bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / net / core / skbuff.c
blob789f8edd37ae951beb075c205c02c8e5ab763fe6
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/mm.h>
45 #include <linux/interrupt.h>
46 #include <linux/in.h>
47 #include <linux/inet.h>
48 #include <linux/slab.h>
49 #include <linux/tcp.h>
50 #include <linux/udp.h>
51 #include <linux/sctp.h>
52 #include <linux/netdevice.h>
53 #ifdef CONFIG_NET_CLS_ACT
54 #include <net/pkt_sched.h>
55 #endif
56 #include <linux/string.h>
57 #include <linux/skbuff.h>
58 #include <linux/splice.h>
59 #include <linux/cache.h>
60 #include <linux/rtnetlink.h>
61 #include <linux/init.h>
62 #include <linux/scatterlist.h>
63 #include <linux/errqueue.h>
64 #include <linux/prefetch.h>
65 #include <linux/if_vlan.h>
67 #include <net/protocol.h>
68 #include <net/dst.h>
69 #include <net/sock.h>
70 #include <net/checksum.h>
71 #include <net/ip6_checksum.h>
72 #include <net/xfrm.h>
74 #include <linux/uaccess.h>
75 #include <trace/events/skb.h>
76 #include <linux/highmem.h>
77 #include <linux/capability.h>
78 #include <linux/user_namespace.h>
80 struct kmem_cache *skbuff_head_cache __read_mostly;
81 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
82 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
83 EXPORT_SYMBOL(sysctl_max_skb_frags);
85 /**
86 * skb_panic - private function for out-of-line support
87 * @skb: buffer
88 * @sz: size
89 * @addr: address
90 * @msg: skb_over_panic or skb_under_panic
92 * Out-of-line support for skb_put() and skb_push().
93 * Called via the wrapper skb_over_panic() or skb_under_panic().
94 * Keep out of line to prevent kernel bloat.
95 * __builtin_return_address is not used because it is not always reliable.
97 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
98 const char msg[])
100 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
101 msg, addr, skb->len, sz, skb->head, skb->data,
102 (unsigned long)skb->tail, (unsigned long)skb->end,
103 skb->dev ? skb->dev->name : "<NULL>");
104 BUG();
107 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 skb_panic(skb, sz, addr, __func__);
112 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 skb_panic(skb, sz, addr, __func__);
118 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
119 * the caller if emergency pfmemalloc reserves are being used. If it is and
120 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
121 * may be used. Otherwise, the packet data may be discarded until enough
122 * memory is free
124 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
125 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
128 unsigned long ip, bool *pfmemalloc)
130 void *obj;
131 bool ret_pfmemalloc = false;
134 * Try a regular allocation, when that fails and we're not entitled
135 * to the reserves, fail.
137 obj = kmalloc_node_track_caller(size,
138 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
139 node);
140 if (obj || !(gfp_pfmemalloc_allowed(flags)))
141 goto out;
143 /* Try again but now we are using pfmemalloc reserves */
144 ret_pfmemalloc = true;
145 obj = kmalloc_node_track_caller(size, flags, node);
147 out:
148 if (pfmemalloc)
149 *pfmemalloc = ret_pfmemalloc;
151 return obj;
154 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
155 * 'private' fields and also do memory statistics to find all the
156 * [BEEP] leaks.
161 * __alloc_skb - allocate a network buffer
162 * @size: size to allocate
163 * @gfp_mask: allocation mask
164 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
165 * instead of head cache and allocate a cloned (child) skb.
166 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
167 * allocations in case the data is required for writeback
168 * @node: numa node to allocate memory on
170 * Allocate a new &sk_buff. The returned buffer has no headroom and a
171 * tail room of at least size bytes. The object has a reference count
172 * of one. The return is the buffer. On a failure the return is %NULL.
174 * Buffers may only be allocated from interrupts using a @gfp_mask of
175 * %GFP_ATOMIC.
177 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
178 int flags, int node)
180 struct kmem_cache *cache;
181 struct skb_shared_info *shinfo;
182 struct sk_buff *skb;
183 u8 *data;
184 bool pfmemalloc;
186 cache = (flags & SKB_ALLOC_FCLONE)
187 ? skbuff_fclone_cache : skbuff_head_cache;
189 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
190 gfp_mask |= __GFP_MEMALLOC;
192 /* Get the HEAD */
193 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
194 if (!skb)
195 goto out;
196 prefetchw(skb);
198 /* We do our best to align skb_shared_info on a separate cache
199 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
200 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
201 * Both skb->head and skb_shared_info are cache line aligned.
203 size = SKB_DATA_ALIGN(size);
204 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
205 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
206 if (!data)
207 goto nodata;
208 /* kmalloc(size) might give us more room than requested.
209 * Put skb_shared_info exactly at the end of allocated zone,
210 * to allow max possible filling before reallocation.
212 size = SKB_WITH_OVERHEAD(ksize(data));
213 prefetchw(data + size);
216 * Only clear those fields we need to clear, not those that we will
217 * actually initialise below. Hence, don't put any more fields after
218 * the tail pointer in struct sk_buff!
220 memset(skb, 0, offsetof(struct sk_buff, tail));
221 /* Account for allocated memory : skb + skb->head */
222 skb->truesize = SKB_TRUESIZE(size);
223 skb->pfmemalloc = pfmemalloc;
224 refcount_set(&skb->users, 1);
225 skb->head = data;
226 skb->data = data;
227 skb_reset_tail_pointer(skb);
228 skb->end = skb->tail + size;
229 skb->mac_header = (typeof(skb->mac_header))~0U;
230 skb->transport_header = (typeof(skb->transport_header))~0U;
232 /* make sure we initialize shinfo sequentially */
233 shinfo = skb_shinfo(skb);
234 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
235 atomic_set(&shinfo->dataref, 1);
237 if (flags & SKB_ALLOC_FCLONE) {
238 struct sk_buff_fclones *fclones;
240 fclones = container_of(skb, struct sk_buff_fclones, skb1);
242 skb->fclone = SKB_FCLONE_ORIG;
243 refcount_set(&fclones->fclone_ref, 1);
245 fclones->skb2.fclone = SKB_FCLONE_CLONE;
247 out:
248 return skb;
249 nodata:
250 kmem_cache_free(cache, skb);
251 skb = NULL;
252 goto out;
254 EXPORT_SYMBOL(__alloc_skb);
257 * __build_skb - build a network buffer
258 * @data: data buffer provided by caller
259 * @frag_size: size of data, or 0 if head was kmalloced
261 * Allocate a new &sk_buff. Caller provides space holding head and
262 * skb_shared_info. @data must have been allocated by kmalloc() only if
263 * @frag_size is 0, otherwise data should come from the page allocator
264 * or vmalloc()
265 * The return is the new skb buffer.
266 * On a failure the return is %NULL, and @data is not freed.
267 * Notes :
268 * Before IO, driver allocates only data buffer where NIC put incoming frame
269 * Driver should add room at head (NET_SKB_PAD) and
270 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
271 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
272 * before giving packet to stack.
273 * RX rings only contains data buffers, not full skbs.
275 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
277 struct skb_shared_info *shinfo;
278 struct sk_buff *skb;
279 unsigned int size = frag_size ? : ksize(data);
281 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
282 if (!skb)
283 return NULL;
285 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
287 memset(skb, 0, offsetof(struct sk_buff, tail));
288 skb->truesize = SKB_TRUESIZE(size);
289 refcount_set(&skb->users, 1);
290 skb->head = data;
291 skb->data = data;
292 skb_reset_tail_pointer(skb);
293 skb->end = skb->tail + size;
294 skb->mac_header = (typeof(skb->mac_header))~0U;
295 skb->transport_header = (typeof(skb->transport_header))~0U;
297 /* make sure we initialize shinfo sequentially */
298 shinfo = skb_shinfo(skb);
299 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
300 atomic_set(&shinfo->dataref, 1);
302 return skb;
305 /* build_skb() is wrapper over __build_skb(), that specifically
306 * takes care of skb->head and skb->pfmemalloc
307 * This means that if @frag_size is not zero, then @data must be backed
308 * by a page fragment, not kmalloc() or vmalloc()
310 struct sk_buff *build_skb(void *data, unsigned int frag_size)
312 struct sk_buff *skb = __build_skb(data, frag_size);
314 if (skb && frag_size) {
315 skb->head_frag = 1;
316 if (page_is_pfmemalloc(virt_to_head_page(data)))
317 skb->pfmemalloc = 1;
319 return skb;
321 EXPORT_SYMBOL(build_skb);
323 #define NAPI_SKB_CACHE_SIZE 64
325 struct napi_alloc_cache {
326 struct page_frag_cache page;
327 unsigned int skb_count;
328 void *skb_cache[NAPI_SKB_CACHE_SIZE];
331 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
332 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
334 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
336 struct page_frag_cache *nc;
337 unsigned long flags;
338 void *data;
340 local_irq_save(flags);
341 nc = this_cpu_ptr(&netdev_alloc_cache);
342 data = page_frag_alloc(nc, fragsz, gfp_mask);
343 local_irq_restore(flags);
344 return data;
348 * netdev_alloc_frag - allocate a page fragment
349 * @fragsz: fragment size
351 * Allocates a frag from a page for receive buffer.
352 * Uses GFP_ATOMIC allocations.
354 void *netdev_alloc_frag(unsigned int fragsz)
356 return __netdev_alloc_frag(fragsz, GFP_ATOMIC);
358 EXPORT_SYMBOL(netdev_alloc_frag);
360 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
362 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
364 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
367 void *napi_alloc_frag(unsigned int fragsz)
369 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
371 EXPORT_SYMBOL(napi_alloc_frag);
374 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
375 * @dev: network device to receive on
376 * @len: length to allocate
377 * @gfp_mask: get_free_pages mask, passed to alloc_skb
379 * Allocate a new &sk_buff and assign it a usage count of one. The
380 * buffer has NET_SKB_PAD headroom built in. Users should allocate
381 * the headroom they think they need without accounting for the
382 * built in space. The built in space is used for optimisations.
384 * %NULL is returned if there is no free memory.
386 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
387 gfp_t gfp_mask)
389 struct page_frag_cache *nc;
390 unsigned long flags;
391 struct sk_buff *skb;
392 bool pfmemalloc;
393 void *data;
395 len += NET_SKB_PAD;
397 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
398 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
399 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
400 if (!skb)
401 goto skb_fail;
402 goto skb_success;
405 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
406 len = SKB_DATA_ALIGN(len);
408 if (sk_memalloc_socks())
409 gfp_mask |= __GFP_MEMALLOC;
411 local_irq_save(flags);
413 nc = this_cpu_ptr(&netdev_alloc_cache);
414 data = page_frag_alloc(nc, len, gfp_mask);
415 pfmemalloc = nc->pfmemalloc;
417 local_irq_restore(flags);
419 if (unlikely(!data))
420 return NULL;
422 skb = __build_skb(data, len);
423 if (unlikely(!skb)) {
424 skb_free_frag(data);
425 return NULL;
428 /* use OR instead of assignment to avoid clearing of bits in mask */
429 if (pfmemalloc)
430 skb->pfmemalloc = 1;
431 skb->head_frag = 1;
433 skb_success:
434 skb_reserve(skb, NET_SKB_PAD);
435 skb->dev = dev;
437 skb_fail:
438 return skb;
440 EXPORT_SYMBOL(__netdev_alloc_skb);
443 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
444 * @napi: napi instance this buffer was allocated for
445 * @len: length to allocate
446 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
448 * Allocate a new sk_buff for use in NAPI receive. This buffer will
449 * attempt to allocate the head from a special reserved region used
450 * only for NAPI Rx allocation. By doing this we can save several
451 * CPU cycles by avoiding having to disable and re-enable IRQs.
453 * %NULL is returned if there is no free memory.
455 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
456 gfp_t gfp_mask)
458 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
459 struct sk_buff *skb;
460 void *data;
462 len += NET_SKB_PAD + NET_IP_ALIGN;
464 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
465 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
466 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
467 if (!skb)
468 goto skb_fail;
469 goto skb_success;
472 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
473 len = SKB_DATA_ALIGN(len);
475 if (sk_memalloc_socks())
476 gfp_mask |= __GFP_MEMALLOC;
478 data = page_frag_alloc(&nc->page, len, gfp_mask);
479 if (unlikely(!data))
480 return NULL;
482 skb = __build_skb(data, len);
483 if (unlikely(!skb)) {
484 skb_free_frag(data);
485 return NULL;
488 /* use OR instead of assignment to avoid clearing of bits in mask */
489 if (nc->page.pfmemalloc)
490 skb->pfmemalloc = 1;
491 skb->head_frag = 1;
493 skb_success:
494 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
495 skb->dev = napi->dev;
497 skb_fail:
498 return skb;
500 EXPORT_SYMBOL(__napi_alloc_skb);
502 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
503 int size, unsigned int truesize)
505 skb_fill_page_desc(skb, i, page, off, size);
506 skb->len += size;
507 skb->data_len += size;
508 skb->truesize += truesize;
510 EXPORT_SYMBOL(skb_add_rx_frag);
512 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
513 unsigned int truesize)
515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
517 skb_frag_size_add(frag, size);
518 skb->len += size;
519 skb->data_len += size;
520 skb->truesize += truesize;
522 EXPORT_SYMBOL(skb_coalesce_rx_frag);
524 static void skb_drop_list(struct sk_buff **listp)
526 kfree_skb_list(*listp);
527 *listp = NULL;
530 static inline void skb_drop_fraglist(struct sk_buff *skb)
532 skb_drop_list(&skb_shinfo(skb)->frag_list);
535 static void skb_clone_fraglist(struct sk_buff *skb)
537 struct sk_buff *list;
539 skb_walk_frags(skb, list)
540 skb_get(list);
543 static void skb_free_head(struct sk_buff *skb)
545 unsigned char *head = skb->head;
547 if (skb->head_frag)
548 skb_free_frag(head);
549 else
550 kfree(head);
553 static void skb_release_data(struct sk_buff *skb)
555 struct skb_shared_info *shinfo = skb_shinfo(skb);
556 int i;
558 if (skb->cloned &&
559 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
560 &shinfo->dataref))
561 return;
563 for (i = 0; i < shinfo->nr_frags; i++)
564 __skb_frag_unref(&shinfo->frags[i]);
566 if (shinfo->frag_list)
567 kfree_skb_list(shinfo->frag_list);
569 skb_zcopy_clear(skb, true);
570 skb_free_head(skb);
574 * Free an skbuff by memory without cleaning the state.
576 static void kfree_skbmem(struct sk_buff *skb)
578 struct sk_buff_fclones *fclones;
580 switch (skb->fclone) {
581 case SKB_FCLONE_UNAVAILABLE:
582 kmem_cache_free(skbuff_head_cache, skb);
583 return;
585 case SKB_FCLONE_ORIG:
586 fclones = container_of(skb, struct sk_buff_fclones, skb1);
588 /* We usually free the clone (TX completion) before original skb
589 * This test would have no chance to be true for the clone,
590 * while here, branch prediction will be good.
592 if (refcount_read(&fclones->fclone_ref) == 1)
593 goto fastpath;
594 break;
596 default: /* SKB_FCLONE_CLONE */
597 fclones = container_of(skb, struct sk_buff_fclones, skb2);
598 break;
600 if (!refcount_dec_and_test(&fclones->fclone_ref))
601 return;
602 fastpath:
603 kmem_cache_free(skbuff_fclone_cache, fclones);
606 void skb_release_head_state(struct sk_buff *skb)
608 skb_dst_drop(skb);
609 secpath_reset(skb);
610 if (skb->destructor) {
611 WARN_ON(in_irq());
612 skb->destructor(skb);
614 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
615 nf_conntrack_put(skb_nfct(skb));
616 #endif
617 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
618 nf_bridge_put(skb->nf_bridge);
619 #endif
622 /* Free everything but the sk_buff shell. */
623 static void skb_release_all(struct sk_buff *skb)
625 skb_release_head_state(skb);
626 if (likely(skb->head))
627 skb_release_data(skb);
631 * __kfree_skb - private function
632 * @skb: buffer
634 * Free an sk_buff. Release anything attached to the buffer.
635 * Clean the state. This is an internal helper function. Users should
636 * always call kfree_skb
639 void __kfree_skb(struct sk_buff *skb)
641 skb_release_all(skb);
642 kfree_skbmem(skb);
644 EXPORT_SYMBOL(__kfree_skb);
647 * kfree_skb - free an sk_buff
648 * @skb: buffer to free
650 * Drop a reference to the buffer and free it if the usage count has
651 * hit zero.
653 void kfree_skb(struct sk_buff *skb)
655 if (!skb_unref(skb))
656 return;
658 trace_kfree_skb(skb, __builtin_return_address(0));
659 __kfree_skb(skb);
661 EXPORT_SYMBOL(kfree_skb);
663 void kfree_skb_list(struct sk_buff *segs)
665 while (segs) {
666 struct sk_buff *next = segs->next;
668 kfree_skb(segs);
669 segs = next;
672 EXPORT_SYMBOL(kfree_skb_list);
675 * skb_tx_error - report an sk_buff xmit error
676 * @skb: buffer that triggered an error
678 * Report xmit error if a device callback is tracking this skb.
679 * skb must be freed afterwards.
681 void skb_tx_error(struct sk_buff *skb)
683 skb_zcopy_clear(skb, true);
685 EXPORT_SYMBOL(skb_tx_error);
688 * consume_skb - free an skbuff
689 * @skb: buffer to free
691 * Drop a ref to the buffer and free it if the usage count has hit zero
692 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
693 * is being dropped after a failure and notes that
695 void consume_skb(struct sk_buff *skb)
697 if (!skb_unref(skb))
698 return;
700 trace_consume_skb(skb);
701 __kfree_skb(skb);
703 EXPORT_SYMBOL(consume_skb);
706 * consume_stateless_skb - free an skbuff, assuming it is stateless
707 * @skb: buffer to free
709 * Alike consume_skb(), but this variant assumes that this is the last
710 * skb reference and all the head states have been already dropped
712 void __consume_stateless_skb(struct sk_buff *skb)
714 trace_consume_skb(skb);
715 skb_release_data(skb);
716 kfree_skbmem(skb);
719 void __kfree_skb_flush(void)
721 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
723 /* flush skb_cache if containing objects */
724 if (nc->skb_count) {
725 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
726 nc->skb_cache);
727 nc->skb_count = 0;
731 static inline void _kfree_skb_defer(struct sk_buff *skb)
733 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
735 /* drop skb->head and call any destructors for packet */
736 skb_release_all(skb);
738 /* record skb to CPU local list */
739 nc->skb_cache[nc->skb_count++] = skb;
741 #ifdef CONFIG_SLUB
742 /* SLUB writes into objects when freeing */
743 prefetchw(skb);
744 #endif
746 /* flush skb_cache if it is filled */
747 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
748 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
749 nc->skb_cache);
750 nc->skb_count = 0;
753 void __kfree_skb_defer(struct sk_buff *skb)
755 _kfree_skb_defer(skb);
758 void napi_consume_skb(struct sk_buff *skb, int budget)
760 if (unlikely(!skb))
761 return;
763 /* Zero budget indicate non-NAPI context called us, like netpoll */
764 if (unlikely(!budget)) {
765 dev_consume_skb_any(skb);
766 return;
769 if (!skb_unref(skb))
770 return;
772 /* if reaching here SKB is ready to free */
773 trace_consume_skb(skb);
775 /* if SKB is a clone, don't handle this case */
776 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
777 __kfree_skb(skb);
778 return;
781 _kfree_skb_defer(skb);
783 EXPORT_SYMBOL(napi_consume_skb);
785 /* Make sure a field is enclosed inside headers_start/headers_end section */
786 #define CHECK_SKB_FIELD(field) \
787 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
788 offsetof(struct sk_buff, headers_start)); \
789 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
790 offsetof(struct sk_buff, headers_end)); \
792 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
794 new->tstamp = old->tstamp;
795 /* We do not copy old->sk */
796 new->dev = old->dev;
797 memcpy(new->cb, old->cb, sizeof(old->cb));
798 skb_dst_copy(new, old);
799 #ifdef CONFIG_XFRM
800 new->sp = secpath_get(old->sp);
801 #endif
802 __nf_copy(new, old, false);
804 /* Note : this field could be in headers_start/headers_end section
805 * It is not yet because we do not want to have a 16 bit hole
807 new->queue_mapping = old->queue_mapping;
809 memcpy(&new->headers_start, &old->headers_start,
810 offsetof(struct sk_buff, headers_end) -
811 offsetof(struct sk_buff, headers_start));
812 CHECK_SKB_FIELD(protocol);
813 CHECK_SKB_FIELD(csum);
814 CHECK_SKB_FIELD(hash);
815 CHECK_SKB_FIELD(priority);
816 CHECK_SKB_FIELD(skb_iif);
817 CHECK_SKB_FIELD(vlan_proto);
818 CHECK_SKB_FIELD(vlan_tci);
819 CHECK_SKB_FIELD(transport_header);
820 CHECK_SKB_FIELD(network_header);
821 CHECK_SKB_FIELD(mac_header);
822 CHECK_SKB_FIELD(inner_protocol);
823 CHECK_SKB_FIELD(inner_transport_header);
824 CHECK_SKB_FIELD(inner_network_header);
825 CHECK_SKB_FIELD(inner_mac_header);
826 CHECK_SKB_FIELD(mark);
827 #ifdef CONFIG_NETWORK_SECMARK
828 CHECK_SKB_FIELD(secmark);
829 #endif
830 #ifdef CONFIG_NET_RX_BUSY_POLL
831 CHECK_SKB_FIELD(napi_id);
832 #endif
833 #ifdef CONFIG_XPS
834 CHECK_SKB_FIELD(sender_cpu);
835 #endif
836 #ifdef CONFIG_NET_SCHED
837 CHECK_SKB_FIELD(tc_index);
838 #endif
843 * You should not add any new code to this function. Add it to
844 * __copy_skb_header above instead.
846 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
848 #define C(x) n->x = skb->x
850 n->next = n->prev = NULL;
851 n->sk = NULL;
852 __copy_skb_header(n, skb);
854 C(len);
855 C(data_len);
856 C(mac_len);
857 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
858 n->cloned = 1;
859 n->nohdr = 0;
860 n->peeked = 0;
861 n->destructor = NULL;
862 C(tail);
863 C(end);
864 C(head);
865 C(head_frag);
866 C(data);
867 C(truesize);
868 refcount_set(&n->users, 1);
870 atomic_inc(&(skb_shinfo(skb)->dataref));
871 skb->cloned = 1;
873 return n;
874 #undef C
878 * skb_morph - morph one skb into another
879 * @dst: the skb to receive the contents
880 * @src: the skb to supply the contents
882 * This is identical to skb_clone except that the target skb is
883 * supplied by the user.
885 * The target skb is returned upon exit.
887 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
889 skb_release_all(dst);
890 return __skb_clone(dst, src);
892 EXPORT_SYMBOL_GPL(skb_morph);
894 static int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
896 unsigned long max_pg, num_pg, new_pg, old_pg;
897 struct user_struct *user;
899 if (capable(CAP_IPC_LOCK) || !size)
900 return 0;
902 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
903 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
904 user = mmp->user ? : current_user();
906 do {
907 old_pg = atomic_long_read(&user->locked_vm);
908 new_pg = old_pg + num_pg;
909 if (new_pg > max_pg)
910 return -ENOBUFS;
911 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
912 old_pg);
914 if (!mmp->user) {
915 mmp->user = get_uid(user);
916 mmp->num_pg = num_pg;
917 } else {
918 mmp->num_pg += num_pg;
921 return 0;
924 static void mm_unaccount_pinned_pages(struct mmpin *mmp)
926 if (mmp->user) {
927 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
928 free_uid(mmp->user);
932 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
934 struct ubuf_info *uarg;
935 struct sk_buff *skb;
937 WARN_ON_ONCE(!in_task());
939 if (!sock_flag(sk, SOCK_ZEROCOPY))
940 return NULL;
942 skb = sock_omalloc(sk, 0, GFP_KERNEL);
943 if (!skb)
944 return NULL;
946 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
947 uarg = (void *)skb->cb;
948 uarg->mmp.user = NULL;
950 if (mm_account_pinned_pages(&uarg->mmp, size)) {
951 kfree_skb(skb);
952 return NULL;
955 uarg->callback = sock_zerocopy_callback;
956 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
957 uarg->len = 1;
958 uarg->bytelen = size;
959 uarg->zerocopy = 1;
960 refcount_set(&uarg->refcnt, 1);
961 sock_hold(sk);
963 return uarg;
965 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
967 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
969 return container_of((void *)uarg, struct sk_buff, cb);
972 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
973 struct ubuf_info *uarg)
975 if (uarg) {
976 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
977 u32 bytelen, next;
979 /* realloc only when socket is locked (TCP, UDP cork),
980 * so uarg->len and sk_zckey access is serialized
982 if (!sock_owned_by_user(sk)) {
983 WARN_ON_ONCE(1);
984 return NULL;
987 bytelen = uarg->bytelen + size;
988 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
989 /* TCP can create new skb to attach new uarg */
990 if (sk->sk_type == SOCK_STREAM)
991 goto new_alloc;
992 return NULL;
995 next = (u32)atomic_read(&sk->sk_zckey);
996 if ((u32)(uarg->id + uarg->len) == next) {
997 if (mm_account_pinned_pages(&uarg->mmp, size))
998 return NULL;
999 uarg->len++;
1000 uarg->bytelen = bytelen;
1001 atomic_set(&sk->sk_zckey, ++next);
1002 sock_zerocopy_get(uarg);
1003 return uarg;
1007 new_alloc:
1008 return sock_zerocopy_alloc(sk, size);
1010 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1012 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1014 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1015 u32 old_lo, old_hi;
1016 u64 sum_len;
1018 old_lo = serr->ee.ee_info;
1019 old_hi = serr->ee.ee_data;
1020 sum_len = old_hi - old_lo + 1ULL + len;
1022 if (sum_len >= (1ULL << 32))
1023 return false;
1025 if (lo != old_hi + 1)
1026 return false;
1028 serr->ee.ee_data += len;
1029 return true;
1032 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1034 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1035 struct sock_exterr_skb *serr;
1036 struct sock *sk = skb->sk;
1037 struct sk_buff_head *q;
1038 unsigned long flags;
1039 u32 lo, hi;
1040 u16 len;
1042 mm_unaccount_pinned_pages(&uarg->mmp);
1044 /* if !len, there was only 1 call, and it was aborted
1045 * so do not queue a completion notification
1047 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1048 goto release;
1050 len = uarg->len;
1051 lo = uarg->id;
1052 hi = uarg->id + len - 1;
1054 serr = SKB_EXT_ERR(skb);
1055 memset(serr, 0, sizeof(*serr));
1056 serr->ee.ee_errno = 0;
1057 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1058 serr->ee.ee_data = hi;
1059 serr->ee.ee_info = lo;
1060 if (!success)
1061 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1063 q = &sk->sk_error_queue;
1064 spin_lock_irqsave(&q->lock, flags);
1065 tail = skb_peek_tail(q);
1066 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1067 !skb_zerocopy_notify_extend(tail, lo, len)) {
1068 __skb_queue_tail(q, skb);
1069 skb = NULL;
1071 spin_unlock_irqrestore(&q->lock, flags);
1073 sk->sk_error_report(sk);
1075 release:
1076 consume_skb(skb);
1077 sock_put(sk);
1079 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1081 void sock_zerocopy_put(struct ubuf_info *uarg)
1083 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1084 if (uarg->callback)
1085 uarg->callback(uarg, uarg->zerocopy);
1086 else
1087 consume_skb(skb_from_uarg(uarg));
1090 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1092 void sock_zerocopy_put_abort(struct ubuf_info *uarg)
1094 if (uarg) {
1095 struct sock *sk = skb_from_uarg(uarg)->sk;
1097 atomic_dec(&sk->sk_zckey);
1098 uarg->len--;
1100 sock_zerocopy_put(uarg);
1103 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1105 extern int __zerocopy_sg_from_iter(struct sock *sk, struct sk_buff *skb,
1106 struct iov_iter *from, size_t length);
1108 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1109 struct msghdr *msg, int len,
1110 struct ubuf_info *uarg)
1112 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1113 struct iov_iter orig_iter = msg->msg_iter;
1114 int err, orig_len = skb->len;
1116 /* An skb can only point to one uarg. This edge case happens when
1117 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1119 if (orig_uarg && uarg != orig_uarg)
1120 return -EEXIST;
1122 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1123 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1124 struct sock *save_sk = skb->sk;
1126 /* Streams do not free skb on error. Reset to prev state. */
1127 msg->msg_iter = orig_iter;
1128 skb->sk = sk;
1129 ___pskb_trim(skb, orig_len);
1130 skb->sk = save_sk;
1131 return err;
1134 skb_zcopy_set(skb, uarg);
1135 return skb->len - orig_len;
1137 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1139 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1140 gfp_t gfp_mask)
1142 if (skb_zcopy(orig)) {
1143 if (skb_zcopy(nskb)) {
1144 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1145 if (!gfp_mask) {
1146 WARN_ON_ONCE(1);
1147 return -ENOMEM;
1149 if (skb_uarg(nskb) == skb_uarg(orig))
1150 return 0;
1151 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1152 return -EIO;
1154 skb_zcopy_set(nskb, skb_uarg(orig));
1156 return 0;
1160 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1161 * @skb: the skb to modify
1162 * @gfp_mask: allocation priority
1164 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1165 * It will copy all frags into kernel and drop the reference
1166 * to userspace pages.
1168 * If this function is called from an interrupt gfp_mask() must be
1169 * %GFP_ATOMIC.
1171 * Returns 0 on success or a negative error code on failure
1172 * to allocate kernel memory to copy to.
1174 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1176 int num_frags = skb_shinfo(skb)->nr_frags;
1177 struct page *page, *head = NULL;
1178 int i, new_frags;
1179 u32 d_off;
1181 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1182 return -EINVAL;
1184 if (!num_frags)
1185 goto release;
1187 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1188 for (i = 0; i < new_frags; i++) {
1189 page = alloc_page(gfp_mask);
1190 if (!page) {
1191 while (head) {
1192 struct page *next = (struct page *)page_private(head);
1193 put_page(head);
1194 head = next;
1196 return -ENOMEM;
1198 set_page_private(page, (unsigned long)head);
1199 head = page;
1202 page = head;
1203 d_off = 0;
1204 for (i = 0; i < num_frags; i++) {
1205 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1206 u32 p_off, p_len, copied;
1207 struct page *p;
1208 u8 *vaddr;
1210 skb_frag_foreach_page(f, f->page_offset, skb_frag_size(f),
1211 p, p_off, p_len, copied) {
1212 u32 copy, done = 0;
1213 vaddr = kmap_atomic(p);
1215 while (done < p_len) {
1216 if (d_off == PAGE_SIZE) {
1217 d_off = 0;
1218 page = (struct page *)page_private(page);
1220 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1221 memcpy(page_address(page) + d_off,
1222 vaddr + p_off + done, copy);
1223 done += copy;
1224 d_off += copy;
1226 kunmap_atomic(vaddr);
1230 /* skb frags release userspace buffers */
1231 for (i = 0; i < num_frags; i++)
1232 skb_frag_unref(skb, i);
1234 /* skb frags point to kernel buffers */
1235 for (i = 0; i < new_frags - 1; i++) {
1236 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1237 head = (struct page *)page_private(head);
1239 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1240 skb_shinfo(skb)->nr_frags = new_frags;
1242 release:
1243 skb_zcopy_clear(skb, false);
1244 return 0;
1246 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1249 * skb_clone - duplicate an sk_buff
1250 * @skb: buffer to clone
1251 * @gfp_mask: allocation priority
1253 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1254 * copies share the same packet data but not structure. The new
1255 * buffer has a reference count of 1. If the allocation fails the
1256 * function returns %NULL otherwise the new buffer is returned.
1258 * If this function is called from an interrupt gfp_mask() must be
1259 * %GFP_ATOMIC.
1262 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1264 struct sk_buff_fclones *fclones = container_of(skb,
1265 struct sk_buff_fclones,
1266 skb1);
1267 struct sk_buff *n;
1269 if (skb_orphan_frags(skb, gfp_mask))
1270 return NULL;
1272 if (skb->fclone == SKB_FCLONE_ORIG &&
1273 refcount_read(&fclones->fclone_ref) == 1) {
1274 n = &fclones->skb2;
1275 refcount_set(&fclones->fclone_ref, 2);
1276 } else {
1277 if (skb_pfmemalloc(skb))
1278 gfp_mask |= __GFP_MEMALLOC;
1280 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1281 if (!n)
1282 return NULL;
1284 n->fclone = SKB_FCLONE_UNAVAILABLE;
1287 return __skb_clone(n, skb);
1289 EXPORT_SYMBOL(skb_clone);
1291 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1293 /* Only adjust this if it actually is csum_start rather than csum */
1294 if (skb->ip_summed == CHECKSUM_PARTIAL)
1295 skb->csum_start += off;
1296 /* {transport,network,mac}_header and tail are relative to skb->head */
1297 skb->transport_header += off;
1298 skb->network_header += off;
1299 if (skb_mac_header_was_set(skb))
1300 skb->mac_header += off;
1301 skb->inner_transport_header += off;
1302 skb->inner_network_header += off;
1303 skb->inner_mac_header += off;
1306 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1308 __copy_skb_header(new, old);
1310 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1311 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1312 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1315 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1317 if (skb_pfmemalloc(skb))
1318 return SKB_ALLOC_RX;
1319 return 0;
1323 * skb_copy - create private copy of an sk_buff
1324 * @skb: buffer to copy
1325 * @gfp_mask: allocation priority
1327 * Make a copy of both an &sk_buff and its data. This is used when the
1328 * caller wishes to modify the data and needs a private copy of the
1329 * data to alter. Returns %NULL on failure or the pointer to the buffer
1330 * on success. The returned buffer has a reference count of 1.
1332 * As by-product this function converts non-linear &sk_buff to linear
1333 * one, so that &sk_buff becomes completely private and caller is allowed
1334 * to modify all the data of returned buffer. This means that this
1335 * function is not recommended for use in circumstances when only
1336 * header is going to be modified. Use pskb_copy() instead.
1339 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1341 int headerlen = skb_headroom(skb);
1342 unsigned int size = skb_end_offset(skb) + skb->data_len;
1343 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1344 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1346 if (!n)
1347 return NULL;
1349 /* Set the data pointer */
1350 skb_reserve(n, headerlen);
1351 /* Set the tail pointer and length */
1352 skb_put(n, skb->len);
1354 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1356 copy_skb_header(n, skb);
1357 return n;
1359 EXPORT_SYMBOL(skb_copy);
1362 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1363 * @skb: buffer to copy
1364 * @headroom: headroom of new skb
1365 * @gfp_mask: allocation priority
1366 * @fclone: if true allocate the copy of the skb from the fclone
1367 * cache instead of the head cache; it is recommended to set this
1368 * to true for the cases where the copy will likely be cloned
1370 * Make a copy of both an &sk_buff and part of its data, located
1371 * in header. Fragmented data remain shared. This is used when
1372 * the caller wishes to modify only header of &sk_buff and needs
1373 * private copy of the header to alter. Returns %NULL on failure
1374 * or the pointer to the buffer on success.
1375 * The returned buffer has a reference count of 1.
1378 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1379 gfp_t gfp_mask, bool fclone)
1381 unsigned int size = skb_headlen(skb) + headroom;
1382 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1383 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1385 if (!n)
1386 goto out;
1388 /* Set the data pointer */
1389 skb_reserve(n, headroom);
1390 /* Set the tail pointer and length */
1391 skb_put(n, skb_headlen(skb));
1392 /* Copy the bytes */
1393 skb_copy_from_linear_data(skb, n->data, n->len);
1395 n->truesize += skb->data_len;
1396 n->data_len = skb->data_len;
1397 n->len = skb->len;
1399 if (skb_shinfo(skb)->nr_frags) {
1400 int i;
1402 if (skb_orphan_frags(skb, gfp_mask) ||
1403 skb_zerocopy_clone(n, skb, gfp_mask)) {
1404 kfree_skb(n);
1405 n = NULL;
1406 goto out;
1408 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1409 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1410 skb_frag_ref(skb, i);
1412 skb_shinfo(n)->nr_frags = i;
1415 if (skb_has_frag_list(skb)) {
1416 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1417 skb_clone_fraglist(n);
1420 copy_skb_header(n, skb);
1421 out:
1422 return n;
1424 EXPORT_SYMBOL(__pskb_copy_fclone);
1427 * pskb_expand_head - reallocate header of &sk_buff
1428 * @skb: buffer to reallocate
1429 * @nhead: room to add at head
1430 * @ntail: room to add at tail
1431 * @gfp_mask: allocation priority
1433 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1434 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1435 * reference count of 1. Returns zero in the case of success or error,
1436 * if expansion failed. In the last case, &sk_buff is not changed.
1438 * All the pointers pointing into skb header may change and must be
1439 * reloaded after call to this function.
1442 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1443 gfp_t gfp_mask)
1445 int i, osize = skb_end_offset(skb);
1446 int size = osize + nhead + ntail;
1447 long off;
1448 u8 *data;
1450 BUG_ON(nhead < 0);
1452 BUG_ON(skb_shared(skb));
1454 size = SKB_DATA_ALIGN(size);
1456 if (skb_pfmemalloc(skb))
1457 gfp_mask |= __GFP_MEMALLOC;
1458 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1459 gfp_mask, NUMA_NO_NODE, NULL);
1460 if (!data)
1461 goto nodata;
1462 size = SKB_WITH_OVERHEAD(ksize(data));
1464 /* Copy only real data... and, alas, header. This should be
1465 * optimized for the cases when header is void.
1467 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1469 memcpy((struct skb_shared_info *)(data + size),
1470 skb_shinfo(skb),
1471 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1474 * if shinfo is shared we must drop the old head gracefully, but if it
1475 * is not we can just drop the old head and let the existing refcount
1476 * be since all we did is relocate the values
1478 if (skb_cloned(skb)) {
1479 if (skb_orphan_frags(skb, gfp_mask))
1480 goto nofrags;
1481 if (skb_zcopy(skb))
1482 refcount_inc(&skb_uarg(skb)->refcnt);
1483 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1484 skb_frag_ref(skb, i);
1486 if (skb_has_frag_list(skb))
1487 skb_clone_fraglist(skb);
1489 skb_release_data(skb);
1490 } else {
1491 skb_free_head(skb);
1493 off = (data + nhead) - skb->head;
1495 skb->head = data;
1496 skb->head_frag = 0;
1497 skb->data += off;
1498 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1499 skb->end = size;
1500 off = nhead;
1501 #else
1502 skb->end = skb->head + size;
1503 #endif
1504 skb->tail += off;
1505 skb_headers_offset_update(skb, nhead);
1506 skb->cloned = 0;
1507 skb->hdr_len = 0;
1508 skb->nohdr = 0;
1509 atomic_set(&skb_shinfo(skb)->dataref, 1);
1511 skb_metadata_clear(skb);
1513 /* It is not generally safe to change skb->truesize.
1514 * For the moment, we really care of rx path, or
1515 * when skb is orphaned (not attached to a socket).
1517 if (!skb->sk || skb->destructor == sock_edemux)
1518 skb->truesize += size - osize;
1520 return 0;
1522 nofrags:
1523 kfree(data);
1524 nodata:
1525 return -ENOMEM;
1527 EXPORT_SYMBOL(pskb_expand_head);
1529 /* Make private copy of skb with writable head and some headroom */
1531 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1533 struct sk_buff *skb2;
1534 int delta = headroom - skb_headroom(skb);
1536 if (delta <= 0)
1537 skb2 = pskb_copy(skb, GFP_ATOMIC);
1538 else {
1539 skb2 = skb_clone(skb, GFP_ATOMIC);
1540 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1541 GFP_ATOMIC)) {
1542 kfree_skb(skb2);
1543 skb2 = NULL;
1546 return skb2;
1548 EXPORT_SYMBOL(skb_realloc_headroom);
1551 * skb_copy_expand - copy and expand sk_buff
1552 * @skb: buffer to copy
1553 * @newheadroom: new free bytes at head
1554 * @newtailroom: new free bytes at tail
1555 * @gfp_mask: allocation priority
1557 * Make a copy of both an &sk_buff and its data and while doing so
1558 * allocate additional space.
1560 * This is used when the caller wishes to modify the data and needs a
1561 * private copy of the data to alter as well as more space for new fields.
1562 * Returns %NULL on failure or the pointer to the buffer
1563 * on success. The returned buffer has a reference count of 1.
1565 * You must pass %GFP_ATOMIC as the allocation priority if this function
1566 * is called from an interrupt.
1568 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1569 int newheadroom, int newtailroom,
1570 gfp_t gfp_mask)
1573 * Allocate the copy buffer
1575 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1576 gfp_mask, skb_alloc_rx_flag(skb),
1577 NUMA_NO_NODE);
1578 int oldheadroom = skb_headroom(skb);
1579 int head_copy_len, head_copy_off;
1581 if (!n)
1582 return NULL;
1584 skb_reserve(n, newheadroom);
1586 /* Set the tail pointer and length */
1587 skb_put(n, skb->len);
1589 head_copy_len = oldheadroom;
1590 head_copy_off = 0;
1591 if (newheadroom <= head_copy_len)
1592 head_copy_len = newheadroom;
1593 else
1594 head_copy_off = newheadroom - head_copy_len;
1596 /* Copy the linear header and data. */
1597 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1598 skb->len + head_copy_len));
1600 copy_skb_header(n, skb);
1602 skb_headers_offset_update(n, newheadroom - oldheadroom);
1604 return n;
1606 EXPORT_SYMBOL(skb_copy_expand);
1609 * __skb_pad - zero pad the tail of an skb
1610 * @skb: buffer to pad
1611 * @pad: space to pad
1612 * @free_on_error: free buffer on error
1614 * Ensure that a buffer is followed by a padding area that is zero
1615 * filled. Used by network drivers which may DMA or transfer data
1616 * beyond the buffer end onto the wire.
1618 * May return error in out of memory cases. The skb is freed on error
1619 * if @free_on_error is true.
1622 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1624 int err;
1625 int ntail;
1627 /* If the skbuff is non linear tailroom is always zero.. */
1628 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1629 memset(skb->data+skb->len, 0, pad);
1630 return 0;
1633 ntail = skb->data_len + pad - (skb->end - skb->tail);
1634 if (likely(skb_cloned(skb) || ntail > 0)) {
1635 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1636 if (unlikely(err))
1637 goto free_skb;
1640 /* FIXME: The use of this function with non-linear skb's really needs
1641 * to be audited.
1643 err = skb_linearize(skb);
1644 if (unlikely(err))
1645 goto free_skb;
1647 memset(skb->data + skb->len, 0, pad);
1648 return 0;
1650 free_skb:
1651 if (free_on_error)
1652 kfree_skb(skb);
1653 return err;
1655 EXPORT_SYMBOL(__skb_pad);
1658 * pskb_put - add data to the tail of a potentially fragmented buffer
1659 * @skb: start of the buffer to use
1660 * @tail: tail fragment of the buffer to use
1661 * @len: amount of data to add
1663 * This function extends the used data area of the potentially
1664 * fragmented buffer. @tail must be the last fragment of @skb -- or
1665 * @skb itself. If this would exceed the total buffer size the kernel
1666 * will panic. A pointer to the first byte of the extra data is
1667 * returned.
1670 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1672 if (tail != skb) {
1673 skb->data_len += len;
1674 skb->len += len;
1676 return skb_put(tail, len);
1678 EXPORT_SYMBOL_GPL(pskb_put);
1681 * skb_put - add data to a buffer
1682 * @skb: buffer to use
1683 * @len: amount of data to add
1685 * This function extends the used data area of the buffer. If this would
1686 * exceed the total buffer size the kernel will panic. A pointer to the
1687 * first byte of the extra data is returned.
1689 void *skb_put(struct sk_buff *skb, unsigned int len)
1691 void *tmp = skb_tail_pointer(skb);
1692 SKB_LINEAR_ASSERT(skb);
1693 skb->tail += len;
1694 skb->len += len;
1695 if (unlikely(skb->tail > skb->end))
1696 skb_over_panic(skb, len, __builtin_return_address(0));
1697 return tmp;
1699 EXPORT_SYMBOL(skb_put);
1702 * skb_push - add data to the start of a buffer
1703 * @skb: buffer to use
1704 * @len: amount of data to add
1706 * This function extends the used data area of the buffer at the buffer
1707 * start. If this would exceed the total buffer headroom the kernel will
1708 * panic. A pointer to the first byte of the extra data is returned.
1710 void *skb_push(struct sk_buff *skb, unsigned int len)
1712 skb->data -= len;
1713 skb->len += len;
1714 if (unlikely(skb->data<skb->head))
1715 skb_under_panic(skb, len, __builtin_return_address(0));
1716 return skb->data;
1718 EXPORT_SYMBOL(skb_push);
1721 * skb_pull - remove data from the start of a buffer
1722 * @skb: buffer to use
1723 * @len: amount of data to remove
1725 * This function removes data from the start of a buffer, returning
1726 * the memory to the headroom. A pointer to the next data in the buffer
1727 * is returned. Once the data has been pulled future pushes will overwrite
1728 * the old data.
1730 void *skb_pull(struct sk_buff *skb, unsigned int len)
1732 return skb_pull_inline(skb, len);
1734 EXPORT_SYMBOL(skb_pull);
1737 * skb_trim - remove end from a buffer
1738 * @skb: buffer to alter
1739 * @len: new length
1741 * Cut the length of a buffer down by removing data from the tail. If
1742 * the buffer is already under the length specified it is not modified.
1743 * The skb must be linear.
1745 void skb_trim(struct sk_buff *skb, unsigned int len)
1747 if (skb->len > len)
1748 __skb_trim(skb, len);
1750 EXPORT_SYMBOL(skb_trim);
1752 /* Trims skb to length len. It can change skb pointers.
1755 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1757 struct sk_buff **fragp;
1758 struct sk_buff *frag;
1759 int offset = skb_headlen(skb);
1760 int nfrags = skb_shinfo(skb)->nr_frags;
1761 int i;
1762 int err;
1764 if (skb_cloned(skb) &&
1765 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1766 return err;
1768 i = 0;
1769 if (offset >= len)
1770 goto drop_pages;
1772 for (; i < nfrags; i++) {
1773 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1775 if (end < len) {
1776 offset = end;
1777 continue;
1780 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1782 drop_pages:
1783 skb_shinfo(skb)->nr_frags = i;
1785 for (; i < nfrags; i++)
1786 skb_frag_unref(skb, i);
1788 if (skb_has_frag_list(skb))
1789 skb_drop_fraglist(skb);
1790 goto done;
1793 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1794 fragp = &frag->next) {
1795 int end = offset + frag->len;
1797 if (skb_shared(frag)) {
1798 struct sk_buff *nfrag;
1800 nfrag = skb_clone(frag, GFP_ATOMIC);
1801 if (unlikely(!nfrag))
1802 return -ENOMEM;
1804 nfrag->next = frag->next;
1805 consume_skb(frag);
1806 frag = nfrag;
1807 *fragp = frag;
1810 if (end < len) {
1811 offset = end;
1812 continue;
1815 if (end > len &&
1816 unlikely((err = pskb_trim(frag, len - offset))))
1817 return err;
1819 if (frag->next)
1820 skb_drop_list(&frag->next);
1821 break;
1824 done:
1825 if (len > skb_headlen(skb)) {
1826 skb->data_len -= skb->len - len;
1827 skb->len = len;
1828 } else {
1829 skb->len = len;
1830 skb->data_len = 0;
1831 skb_set_tail_pointer(skb, len);
1834 if (!skb->sk || skb->destructor == sock_edemux)
1835 skb_condense(skb);
1836 return 0;
1838 EXPORT_SYMBOL(___pskb_trim);
1841 * __pskb_pull_tail - advance tail of skb header
1842 * @skb: buffer to reallocate
1843 * @delta: number of bytes to advance tail
1845 * The function makes a sense only on a fragmented &sk_buff,
1846 * it expands header moving its tail forward and copying necessary
1847 * data from fragmented part.
1849 * &sk_buff MUST have reference count of 1.
1851 * Returns %NULL (and &sk_buff does not change) if pull failed
1852 * or value of new tail of skb in the case of success.
1854 * All the pointers pointing into skb header may change and must be
1855 * reloaded after call to this function.
1858 /* Moves tail of skb head forward, copying data from fragmented part,
1859 * when it is necessary.
1860 * 1. It may fail due to malloc failure.
1861 * 2. It may change skb pointers.
1863 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1865 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
1867 /* If skb has not enough free space at tail, get new one
1868 * plus 128 bytes for future expansions. If we have enough
1869 * room at tail, reallocate without expansion only if skb is cloned.
1871 int i, k, eat = (skb->tail + delta) - skb->end;
1873 if (eat > 0 || skb_cloned(skb)) {
1874 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1875 GFP_ATOMIC))
1876 return NULL;
1879 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
1880 skb_tail_pointer(skb), delta));
1882 /* Optimization: no fragments, no reasons to preestimate
1883 * size of pulled pages. Superb.
1885 if (!skb_has_frag_list(skb))
1886 goto pull_pages;
1888 /* Estimate size of pulled pages. */
1889 eat = delta;
1890 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1891 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1893 if (size >= eat)
1894 goto pull_pages;
1895 eat -= size;
1898 /* If we need update frag list, we are in troubles.
1899 * Certainly, it is possible to add an offset to skb data,
1900 * but taking into account that pulling is expected to
1901 * be very rare operation, it is worth to fight against
1902 * further bloating skb head and crucify ourselves here instead.
1903 * Pure masohism, indeed. 8)8)
1905 if (eat) {
1906 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1907 struct sk_buff *clone = NULL;
1908 struct sk_buff *insp = NULL;
1910 do {
1911 BUG_ON(!list);
1913 if (list->len <= eat) {
1914 /* Eaten as whole. */
1915 eat -= list->len;
1916 list = list->next;
1917 insp = list;
1918 } else {
1919 /* Eaten partially. */
1921 if (skb_shared(list)) {
1922 /* Sucks! We need to fork list. :-( */
1923 clone = skb_clone(list, GFP_ATOMIC);
1924 if (!clone)
1925 return NULL;
1926 insp = list->next;
1927 list = clone;
1928 } else {
1929 /* This may be pulled without
1930 * problems. */
1931 insp = list;
1933 if (!pskb_pull(list, eat)) {
1934 kfree_skb(clone);
1935 return NULL;
1937 break;
1939 } while (eat);
1941 /* Free pulled out fragments. */
1942 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1943 skb_shinfo(skb)->frag_list = list->next;
1944 kfree_skb(list);
1946 /* And insert new clone at head. */
1947 if (clone) {
1948 clone->next = list;
1949 skb_shinfo(skb)->frag_list = clone;
1952 /* Success! Now we may commit changes to skb data. */
1954 pull_pages:
1955 eat = delta;
1956 k = 0;
1957 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1958 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1960 if (size <= eat) {
1961 skb_frag_unref(skb, i);
1962 eat -= size;
1963 } else {
1964 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1965 if (eat) {
1966 skb_shinfo(skb)->frags[k].page_offset += eat;
1967 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1968 if (!i)
1969 goto end;
1970 eat = 0;
1972 k++;
1975 skb_shinfo(skb)->nr_frags = k;
1977 end:
1978 skb->tail += delta;
1979 skb->data_len -= delta;
1981 if (!skb->data_len)
1982 skb_zcopy_clear(skb, false);
1984 return skb_tail_pointer(skb);
1986 EXPORT_SYMBOL(__pskb_pull_tail);
1989 * skb_copy_bits - copy bits from skb to kernel buffer
1990 * @skb: source skb
1991 * @offset: offset in source
1992 * @to: destination buffer
1993 * @len: number of bytes to copy
1995 * Copy the specified number of bytes from the source skb to the
1996 * destination buffer.
1998 * CAUTION ! :
1999 * If its prototype is ever changed,
2000 * check arch/{*}/net/{*}.S files,
2001 * since it is called from BPF assembly code.
2003 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2005 int start = skb_headlen(skb);
2006 struct sk_buff *frag_iter;
2007 int i, copy;
2009 if (offset > (int)skb->len - len)
2010 goto fault;
2012 /* Copy header. */
2013 if ((copy = start - offset) > 0) {
2014 if (copy > len)
2015 copy = len;
2016 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2017 if ((len -= copy) == 0)
2018 return 0;
2019 offset += copy;
2020 to += copy;
2023 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2024 int end;
2025 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2027 WARN_ON(start > offset + len);
2029 end = start + skb_frag_size(f);
2030 if ((copy = end - offset) > 0) {
2031 u32 p_off, p_len, copied;
2032 struct page *p;
2033 u8 *vaddr;
2035 if (copy > len)
2036 copy = len;
2038 skb_frag_foreach_page(f,
2039 f->page_offset + offset - start,
2040 copy, p, p_off, p_len, copied) {
2041 vaddr = kmap_atomic(p);
2042 memcpy(to + copied, vaddr + p_off, p_len);
2043 kunmap_atomic(vaddr);
2046 if ((len -= copy) == 0)
2047 return 0;
2048 offset += copy;
2049 to += copy;
2051 start = end;
2054 skb_walk_frags(skb, frag_iter) {
2055 int end;
2057 WARN_ON(start > offset + len);
2059 end = start + frag_iter->len;
2060 if ((copy = end - offset) > 0) {
2061 if (copy > len)
2062 copy = len;
2063 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2064 goto fault;
2065 if ((len -= copy) == 0)
2066 return 0;
2067 offset += copy;
2068 to += copy;
2070 start = end;
2073 if (!len)
2074 return 0;
2076 fault:
2077 return -EFAULT;
2079 EXPORT_SYMBOL(skb_copy_bits);
2082 * Callback from splice_to_pipe(), if we need to release some pages
2083 * at the end of the spd in case we error'ed out in filling the pipe.
2085 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2087 put_page(spd->pages[i]);
2090 static struct page *linear_to_page(struct page *page, unsigned int *len,
2091 unsigned int *offset,
2092 struct sock *sk)
2094 struct page_frag *pfrag = sk_page_frag(sk);
2096 if (!sk_page_frag_refill(sk, pfrag))
2097 return NULL;
2099 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2101 memcpy(page_address(pfrag->page) + pfrag->offset,
2102 page_address(page) + *offset, *len);
2103 *offset = pfrag->offset;
2104 pfrag->offset += *len;
2106 return pfrag->page;
2109 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2110 struct page *page,
2111 unsigned int offset)
2113 return spd->nr_pages &&
2114 spd->pages[spd->nr_pages - 1] == page &&
2115 (spd->partial[spd->nr_pages - 1].offset +
2116 spd->partial[spd->nr_pages - 1].len == offset);
2120 * Fill page/offset/length into spd, if it can hold more pages.
2122 static bool spd_fill_page(struct splice_pipe_desc *spd,
2123 struct pipe_inode_info *pipe, struct page *page,
2124 unsigned int *len, unsigned int offset,
2125 bool linear,
2126 struct sock *sk)
2128 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2129 return true;
2131 if (linear) {
2132 page = linear_to_page(page, len, &offset, sk);
2133 if (!page)
2134 return true;
2136 if (spd_can_coalesce(spd, page, offset)) {
2137 spd->partial[spd->nr_pages - 1].len += *len;
2138 return false;
2140 get_page(page);
2141 spd->pages[spd->nr_pages] = page;
2142 spd->partial[spd->nr_pages].len = *len;
2143 spd->partial[spd->nr_pages].offset = offset;
2144 spd->nr_pages++;
2146 return false;
2149 static bool __splice_segment(struct page *page, unsigned int poff,
2150 unsigned int plen, unsigned int *off,
2151 unsigned int *len,
2152 struct splice_pipe_desc *spd, bool linear,
2153 struct sock *sk,
2154 struct pipe_inode_info *pipe)
2156 if (!*len)
2157 return true;
2159 /* skip this segment if already processed */
2160 if (*off >= plen) {
2161 *off -= plen;
2162 return false;
2165 /* ignore any bits we already processed */
2166 poff += *off;
2167 plen -= *off;
2168 *off = 0;
2170 do {
2171 unsigned int flen = min(*len, plen);
2173 if (spd_fill_page(spd, pipe, page, &flen, poff,
2174 linear, sk))
2175 return true;
2176 poff += flen;
2177 plen -= flen;
2178 *len -= flen;
2179 } while (*len && plen);
2181 return false;
2185 * Map linear and fragment data from the skb to spd. It reports true if the
2186 * pipe is full or if we already spliced the requested length.
2188 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2189 unsigned int *offset, unsigned int *len,
2190 struct splice_pipe_desc *spd, struct sock *sk)
2192 int seg;
2193 struct sk_buff *iter;
2195 /* map the linear part :
2196 * If skb->head_frag is set, this 'linear' part is backed by a
2197 * fragment, and if the head is not shared with any clones then
2198 * we can avoid a copy since we own the head portion of this page.
2200 if (__splice_segment(virt_to_page(skb->data),
2201 (unsigned long) skb->data & (PAGE_SIZE - 1),
2202 skb_headlen(skb),
2203 offset, len, spd,
2204 skb_head_is_locked(skb),
2205 sk, pipe))
2206 return true;
2209 * then map the fragments
2211 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2212 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2214 if (__splice_segment(skb_frag_page(f),
2215 f->page_offset, skb_frag_size(f),
2216 offset, len, spd, false, sk, pipe))
2217 return true;
2220 skb_walk_frags(skb, iter) {
2221 if (*offset >= iter->len) {
2222 *offset -= iter->len;
2223 continue;
2225 /* __skb_splice_bits() only fails if the output has no room
2226 * left, so no point in going over the frag_list for the error
2227 * case.
2229 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2230 return true;
2233 return false;
2237 * Map data from the skb to a pipe. Should handle both the linear part,
2238 * the fragments, and the frag list.
2240 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2241 struct pipe_inode_info *pipe, unsigned int tlen,
2242 unsigned int flags)
2244 struct partial_page partial[MAX_SKB_FRAGS];
2245 struct page *pages[MAX_SKB_FRAGS];
2246 struct splice_pipe_desc spd = {
2247 .pages = pages,
2248 .partial = partial,
2249 .nr_pages_max = MAX_SKB_FRAGS,
2250 .ops = &nosteal_pipe_buf_ops,
2251 .spd_release = sock_spd_release,
2253 int ret = 0;
2255 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2257 if (spd.nr_pages)
2258 ret = splice_to_pipe(pipe, &spd);
2260 return ret;
2262 EXPORT_SYMBOL_GPL(skb_splice_bits);
2264 /* Send skb data on a socket. Socket must be locked. */
2265 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2266 int len)
2268 unsigned int orig_len = len;
2269 struct sk_buff *head = skb;
2270 unsigned short fragidx;
2271 int slen, ret;
2273 do_frag_list:
2275 /* Deal with head data */
2276 while (offset < skb_headlen(skb) && len) {
2277 struct kvec kv;
2278 struct msghdr msg;
2280 slen = min_t(int, len, skb_headlen(skb) - offset);
2281 kv.iov_base = skb->data + offset;
2282 kv.iov_len = slen;
2283 memset(&msg, 0, sizeof(msg));
2285 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2286 if (ret <= 0)
2287 goto error;
2289 offset += ret;
2290 len -= ret;
2293 /* All the data was skb head? */
2294 if (!len)
2295 goto out;
2297 /* Make offset relative to start of frags */
2298 offset -= skb_headlen(skb);
2300 /* Find where we are in frag list */
2301 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2302 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2304 if (offset < frag->size)
2305 break;
2307 offset -= frag->size;
2310 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2311 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2313 slen = min_t(size_t, len, frag->size - offset);
2315 while (slen) {
2316 ret = kernel_sendpage_locked(sk, frag->page.p,
2317 frag->page_offset + offset,
2318 slen, MSG_DONTWAIT);
2319 if (ret <= 0)
2320 goto error;
2322 len -= ret;
2323 offset += ret;
2324 slen -= ret;
2327 offset = 0;
2330 if (len) {
2331 /* Process any frag lists */
2333 if (skb == head) {
2334 if (skb_has_frag_list(skb)) {
2335 skb = skb_shinfo(skb)->frag_list;
2336 goto do_frag_list;
2338 } else if (skb->next) {
2339 skb = skb->next;
2340 goto do_frag_list;
2344 out:
2345 return orig_len - len;
2347 error:
2348 return orig_len == len ? ret : orig_len - len;
2350 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2352 /* Send skb data on a socket. */
2353 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2355 int ret = 0;
2357 lock_sock(sk);
2358 ret = skb_send_sock_locked(sk, skb, offset, len);
2359 release_sock(sk);
2361 return ret;
2363 EXPORT_SYMBOL_GPL(skb_send_sock);
2366 * skb_store_bits - store bits from kernel buffer to skb
2367 * @skb: destination buffer
2368 * @offset: offset in destination
2369 * @from: source buffer
2370 * @len: number of bytes to copy
2372 * Copy the specified number of bytes from the source buffer to the
2373 * destination skb. This function handles all the messy bits of
2374 * traversing fragment lists and such.
2377 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2379 int start = skb_headlen(skb);
2380 struct sk_buff *frag_iter;
2381 int i, copy;
2383 if (offset > (int)skb->len - len)
2384 goto fault;
2386 if ((copy = start - offset) > 0) {
2387 if (copy > len)
2388 copy = len;
2389 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2390 if ((len -= copy) == 0)
2391 return 0;
2392 offset += copy;
2393 from += copy;
2396 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2397 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2398 int end;
2400 WARN_ON(start > offset + len);
2402 end = start + skb_frag_size(frag);
2403 if ((copy = end - offset) > 0) {
2404 u32 p_off, p_len, copied;
2405 struct page *p;
2406 u8 *vaddr;
2408 if (copy > len)
2409 copy = len;
2411 skb_frag_foreach_page(frag,
2412 frag->page_offset + offset - start,
2413 copy, p, p_off, p_len, copied) {
2414 vaddr = kmap_atomic(p);
2415 memcpy(vaddr + p_off, from + copied, p_len);
2416 kunmap_atomic(vaddr);
2419 if ((len -= copy) == 0)
2420 return 0;
2421 offset += copy;
2422 from += copy;
2424 start = end;
2427 skb_walk_frags(skb, frag_iter) {
2428 int end;
2430 WARN_ON(start > offset + len);
2432 end = start + frag_iter->len;
2433 if ((copy = end - offset) > 0) {
2434 if (copy > len)
2435 copy = len;
2436 if (skb_store_bits(frag_iter, offset - start,
2437 from, copy))
2438 goto fault;
2439 if ((len -= copy) == 0)
2440 return 0;
2441 offset += copy;
2442 from += copy;
2444 start = end;
2446 if (!len)
2447 return 0;
2449 fault:
2450 return -EFAULT;
2452 EXPORT_SYMBOL(skb_store_bits);
2454 /* Checksum skb data. */
2455 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2456 __wsum csum, const struct skb_checksum_ops *ops)
2458 int start = skb_headlen(skb);
2459 int i, copy = start - offset;
2460 struct sk_buff *frag_iter;
2461 int pos = 0;
2463 /* Checksum header. */
2464 if (copy > 0) {
2465 if (copy > len)
2466 copy = len;
2467 csum = ops->update(skb->data + offset, copy, csum);
2468 if ((len -= copy) == 0)
2469 return csum;
2470 offset += copy;
2471 pos = copy;
2474 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2475 int end;
2476 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2478 WARN_ON(start > offset + len);
2480 end = start + skb_frag_size(frag);
2481 if ((copy = end - offset) > 0) {
2482 u32 p_off, p_len, copied;
2483 struct page *p;
2484 __wsum csum2;
2485 u8 *vaddr;
2487 if (copy > len)
2488 copy = len;
2490 skb_frag_foreach_page(frag,
2491 frag->page_offset + offset - start,
2492 copy, p, p_off, p_len, copied) {
2493 vaddr = kmap_atomic(p);
2494 csum2 = ops->update(vaddr + p_off, p_len, 0);
2495 kunmap_atomic(vaddr);
2496 csum = ops->combine(csum, csum2, pos, p_len);
2497 pos += p_len;
2500 if (!(len -= copy))
2501 return csum;
2502 offset += copy;
2504 start = end;
2507 skb_walk_frags(skb, frag_iter) {
2508 int end;
2510 WARN_ON(start > offset + len);
2512 end = start + frag_iter->len;
2513 if ((copy = end - offset) > 0) {
2514 __wsum csum2;
2515 if (copy > len)
2516 copy = len;
2517 csum2 = __skb_checksum(frag_iter, offset - start,
2518 copy, 0, ops);
2519 csum = ops->combine(csum, csum2, pos, copy);
2520 if ((len -= copy) == 0)
2521 return csum;
2522 offset += copy;
2523 pos += copy;
2525 start = end;
2527 BUG_ON(len);
2529 return csum;
2531 EXPORT_SYMBOL(__skb_checksum);
2533 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2534 int len, __wsum csum)
2536 const struct skb_checksum_ops ops = {
2537 .update = csum_partial_ext,
2538 .combine = csum_block_add_ext,
2541 return __skb_checksum(skb, offset, len, csum, &ops);
2543 EXPORT_SYMBOL(skb_checksum);
2545 /* Both of above in one bottle. */
2547 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2548 u8 *to, int len, __wsum csum)
2550 int start = skb_headlen(skb);
2551 int i, copy = start - offset;
2552 struct sk_buff *frag_iter;
2553 int pos = 0;
2555 /* Copy header. */
2556 if (copy > 0) {
2557 if (copy > len)
2558 copy = len;
2559 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2560 copy, csum);
2561 if ((len -= copy) == 0)
2562 return csum;
2563 offset += copy;
2564 to += copy;
2565 pos = copy;
2568 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2569 int end;
2571 WARN_ON(start > offset + len);
2573 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2574 if ((copy = end - offset) > 0) {
2575 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2576 u32 p_off, p_len, copied;
2577 struct page *p;
2578 __wsum csum2;
2579 u8 *vaddr;
2581 if (copy > len)
2582 copy = len;
2584 skb_frag_foreach_page(frag,
2585 frag->page_offset + offset - start,
2586 copy, p, p_off, p_len, copied) {
2587 vaddr = kmap_atomic(p);
2588 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2589 to + copied,
2590 p_len, 0);
2591 kunmap_atomic(vaddr);
2592 csum = csum_block_add(csum, csum2, pos);
2593 pos += p_len;
2596 if (!(len -= copy))
2597 return csum;
2598 offset += copy;
2599 to += copy;
2601 start = end;
2604 skb_walk_frags(skb, frag_iter) {
2605 __wsum csum2;
2606 int end;
2608 WARN_ON(start > offset + len);
2610 end = start + frag_iter->len;
2611 if ((copy = end - offset) > 0) {
2612 if (copy > len)
2613 copy = len;
2614 csum2 = skb_copy_and_csum_bits(frag_iter,
2615 offset - start,
2616 to, copy, 0);
2617 csum = csum_block_add(csum, csum2, pos);
2618 if ((len -= copy) == 0)
2619 return csum;
2620 offset += copy;
2621 to += copy;
2622 pos += copy;
2624 start = end;
2626 BUG_ON(len);
2627 return csum;
2629 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2631 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2633 net_warn_ratelimited(
2634 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2635 __func__);
2636 return 0;
2639 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2640 int offset, int len)
2642 net_warn_ratelimited(
2643 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2644 __func__);
2645 return 0;
2648 static const struct skb_checksum_ops default_crc32c_ops = {
2649 .update = warn_crc32c_csum_update,
2650 .combine = warn_crc32c_csum_combine,
2653 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2654 &default_crc32c_ops;
2655 EXPORT_SYMBOL(crc32c_csum_stub);
2658 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2659 * @from: source buffer
2661 * Calculates the amount of linear headroom needed in the 'to' skb passed
2662 * into skb_zerocopy().
2664 unsigned int
2665 skb_zerocopy_headlen(const struct sk_buff *from)
2667 unsigned int hlen = 0;
2669 if (!from->head_frag ||
2670 skb_headlen(from) < L1_CACHE_BYTES ||
2671 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2672 hlen = skb_headlen(from);
2674 if (skb_has_frag_list(from))
2675 hlen = from->len;
2677 return hlen;
2679 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2682 * skb_zerocopy - Zero copy skb to skb
2683 * @to: destination buffer
2684 * @from: source buffer
2685 * @len: number of bytes to copy from source buffer
2686 * @hlen: size of linear headroom in destination buffer
2688 * Copies up to `len` bytes from `from` to `to` by creating references
2689 * to the frags in the source buffer.
2691 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2692 * headroom in the `to` buffer.
2694 * Return value:
2695 * 0: everything is OK
2696 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2697 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2700 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2702 int i, j = 0;
2703 int plen = 0; /* length of skb->head fragment */
2704 int ret;
2705 struct page *page;
2706 unsigned int offset;
2708 BUG_ON(!from->head_frag && !hlen);
2710 /* dont bother with small payloads */
2711 if (len <= skb_tailroom(to))
2712 return skb_copy_bits(from, 0, skb_put(to, len), len);
2714 if (hlen) {
2715 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2716 if (unlikely(ret))
2717 return ret;
2718 len -= hlen;
2719 } else {
2720 plen = min_t(int, skb_headlen(from), len);
2721 if (plen) {
2722 page = virt_to_head_page(from->head);
2723 offset = from->data - (unsigned char *)page_address(page);
2724 __skb_fill_page_desc(to, 0, page, offset, plen);
2725 get_page(page);
2726 j = 1;
2727 len -= plen;
2731 to->truesize += len + plen;
2732 to->len += len + plen;
2733 to->data_len += len + plen;
2735 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2736 skb_tx_error(from);
2737 return -ENOMEM;
2739 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2741 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2742 if (!len)
2743 break;
2744 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2745 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2746 len -= skb_shinfo(to)->frags[j].size;
2747 skb_frag_ref(to, j);
2748 j++;
2750 skb_shinfo(to)->nr_frags = j;
2752 return 0;
2754 EXPORT_SYMBOL_GPL(skb_zerocopy);
2756 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2758 __wsum csum;
2759 long csstart;
2761 if (skb->ip_summed == CHECKSUM_PARTIAL)
2762 csstart = skb_checksum_start_offset(skb);
2763 else
2764 csstart = skb_headlen(skb);
2766 BUG_ON(csstart > skb_headlen(skb));
2768 skb_copy_from_linear_data(skb, to, csstart);
2770 csum = 0;
2771 if (csstart != skb->len)
2772 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2773 skb->len - csstart, 0);
2775 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2776 long csstuff = csstart + skb->csum_offset;
2778 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2781 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2784 * skb_dequeue - remove from the head of the queue
2785 * @list: list to dequeue from
2787 * Remove the head of the list. The list lock is taken so the function
2788 * may be used safely with other locking list functions. The head item is
2789 * returned or %NULL if the list is empty.
2792 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2794 unsigned long flags;
2795 struct sk_buff *result;
2797 spin_lock_irqsave(&list->lock, flags);
2798 result = __skb_dequeue(list);
2799 spin_unlock_irqrestore(&list->lock, flags);
2800 return result;
2802 EXPORT_SYMBOL(skb_dequeue);
2805 * skb_dequeue_tail - remove from the tail of the queue
2806 * @list: list to dequeue from
2808 * Remove the tail of the list. The list lock is taken so the function
2809 * may be used safely with other locking list functions. The tail item is
2810 * returned or %NULL if the list is empty.
2812 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2814 unsigned long flags;
2815 struct sk_buff *result;
2817 spin_lock_irqsave(&list->lock, flags);
2818 result = __skb_dequeue_tail(list);
2819 spin_unlock_irqrestore(&list->lock, flags);
2820 return result;
2822 EXPORT_SYMBOL(skb_dequeue_tail);
2825 * skb_queue_purge - empty a list
2826 * @list: list to empty
2828 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2829 * the list and one reference dropped. This function takes the list
2830 * lock and is atomic with respect to other list locking functions.
2832 void skb_queue_purge(struct sk_buff_head *list)
2834 struct sk_buff *skb;
2835 while ((skb = skb_dequeue(list)) != NULL)
2836 kfree_skb(skb);
2838 EXPORT_SYMBOL(skb_queue_purge);
2841 * skb_rbtree_purge - empty a skb rbtree
2842 * @root: root of the rbtree to empty
2844 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2845 * the list and one reference dropped. This function does not take
2846 * any lock. Synchronization should be handled by the caller (e.g., TCP
2847 * out-of-order queue is protected by the socket lock).
2849 void skb_rbtree_purge(struct rb_root *root)
2851 struct rb_node *p = rb_first(root);
2853 while (p) {
2854 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
2856 p = rb_next(p);
2857 rb_erase(&skb->rbnode, root);
2858 kfree_skb(skb);
2863 * skb_queue_head - queue a buffer at the list head
2864 * @list: list to use
2865 * @newsk: buffer to queue
2867 * Queue a buffer at the start of the list. This function takes the
2868 * list lock and can be used safely with other locking &sk_buff functions
2869 * safely.
2871 * A buffer cannot be placed on two lists at the same time.
2873 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2875 unsigned long flags;
2877 spin_lock_irqsave(&list->lock, flags);
2878 __skb_queue_head(list, newsk);
2879 spin_unlock_irqrestore(&list->lock, flags);
2881 EXPORT_SYMBOL(skb_queue_head);
2884 * skb_queue_tail - queue a buffer at the list tail
2885 * @list: list to use
2886 * @newsk: buffer to queue
2888 * Queue a buffer at the tail of the list. This function takes the
2889 * list lock and can be used safely with other locking &sk_buff functions
2890 * safely.
2892 * A buffer cannot be placed on two lists at the same time.
2894 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2896 unsigned long flags;
2898 spin_lock_irqsave(&list->lock, flags);
2899 __skb_queue_tail(list, newsk);
2900 spin_unlock_irqrestore(&list->lock, flags);
2902 EXPORT_SYMBOL(skb_queue_tail);
2905 * skb_unlink - remove a buffer from a list
2906 * @skb: buffer to remove
2907 * @list: list to use
2909 * Remove a packet from a list. The list locks are taken and this
2910 * function is atomic with respect to other list locked calls
2912 * You must know what list the SKB is on.
2914 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2916 unsigned long flags;
2918 spin_lock_irqsave(&list->lock, flags);
2919 __skb_unlink(skb, list);
2920 spin_unlock_irqrestore(&list->lock, flags);
2922 EXPORT_SYMBOL(skb_unlink);
2925 * skb_append - append a buffer
2926 * @old: buffer to insert after
2927 * @newsk: buffer to insert
2928 * @list: list to use
2930 * Place a packet after a given packet in a list. The list locks are taken
2931 * and this function is atomic with respect to other list locked calls.
2932 * A buffer cannot be placed on two lists at the same time.
2934 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2936 unsigned long flags;
2938 spin_lock_irqsave(&list->lock, flags);
2939 __skb_queue_after(list, old, newsk);
2940 spin_unlock_irqrestore(&list->lock, flags);
2942 EXPORT_SYMBOL(skb_append);
2945 * skb_insert - insert a buffer
2946 * @old: buffer to insert before
2947 * @newsk: buffer to insert
2948 * @list: list to use
2950 * Place a packet before a given packet in a list. The list locks are
2951 * taken and this function is atomic with respect to other list locked
2952 * calls.
2954 * A buffer cannot be placed on two lists at the same time.
2956 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2958 unsigned long flags;
2960 spin_lock_irqsave(&list->lock, flags);
2961 __skb_insert(newsk, old->prev, old, list);
2962 spin_unlock_irqrestore(&list->lock, flags);
2964 EXPORT_SYMBOL(skb_insert);
2966 static inline void skb_split_inside_header(struct sk_buff *skb,
2967 struct sk_buff* skb1,
2968 const u32 len, const int pos)
2970 int i;
2972 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2973 pos - len);
2974 /* And move data appendix as is. */
2975 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2976 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2978 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2979 skb_shinfo(skb)->nr_frags = 0;
2980 skb1->data_len = skb->data_len;
2981 skb1->len += skb1->data_len;
2982 skb->data_len = 0;
2983 skb->len = len;
2984 skb_set_tail_pointer(skb, len);
2987 static inline void skb_split_no_header(struct sk_buff *skb,
2988 struct sk_buff* skb1,
2989 const u32 len, int pos)
2991 int i, k = 0;
2992 const int nfrags = skb_shinfo(skb)->nr_frags;
2994 skb_shinfo(skb)->nr_frags = 0;
2995 skb1->len = skb1->data_len = skb->len - len;
2996 skb->len = len;
2997 skb->data_len = len - pos;
2999 for (i = 0; i < nfrags; i++) {
3000 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3002 if (pos + size > len) {
3003 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3005 if (pos < len) {
3006 /* Split frag.
3007 * We have two variants in this case:
3008 * 1. Move all the frag to the second
3009 * part, if it is possible. F.e.
3010 * this approach is mandatory for TUX,
3011 * where splitting is expensive.
3012 * 2. Split is accurately. We make this.
3014 skb_frag_ref(skb, i);
3015 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
3016 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3017 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3018 skb_shinfo(skb)->nr_frags++;
3020 k++;
3021 } else
3022 skb_shinfo(skb)->nr_frags++;
3023 pos += size;
3025 skb_shinfo(skb1)->nr_frags = k;
3029 * skb_split - Split fragmented skb to two parts at length len.
3030 * @skb: the buffer to split
3031 * @skb1: the buffer to receive the second part
3032 * @len: new length for skb
3034 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3036 int pos = skb_headlen(skb);
3038 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3039 SKBTX_SHARED_FRAG;
3040 skb_zerocopy_clone(skb1, skb, 0);
3041 if (len < pos) /* Split line is inside header. */
3042 skb_split_inside_header(skb, skb1, len, pos);
3043 else /* Second chunk has no header, nothing to copy. */
3044 skb_split_no_header(skb, skb1, len, pos);
3046 EXPORT_SYMBOL(skb_split);
3048 /* Shifting from/to a cloned skb is a no-go.
3050 * Caller cannot keep skb_shinfo related pointers past calling here!
3052 static int skb_prepare_for_shift(struct sk_buff *skb)
3054 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3058 * skb_shift - Shifts paged data partially from skb to another
3059 * @tgt: buffer into which tail data gets added
3060 * @skb: buffer from which the paged data comes from
3061 * @shiftlen: shift up to this many bytes
3063 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3064 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3065 * It's up to caller to free skb if everything was shifted.
3067 * If @tgt runs out of frags, the whole operation is aborted.
3069 * Skb cannot include anything else but paged data while tgt is allowed
3070 * to have non-paged data as well.
3072 * TODO: full sized shift could be optimized but that would need
3073 * specialized skb free'er to handle frags without up-to-date nr_frags.
3075 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3077 int from, to, merge, todo;
3078 struct skb_frag_struct *fragfrom, *fragto;
3080 BUG_ON(shiftlen > skb->len);
3082 if (skb_headlen(skb))
3083 return 0;
3084 if (skb_zcopy(tgt) || skb_zcopy(skb))
3085 return 0;
3087 todo = shiftlen;
3088 from = 0;
3089 to = skb_shinfo(tgt)->nr_frags;
3090 fragfrom = &skb_shinfo(skb)->frags[from];
3092 /* Actual merge is delayed until the point when we know we can
3093 * commit all, so that we don't have to undo partial changes
3095 if (!to ||
3096 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3097 fragfrom->page_offset)) {
3098 merge = -1;
3099 } else {
3100 merge = to - 1;
3102 todo -= skb_frag_size(fragfrom);
3103 if (todo < 0) {
3104 if (skb_prepare_for_shift(skb) ||
3105 skb_prepare_for_shift(tgt))
3106 return 0;
3108 /* All previous frag pointers might be stale! */
3109 fragfrom = &skb_shinfo(skb)->frags[from];
3110 fragto = &skb_shinfo(tgt)->frags[merge];
3112 skb_frag_size_add(fragto, shiftlen);
3113 skb_frag_size_sub(fragfrom, shiftlen);
3114 fragfrom->page_offset += shiftlen;
3116 goto onlymerged;
3119 from++;
3122 /* Skip full, not-fitting skb to avoid expensive operations */
3123 if ((shiftlen == skb->len) &&
3124 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3125 return 0;
3127 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3128 return 0;
3130 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3131 if (to == MAX_SKB_FRAGS)
3132 return 0;
3134 fragfrom = &skb_shinfo(skb)->frags[from];
3135 fragto = &skb_shinfo(tgt)->frags[to];
3137 if (todo >= skb_frag_size(fragfrom)) {
3138 *fragto = *fragfrom;
3139 todo -= skb_frag_size(fragfrom);
3140 from++;
3141 to++;
3143 } else {
3144 __skb_frag_ref(fragfrom);
3145 fragto->page = fragfrom->page;
3146 fragto->page_offset = fragfrom->page_offset;
3147 skb_frag_size_set(fragto, todo);
3149 fragfrom->page_offset += todo;
3150 skb_frag_size_sub(fragfrom, todo);
3151 todo = 0;
3153 to++;
3154 break;
3158 /* Ready to "commit" this state change to tgt */
3159 skb_shinfo(tgt)->nr_frags = to;
3161 if (merge >= 0) {
3162 fragfrom = &skb_shinfo(skb)->frags[0];
3163 fragto = &skb_shinfo(tgt)->frags[merge];
3165 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3166 __skb_frag_unref(fragfrom);
3169 /* Reposition in the original skb */
3170 to = 0;
3171 while (from < skb_shinfo(skb)->nr_frags)
3172 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3173 skb_shinfo(skb)->nr_frags = to;
3175 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3177 onlymerged:
3178 /* Most likely the tgt won't ever need its checksum anymore, skb on
3179 * the other hand might need it if it needs to be resent
3181 tgt->ip_summed = CHECKSUM_PARTIAL;
3182 skb->ip_summed = CHECKSUM_PARTIAL;
3184 /* Yak, is it really working this way? Some helper please? */
3185 skb->len -= shiftlen;
3186 skb->data_len -= shiftlen;
3187 skb->truesize -= shiftlen;
3188 tgt->len += shiftlen;
3189 tgt->data_len += shiftlen;
3190 tgt->truesize += shiftlen;
3192 return shiftlen;
3196 * skb_prepare_seq_read - Prepare a sequential read of skb data
3197 * @skb: the buffer to read
3198 * @from: lower offset of data to be read
3199 * @to: upper offset of data to be read
3200 * @st: state variable
3202 * Initializes the specified state variable. Must be called before
3203 * invoking skb_seq_read() for the first time.
3205 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3206 unsigned int to, struct skb_seq_state *st)
3208 st->lower_offset = from;
3209 st->upper_offset = to;
3210 st->root_skb = st->cur_skb = skb;
3211 st->frag_idx = st->stepped_offset = 0;
3212 st->frag_data = NULL;
3214 EXPORT_SYMBOL(skb_prepare_seq_read);
3217 * skb_seq_read - Sequentially read skb data
3218 * @consumed: number of bytes consumed by the caller so far
3219 * @data: destination pointer for data to be returned
3220 * @st: state variable
3222 * Reads a block of skb data at @consumed relative to the
3223 * lower offset specified to skb_prepare_seq_read(). Assigns
3224 * the head of the data block to @data and returns the length
3225 * of the block or 0 if the end of the skb data or the upper
3226 * offset has been reached.
3228 * The caller is not required to consume all of the data
3229 * returned, i.e. @consumed is typically set to the number
3230 * of bytes already consumed and the next call to
3231 * skb_seq_read() will return the remaining part of the block.
3233 * Note 1: The size of each block of data returned can be arbitrary,
3234 * this limitation is the cost for zerocopy sequential
3235 * reads of potentially non linear data.
3237 * Note 2: Fragment lists within fragments are not implemented
3238 * at the moment, state->root_skb could be replaced with
3239 * a stack for this purpose.
3241 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3242 struct skb_seq_state *st)
3244 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3245 skb_frag_t *frag;
3247 if (unlikely(abs_offset >= st->upper_offset)) {
3248 if (st->frag_data) {
3249 kunmap_atomic(st->frag_data);
3250 st->frag_data = NULL;
3252 return 0;
3255 next_skb:
3256 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3258 if (abs_offset < block_limit && !st->frag_data) {
3259 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3260 return block_limit - abs_offset;
3263 if (st->frag_idx == 0 && !st->frag_data)
3264 st->stepped_offset += skb_headlen(st->cur_skb);
3266 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3267 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3268 block_limit = skb_frag_size(frag) + st->stepped_offset;
3270 if (abs_offset < block_limit) {
3271 if (!st->frag_data)
3272 st->frag_data = kmap_atomic(skb_frag_page(frag));
3274 *data = (u8 *) st->frag_data + frag->page_offset +
3275 (abs_offset - st->stepped_offset);
3277 return block_limit - abs_offset;
3280 if (st->frag_data) {
3281 kunmap_atomic(st->frag_data);
3282 st->frag_data = NULL;
3285 st->frag_idx++;
3286 st->stepped_offset += skb_frag_size(frag);
3289 if (st->frag_data) {
3290 kunmap_atomic(st->frag_data);
3291 st->frag_data = NULL;
3294 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3295 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3296 st->frag_idx = 0;
3297 goto next_skb;
3298 } else if (st->cur_skb->next) {
3299 st->cur_skb = st->cur_skb->next;
3300 st->frag_idx = 0;
3301 goto next_skb;
3304 return 0;
3306 EXPORT_SYMBOL(skb_seq_read);
3309 * skb_abort_seq_read - Abort a sequential read of skb data
3310 * @st: state variable
3312 * Must be called if skb_seq_read() was not called until it
3313 * returned 0.
3315 void skb_abort_seq_read(struct skb_seq_state *st)
3317 if (st->frag_data)
3318 kunmap_atomic(st->frag_data);
3320 EXPORT_SYMBOL(skb_abort_seq_read);
3322 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3324 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3325 struct ts_config *conf,
3326 struct ts_state *state)
3328 return skb_seq_read(offset, text, TS_SKB_CB(state));
3331 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3333 skb_abort_seq_read(TS_SKB_CB(state));
3337 * skb_find_text - Find a text pattern in skb data
3338 * @skb: the buffer to look in
3339 * @from: search offset
3340 * @to: search limit
3341 * @config: textsearch configuration
3343 * Finds a pattern in the skb data according to the specified
3344 * textsearch configuration. Use textsearch_next() to retrieve
3345 * subsequent occurrences of the pattern. Returns the offset
3346 * to the first occurrence or UINT_MAX if no match was found.
3348 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3349 unsigned int to, struct ts_config *config)
3351 struct ts_state state;
3352 unsigned int ret;
3354 config->get_next_block = skb_ts_get_next_block;
3355 config->finish = skb_ts_finish;
3357 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3359 ret = textsearch_find(config, &state);
3360 return (ret <= to - from ? ret : UINT_MAX);
3362 EXPORT_SYMBOL(skb_find_text);
3365 * skb_append_datato_frags - append the user data to a skb
3366 * @sk: sock structure
3367 * @skb: skb structure to be appended with user data.
3368 * @getfrag: call back function to be used for getting the user data
3369 * @from: pointer to user message iov
3370 * @length: length of the iov message
3372 * Description: This procedure append the user data in the fragment part
3373 * of the skb if any page alloc fails user this procedure returns -ENOMEM
3375 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
3376 int (*getfrag)(void *from, char *to, int offset,
3377 int len, int odd, struct sk_buff *skb),
3378 void *from, int length)
3380 int frg_cnt = skb_shinfo(skb)->nr_frags;
3381 int copy;
3382 int offset = 0;
3383 int ret;
3384 struct page_frag *pfrag = &current->task_frag;
3386 do {
3387 /* Return error if we don't have space for new frag */
3388 if (frg_cnt >= MAX_SKB_FRAGS)
3389 return -EMSGSIZE;
3391 if (!sk_page_frag_refill(sk, pfrag))
3392 return -ENOMEM;
3394 /* copy the user data to page */
3395 copy = min_t(int, length, pfrag->size - pfrag->offset);
3397 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
3398 offset, copy, 0, skb);
3399 if (ret < 0)
3400 return -EFAULT;
3402 /* copy was successful so update the size parameters */
3403 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
3404 copy);
3405 frg_cnt++;
3406 pfrag->offset += copy;
3407 get_page(pfrag->page);
3409 skb->truesize += copy;
3410 refcount_add(copy, &sk->sk_wmem_alloc);
3411 skb->len += copy;
3412 skb->data_len += copy;
3413 offset += copy;
3414 length -= copy;
3416 } while (length > 0);
3418 return 0;
3420 EXPORT_SYMBOL(skb_append_datato_frags);
3422 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3423 int offset, size_t size)
3425 int i = skb_shinfo(skb)->nr_frags;
3427 if (skb_can_coalesce(skb, i, page, offset)) {
3428 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3429 } else if (i < MAX_SKB_FRAGS) {
3430 get_page(page);
3431 skb_fill_page_desc(skb, i, page, offset, size);
3432 } else {
3433 return -EMSGSIZE;
3436 return 0;
3438 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3441 * skb_pull_rcsum - pull skb and update receive checksum
3442 * @skb: buffer to update
3443 * @len: length of data pulled
3445 * This function performs an skb_pull on the packet and updates
3446 * the CHECKSUM_COMPLETE checksum. It should be used on
3447 * receive path processing instead of skb_pull unless you know
3448 * that the checksum difference is zero (e.g., a valid IP header)
3449 * or you are setting ip_summed to CHECKSUM_NONE.
3451 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3453 unsigned char *data = skb->data;
3455 BUG_ON(len > skb->len);
3456 __skb_pull(skb, len);
3457 skb_postpull_rcsum(skb, data, len);
3458 return skb->data;
3460 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3463 * skb_segment - Perform protocol segmentation on skb.
3464 * @head_skb: buffer to segment
3465 * @features: features for the output path (see dev->features)
3467 * This function performs segmentation on the given skb. It returns
3468 * a pointer to the first in a list of new skbs for the segments.
3469 * In case of error it returns ERR_PTR(err).
3471 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3472 netdev_features_t features)
3474 struct sk_buff *segs = NULL;
3475 struct sk_buff *tail = NULL;
3476 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3477 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3478 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3479 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3480 struct sk_buff *frag_skb = head_skb;
3481 unsigned int offset = doffset;
3482 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3483 unsigned int partial_segs = 0;
3484 unsigned int headroom;
3485 unsigned int len = head_skb->len;
3486 __be16 proto;
3487 bool csum, sg;
3488 int nfrags = skb_shinfo(head_skb)->nr_frags;
3489 int err = -ENOMEM;
3490 int i = 0;
3491 int pos;
3492 int dummy;
3494 __skb_push(head_skb, doffset);
3495 proto = skb_network_protocol(head_skb, &dummy);
3496 if (unlikely(!proto))
3497 return ERR_PTR(-EINVAL);
3499 sg = !!(features & NETIF_F_SG);
3500 csum = !!can_checksum_protocol(features, proto);
3502 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3503 if (!(features & NETIF_F_GSO_PARTIAL)) {
3504 struct sk_buff *iter;
3505 unsigned int frag_len;
3507 if (!list_skb ||
3508 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3509 goto normal;
3511 /* If we get here then all the required
3512 * GSO features except frag_list are supported.
3513 * Try to split the SKB to multiple GSO SKBs
3514 * with no frag_list.
3515 * Currently we can do that only when the buffers don't
3516 * have a linear part and all the buffers except
3517 * the last are of the same length.
3519 frag_len = list_skb->len;
3520 skb_walk_frags(head_skb, iter) {
3521 if (frag_len != iter->len && iter->next)
3522 goto normal;
3523 if (skb_headlen(iter) && !iter->head_frag)
3524 goto normal;
3526 len -= iter->len;
3529 if (len != frag_len)
3530 goto normal;
3533 /* GSO partial only requires that we trim off any excess that
3534 * doesn't fit into an MSS sized block, so take care of that
3535 * now.
3537 partial_segs = len / mss;
3538 if (partial_segs > 1)
3539 mss *= partial_segs;
3540 else
3541 partial_segs = 0;
3544 normal:
3545 headroom = skb_headroom(head_skb);
3546 pos = skb_headlen(head_skb);
3548 do {
3549 struct sk_buff *nskb;
3550 skb_frag_t *nskb_frag;
3551 int hsize;
3552 int size;
3554 if (unlikely(mss == GSO_BY_FRAGS)) {
3555 len = list_skb->len;
3556 } else {
3557 len = head_skb->len - offset;
3558 if (len > mss)
3559 len = mss;
3562 hsize = skb_headlen(head_skb) - offset;
3563 if (hsize < 0)
3564 hsize = 0;
3565 if (hsize > len || !sg)
3566 hsize = len;
3568 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3569 (skb_headlen(list_skb) == len || sg)) {
3570 BUG_ON(skb_headlen(list_skb) > len);
3572 i = 0;
3573 nfrags = skb_shinfo(list_skb)->nr_frags;
3574 frag = skb_shinfo(list_skb)->frags;
3575 frag_skb = list_skb;
3576 pos += skb_headlen(list_skb);
3578 while (pos < offset + len) {
3579 BUG_ON(i >= nfrags);
3581 size = skb_frag_size(frag);
3582 if (pos + size > offset + len)
3583 break;
3585 i++;
3586 pos += size;
3587 frag++;
3590 nskb = skb_clone(list_skb, GFP_ATOMIC);
3591 list_skb = list_skb->next;
3593 if (unlikely(!nskb))
3594 goto err;
3596 if (unlikely(pskb_trim(nskb, len))) {
3597 kfree_skb(nskb);
3598 goto err;
3601 hsize = skb_end_offset(nskb);
3602 if (skb_cow_head(nskb, doffset + headroom)) {
3603 kfree_skb(nskb);
3604 goto err;
3607 nskb->truesize += skb_end_offset(nskb) - hsize;
3608 skb_release_head_state(nskb);
3609 __skb_push(nskb, doffset);
3610 } else {
3611 nskb = __alloc_skb(hsize + doffset + headroom,
3612 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3613 NUMA_NO_NODE);
3615 if (unlikely(!nskb))
3616 goto err;
3618 skb_reserve(nskb, headroom);
3619 __skb_put(nskb, doffset);
3622 if (segs)
3623 tail->next = nskb;
3624 else
3625 segs = nskb;
3626 tail = nskb;
3628 __copy_skb_header(nskb, head_skb);
3630 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3631 skb_reset_mac_len(nskb);
3633 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3634 nskb->data - tnl_hlen,
3635 doffset + tnl_hlen);
3637 if (nskb->len == len + doffset)
3638 goto perform_csum_check;
3640 if (!sg) {
3641 if (!nskb->remcsum_offload)
3642 nskb->ip_summed = CHECKSUM_NONE;
3643 SKB_GSO_CB(nskb)->csum =
3644 skb_copy_and_csum_bits(head_skb, offset,
3645 skb_put(nskb, len),
3646 len, 0);
3647 SKB_GSO_CB(nskb)->csum_start =
3648 skb_headroom(nskb) + doffset;
3649 continue;
3652 nskb_frag = skb_shinfo(nskb)->frags;
3654 skb_copy_from_linear_data_offset(head_skb, offset,
3655 skb_put(nskb, hsize), hsize);
3657 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3658 SKBTX_SHARED_FRAG;
3660 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3661 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3662 goto err;
3664 while (pos < offset + len) {
3665 if (i >= nfrags) {
3666 BUG_ON(skb_headlen(list_skb));
3668 i = 0;
3669 nfrags = skb_shinfo(list_skb)->nr_frags;
3670 frag = skb_shinfo(list_skb)->frags;
3671 frag_skb = list_skb;
3673 BUG_ON(!nfrags);
3675 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3676 skb_zerocopy_clone(nskb, frag_skb,
3677 GFP_ATOMIC))
3678 goto err;
3680 list_skb = list_skb->next;
3683 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3684 MAX_SKB_FRAGS)) {
3685 net_warn_ratelimited(
3686 "skb_segment: too many frags: %u %u\n",
3687 pos, mss);
3688 goto err;
3691 *nskb_frag = *frag;
3692 __skb_frag_ref(nskb_frag);
3693 size = skb_frag_size(nskb_frag);
3695 if (pos < offset) {
3696 nskb_frag->page_offset += offset - pos;
3697 skb_frag_size_sub(nskb_frag, offset - pos);
3700 skb_shinfo(nskb)->nr_frags++;
3702 if (pos + size <= offset + len) {
3703 i++;
3704 frag++;
3705 pos += size;
3706 } else {
3707 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3708 goto skip_fraglist;
3711 nskb_frag++;
3714 skip_fraglist:
3715 nskb->data_len = len - hsize;
3716 nskb->len += nskb->data_len;
3717 nskb->truesize += nskb->data_len;
3719 perform_csum_check:
3720 if (!csum) {
3721 if (skb_has_shared_frag(nskb)) {
3722 err = __skb_linearize(nskb);
3723 if (err)
3724 goto err;
3726 if (!nskb->remcsum_offload)
3727 nskb->ip_summed = CHECKSUM_NONE;
3728 SKB_GSO_CB(nskb)->csum =
3729 skb_checksum(nskb, doffset,
3730 nskb->len - doffset, 0);
3731 SKB_GSO_CB(nskb)->csum_start =
3732 skb_headroom(nskb) + doffset;
3734 } while ((offset += len) < head_skb->len);
3736 /* Some callers want to get the end of the list.
3737 * Put it in segs->prev to avoid walking the list.
3738 * (see validate_xmit_skb_list() for example)
3740 segs->prev = tail;
3742 if (partial_segs) {
3743 struct sk_buff *iter;
3744 int type = skb_shinfo(head_skb)->gso_type;
3745 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3747 /* Update type to add partial and then remove dodgy if set */
3748 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3749 type &= ~SKB_GSO_DODGY;
3751 /* Update GSO info and prepare to start updating headers on
3752 * our way back down the stack of protocols.
3754 for (iter = segs; iter; iter = iter->next) {
3755 skb_shinfo(iter)->gso_size = gso_size;
3756 skb_shinfo(iter)->gso_segs = partial_segs;
3757 skb_shinfo(iter)->gso_type = type;
3758 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3761 if (tail->len - doffset <= gso_size)
3762 skb_shinfo(tail)->gso_size = 0;
3763 else if (tail != segs)
3764 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3767 /* Following permits correct backpressure, for protocols
3768 * using skb_set_owner_w().
3769 * Idea is to tranfert ownership from head_skb to last segment.
3771 if (head_skb->destructor == sock_wfree) {
3772 swap(tail->truesize, head_skb->truesize);
3773 swap(tail->destructor, head_skb->destructor);
3774 swap(tail->sk, head_skb->sk);
3776 return segs;
3778 err:
3779 kfree_skb_list(segs);
3780 return ERR_PTR(err);
3782 EXPORT_SYMBOL_GPL(skb_segment);
3784 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3786 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3787 unsigned int offset = skb_gro_offset(skb);
3788 unsigned int headlen = skb_headlen(skb);
3789 unsigned int len = skb_gro_len(skb);
3790 struct sk_buff *lp, *p = *head;
3791 unsigned int delta_truesize;
3793 if (unlikely(p->len + len >= 65536))
3794 return -E2BIG;
3796 lp = NAPI_GRO_CB(p)->last;
3797 pinfo = skb_shinfo(lp);
3799 if (headlen <= offset) {
3800 skb_frag_t *frag;
3801 skb_frag_t *frag2;
3802 int i = skbinfo->nr_frags;
3803 int nr_frags = pinfo->nr_frags + i;
3805 if (nr_frags > MAX_SKB_FRAGS)
3806 goto merge;
3808 offset -= headlen;
3809 pinfo->nr_frags = nr_frags;
3810 skbinfo->nr_frags = 0;
3812 frag = pinfo->frags + nr_frags;
3813 frag2 = skbinfo->frags + i;
3814 do {
3815 *--frag = *--frag2;
3816 } while (--i);
3818 frag->page_offset += offset;
3819 skb_frag_size_sub(frag, offset);
3821 /* all fragments truesize : remove (head size + sk_buff) */
3822 delta_truesize = skb->truesize -
3823 SKB_TRUESIZE(skb_end_offset(skb));
3825 skb->truesize -= skb->data_len;
3826 skb->len -= skb->data_len;
3827 skb->data_len = 0;
3829 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3830 goto done;
3831 } else if (skb->head_frag) {
3832 int nr_frags = pinfo->nr_frags;
3833 skb_frag_t *frag = pinfo->frags + nr_frags;
3834 struct page *page = virt_to_head_page(skb->head);
3835 unsigned int first_size = headlen - offset;
3836 unsigned int first_offset;
3838 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3839 goto merge;
3841 first_offset = skb->data -
3842 (unsigned char *)page_address(page) +
3843 offset;
3845 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3847 frag->page.p = page;
3848 frag->page_offset = first_offset;
3849 skb_frag_size_set(frag, first_size);
3851 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3852 /* We dont need to clear skbinfo->nr_frags here */
3854 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3855 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3856 goto done;
3859 merge:
3860 delta_truesize = skb->truesize;
3861 if (offset > headlen) {
3862 unsigned int eat = offset - headlen;
3864 skbinfo->frags[0].page_offset += eat;
3865 skb_frag_size_sub(&skbinfo->frags[0], eat);
3866 skb->data_len -= eat;
3867 skb->len -= eat;
3868 offset = headlen;
3871 __skb_pull(skb, offset);
3873 if (NAPI_GRO_CB(p)->last == p)
3874 skb_shinfo(p)->frag_list = skb;
3875 else
3876 NAPI_GRO_CB(p)->last->next = skb;
3877 NAPI_GRO_CB(p)->last = skb;
3878 __skb_header_release(skb);
3879 lp = p;
3881 done:
3882 NAPI_GRO_CB(p)->count++;
3883 p->data_len += len;
3884 p->truesize += delta_truesize;
3885 p->len += len;
3886 if (lp != p) {
3887 lp->data_len += len;
3888 lp->truesize += delta_truesize;
3889 lp->len += len;
3891 NAPI_GRO_CB(skb)->same_flow = 1;
3892 return 0;
3894 EXPORT_SYMBOL_GPL(skb_gro_receive);
3896 void __init skb_init(void)
3898 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
3899 sizeof(struct sk_buff),
3901 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3902 offsetof(struct sk_buff, cb),
3903 sizeof_field(struct sk_buff, cb),
3904 NULL);
3905 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3906 sizeof(struct sk_buff_fclones),
3908 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3909 NULL);
3912 static int
3913 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3914 unsigned int recursion_level)
3916 int start = skb_headlen(skb);
3917 int i, copy = start - offset;
3918 struct sk_buff *frag_iter;
3919 int elt = 0;
3921 if (unlikely(recursion_level >= 24))
3922 return -EMSGSIZE;
3924 if (copy > 0) {
3925 if (copy > len)
3926 copy = len;
3927 sg_set_buf(sg, skb->data + offset, copy);
3928 elt++;
3929 if ((len -= copy) == 0)
3930 return elt;
3931 offset += copy;
3934 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3935 int end;
3937 WARN_ON(start > offset + len);
3939 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3940 if ((copy = end - offset) > 0) {
3941 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3942 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3943 return -EMSGSIZE;
3945 if (copy > len)
3946 copy = len;
3947 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3948 frag->page_offset+offset-start);
3949 elt++;
3950 if (!(len -= copy))
3951 return elt;
3952 offset += copy;
3954 start = end;
3957 skb_walk_frags(skb, frag_iter) {
3958 int end, ret;
3960 WARN_ON(start > offset + len);
3962 end = start + frag_iter->len;
3963 if ((copy = end - offset) > 0) {
3964 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3965 return -EMSGSIZE;
3967 if (copy > len)
3968 copy = len;
3969 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3970 copy, recursion_level + 1);
3971 if (unlikely(ret < 0))
3972 return ret;
3973 elt += ret;
3974 if ((len -= copy) == 0)
3975 return elt;
3976 offset += copy;
3978 start = end;
3980 BUG_ON(len);
3981 return elt;
3985 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3986 * @skb: Socket buffer containing the buffers to be mapped
3987 * @sg: The scatter-gather list to map into
3988 * @offset: The offset into the buffer's contents to start mapping
3989 * @len: Length of buffer space to be mapped
3991 * Fill the specified scatter-gather list with mappings/pointers into a
3992 * region of the buffer space attached to a socket buffer. Returns either
3993 * the number of scatterlist items used, or -EMSGSIZE if the contents
3994 * could not fit.
3996 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3998 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4000 if (nsg <= 0)
4001 return nsg;
4003 sg_mark_end(&sg[nsg - 1]);
4005 return nsg;
4007 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4009 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4010 * sglist without mark the sg which contain last skb data as the end.
4011 * So the caller can mannipulate sg list as will when padding new data after
4012 * the first call without calling sg_unmark_end to expend sg list.
4014 * Scenario to use skb_to_sgvec_nomark:
4015 * 1. sg_init_table
4016 * 2. skb_to_sgvec_nomark(payload1)
4017 * 3. skb_to_sgvec_nomark(payload2)
4019 * This is equivalent to:
4020 * 1. sg_init_table
4021 * 2. skb_to_sgvec(payload1)
4022 * 3. sg_unmark_end
4023 * 4. skb_to_sgvec(payload2)
4025 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4026 * is more preferable.
4028 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4029 int offset, int len)
4031 return __skb_to_sgvec(skb, sg, offset, len, 0);
4033 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4038 * skb_cow_data - Check that a socket buffer's data buffers are writable
4039 * @skb: The socket buffer to check.
4040 * @tailbits: Amount of trailing space to be added
4041 * @trailer: Returned pointer to the skb where the @tailbits space begins
4043 * Make sure that the data buffers attached to a socket buffer are
4044 * writable. If they are not, private copies are made of the data buffers
4045 * and the socket buffer is set to use these instead.
4047 * If @tailbits is given, make sure that there is space to write @tailbits
4048 * bytes of data beyond current end of socket buffer. @trailer will be
4049 * set to point to the skb in which this space begins.
4051 * The number of scatterlist elements required to completely map the
4052 * COW'd and extended socket buffer will be returned.
4054 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4056 int copyflag;
4057 int elt;
4058 struct sk_buff *skb1, **skb_p;
4060 /* If skb is cloned or its head is paged, reallocate
4061 * head pulling out all the pages (pages are considered not writable
4062 * at the moment even if they are anonymous).
4064 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4065 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
4066 return -ENOMEM;
4068 /* Easy case. Most of packets will go this way. */
4069 if (!skb_has_frag_list(skb)) {
4070 /* A little of trouble, not enough of space for trailer.
4071 * This should not happen, when stack is tuned to generate
4072 * good frames. OK, on miss we reallocate and reserve even more
4073 * space, 128 bytes is fair. */
4075 if (skb_tailroom(skb) < tailbits &&
4076 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4077 return -ENOMEM;
4079 /* Voila! */
4080 *trailer = skb;
4081 return 1;
4084 /* Misery. We are in troubles, going to mincer fragments... */
4086 elt = 1;
4087 skb_p = &skb_shinfo(skb)->frag_list;
4088 copyflag = 0;
4090 while ((skb1 = *skb_p) != NULL) {
4091 int ntail = 0;
4093 /* The fragment is partially pulled by someone,
4094 * this can happen on input. Copy it and everything
4095 * after it. */
4097 if (skb_shared(skb1))
4098 copyflag = 1;
4100 /* If the skb is the last, worry about trailer. */
4102 if (skb1->next == NULL && tailbits) {
4103 if (skb_shinfo(skb1)->nr_frags ||
4104 skb_has_frag_list(skb1) ||
4105 skb_tailroom(skb1) < tailbits)
4106 ntail = tailbits + 128;
4109 if (copyflag ||
4110 skb_cloned(skb1) ||
4111 ntail ||
4112 skb_shinfo(skb1)->nr_frags ||
4113 skb_has_frag_list(skb1)) {
4114 struct sk_buff *skb2;
4116 /* Fuck, we are miserable poor guys... */
4117 if (ntail == 0)
4118 skb2 = skb_copy(skb1, GFP_ATOMIC);
4119 else
4120 skb2 = skb_copy_expand(skb1,
4121 skb_headroom(skb1),
4122 ntail,
4123 GFP_ATOMIC);
4124 if (unlikely(skb2 == NULL))
4125 return -ENOMEM;
4127 if (skb1->sk)
4128 skb_set_owner_w(skb2, skb1->sk);
4130 /* Looking around. Are we still alive?
4131 * OK, link new skb, drop old one */
4133 skb2->next = skb1->next;
4134 *skb_p = skb2;
4135 kfree_skb(skb1);
4136 skb1 = skb2;
4138 elt++;
4139 *trailer = skb1;
4140 skb_p = &skb1->next;
4143 return elt;
4145 EXPORT_SYMBOL_GPL(skb_cow_data);
4147 static void sock_rmem_free(struct sk_buff *skb)
4149 struct sock *sk = skb->sk;
4151 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4154 static void skb_set_err_queue(struct sk_buff *skb)
4156 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4157 * So, it is safe to (mis)use it to mark skbs on the error queue.
4159 skb->pkt_type = PACKET_OUTGOING;
4160 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4164 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4166 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4168 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4169 (unsigned int)sk->sk_rcvbuf)
4170 return -ENOMEM;
4172 skb_orphan(skb);
4173 skb->sk = sk;
4174 skb->destructor = sock_rmem_free;
4175 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4176 skb_set_err_queue(skb);
4178 /* before exiting rcu section, make sure dst is refcounted */
4179 skb_dst_force(skb);
4181 skb_queue_tail(&sk->sk_error_queue, skb);
4182 if (!sock_flag(sk, SOCK_DEAD))
4183 sk->sk_error_report(sk);
4184 return 0;
4186 EXPORT_SYMBOL(sock_queue_err_skb);
4188 static bool is_icmp_err_skb(const struct sk_buff *skb)
4190 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4191 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4194 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4196 struct sk_buff_head *q = &sk->sk_error_queue;
4197 struct sk_buff *skb, *skb_next = NULL;
4198 bool icmp_next = false;
4199 unsigned long flags;
4201 spin_lock_irqsave(&q->lock, flags);
4202 skb = __skb_dequeue(q);
4203 if (skb && (skb_next = skb_peek(q))) {
4204 icmp_next = is_icmp_err_skb(skb_next);
4205 if (icmp_next)
4206 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_origin;
4208 spin_unlock_irqrestore(&q->lock, flags);
4210 if (is_icmp_err_skb(skb) && !icmp_next)
4211 sk->sk_err = 0;
4213 if (skb_next)
4214 sk->sk_error_report(sk);
4216 return skb;
4218 EXPORT_SYMBOL(sock_dequeue_err_skb);
4221 * skb_clone_sk - create clone of skb, and take reference to socket
4222 * @skb: the skb to clone
4224 * This function creates a clone of a buffer that holds a reference on
4225 * sk_refcnt. Buffers created via this function are meant to be
4226 * returned using sock_queue_err_skb, or free via kfree_skb.
4228 * When passing buffers allocated with this function to sock_queue_err_skb
4229 * it is necessary to wrap the call with sock_hold/sock_put in order to
4230 * prevent the socket from being released prior to being enqueued on
4231 * the sk_error_queue.
4233 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4235 struct sock *sk = skb->sk;
4236 struct sk_buff *clone;
4238 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4239 return NULL;
4241 clone = skb_clone(skb, GFP_ATOMIC);
4242 if (!clone) {
4243 sock_put(sk);
4244 return NULL;
4247 clone->sk = sk;
4248 clone->destructor = sock_efree;
4250 return clone;
4252 EXPORT_SYMBOL(skb_clone_sk);
4254 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4255 struct sock *sk,
4256 int tstype,
4257 bool opt_stats)
4259 struct sock_exterr_skb *serr;
4260 int err;
4262 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4264 serr = SKB_EXT_ERR(skb);
4265 memset(serr, 0, sizeof(*serr));
4266 serr->ee.ee_errno = ENOMSG;
4267 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4268 serr->ee.ee_info = tstype;
4269 serr->opt_stats = opt_stats;
4270 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4271 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4272 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4273 if (sk->sk_protocol == IPPROTO_TCP &&
4274 sk->sk_type == SOCK_STREAM)
4275 serr->ee.ee_data -= sk->sk_tskey;
4278 err = sock_queue_err_skb(sk, skb);
4280 if (err)
4281 kfree_skb(skb);
4284 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4286 bool ret;
4288 if (likely(sysctl_tstamp_allow_data || tsonly))
4289 return true;
4291 read_lock_bh(&sk->sk_callback_lock);
4292 ret = sk->sk_socket && sk->sk_socket->file &&
4293 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4294 read_unlock_bh(&sk->sk_callback_lock);
4295 return ret;
4298 void skb_complete_tx_timestamp(struct sk_buff *skb,
4299 struct skb_shared_hwtstamps *hwtstamps)
4301 struct sock *sk = skb->sk;
4303 if (!skb_may_tx_timestamp(sk, false))
4304 goto err;
4306 /* Take a reference to prevent skb_orphan() from freeing the socket,
4307 * but only if the socket refcount is not zero.
4309 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4310 *skb_hwtstamps(skb) = *hwtstamps;
4311 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4312 sock_put(sk);
4313 return;
4316 err:
4317 kfree_skb(skb);
4319 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4321 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4322 struct skb_shared_hwtstamps *hwtstamps,
4323 struct sock *sk, int tstype)
4325 struct sk_buff *skb;
4326 bool tsonly, opt_stats = false;
4328 if (!sk)
4329 return;
4331 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4332 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4333 return;
4335 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4336 if (!skb_may_tx_timestamp(sk, tsonly))
4337 return;
4339 if (tsonly) {
4340 #ifdef CONFIG_INET
4341 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4342 sk->sk_protocol == IPPROTO_TCP &&
4343 sk->sk_type == SOCK_STREAM) {
4344 skb = tcp_get_timestamping_opt_stats(sk);
4345 opt_stats = true;
4346 } else
4347 #endif
4348 skb = alloc_skb(0, GFP_ATOMIC);
4349 } else {
4350 skb = skb_clone(orig_skb, GFP_ATOMIC);
4352 if (!skb)
4353 return;
4355 if (tsonly) {
4356 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4357 SKBTX_ANY_TSTAMP;
4358 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4361 if (hwtstamps)
4362 *skb_hwtstamps(skb) = *hwtstamps;
4363 else
4364 skb->tstamp = ktime_get_real();
4366 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4368 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4370 void skb_tstamp_tx(struct sk_buff *orig_skb,
4371 struct skb_shared_hwtstamps *hwtstamps)
4373 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4374 SCM_TSTAMP_SND);
4376 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4378 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4380 struct sock *sk = skb->sk;
4381 struct sock_exterr_skb *serr;
4382 int err = 1;
4384 skb->wifi_acked_valid = 1;
4385 skb->wifi_acked = acked;
4387 serr = SKB_EXT_ERR(skb);
4388 memset(serr, 0, sizeof(*serr));
4389 serr->ee.ee_errno = ENOMSG;
4390 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4392 /* Take a reference to prevent skb_orphan() from freeing the socket,
4393 * but only if the socket refcount is not zero.
4395 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4396 err = sock_queue_err_skb(sk, skb);
4397 sock_put(sk);
4399 if (err)
4400 kfree_skb(skb);
4402 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4405 * skb_partial_csum_set - set up and verify partial csum values for packet
4406 * @skb: the skb to set
4407 * @start: the number of bytes after skb->data to start checksumming.
4408 * @off: the offset from start to place the checksum.
4410 * For untrusted partially-checksummed packets, we need to make sure the values
4411 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4413 * This function checks and sets those values and skb->ip_summed: if this
4414 * returns false you should drop the packet.
4416 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4418 if (unlikely(start > skb_headlen(skb)) ||
4419 unlikely((int)start + off > skb_headlen(skb) - 2)) {
4420 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
4421 start, off, skb_headlen(skb));
4422 return false;
4424 skb->ip_summed = CHECKSUM_PARTIAL;
4425 skb->csum_start = skb_headroom(skb) + start;
4426 skb->csum_offset = off;
4427 skb_set_transport_header(skb, start);
4428 return true;
4430 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4432 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4433 unsigned int max)
4435 if (skb_headlen(skb) >= len)
4436 return 0;
4438 /* If we need to pullup then pullup to the max, so we
4439 * won't need to do it again.
4441 if (max > skb->len)
4442 max = skb->len;
4444 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4445 return -ENOMEM;
4447 if (skb_headlen(skb) < len)
4448 return -EPROTO;
4450 return 0;
4453 #define MAX_TCP_HDR_LEN (15 * 4)
4455 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4456 typeof(IPPROTO_IP) proto,
4457 unsigned int off)
4459 switch (proto) {
4460 int err;
4462 case IPPROTO_TCP:
4463 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4464 off + MAX_TCP_HDR_LEN);
4465 if (!err && !skb_partial_csum_set(skb, off,
4466 offsetof(struct tcphdr,
4467 check)))
4468 err = -EPROTO;
4469 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4471 case IPPROTO_UDP:
4472 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4473 off + sizeof(struct udphdr));
4474 if (!err && !skb_partial_csum_set(skb, off,
4475 offsetof(struct udphdr,
4476 check)))
4477 err = -EPROTO;
4478 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4481 return ERR_PTR(-EPROTO);
4484 /* This value should be large enough to cover a tagged ethernet header plus
4485 * maximally sized IP and TCP or UDP headers.
4487 #define MAX_IP_HDR_LEN 128
4489 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4491 unsigned int off;
4492 bool fragment;
4493 __sum16 *csum;
4494 int err;
4496 fragment = false;
4498 err = skb_maybe_pull_tail(skb,
4499 sizeof(struct iphdr),
4500 MAX_IP_HDR_LEN);
4501 if (err < 0)
4502 goto out;
4504 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4505 fragment = true;
4507 off = ip_hdrlen(skb);
4509 err = -EPROTO;
4511 if (fragment)
4512 goto out;
4514 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4515 if (IS_ERR(csum))
4516 return PTR_ERR(csum);
4518 if (recalculate)
4519 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4520 ip_hdr(skb)->daddr,
4521 skb->len - off,
4522 ip_hdr(skb)->protocol, 0);
4523 err = 0;
4525 out:
4526 return err;
4529 /* This value should be large enough to cover a tagged ethernet header plus
4530 * an IPv6 header, all options, and a maximal TCP or UDP header.
4532 #define MAX_IPV6_HDR_LEN 256
4534 #define OPT_HDR(type, skb, off) \
4535 (type *)(skb_network_header(skb) + (off))
4537 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4539 int err;
4540 u8 nexthdr;
4541 unsigned int off;
4542 unsigned int len;
4543 bool fragment;
4544 bool done;
4545 __sum16 *csum;
4547 fragment = false;
4548 done = false;
4550 off = sizeof(struct ipv6hdr);
4552 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4553 if (err < 0)
4554 goto out;
4556 nexthdr = ipv6_hdr(skb)->nexthdr;
4558 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4559 while (off <= len && !done) {
4560 switch (nexthdr) {
4561 case IPPROTO_DSTOPTS:
4562 case IPPROTO_HOPOPTS:
4563 case IPPROTO_ROUTING: {
4564 struct ipv6_opt_hdr *hp;
4566 err = skb_maybe_pull_tail(skb,
4567 off +
4568 sizeof(struct ipv6_opt_hdr),
4569 MAX_IPV6_HDR_LEN);
4570 if (err < 0)
4571 goto out;
4573 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4574 nexthdr = hp->nexthdr;
4575 off += ipv6_optlen(hp);
4576 break;
4578 case IPPROTO_AH: {
4579 struct ip_auth_hdr *hp;
4581 err = skb_maybe_pull_tail(skb,
4582 off +
4583 sizeof(struct ip_auth_hdr),
4584 MAX_IPV6_HDR_LEN);
4585 if (err < 0)
4586 goto out;
4588 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4589 nexthdr = hp->nexthdr;
4590 off += ipv6_authlen(hp);
4591 break;
4593 case IPPROTO_FRAGMENT: {
4594 struct frag_hdr *hp;
4596 err = skb_maybe_pull_tail(skb,
4597 off +
4598 sizeof(struct frag_hdr),
4599 MAX_IPV6_HDR_LEN);
4600 if (err < 0)
4601 goto out;
4603 hp = OPT_HDR(struct frag_hdr, skb, off);
4605 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4606 fragment = true;
4608 nexthdr = hp->nexthdr;
4609 off += sizeof(struct frag_hdr);
4610 break;
4612 default:
4613 done = true;
4614 break;
4618 err = -EPROTO;
4620 if (!done || fragment)
4621 goto out;
4623 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4624 if (IS_ERR(csum))
4625 return PTR_ERR(csum);
4627 if (recalculate)
4628 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4629 &ipv6_hdr(skb)->daddr,
4630 skb->len - off, nexthdr, 0);
4631 err = 0;
4633 out:
4634 return err;
4638 * skb_checksum_setup - set up partial checksum offset
4639 * @skb: the skb to set up
4640 * @recalculate: if true the pseudo-header checksum will be recalculated
4642 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4644 int err;
4646 switch (skb->protocol) {
4647 case htons(ETH_P_IP):
4648 err = skb_checksum_setup_ipv4(skb, recalculate);
4649 break;
4651 case htons(ETH_P_IPV6):
4652 err = skb_checksum_setup_ipv6(skb, recalculate);
4653 break;
4655 default:
4656 err = -EPROTO;
4657 break;
4660 return err;
4662 EXPORT_SYMBOL(skb_checksum_setup);
4665 * skb_checksum_maybe_trim - maybe trims the given skb
4666 * @skb: the skb to check
4667 * @transport_len: the data length beyond the network header
4669 * Checks whether the given skb has data beyond the given transport length.
4670 * If so, returns a cloned skb trimmed to this transport length.
4671 * Otherwise returns the provided skb. Returns NULL in error cases
4672 * (e.g. transport_len exceeds skb length or out-of-memory).
4674 * Caller needs to set the skb transport header and free any returned skb if it
4675 * differs from the provided skb.
4677 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4678 unsigned int transport_len)
4680 struct sk_buff *skb_chk;
4681 unsigned int len = skb_transport_offset(skb) + transport_len;
4682 int ret;
4684 if (skb->len < len)
4685 return NULL;
4686 else if (skb->len == len)
4687 return skb;
4689 skb_chk = skb_clone(skb, GFP_ATOMIC);
4690 if (!skb_chk)
4691 return NULL;
4693 ret = pskb_trim_rcsum(skb_chk, len);
4694 if (ret) {
4695 kfree_skb(skb_chk);
4696 return NULL;
4699 return skb_chk;
4703 * skb_checksum_trimmed - validate checksum of an skb
4704 * @skb: the skb to check
4705 * @transport_len: the data length beyond the network header
4706 * @skb_chkf: checksum function to use
4708 * Applies the given checksum function skb_chkf to the provided skb.
4709 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4711 * If the skb has data beyond the given transport length, then a
4712 * trimmed & cloned skb is checked and returned.
4714 * Caller needs to set the skb transport header and free any returned skb if it
4715 * differs from the provided skb.
4717 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4718 unsigned int transport_len,
4719 __sum16(*skb_chkf)(struct sk_buff *skb))
4721 struct sk_buff *skb_chk;
4722 unsigned int offset = skb_transport_offset(skb);
4723 __sum16 ret;
4725 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4726 if (!skb_chk)
4727 goto err;
4729 if (!pskb_may_pull(skb_chk, offset))
4730 goto err;
4732 skb_pull_rcsum(skb_chk, offset);
4733 ret = skb_chkf(skb_chk);
4734 skb_push_rcsum(skb_chk, offset);
4736 if (ret)
4737 goto err;
4739 return skb_chk;
4741 err:
4742 if (skb_chk && skb_chk != skb)
4743 kfree_skb(skb_chk);
4745 return NULL;
4748 EXPORT_SYMBOL(skb_checksum_trimmed);
4750 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4752 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4753 skb->dev->name);
4755 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4757 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4759 if (head_stolen) {
4760 skb_release_head_state(skb);
4761 kmem_cache_free(skbuff_head_cache, skb);
4762 } else {
4763 __kfree_skb(skb);
4766 EXPORT_SYMBOL(kfree_skb_partial);
4769 * skb_try_coalesce - try to merge skb to prior one
4770 * @to: prior buffer
4771 * @from: buffer to add
4772 * @fragstolen: pointer to boolean
4773 * @delta_truesize: how much more was allocated than was requested
4775 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4776 bool *fragstolen, int *delta_truesize)
4778 struct skb_shared_info *to_shinfo, *from_shinfo;
4779 int i, delta, len = from->len;
4781 *fragstolen = false;
4783 if (skb_cloned(to))
4784 return false;
4786 if (len <= skb_tailroom(to)) {
4787 if (len)
4788 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4789 *delta_truesize = 0;
4790 return true;
4793 to_shinfo = skb_shinfo(to);
4794 from_shinfo = skb_shinfo(from);
4795 if (to_shinfo->frag_list || from_shinfo->frag_list)
4796 return false;
4797 if (skb_zcopy(to) || skb_zcopy(from))
4798 return false;
4800 if (skb_headlen(from) != 0) {
4801 struct page *page;
4802 unsigned int offset;
4804 if (to_shinfo->nr_frags +
4805 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
4806 return false;
4808 if (skb_head_is_locked(from))
4809 return false;
4811 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4813 page = virt_to_head_page(from->head);
4814 offset = from->data - (unsigned char *)page_address(page);
4816 skb_fill_page_desc(to, to_shinfo->nr_frags,
4817 page, offset, skb_headlen(from));
4818 *fragstolen = true;
4819 } else {
4820 if (to_shinfo->nr_frags +
4821 from_shinfo->nr_frags > MAX_SKB_FRAGS)
4822 return false;
4824 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4827 WARN_ON_ONCE(delta < len);
4829 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
4830 from_shinfo->frags,
4831 from_shinfo->nr_frags * sizeof(skb_frag_t));
4832 to_shinfo->nr_frags += from_shinfo->nr_frags;
4834 if (!skb_cloned(from))
4835 from_shinfo->nr_frags = 0;
4837 /* if the skb is not cloned this does nothing
4838 * since we set nr_frags to 0.
4840 for (i = 0; i < from_shinfo->nr_frags; i++)
4841 __skb_frag_ref(&from_shinfo->frags[i]);
4843 to->truesize += delta;
4844 to->len += len;
4845 to->data_len += len;
4847 *delta_truesize = delta;
4848 return true;
4850 EXPORT_SYMBOL(skb_try_coalesce);
4853 * skb_scrub_packet - scrub an skb
4855 * @skb: buffer to clean
4856 * @xnet: packet is crossing netns
4858 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4859 * into/from a tunnel. Some information have to be cleared during these
4860 * operations.
4861 * skb_scrub_packet can also be used to clean a skb before injecting it in
4862 * another namespace (@xnet == true). We have to clear all information in the
4863 * skb that could impact namespace isolation.
4865 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4867 skb->tstamp = 0;
4868 skb->pkt_type = PACKET_HOST;
4869 skb->skb_iif = 0;
4870 skb->ignore_df = 0;
4871 skb_dst_drop(skb);
4872 secpath_reset(skb);
4873 nf_reset(skb);
4874 nf_reset_trace(skb);
4876 if (!xnet)
4877 return;
4879 ipvs_reset(skb);
4880 skb_orphan(skb);
4881 skb->mark = 0;
4883 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4886 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4888 * @skb: GSO skb
4890 * skb_gso_transport_seglen is used to determine the real size of the
4891 * individual segments, including Layer4 headers (TCP/UDP).
4893 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4895 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4897 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4898 unsigned int thlen = 0;
4900 if (skb->encapsulation) {
4901 thlen = skb_inner_transport_header(skb) -
4902 skb_transport_header(skb);
4904 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4905 thlen += inner_tcp_hdrlen(skb);
4906 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4907 thlen = tcp_hdrlen(skb);
4908 } else if (unlikely(skb_is_gso_sctp(skb))) {
4909 thlen = sizeof(struct sctphdr);
4911 /* UFO sets gso_size to the size of the fragmentation
4912 * payload, i.e. the size of the L4 (UDP) header is already
4913 * accounted for.
4915 return thlen + shinfo->gso_size;
4919 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4921 * @skb: GSO skb
4923 * skb_gso_network_seglen is used to determine the real size of the
4924 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4926 * The MAC/L2 header is not accounted for.
4928 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4930 unsigned int hdr_len = skb_transport_header(skb) -
4931 skb_network_header(skb);
4933 return hdr_len + skb_gso_transport_seglen(skb);
4937 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
4939 * @skb: GSO skb
4941 * skb_gso_mac_seglen is used to determine the real size of the
4942 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
4943 * headers (TCP/UDP).
4945 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
4947 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
4949 return hdr_len + skb_gso_transport_seglen(skb);
4953 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
4955 * There are a couple of instances where we have a GSO skb, and we
4956 * want to determine what size it would be after it is segmented.
4958 * We might want to check:
4959 * - L3+L4+payload size (e.g. IP forwarding)
4960 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
4962 * This is a helper to do that correctly considering GSO_BY_FRAGS.
4964 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
4965 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
4967 * @max_len: The maximum permissible length.
4969 * Returns true if the segmented length <= max length.
4971 static inline bool skb_gso_size_check(const struct sk_buff *skb,
4972 unsigned int seg_len,
4973 unsigned int max_len) {
4974 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4975 const struct sk_buff *iter;
4977 if (shinfo->gso_size != GSO_BY_FRAGS)
4978 return seg_len <= max_len;
4980 /* Undo this so we can re-use header sizes */
4981 seg_len -= GSO_BY_FRAGS;
4983 skb_walk_frags(skb, iter) {
4984 if (seg_len + skb_headlen(iter) > max_len)
4985 return false;
4988 return true;
4992 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
4994 * @skb: GSO skb
4995 * @mtu: MTU to validate against
4997 * skb_gso_validate_network_len validates if a given skb will fit a
4998 * wanted MTU once split. It considers L3 headers, L4 headers, and the
4999 * payload.
5001 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5003 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5005 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5008 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5010 * @skb: GSO skb
5011 * @len: length to validate against
5013 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5014 * length once split, including L2, L3 and L4 headers and the payload.
5016 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5018 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5020 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5022 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5024 int mac_len;
5026 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5027 kfree_skb(skb);
5028 return NULL;
5031 mac_len = skb->data - skb_mac_header(skb);
5032 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5033 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5034 mac_len - VLAN_HLEN - ETH_TLEN);
5036 skb->mac_header += VLAN_HLEN;
5037 return skb;
5040 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5042 struct vlan_hdr *vhdr;
5043 u16 vlan_tci;
5045 if (unlikely(skb_vlan_tag_present(skb))) {
5046 /* vlan_tci is already set-up so leave this for another time */
5047 return skb;
5050 skb = skb_share_check(skb, GFP_ATOMIC);
5051 if (unlikely(!skb))
5052 goto err_free;
5054 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
5055 goto err_free;
5057 vhdr = (struct vlan_hdr *)skb->data;
5058 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5059 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5061 skb_pull_rcsum(skb, VLAN_HLEN);
5062 vlan_set_encap_proto(skb, vhdr);
5064 skb = skb_reorder_vlan_header(skb);
5065 if (unlikely(!skb))
5066 goto err_free;
5068 skb_reset_network_header(skb);
5069 skb_reset_transport_header(skb);
5070 skb_reset_mac_len(skb);
5072 return skb;
5074 err_free:
5075 kfree_skb(skb);
5076 return NULL;
5078 EXPORT_SYMBOL(skb_vlan_untag);
5080 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5082 if (!pskb_may_pull(skb, write_len))
5083 return -ENOMEM;
5085 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5086 return 0;
5088 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5090 EXPORT_SYMBOL(skb_ensure_writable);
5092 /* remove VLAN header from packet and update csum accordingly.
5093 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5095 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5097 struct vlan_hdr *vhdr;
5098 int offset = skb->data - skb_mac_header(skb);
5099 int err;
5101 if (WARN_ONCE(offset,
5102 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5103 offset)) {
5104 return -EINVAL;
5107 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5108 if (unlikely(err))
5109 return err;
5111 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5113 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5114 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5116 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5117 __skb_pull(skb, VLAN_HLEN);
5119 vlan_set_encap_proto(skb, vhdr);
5120 skb->mac_header += VLAN_HLEN;
5122 if (skb_network_offset(skb) < ETH_HLEN)
5123 skb_set_network_header(skb, ETH_HLEN);
5125 skb_reset_mac_len(skb);
5127 return err;
5129 EXPORT_SYMBOL(__skb_vlan_pop);
5131 /* Pop a vlan tag either from hwaccel or from payload.
5132 * Expects skb->data at mac header.
5134 int skb_vlan_pop(struct sk_buff *skb)
5136 u16 vlan_tci;
5137 __be16 vlan_proto;
5138 int err;
5140 if (likely(skb_vlan_tag_present(skb))) {
5141 skb->vlan_tci = 0;
5142 } else {
5143 if (unlikely(!eth_type_vlan(skb->protocol)))
5144 return 0;
5146 err = __skb_vlan_pop(skb, &vlan_tci);
5147 if (err)
5148 return err;
5150 /* move next vlan tag to hw accel tag */
5151 if (likely(!eth_type_vlan(skb->protocol)))
5152 return 0;
5154 vlan_proto = skb->protocol;
5155 err = __skb_vlan_pop(skb, &vlan_tci);
5156 if (unlikely(err))
5157 return err;
5159 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5160 return 0;
5162 EXPORT_SYMBOL(skb_vlan_pop);
5164 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5165 * Expects skb->data at mac header.
5167 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5169 if (skb_vlan_tag_present(skb)) {
5170 int offset = skb->data - skb_mac_header(skb);
5171 int err;
5173 if (WARN_ONCE(offset,
5174 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5175 offset)) {
5176 return -EINVAL;
5179 err = __vlan_insert_tag(skb, skb->vlan_proto,
5180 skb_vlan_tag_get(skb));
5181 if (err)
5182 return err;
5184 skb->protocol = skb->vlan_proto;
5185 skb->mac_len += VLAN_HLEN;
5187 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5189 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5190 return 0;
5192 EXPORT_SYMBOL(skb_vlan_push);
5195 * alloc_skb_with_frags - allocate skb with page frags
5197 * @header_len: size of linear part
5198 * @data_len: needed length in frags
5199 * @max_page_order: max page order desired.
5200 * @errcode: pointer to error code if any
5201 * @gfp_mask: allocation mask
5203 * This can be used to allocate a paged skb, given a maximal order for frags.
5205 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5206 unsigned long data_len,
5207 int max_page_order,
5208 int *errcode,
5209 gfp_t gfp_mask)
5211 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5212 unsigned long chunk;
5213 struct sk_buff *skb;
5214 struct page *page;
5215 gfp_t gfp_head;
5216 int i;
5218 *errcode = -EMSGSIZE;
5219 /* Note this test could be relaxed, if we succeed to allocate
5220 * high order pages...
5222 if (npages > MAX_SKB_FRAGS)
5223 return NULL;
5225 gfp_head = gfp_mask;
5226 if (gfp_head & __GFP_DIRECT_RECLAIM)
5227 gfp_head |= __GFP_RETRY_MAYFAIL;
5229 *errcode = -ENOBUFS;
5230 skb = alloc_skb(header_len, gfp_head);
5231 if (!skb)
5232 return NULL;
5234 skb->truesize += npages << PAGE_SHIFT;
5236 for (i = 0; npages > 0; i++) {
5237 int order = max_page_order;
5239 while (order) {
5240 if (npages >= 1 << order) {
5241 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5242 __GFP_COMP |
5243 __GFP_NOWARN |
5244 __GFP_NORETRY,
5245 order);
5246 if (page)
5247 goto fill_page;
5248 /* Do not retry other high order allocations */
5249 order = 1;
5250 max_page_order = 0;
5252 order--;
5254 page = alloc_page(gfp_mask);
5255 if (!page)
5256 goto failure;
5257 fill_page:
5258 chunk = min_t(unsigned long, data_len,
5259 PAGE_SIZE << order);
5260 skb_fill_page_desc(skb, i, page, 0, chunk);
5261 data_len -= chunk;
5262 npages -= 1 << order;
5264 return skb;
5266 failure:
5267 kfree_skb(skb);
5268 return NULL;
5270 EXPORT_SYMBOL(alloc_skb_with_frags);
5272 /* carve out the first off bytes from skb when off < headlen */
5273 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5274 const int headlen, gfp_t gfp_mask)
5276 int i;
5277 int size = skb_end_offset(skb);
5278 int new_hlen = headlen - off;
5279 u8 *data;
5281 size = SKB_DATA_ALIGN(size);
5283 if (skb_pfmemalloc(skb))
5284 gfp_mask |= __GFP_MEMALLOC;
5285 data = kmalloc_reserve(size +
5286 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5287 gfp_mask, NUMA_NO_NODE, NULL);
5288 if (!data)
5289 return -ENOMEM;
5291 size = SKB_WITH_OVERHEAD(ksize(data));
5293 /* Copy real data, and all frags */
5294 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5295 skb->len -= off;
5297 memcpy((struct skb_shared_info *)(data + size),
5298 skb_shinfo(skb),
5299 offsetof(struct skb_shared_info,
5300 frags[skb_shinfo(skb)->nr_frags]));
5301 if (skb_cloned(skb)) {
5302 /* drop the old head gracefully */
5303 if (skb_orphan_frags(skb, gfp_mask)) {
5304 kfree(data);
5305 return -ENOMEM;
5307 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5308 skb_frag_ref(skb, i);
5309 if (skb_has_frag_list(skb))
5310 skb_clone_fraglist(skb);
5311 skb_release_data(skb);
5312 } else {
5313 /* we can reuse existing recount- all we did was
5314 * relocate values
5316 skb_free_head(skb);
5319 skb->head = data;
5320 skb->data = data;
5321 skb->head_frag = 0;
5322 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5323 skb->end = size;
5324 #else
5325 skb->end = skb->head + size;
5326 #endif
5327 skb_set_tail_pointer(skb, skb_headlen(skb));
5328 skb_headers_offset_update(skb, 0);
5329 skb->cloned = 0;
5330 skb->hdr_len = 0;
5331 skb->nohdr = 0;
5332 atomic_set(&skb_shinfo(skb)->dataref, 1);
5334 return 0;
5337 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5339 /* carve out the first eat bytes from skb's frag_list. May recurse into
5340 * pskb_carve()
5342 static int pskb_carve_frag_list(struct sk_buff *skb,
5343 struct skb_shared_info *shinfo, int eat,
5344 gfp_t gfp_mask)
5346 struct sk_buff *list = shinfo->frag_list;
5347 struct sk_buff *clone = NULL;
5348 struct sk_buff *insp = NULL;
5350 do {
5351 if (!list) {
5352 pr_err("Not enough bytes to eat. Want %d\n", eat);
5353 return -EFAULT;
5355 if (list->len <= eat) {
5356 /* Eaten as whole. */
5357 eat -= list->len;
5358 list = list->next;
5359 insp = list;
5360 } else {
5361 /* Eaten partially. */
5362 if (skb_shared(list)) {
5363 clone = skb_clone(list, gfp_mask);
5364 if (!clone)
5365 return -ENOMEM;
5366 insp = list->next;
5367 list = clone;
5368 } else {
5369 /* This may be pulled without problems. */
5370 insp = list;
5372 if (pskb_carve(list, eat, gfp_mask) < 0) {
5373 kfree_skb(clone);
5374 return -ENOMEM;
5376 break;
5378 } while (eat);
5380 /* Free pulled out fragments. */
5381 while ((list = shinfo->frag_list) != insp) {
5382 shinfo->frag_list = list->next;
5383 kfree_skb(list);
5385 /* And insert new clone at head. */
5386 if (clone) {
5387 clone->next = list;
5388 shinfo->frag_list = clone;
5390 return 0;
5393 /* carve off first len bytes from skb. Split line (off) is in the
5394 * non-linear part of skb
5396 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
5397 int pos, gfp_t gfp_mask)
5399 int i, k = 0;
5400 int size = skb_end_offset(skb);
5401 u8 *data;
5402 const int nfrags = skb_shinfo(skb)->nr_frags;
5403 struct skb_shared_info *shinfo;
5405 size = SKB_DATA_ALIGN(size);
5407 if (skb_pfmemalloc(skb))
5408 gfp_mask |= __GFP_MEMALLOC;
5409 data = kmalloc_reserve(size +
5410 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5411 gfp_mask, NUMA_NO_NODE, NULL);
5412 if (!data)
5413 return -ENOMEM;
5415 size = SKB_WITH_OVERHEAD(ksize(data));
5417 memcpy((struct skb_shared_info *)(data + size),
5418 skb_shinfo(skb), offsetof(struct skb_shared_info,
5419 frags[skb_shinfo(skb)->nr_frags]));
5420 if (skb_orphan_frags(skb, gfp_mask)) {
5421 kfree(data);
5422 return -ENOMEM;
5424 shinfo = (struct skb_shared_info *)(data + size);
5425 for (i = 0; i < nfrags; i++) {
5426 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
5428 if (pos + fsize > off) {
5429 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
5431 if (pos < off) {
5432 /* Split frag.
5433 * We have two variants in this case:
5434 * 1. Move all the frag to the second
5435 * part, if it is possible. F.e.
5436 * this approach is mandatory for TUX,
5437 * where splitting is expensive.
5438 * 2. Split is accurately. We make this.
5440 shinfo->frags[0].page_offset += off - pos;
5441 skb_frag_size_sub(&shinfo->frags[0], off - pos);
5443 skb_frag_ref(skb, i);
5444 k++;
5446 pos += fsize;
5448 shinfo->nr_frags = k;
5449 if (skb_has_frag_list(skb))
5450 skb_clone_fraglist(skb);
5452 if (k == 0) {
5453 /* split line is in frag list */
5454 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
5456 skb_release_data(skb);
5458 skb->head = data;
5459 skb->head_frag = 0;
5460 skb->data = data;
5461 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5462 skb->end = size;
5463 #else
5464 skb->end = skb->head + size;
5465 #endif
5466 skb_reset_tail_pointer(skb);
5467 skb_headers_offset_update(skb, 0);
5468 skb->cloned = 0;
5469 skb->hdr_len = 0;
5470 skb->nohdr = 0;
5471 skb->len -= off;
5472 skb->data_len = skb->len;
5473 atomic_set(&skb_shinfo(skb)->dataref, 1);
5474 return 0;
5477 /* remove len bytes from the beginning of the skb */
5478 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
5480 int headlen = skb_headlen(skb);
5482 if (len < headlen)
5483 return pskb_carve_inside_header(skb, len, headlen, gfp);
5484 else
5485 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
5488 /* Extract to_copy bytes starting at off from skb, and return this in
5489 * a new skb
5491 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
5492 int to_copy, gfp_t gfp)
5494 struct sk_buff *clone = skb_clone(skb, gfp);
5496 if (!clone)
5497 return NULL;
5499 if (pskb_carve(clone, off, gfp) < 0 ||
5500 pskb_trim(clone, to_copy)) {
5501 kfree_skb(clone);
5502 return NULL;
5504 return clone;
5506 EXPORT_SYMBOL(pskb_extract);
5509 * skb_condense - try to get rid of fragments/frag_list if possible
5510 * @skb: buffer
5512 * Can be used to save memory before skb is added to a busy queue.
5513 * If packet has bytes in frags and enough tail room in skb->head,
5514 * pull all of them, so that we can free the frags right now and adjust
5515 * truesize.
5516 * Notes:
5517 * We do not reallocate skb->head thus can not fail.
5518 * Caller must re-evaluate skb->truesize if needed.
5520 void skb_condense(struct sk_buff *skb)
5522 if (skb->data_len) {
5523 if (skb->data_len > skb->end - skb->tail ||
5524 skb_cloned(skb))
5525 return;
5527 /* Nice, we can free page frag(s) right now */
5528 __pskb_pull_tail(skb, skb->data_len);
5530 /* At this point, skb->truesize might be over estimated,
5531 * because skb had a fragment, and fragments do not tell
5532 * their truesize.
5533 * When we pulled its content into skb->head, fragment
5534 * was freed, but __pskb_pull_tail() could not possibly
5535 * adjust skb->truesize, not knowing the frag truesize.
5537 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));