517 new_sl
= kzalloc(sizeof(struct bpf_verifier_state_list
), GFP_KERNEL
);
4521 /* add new state to the head of linked list */
4522 err
= copy_verifier_state(&new_sl
->state
, cur
);
4524 free_verifier_state(&new_sl
->state
, false);
4528 new_sl
->next
= env
->explored_states
[insn_idx
];
4529 env
->explored_states
[insn_idx
] = new_sl
;
4530 /* connect new state to parentage chain */
4531 cur
->parent
= &new_sl
->state
;
4532 /* clear write marks in current state: the writes we did are not writes
4533 * our child did, so they don't screen off its reads from us.
4534 * (There are no read marks in current state, because reads always mark
4535 * their parent and current state never has children yet. Only
4536 * explored_states can get read marks.)
4538 for (i
= 0; i
< BPF_REG_FP
; i
++)
4539 cur
->frame
[cur
->curframe
]->regs
[i
].live
= REG_LIVE_NONE
;
4541 /* all stack frames are accessible from callee, clear them all */
4542 for (j
= 0; j
<= cur
->curframe
; j
++) {
4543 struct bpf_func_state
*frame
= cur
->frame
[j
];
4545 for (i
= 0; i
< frame
->allocated_stack
/ BPF_REG_SIZE
; i
++)
4546 frame
->stack
[i
].spilled_ptr
.live
= REG_LIVE_NONE
;
4551 static int do_check(struct bpf_verifier_env
*env
)
4553 struct bpf_verifier_state
*state
;
4554 struct bpf_insn
*insns
= env
->prog
->insnsi
;
4555 struct bpf_reg_state
*regs
;
4556 int insn_cnt
= env
->prog
->len
, i
;
4557 int insn_idx
, prev_insn_idx
= 0;
4558 int insn_processed
= 0;
4559 bool do_print_state
= false;
4561 state
= kzalloc(sizeof(struct bpf_verifier_state
), GFP_KERNEL
);
4564 state
->curframe
= 0;
4565 state
->parent
= NULL
;
4566 state
->frame
[0] = kzalloc(sizeof(struct bpf_func_state
), GFP_KERNEL
);
4567 if (!state
->frame
[0]) {
4571 env
->cur_state
= state
;
4572 init_func_state(env
, state
->frame
[0],
4573 BPF_MAIN_FUNC
/* callsite */,
4575 0 /* subprogno, zero == main subprog */);
4578 struct bpf_insn
*insn
;
4582 if (insn_idx
>= insn_cnt
) {
4583 verbose(env
, "invalid insn idx %d insn_cnt %d\n",
4584 insn_idx
, insn_cnt
);
4588 insn
= &insns
[insn_idx
];
4589 class = BPF_CLASS(insn
->code
);
4591 if (++insn_processed
> BPF_COMPLEXITY_LIMIT_INSNS
) {
4593 "BPF program is too large. Processed %d insn\n",
4598 err
= is_state_visited(env
, insn_idx
);
4602 /* found equivalent state, can prune the search */
4603 if (env
->log
.level
) {
4605 verbose(env
, "\nfrom %d to %d: safe\n",
4606 prev_insn_idx
, insn_idx
);
4608 verbose(env
, "%d: safe\n", insn_idx
);
4610 goto process_bpf_exit
;
4616 if (env
->log
.level
> 1 || (env
->log
.level
&& do_print_state
)) {
4617 if (env
->log
.level
> 1)
4618 verbose(env
, "%d:", insn_idx
);
4620 verbose(env
, "\nfrom %d to %d:",
4621 prev_insn_idx
, insn_idx
);
4622 print_verifier_state(env
, state
->frame
[state
->curframe
]);
4623 do_print_state
= false;
4626 if (env
->log
.level
) {
4627 const struct bpf_insn_cbs cbs
= {
4628 .cb_print
= verbose
,
4631 verbose(env
, "%d: ", insn_idx
);
4632 print_bpf_insn(&cbs
, env
, insn
, env
->allow_ptr_leaks
);
4635 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
4636 err
= bpf_prog_offload_verify_insn(env
, insn_idx
,
4642 regs
= cur_regs(env
);
4643 env
->insn_aux_data
[insn_idx
].seen
= true;
4644 if (class == BPF_ALU
|| class == BPF_ALU64
) {
4645 err
= check_alu_op(env
, insn
);
4649 } else if (class == BPF_LDX
) {
4650 enum bpf_reg_type
*prev_src_type
, src_reg_type
;
4652 /* check for reserved fields is already done */
4654 /* check src operand */
4655 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
4659 err
= check_reg_arg(env
, insn
->dst_reg
, DST_OP_NO_MARK
);
4663 src_reg_type
= regs
[insn
->src_reg
].type
;
4665 /* check that memory (src_reg + off) is readable,
4666 * the state of dst_reg will be updated by this func
4668 err
= check_mem_access(env
, insn_idx
, insn
->src_reg
, insn
->off
,
4669 BPF_SIZE(insn
->code
), BPF_READ
,
4670 insn
->dst_reg
, false);
4674 prev_src_type
= &env
->insn_aux_data
[insn_idx
].ptr_type
;
4676 if (*prev_src_type
== NOT_INIT
) {
4678 * dst_reg = *(u32 *)(src_reg + off)
4679 * save type to validate intersecting paths
4681 *prev_src_type
= src_reg_type
;
4683 } else if (src_reg_type
!= *prev_src_type
&&
4684 (src_reg_type
== PTR_TO_CTX
||
4685 *prev_src_type
== PTR_TO_CTX
)) {
4686 /* ABuser program is trying to use the same insn
4687 * dst_reg = *(u32*) (src_reg + off)
4688 * with different pointer types:
4689 * src_reg == ctx in one branch and
4690 * src_reg == stack|map in some other branch.
4693 verbose(env
, "same insn cannot be used with different pointers\n");
4697 } else if (class == BPF_STX
) {
4698 enum bpf_reg_type
*prev_dst_type
, dst_reg_type
;
4700 if (BPF_MODE(insn
->code
) == BPF_XADD
) {
4701 err
= check_xadd(env
, insn_idx
, insn
);
4708 /* check src1 operand */
4709 err
= check_reg_arg(env
, insn
->src_reg
, SRC_OP
);
4712 /* check src2 operand */
4713 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
4717 dst_reg_type
= regs
[insn
->dst_reg
].type
;
4719 /* check that memory (dst_reg + off) is writeable */
4720 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
4721 BPF_SIZE(insn
->code
), BPF_WRITE
,
4722 insn
->src_reg
, false);
4726 prev_dst_type
= &env
->insn_aux_data
[insn_idx
].ptr_type
;
4728 if (*prev_dst_type
== NOT_INIT
) {
4729 *prev_dst_type
= dst_reg_type
;
4730 } else if (dst_reg_type
!= *prev_dst_type
&&
4731 (dst_reg_type
== PTR_TO_CTX
||
4732 *prev_dst_type
== PTR_TO_CTX
)) {
4733 verbose(env
, "same insn cannot be used with different pointers\n");
4737 } else if (class == BPF_ST
) {
4738 if (BPF_MODE(insn
->code
) != BPF_MEM
||
4739 insn
->src_reg
!= BPF_REG_0
) {
4740 verbose(env
, "BPF_ST uses reserved fields\n");
4743 /* check src operand */
4744 err
= check_reg_arg(env
, insn
->dst_reg
, SRC_OP
);
4748 if (is_ctx_reg(env
, insn
->dst_reg
)) {
4749 verbose(env
, "BPF_ST stores into R%d context is not allowed\n",
4754 /* check that memory (dst_reg + off) is writeable */
4755 err
= check_mem_access(env
, insn_idx
, insn
->dst_reg
, insn
->off
,
4756 BPF_SIZE(insn
->code
), BPF_WRITE
,
4761 } else if (class == BPF_JMP
) {
4762 u8 opcode
= BPF_OP(insn
->code
);
4764 if (opcode
== BPF_CALL
) {
4765 if (BPF_SRC(insn
->code
) != BPF_K
||
4767 (insn
->src_reg
!= BPF_REG_0
&&
4768 insn
->src_reg
!= BPF_PSEUDO_CALL
) ||
4769 insn
->dst_reg
!= BPF_REG_0
) {
4770 verbose(env
, "BPF_CALL uses reserved fields\n");
4774 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
4775 err
= check_func_call(env
, insn
, &insn_idx
);
4777 err
= check_helper_call(env
, insn
->imm
, insn_idx
);
4781 } else if (opcode
== BPF_JA
) {
4782 if (BPF_SRC(insn
->code
) != BPF_K
||
4784 insn
->src_reg
!= BPF_REG_0
||
4785 insn
->dst_reg
!= BPF_REG_0
) {
4786 verbose(env
, "BPF_JA uses reserved fields\n");
4790 insn_idx
+= insn
->off
+ 1;
4793 } else if (opcode
== BPF_EXIT
) {
4794 if (BPF_SRC(insn
->code
) != BPF_K
||
4796 insn
->src_reg
!= BPF_REG_0
||
4797 insn
->dst_reg
!= BPF_REG_0
) {
4798 verbose(env
, "BPF_EXIT uses reserved fields\n");
4802 if (state
->curframe
) {
4803 /* exit from nested function */
4804 prev_insn_idx
= insn_idx
;
4805 err
= prepare_func_exit(env
, &insn_idx
);
4808 do_print_state
= true;
4812 /* eBPF calling convetion is such that R0 is used
4813 * to return the value from eBPF program.
4814 * Make sure that it's readable at this time
4815 * of bpf_exit, which means that program wrote
4816 * something into it earlier
4818 err
= check_reg_arg(env
, BPF_REG_0
, SRC_OP
);
4822 if (is_pointer_value(env
, BPF_REG_0
)) {
4823 verbose(env
, "R0 leaks addr as return value\n");
4827 err
= check_return_code(env
);
4831 err
= pop_stack(env
, &prev_insn_idx
, &insn_idx
);
4837 do_print_state
= true;
4841 err
= check_cond_jmp_op(env
, insn
, &insn_idx
);
4845 } else if (class == BPF_LD
) {
4846 u8 mode
= BPF_MODE(insn
->code
);
4848 if (mode
== BPF_ABS
|| mode
== BPF_IND
) {
4849 err
= check_ld_abs(env
, insn
);
4853 } else if (mode
== BPF_IMM
) {
4854 err
= check_ld_imm(env
, insn
);
4859 env
->insn_aux_data
[insn_idx
].seen
= true;
4861 verbose(env
, "invalid BPF_LD mode\n");
4865 verbose(env
, "unknown insn class %d\n", class);
4872 verbose(env
, "processed %d insns (limit %d), stack depth ",
4873 insn_processed
, BPF_COMPLEXITY_LIMIT_INSNS
);
4874 for (i
= 0; i
< env
->subprog_cnt
+ 1; i
++) {
4875 u32 depth
= env
->subprog_stack_depth
[i
];
4877 verbose(env
, "%d", depth
);
4878 if (i
+ 1 < env
->subprog_cnt
+ 1)
4882 env
->prog
->aux
->stack_depth
= env
->subprog_stack_depth
[0];
4886 static int check_map_prealloc(struct bpf_map
*map
)
4888 return (map
->map_type
!= BPF_MAP_TYPE_HASH
&&
4889 map
->map_type
!= BPF_MAP_TYPE_PERCPU_HASH
&&
4890 map
->map_type
!= BPF_MAP_TYPE_HASH_OF_MAPS
) ||
4891 !(map
->map_flags
& BPF_F_NO_PREALLOC
);
4894 static int check_map_prog_compatibility(struct bpf_verifier_env
*env
,
4895 struct bpf_map
*map
,
4896 struct bpf_prog
*prog
)
4899 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4900 * preallocated hash maps, since doing memory allocation
4901 * in overflow_handler can crash depending on where nmi got
4904 if (prog
->type
== BPF_PROG_TYPE_PERF_EVENT
) {
4905 if (!check_map_prealloc(map
)) {
4906 verbose(env
, "perf_event programs can only use preallocated hash map\n");
4909 if (map
->inner_map_meta
&&
4910 !check_map_prealloc(map
->inner_map_meta
)) {
4911 verbose(env
, "perf_event programs can only use preallocated inner hash map\n");
4916 if ((bpf_prog_is_dev_bound(prog
->aux
) || bpf_map_is_dev_bound(map
)) &&
4917 !bpf_offload_dev_match(prog
, map
)) {
4918 verbose(env
, "offload device mismatch between prog and map\n");
4925 /* look for pseudo eBPF instructions that access map FDs and
4926 * replace them with actual map pointers
4928 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env
*env
)
4930 struct bpf_insn
*insn
= env
->prog
->insnsi
;
4931 int insn_cnt
= env
->prog
->len
;
4934 err
= bpf_prog_calc_tag(env
->prog
);
4938 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
4939 if (BPF_CLASS(insn
->code
) == BPF_LDX
&&
4940 (BPF_MODE(insn
->code
) != BPF_MEM
|| insn
->imm
!= 0)) {
4941 verbose(env
, "BPF_LDX uses reserved fields\n");
4945 if (BPF_CLASS(insn
->code
) == BPF_STX
&&
4946 ((BPF_MODE(insn
->code
) != BPF_MEM
&&
4947 BPF_MODE(insn
->code
) != BPF_XADD
) || insn
->imm
!= 0)) {
4948 verbose(env
, "BPF_STX uses reserved fields\n");
4952 if (insn
[0].code
== (BPF_LD
| BPF_IMM
| BPF_DW
)) {
4953 struct bpf_map
*map
;
4956 if (i
== insn_cnt
- 1 || insn
[1].code
!= 0 ||
4957 insn
[1].dst_reg
!= 0 || insn
[1].src_reg
!= 0 ||
4959 verbose(env
, "invalid bpf_ld_imm64 insn\n");
4963 if (insn
->src_reg
== 0)
4964 /* valid generic load 64-bit imm */
4967 if (insn
->src_reg
!= BPF_PSEUDO_MAP_FD
) {
4969 "unrecognized bpf_ld_imm64 insn\n");
4973 f
= fdget(insn
->imm
);
4974 map
= __bpf_map_get(f
);
4976 verbose(env
, "fd %d is not pointing to valid bpf_map\n",
4978 return PTR_ERR(map
);
4981 err
= check_map_prog_compatibility(env
, map
, env
->prog
);
4987 /* store map pointer inside BPF_LD_IMM64 instruction */
4988 insn
[0].imm
= (u32
) (unsigned long) map
;
4989 insn
[1].imm
= ((u64
) (unsigned long) map
) >> 32;
4991 /* check whether we recorded this map already */
4992 for (j
= 0; j
< env
->used_map_cnt
; j
++)
4993 if (env
->used_maps
[j
] == map
) {
4998 if (env
->used_map_cnt
>= MAX_USED_MAPS
) {
5003 /* hold the map. If the program is rejected by verifier,
5004 * the map will be released by release_maps() or it
5005 * will be used by the valid program until it's unloaded
5006 * and all maps are released in free_bpf_prog_info()
5008 map
= bpf_map_inc(map
, false);
5011 return PTR_ERR(map
);
5013 env
->used_maps
[env
->used_map_cnt
++] = map
;
5022 /* Basic sanity check before we invest more work here. */
5023 if (!bpf_opcode_in_insntable(insn
->code
)) {
5024 verbose(env
, "unknown opcode %02x\n", insn
->code
);
5029 /* now all pseudo BPF_LD_IMM64 instructions load valid
5030 * 'struct bpf_map *' into a register instead of user map_fd.
5031 * These pointers will be used later by verifier to validate map access.
5036 /* drop refcnt of maps used by the rejected program */
5037 static void release_maps(struct bpf_verifier_env
*env
)
5041 for (i
= 0; i
< env
->used_map_cnt
; i
++)
5042 bpf_map_put(env
->used_maps
[i
]);
5045 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5046 static void convert_pseudo_ld_imm64(struct bpf_verifier_env
*env
)
5048 struct bpf_insn
*insn
= env
->prog
->insnsi
;
5049 int insn_cnt
= env
->prog
->len
;
5052 for (i
= 0; i
< insn_cnt
; i
++, insn
++)
5053 if (insn
->code
== (BPF_LD
| BPF_IMM
| BPF_DW
))
5057 /* single env->prog->insni[off] instruction was replaced with the range
5058 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5059 * [0, off) and [off, end) to new locations, so the patched range stays zero
5061 static int adjust_insn_aux_data(struct bpf_verifier_env
*env
, u32 prog_len
,
5064 struct bpf_insn_aux_data
*new_data
, *old_data
= env
->insn_aux_data
;
5069 new_data
= vzalloc(sizeof(struct bpf_insn_aux_data
) * prog_len
);
5072 memcpy(new_data
, old_data
, sizeof(struct bpf_insn_aux_data
) * off
);
5073 memcpy(new_data
+ off
+ cnt
- 1, old_data
+ off
,
5074 sizeof(struct bpf_insn_aux_data
) * (prog_len
- off
- cnt
+ 1));
5075 for (i
= off
; i
< off
+ cnt
- 1; i
++)
5076 new_data
[i
].seen
= true;
5077 env
->insn_aux_data
= new_data
;
5082 static void adjust_subprog_starts(struct bpf_verifier_env
*env
, u32 off
, u32 len
)
5088 for (i
= 0; i
< env
->subprog_cnt
; i
++) {
5089 if (env
->subprog_starts
[i
] < off
)
5091 env
->subprog_starts
[i
] += len
- 1;
5095 static struct bpf_prog
*bpf_patch_insn_data(struct bpf_verifier_env
*env
, u32 off
,
5096 const struct bpf_insn
*patch
, u32 len
)
5098 struct bpf_prog
*new_prog
;
5100 new_prog
= bpf_patch_insn_single(env
->prog
, off
, patch
, len
);
5103 if (adjust_insn_aux_data(env
, new_prog
->len
, off
, len
))
5105 adjust_subprog_starts(env
, off
, len
);
5109 /* The verifier does more data flow analysis than llvm and will not
5110 * explore branches that are dead at run time. Malicious programs can
5111 * have dead code too. Therefore replace all dead at-run-time code
5114 * Just nops are not optimal, e.g. if they would sit at the end of the
5115 * program and through another bug we would manage to jump there, then
5116 * we'd execute beyond program memory otherwise. Returning exception
5117 * code also wouldn't work since we can have subprogs where the dead
5118 * code could be located.
5120 static void sanitize_dead_code(struct bpf_verifier_env
*env
)
5122 struct bpf_insn_aux_data
*aux_data
= env
->insn_aux_data
;
5123 struct bpf_insn trap
= BPF_JMP_IMM(BPF_JA
, 0, 0, -1);
5124 struct bpf_insn
*insn
= env
->prog
->insnsi
;
5125 const int insn_cnt
= env
->prog
->len
;
5128 for (i
= 0; i
< insn_cnt
; i
++) {
5129 if (aux_data
[i
].seen
)
5131 memcpy(insn
+ i
, &trap
, sizeof(trap
));
5135 /* convert load instructions that access fields of 'struct __sk_buff'
5136 * into sequence of instructions that access fields of 'struct sk_buff'
5138 static int convert_ctx_accesses(struct bpf_verifier_env
*env
)
5140 const struct bpf_verifier_ops
*ops
= env
->ops
;
5141 int i
, cnt
, size
, ctx_field_size
, delta
= 0;
5142 const int insn_cnt
= env
->prog
->len
;
5143 struct bpf_insn insn_buf
[16], *insn
;
5144 struct bpf_prog
*new_prog
;
5145 enum bpf_access_type type
;
5146 bool is_narrower_load
;
5149 if (ops
->gen_prologue
) {
5150 cnt
= ops
->gen_prologue(insn_buf
, env
->seen_direct_write
,
5152 if (cnt
>= ARRAY_SIZE(insn_buf
)) {
5153 verbose(env
, "bpf verifier is misconfigured\n");
5156 new_prog
= bpf_patch_insn_data(env
, 0, insn_buf
, cnt
);
5160 env
->prog
= new_prog
;
5165 if (!ops
->convert_ctx_access
)
5168 insn
= env
->prog
->insnsi
+ delta
;
5170 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
5171 if (insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_B
) ||
5172 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_H
) ||
5173 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_W
) ||
5174 insn
->code
== (BPF_LDX
| BPF_MEM
| BPF_DW
))
5176 else if (insn
->code
== (BPF_STX
| BPF_MEM
| BPF_B
) ||
5177 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_H
) ||
5178 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_W
) ||
5179 insn
->code
== (BPF_STX
| BPF_MEM
| BPF_DW
))
5184 if (type
== BPF_WRITE
&&
5185 env
->insn_aux_data
[i
+ delta
].sanitize_stack_off
) {
5186 struct bpf_insn patch
[] = {
5187 /* Sanitize suspicious stack slot with zero.
5188 * There are no memory dependencies for this store,
5189 * since it's only using frame pointer and immediate
5192 BPF_ST_MEM(BPF_DW
, BPF_REG_FP
,
5193 env
->insn_aux_data
[i
+ delta
].sanitize_stack_off
,
5195 /* the original STX instruction will immediately
5196 * overwrite the same stack slot with appropriate value
5201 cnt
= ARRAY_SIZE(patch
);
5202 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, patch
, cnt
);
5207 env
->prog
= new_prog
;
5208 insn
= new_prog
->insnsi
+ i
+ delta
;
5212 if (env
->insn_aux_data
[i
+ delta
].ptr_type
!= PTR_TO_CTX
)
5215 ctx_field_size
= env
->insn_aux_data
[i
+ delta
].ctx_field_size
;
5216 size
= BPF_LDST_BYTES(insn
);
5218 /* If the read access is a narrower load of the field,
5219 * convert to a 4/8-byte load, to minimum program type specific
5220 * convert_ctx_access changes. If conversion is successful,
5221 * we will apply proper mask to the result.
5223 is_narrower_load
= size
< ctx_field_size
;
5224 if (is_narrower_load
) {
5225 u32 off
= insn
->off
;
5228 if (type
== BPF_WRITE
) {
5229 verbose(env
, "bpf verifier narrow ctx access misconfigured\n");
5234 if (ctx_field_size
== 4)
5236 else if (ctx_field_size
== 8)
5239 insn
->off
= off
& ~(ctx_field_size
- 1);
5240 insn
->code
= BPF_LDX
| BPF_MEM
| size_code
;
5244 cnt
= ops
->convert_ctx_access(type
, insn
, insn_buf
, env
->prog
,
5246 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
) ||
5247 (ctx_field_size
&& !target_size
)) {
5248 verbose(env
, "bpf verifier is misconfigured\n");
5252 if (is_narrower_load
&& size
< target_size
) {
5253 if (ctx_field_size
<= 4)
5254 insn_buf
[cnt
++] = BPF_ALU32_IMM(BPF_AND
, insn
->dst_reg
,
5255 (1 << size
* 8) - 1);
5257 insn_buf
[cnt
++] = BPF_ALU64_IMM(BPF_AND
, insn
->dst_reg
,
5258 (1 << size
* 8) - 1);
5261 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
5267 /* keep walking new program and skip insns we just inserted */
5268 env
->prog
= new_prog
;
5269 insn
= new_prog
->insnsi
+ i
+ delta
;
5275 static int jit_subprogs(struct bpf_verifier_env
*env
)
5277 struct bpf_prog
*prog
= env
->prog
, **func
, *tmp
;
5278 int i
, j
, subprog_start
, subprog_end
= 0, len
, subprog
;
5279 struct bpf_insn
*insn
;
5283 if (env
->subprog_cnt
== 0)
5286 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
5287 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5288 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5290 subprog
= find_subprog(env
, i
+ insn
->imm
+ 1);
5292 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5296 /* temporarily remember subprog id inside insn instead of
5297 * aux_data, since next loop will split up all insns into funcs
5299 insn
->off
= subprog
+ 1;
5300 /* remember original imm in case JIT fails and fallback
5301 * to interpreter will be needed
5303 env
->insn_aux_data
[i
].call_imm
= insn
->imm
;
5304 /* point imm to __bpf_call_base+1 from JITs point of view */
5308 func
= kzalloc(sizeof(prog
) * (env
->subprog_cnt
+ 1), GFP_KERNEL
);
5312 for (i
= 0; i
<= env
->subprog_cnt
; i
++) {
5313 subprog_start
= subprog_end
;
5314 if (env
->subprog_cnt
== i
)
5315 subprog_end
= prog
->len
;
5317 subprog_end
= env
->subprog_starts
[i
];
5319 len
= subprog_end
- subprog_start
;
5320 func
[i
] = bpf_prog_alloc(bpf_prog_size(len
), GFP_USER
);
5323 memcpy(func
[i
]->insnsi
, &prog
->insnsi
[subprog_start
],
5324 len
* sizeof(struct bpf_insn
));
5325 func
[i
]->type
= prog
->type
;
5327 if (bpf_prog_calc_tag(func
[i
]))
5329 func
[i
]->is_func
= 1;
5330 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5331 * Long term would need debug info to populate names
5333 func
[i
]->aux
->name
[0] = 'F';
5334 func
[i
]->aux
->stack_depth
= env
->subprog_stack_depth
[i
];
5335 func
[i
]->jit_requested
= 1;
5336 func
[i
] = bpf_int_jit_compile(func
[i
]);
5337 if (!func
[i
]->jited
) {
5343 /* at this point all bpf functions were successfully JITed
5344 * now populate all bpf_calls with correct addresses and
5345 * run last pass of JIT
5347 for (i
= 0; i
<= env
->subprog_cnt
; i
++) {
5348 insn
= func
[i
]->insnsi
;
5349 for (j
= 0; j
< func
[i
]->len
; j
++, insn
++) {
5350 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5351 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5353 subprog
= insn
->off
;
5355 insn
->imm
= (u64 (*)(u64
, u64
, u64
, u64
, u64
))
5356 func
[subprog
]->bpf_func
-
5360 for (i
= 0; i
<= env
->subprog_cnt
; i
++) {
5361 old_bpf_func
= func
[i
]->bpf_func
;
5362 tmp
= bpf_int_jit_compile(func
[i
]);
5363 if (tmp
!= func
[i
] || func
[i
]->bpf_func
!= old_bpf_func
) {
5364 verbose(env
, "JIT doesn't support bpf-to-bpf calls\n");
5371 /* finally lock prog and jit images for all functions and
5374 for (i
= 0; i
<= env
->subprog_cnt
; i
++) {
5375 bpf_prog_lock_ro(func
[i
]);
5376 bpf_prog_kallsyms_add(func
[i
]);
5379 /* Last step: make now unused interpreter insns from main
5380 * prog consistent for later dump requests, so they can
5381 * later look the same as if they were interpreted only.
5383 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
5386 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5387 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5389 insn
->off
= env
->insn_aux_data
[i
].call_imm
;
5390 subprog
= find_subprog(env
, i
+ insn
->off
+ 1);
5391 addr
= (unsigned long)func
[subprog
+ 1]->bpf_func
;
5393 insn
->imm
= (u64 (*)(u64
, u64
, u64
, u64
, u64
))
5394 addr
- __bpf_call_base
;
5398 prog
->bpf_func
= func
[0]->bpf_func
;
5399 prog
->aux
->func
= func
;
5400 prog
->aux
->func_cnt
= env
->subprog_cnt
+ 1;
5403 for (i
= 0; i
<= env
->subprog_cnt
; i
++)
5405 bpf_jit_free(func
[i
]);
5407 /* cleanup main prog to be interpreted */
5408 prog
->jit_requested
= 0;
5409 for (i
= 0, insn
= prog
->insnsi
; i
< prog
->len
; i
++, insn
++) {
5410 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5411 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5414 insn
->imm
= env
->insn_aux_data
[i
].call_imm
;
5419 static int fixup_call_args(struct bpf_verifier_env
*env
)
5421 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5422 struct bpf_prog
*prog
= env
->prog
;
5423 struct bpf_insn
*insn
= prog
->insnsi
;
5429 if (env
->prog
->jit_requested
) {
5430 err
= jit_subprogs(env
);
5434 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5435 for (i
= 0; i
< prog
->len
; i
++, insn
++) {
5436 if (insn
->code
!= (BPF_JMP
| BPF_CALL
) ||
5437 insn
->src_reg
!= BPF_PSEUDO_CALL
)
5439 depth
= get_callee_stack_depth(env
, insn
, i
);
5442 bpf_patch_call_args(insn
, depth
);
5449 /* fixup insn->imm field of bpf_call instructions
5450 * and inline eligible helpers as explicit sequence of BPF instructions
5452 * this function is called after eBPF program passed verification
5454 static int fixup_bpf_calls(struct bpf_verifier_env
*env
)
5456 struct bpf_prog
*prog
= env
->prog
;
5457 struct bpf_insn
*insn
= prog
->insnsi
;
5458 const struct bpf_func_proto
*fn
;
5459 const int insn_cnt
= prog
->len
;
5460 struct bpf_insn insn_buf
[16];
5461 struct bpf_prog
*new_prog
;
5462 struct bpf_map
*map_ptr
;
5463 int i
, cnt
, delta
= 0;
5465 for (i
= 0; i
< insn_cnt
; i
++, insn
++) {
5466 if (insn
->code
== (BPF_ALU64
| BPF_MOD
| BPF_X
) ||
5467 insn
->code
== (BPF_ALU64
| BPF_DIV
| BPF_X
) ||
5468 insn
->code
== (BPF_ALU
| BPF_MOD
| BPF_X
) ||
5469 insn
->code
== (BPF_ALU
| BPF_DIV
| BPF_X
)) {
5470 bool is64
= BPF_CLASS(insn
->code
) == BPF_ALU64
;
5471 struct bpf_insn mask_and_div
[] = {
5472 BPF_MOV32_REG(insn
->src_reg
, insn
->src_reg
),
5474 BPF_JMP_IMM(BPF_JNE
, insn
->src_reg
, 0, 2),
5475 BPF_ALU32_REG(BPF_XOR
, insn
->dst_reg
, insn
->dst_reg
),
5476 BPF_JMP_IMM(BPF_JA
, 0, 0, 1),
5479 struct bpf_insn mask_and_mod
[] = {
5480 BPF_MOV32_REG(insn
->src_reg
, insn
->src_reg
),
5481 /* Rx mod 0 -> Rx */
5482 BPF_JMP_IMM(BPF_JEQ
, insn
->src_reg
, 0, 1),
5485 struct bpf_insn
*patchlet
;
5487 if (insn
->code
== (BPF_ALU64
| BPF_DIV
| BPF_X
) ||
5488 insn
->code
== (BPF_ALU
| BPF_DIV
| BPF_X
)) {
5489 patchlet
= mask_and_div
+ (is64
? 1 : 0);
5490 cnt
= ARRAY_SIZE(mask_and_div
) - (is64
? 1 : 0);
5492 patchlet
= mask_and_mod
+ (is64
? 1 : 0);
5493 cnt
= ARRAY_SIZE(mask_and_mod
) - (is64
? 1 : 0);
5496 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, patchlet
, cnt
);
5501 env
->prog
= prog
= new_prog
;
5502 insn
= new_prog
->insnsi
+ i
+ delta
;
5506 if (insn
->code
!= (BPF_JMP
| BPF_CALL
))
5508 if (insn
->src_reg
== BPF_PSEUDO_CALL
)
5511 if (insn
->imm
== BPF_FUNC_get_route_realm
)
5512 prog
->dst_needed
= 1;
5513 if (insn
->imm
== BPF_FUNC_get_prandom_u32
)
5514 bpf_user_rnd_init_once();
5515 if (insn
->imm
== BPF_FUNC_override_return
)
5516 prog
->kprobe_override
= 1;
5517 if (insn
->imm
== BPF_FUNC_tail_call
) {
5518 /* If we tail call into other programs, we
5519 * cannot make any assumptions since they can
5520 * be replaced dynamically during runtime in
5521 * the program array.
5523 prog
->cb_access
= 1;
5524 env
->prog
->aux
->stack_depth
= MAX_BPF_STACK
;
5526 /* mark bpf_tail_call as different opcode to avoid
5527 * conditional branch in the interpeter for every normal
5528 * call and to prevent accidental JITing by JIT compiler
5529 * that doesn't support bpf_tail_call yet
5532 insn
->code
= BPF_JMP
| BPF_TAIL_CALL
;
5534 /* instead of changing every JIT dealing with tail_call
5535 * emit two extra insns:
5536 * if (index >= max_entries) goto out;
5537 * index &= array->index_mask;
5538 * to avoid out-of-bounds cpu speculation
5540 map_ptr
= env
->insn_aux_data
[i
+ delta
].map_ptr
;
5541 if (map_ptr
== BPF_MAP_PTR_POISON
) {
5542 verbose(env
, "tail_call abusing map_ptr\n");
5545 if (!map_ptr
->unpriv_array
)
5547 insn_buf
[0] = BPF_JMP_IMM(BPF_JGE
, BPF_REG_3
,
5548 map_ptr
->max_entries
, 2);
5549 insn_buf
[1] = BPF_ALU32_IMM(BPF_AND
, BPF_REG_3
,
5550 container_of(map_ptr
,
5553 insn_buf
[2] = *insn
;
5555 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
, cnt
);
5560 env
->prog
= prog
= new_prog
;
5561 insn
= new_prog
->insnsi
+ i
+ delta
;
5565 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5566 * handlers are currently limited to 64 bit only.
5568 if (prog
->jit_requested
&& BITS_PER_LONG
== 64 &&
5569 insn
->imm
== BPF_FUNC_map_lookup_elem
) {
5570 map_ptr
= env
->insn_aux_data
[i
+ delta
].map_ptr
;
5571 if (map_ptr
== BPF_MAP_PTR_POISON
||
5572 !map_ptr
->ops
->map_gen_lookup
)
5573 goto patch_call_imm
;
5575 cnt
= map_ptr
->ops
->map_gen_lookup(map_ptr
, insn_buf
);
5576 if (cnt
== 0 || cnt
>= ARRAY_SIZE(insn_buf
)) {
5577 verbose(env
, "bpf verifier is misconfigured\n");
5581 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, insn_buf
,
5588 /* keep walking new program and skip insns we just inserted */
5589 env
->prog
= prog
= new_prog
;
5590 insn
= new_prog
->insnsi
+ i
+ delta
;
5594 if (insn
->imm
== BPF_FUNC_redirect_map
) {
5595 /* Note, we cannot use prog directly as imm as subsequent
5596 * rewrites would still change the prog pointer. The only
5597 * stable address we can use is aux, which also works with
5598 * prog clones during blinding.
5600 u64 addr
= (unsigned long)prog
->aux
;
5601 struct bpf_insn r4_ld
[] = {
5602 BPF_LD_IMM64(BPF_REG_4
, addr
),
5605 cnt
= ARRAY_SIZE(r4_ld
);
5607 new_prog
= bpf_patch_insn_data(env
, i
+ delta
, r4_ld
, cnt
);
5612 env
->prog
= prog
= new_prog
;
5613 insn
= new_prog
->insnsi
+ i
+ delta
;
5616 fn
= env
->ops
->get_func_proto(insn
->imm
);
5617 /* all functions that have prototype and verifier allowed
5618 * programs to call them, must be real in-kernel functions
5622 "kernel subsystem misconfigured func %s#%d\n",
5623 func_id_name(insn
->imm
), insn
->imm
);
5626 insn
->imm
= fn
->func
- __bpf_call_base
;
5632 static void free_states(struct bpf_verifier_env
*env
)
5634 struct bpf_verifier_state_list
*sl
, *sln
;
5637 if (!env
->explored_states
)
5640 for (i
= 0; i
< env
->prog
->len
; i
++) {
5641 sl
= env
->explored_states
[i
];
5644 while (sl
!= STATE_LIST_MARK
) {
5646 free_verifier_state(&sl
->state
, false);
5652 kfree(env
->explored_states
);
5655 int bpf_check(struct bpf_prog
**prog
, union bpf_attr
*attr
)
5657 struct bpf_verifier_env
*env
;
5658 struct bpf_verifer_log
*log
;
5661 /* no program is valid */
5662 if (ARRAY_SIZE(bpf_verifier_ops
) == 0)
5665 /* 'struct bpf_verifier_env' can be global, but since it's not small,
5666 * allocate/free it every time bpf_check() is called
5668 env
= kzalloc(sizeof(struct bpf_verifier_env
), GFP_KERNEL
);
5673 env
->insn_aux_data
= vzalloc(sizeof(struct bpf_insn_aux_data
) *
5676 if (!env
->insn_aux_data
)
5679 env
->ops
= bpf_verifier_ops
[env
->prog
->type
];
5681 /* grab the mutex to protect few globals used by verifier */
5682 mutex_lock(&bpf_verifier_lock
);
5684 if (attr
->log_level
|| attr
->log_buf
|| attr
->log_size
) {
5685 /* user requested verbose verifier output
5686 * and supplied buffer to store the verification trace
5688 log
->level
= attr
->log_level
;
5689 log
->ubuf
= (char __user
*) (unsigned long) attr
->log_buf
;
5690 log
->len_total
= attr
->log_size
;
5693 /* log attributes have to be sane */
5694 if (log
->len_total
< 128 || log
->len_total
> UINT_MAX
>> 8 ||
5695 !log
->level
|| !log
->ubuf
)
5699 env
->strict_alignment
= !!(attr
->prog_flags
& BPF_F_STRICT_ALIGNMENT
);
5700 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
))
5701 env
->strict_alignment
= true;
5703 if (bpf_prog_is_dev_bound(env
->prog
->aux
)) {
5704 ret
= bpf_prog_offload_verifier_prep(env
);
5709 ret
= replace_map_fd_with_map_ptr(env
);
5711 goto skip_full_check
;
5713 env
->explored_states
= kcalloc(env
->prog
->len
,
5714 sizeof(struct bpf_verifier_state_list
*),
5717 if (!env
->explored_states
)
5718 goto skip_full_check
;
5720 env
->allow_ptr_leaks
= capable(CAP_SYS_ADMIN
);
5722 ret
= check_cfg(env
);
5724 goto skip_full_check
;
5726 ret
= do_check(env
);
5727 if (env
->cur_state
) {
5728 free_verifier_state(env
->cur_state
, true);
5729 env
->cur_state
= NULL
;
5733 while (!pop_stack(env
, NULL
, NULL
));
5737 sanitize_dead_code(env
);
5740 ret
= check_max_stack_depth(env
);
5743 /* program is valid, convert *(u32*)(ctx + off) accesses */
5744 ret
= convert_ctx_accesses(env
);
5747 ret
= fixup_bpf_calls(env
);
5750 ret
= fixup_call_args(env
);
5752 if (log
->level
&& bpf_verifier_log_full(log
))
5754 if (log
->level
&& !log
->ubuf
) {
5756 goto err_release_maps
;
5759 if (ret
== 0 && env
->used_map_cnt
) {
5760 /* if program passed verifier, update used_maps in bpf_prog_info */
5761 env
->prog
->aux
->used_maps
= kmalloc_array(env
->used_map_cnt
,
5762 sizeof(env
->used_maps
[0]),
5765 if (!env
->prog
->aux
->used_maps
) {
5767 goto err_release_maps
;
5770 memcpy(env
->prog
->aux
->used_maps
, env
->used_maps
,
5771 sizeof(env
->used_maps
[0]) * env
->used_map_cnt
);
5772 env
->prog
->aux
->used_map_cnt
= env
->used_map_cnt
;
5774 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5775 * bpf_ld_imm64 instructions
5777 convert_pseudo_ld_imm64(env
);
5781 if (!env
->prog
->aux
->used_maps
)
5782 /* if we didn't copy map pointers into bpf_prog_info, release
5783 * them now. Otherwise free_bpf_prog_info() will release them.
5788 mutex_unlock(&bpf_verifier_lock
);
5789 vfree(env
->insn_aux_data
);