2 * net/sched/sch_netem.c Network emulator
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/skbuff.h>
23 #include <linux/vmalloc.h>
24 #include <linux/rtnetlink.h>
25 #include <linux/reciprocal_div.h>
26 #include <linux/rbtree.h>
28 #include <net/netlink.h>
29 #include <net/pkt_sched.h>
30 #include <net/inet_ecn.h>
34 /* Network Emulation Queuing algorithm.
35 ====================================
37 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
38 Network Emulation Tool
39 [2] Luigi Rizzo, DummyNet for FreeBSD
41 ----------------------------------------------------------------
43 This started out as a simple way to delay outgoing packets to
44 test TCP but has grown to include most of the functionality
45 of a full blown network emulator like NISTnet. It can delay
46 packets and add random jitter (and correlation). The random
47 distribution can be loaded from a table as well to provide
48 normal, Pareto, or experimental curves. Packet loss,
49 duplication, and reordering can also be emulated.
51 This qdisc does not do classification that can be handled in
52 layering other disciplines. It does not need to do bandwidth
53 control either since that can be handled by using token
54 bucket or other rate control.
56 Correlated Loss Generator models
58 Added generation of correlated loss according to the
59 "Gilbert-Elliot" model, a 4-state markov model.
62 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
63 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
64 and intuitive loss model for packet networks and its implementation
65 in the Netem module in the Linux kernel", available in [1]
67 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
68 Fabio Ludovici <fabio.ludovici at yahoo.it>
71 struct netem_sched_data
{
72 /* internal t(ime)fifo qdisc uses t_root and sch->limit */
73 struct rb_root t_root
;
75 /* optional qdisc for classful handling (NULL at netem init) */
78 struct qdisc_watchdog watchdog
;
94 struct reciprocal_value cell_size_reciprocal
;
100 } delay_cor
, loss_cor
, dup_cor
, reorder_cor
, corrupt_cor
;
114 TX_IN_GAP_PERIOD
= 1,
117 LOST_IN_BURST_PERIOD
,
125 /* Correlated Loss Generation models */
127 /* state of the Markov chain */
130 /* 4-states and Gilbert-Elliot models */
131 u32 a1
; /* p13 for 4-states or p for GE */
132 u32 a2
; /* p31 for 4-states or r for GE */
133 u32 a3
; /* p32 for 4-states or h for GE */
134 u32 a4
; /* p14 for 4-states or 1-k for GE */
135 u32 a5
; /* p23 used only in 4-states */
138 struct tc_netem_slot slot_config
;
147 /* Time stamp put into socket buffer control block
148 * Only valid when skbs are in our internal t(ime)fifo queue.
150 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
151 * and skb->next & skb->prev are scratch space for a qdisc,
152 * we save skb->tstamp value in skb->cb[] before destroying it.
154 struct netem_skb_cb
{
158 static inline struct netem_skb_cb
*netem_skb_cb(struct sk_buff
*skb
)
160 /* we assume we can use skb next/prev/tstamp as storage for rb_node */
161 qdisc_cb_private_validate(skb
, sizeof(struct netem_skb_cb
));
162 return (struct netem_skb_cb
*)qdisc_skb_cb(skb
)->data
;
165 /* init_crandom - initialize correlated random number generator
166 * Use entropy source for initial seed.
168 static void init_crandom(struct crndstate
*state
, unsigned long rho
)
171 state
->last
= prandom_u32();
174 /* get_crandom - correlated random number generator
175 * Next number depends on last value.
176 * rho is scaled to avoid floating point.
178 static u32
get_crandom(struct crndstate
*state
)
181 unsigned long answer
;
183 if (state
->rho
== 0) /* no correlation */
184 return prandom_u32();
186 value
= prandom_u32();
187 rho
= (u64
)state
->rho
+ 1;
188 answer
= (value
* ((1ull<<32) - rho
) + state
->last
* rho
) >> 32;
189 state
->last
= answer
;
193 /* loss_4state - 4-state model loss generator
194 * Generates losses according to the 4-state Markov chain adopted in
195 * the GI (General and Intuitive) loss model.
197 static bool loss_4state(struct netem_sched_data
*q
)
199 struct clgstate
*clg
= &q
->clg
;
200 u32 rnd
= prandom_u32();
203 * Makes a comparison between rnd and the transition
204 * probabilities outgoing from the current state, then decides the
205 * next state and if the next packet has to be transmitted or lost.
206 * The four states correspond to:
207 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
208 * LOST_IN_BURST_PERIOD => isolated losses within a gap period
209 * LOST_IN_GAP_PERIOD => lost packets within a burst period
210 * TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
212 switch (clg
->state
) {
213 case TX_IN_GAP_PERIOD
:
215 clg
->state
= LOST_IN_BURST_PERIOD
;
217 } else if (clg
->a4
< rnd
&& rnd
< clg
->a1
+ clg
->a4
) {
218 clg
->state
= LOST_IN_GAP_PERIOD
;
220 } else if (clg
->a1
+ clg
->a4
< rnd
) {
221 clg
->state
= TX_IN_GAP_PERIOD
;
225 case TX_IN_BURST_PERIOD
:
227 clg
->state
= LOST_IN_GAP_PERIOD
;
230 clg
->state
= TX_IN_BURST_PERIOD
;
234 case LOST_IN_GAP_PERIOD
:
236 clg
->state
= TX_IN_BURST_PERIOD
;
237 else if (clg
->a3
< rnd
&& rnd
< clg
->a2
+ clg
->a3
) {
238 clg
->state
= TX_IN_GAP_PERIOD
;
239 } else if (clg
->a2
+ clg
->a3
< rnd
) {
240 clg
->state
= LOST_IN_GAP_PERIOD
;
244 case LOST_IN_BURST_PERIOD
:
245 clg
->state
= TX_IN_GAP_PERIOD
;
252 /* loss_gilb_ell - Gilbert-Elliot model loss generator
253 * Generates losses according to the Gilbert-Elliot loss model or
254 * its special cases (Gilbert or Simple Gilbert)
256 * Makes a comparison between random number and the transition
257 * probabilities outgoing from the current state, then decides the
258 * next state. A second random number is extracted and the comparison
259 * with the loss probability of the current state decides if the next
260 * packet will be transmitted or lost.
262 static bool loss_gilb_ell(struct netem_sched_data
*q
)
264 struct clgstate
*clg
= &q
->clg
;
266 switch (clg
->state
) {
268 if (prandom_u32() < clg
->a1
)
269 clg
->state
= BAD_STATE
;
270 if (prandom_u32() < clg
->a4
)
274 if (prandom_u32() < clg
->a2
)
275 clg
->state
= GOOD_STATE
;
276 if (prandom_u32() > clg
->a3
)
283 static bool loss_event(struct netem_sched_data
*q
)
285 switch (q
->loss_model
) {
287 /* Random packet drop 0 => none, ~0 => all */
288 return q
->loss
&& q
->loss
>= get_crandom(&q
->loss_cor
);
291 /* 4state loss model algorithm (used also for GI model)
292 * Extracts a value from the markov 4 state loss generator,
293 * if it is 1 drops a packet and if needed writes the event in
296 return loss_4state(q
);
299 /* Gilbert-Elliot loss model algorithm
300 * Extracts a value from the Gilbert-Elliot loss generator,
301 * if it is 1 drops a packet and if needed writes the event in
304 return loss_gilb_ell(q
);
307 return false; /* not reached */
311 /* tabledist - return a pseudo-randomly distributed value with mean mu and
312 * std deviation sigma. Uses table lookup to approximate the desired
313 * distribution, and a uniformly-distributed pseudo-random source.
315 static s64
tabledist(s64 mu
, s32 sigma
,
316 struct crndstate
*state
,
317 const struct disttable
*dist
)
326 rnd
= get_crandom(state
);
328 /* default uniform distribution */
330 return ((rnd
% (2 * sigma
)) + mu
) - sigma
;
332 t
= dist
->table
[rnd
% dist
->size
];
333 x
= (sigma
% NETEM_DIST_SCALE
) * t
;
335 x
+= NETEM_DIST_SCALE
/2;
337 x
-= NETEM_DIST_SCALE
/2;
339 return x
/ NETEM_DIST_SCALE
+ (sigma
/ NETEM_DIST_SCALE
) * t
+ mu
;
342 static u64
packet_time_ns(u64 len
, const struct netem_sched_data
*q
)
344 len
+= q
->packet_overhead
;
347 u32 cells
= reciprocal_divide(len
, q
->cell_size_reciprocal
);
349 if (len
> cells
* q
->cell_size
) /* extra cell needed for remainder */
351 len
= cells
* (q
->cell_size
+ q
->cell_overhead
);
354 return div64_u64(len
* NSEC_PER_SEC
, q
->rate
);
357 static void tfifo_reset(struct Qdisc
*sch
)
359 struct netem_sched_data
*q
= qdisc_priv(sch
);
360 struct rb_node
*p
= rb_first(&q
->t_root
);
363 struct sk_buff
*skb
= rb_to_skb(p
);
366 rb_erase(&skb
->rbnode
, &q
->t_root
);
367 rtnl_kfree_skbs(skb
, skb
);
371 static void tfifo_enqueue(struct sk_buff
*nskb
, struct Qdisc
*sch
)
373 struct netem_sched_data
*q
= qdisc_priv(sch
);
374 u64 tnext
= netem_skb_cb(nskb
)->time_to_send
;
375 struct rb_node
**p
= &q
->t_root
.rb_node
, *parent
= NULL
;
381 skb
= rb_to_skb(parent
);
382 if (tnext
>= netem_skb_cb(skb
)->time_to_send
)
383 p
= &parent
->rb_right
;
385 p
= &parent
->rb_left
;
387 rb_link_node(&nskb
->rbnode
, parent
, p
);
388 rb_insert_color(&nskb
->rbnode
, &q
->t_root
);
392 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
393 * when we statistically choose to corrupt one, we instead segment it, returning
394 * the first packet to be corrupted, and re-enqueue the remaining frames
396 static struct sk_buff
*netem_segment(struct sk_buff
*skb
, struct Qdisc
*sch
,
397 struct sk_buff
**to_free
)
399 struct sk_buff
*segs
;
400 netdev_features_t features
= netif_skb_features(skb
);
402 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
404 if (IS_ERR_OR_NULL(segs
)) {
405 qdisc_drop(skb
, sch
, to_free
);
412 static void netem_enqueue_skb_head(struct qdisc_skb_head
*qh
, struct sk_buff
*skb
)
414 skb
->next
= qh
->head
;
423 * Insert one skb into qdisc.
424 * Note: parent depends on return value to account for queue length.
425 * NET_XMIT_DROP: queue length didn't change.
426 * NET_XMIT_SUCCESS: one skb was queued.
428 static int netem_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
,
429 struct sk_buff
**to_free
)
431 struct netem_sched_data
*q
= qdisc_priv(sch
);
432 /* We don't fill cb now as skb_unshare() may invalidate it */
433 struct netem_skb_cb
*cb
;
434 struct sk_buff
*skb2
;
435 struct sk_buff
*segs
= NULL
;
436 unsigned int len
= 0, last_len
, prev_len
= qdisc_pkt_len(skb
);
439 int rc
= NET_XMIT_SUCCESS
;
441 /* Random duplication */
442 if (q
->duplicate
&& q
->duplicate
>= get_crandom(&q
->dup_cor
))
447 if (q
->ecn
&& INET_ECN_set_ce(skb
))
448 qdisc_qstats_drop(sch
); /* mark packet */
453 qdisc_qstats_drop(sch
);
454 __qdisc_drop(skb
, to_free
);
455 return NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
458 /* If a delay is expected, orphan the skb. (orphaning usually takes
459 * place at TX completion time, so _before_ the link transit delay)
461 if (q
->latency
|| q
->jitter
|| q
->rate
)
462 skb_orphan_partial(skb
);
465 * If we need to duplicate packet, then re-insert at top of the
466 * qdisc tree, since parent queuer expects that only one
467 * skb will be queued.
469 if (count
> 1 && (skb2
= skb_clone(skb
, GFP_ATOMIC
)) != NULL
) {
470 struct Qdisc
*rootq
= qdisc_root(sch
);
471 u32 dupsave
= q
->duplicate
; /* prevent duplicating a dup... */
474 rootq
->enqueue(skb2
, rootq
, to_free
);
475 q
->duplicate
= dupsave
;
479 * Randomized packet corruption.
480 * Make copy if needed since we are modifying
481 * If packet is going to be hardware checksummed, then
482 * do it now in software before we mangle it.
484 if (q
->corrupt
&& q
->corrupt
>= get_crandom(&q
->corrupt_cor
)) {
485 if (skb_is_gso(skb
)) {
486 segs
= netem_segment(skb
, sch
, to_free
);
488 return NET_XMIT_DROP
;
496 skb
= skb_unshare(skb
, GFP_ATOMIC
);
497 if (unlikely(!skb
)) {
498 qdisc_qstats_drop(sch
);
501 if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
502 skb_checksum_help(skb
)) {
503 qdisc_drop(skb
, sch
, to_free
);
507 skb
->data
[prandom_u32() % skb_headlen(skb
)] ^=
508 1<<(prandom_u32() % 8);
511 if (unlikely(sch
->q
.qlen
>= sch
->limit
))
512 return qdisc_drop_all(skb
, sch
, to_free
);
514 qdisc_qstats_backlog_inc(sch
, skb
);
516 cb
= netem_skb_cb(skb
);
517 if (q
->gap
== 0 || /* not doing reordering */
518 q
->counter
< q
->gap
- 1 || /* inside last reordering gap */
519 q
->reorder
< get_crandom(&q
->reorder_cor
)) {
523 delay
= tabledist(q
->latency
, q
->jitter
,
524 &q
->delay_cor
, q
->delay_dist
);
526 now
= ktime_get_ns();
529 struct netem_skb_cb
*last
= NULL
;
532 last
= netem_skb_cb(sch
->q
.tail
);
533 if (q
->t_root
.rb_node
) {
534 struct sk_buff
*t_skb
;
535 struct netem_skb_cb
*t_last
;
537 t_skb
= skb_rb_last(&q
->t_root
);
538 t_last
= netem_skb_cb(t_skb
);
540 t_last
->time_to_send
> last
->time_to_send
) {
547 * Last packet in queue is reference point (now),
548 * calculate this time bonus and subtract
551 delay
-= last
->time_to_send
- now
;
552 delay
= max_t(s64
, 0, delay
);
553 now
= last
->time_to_send
;
556 delay
+= packet_time_ns(qdisc_pkt_len(skb
), q
);
559 cb
->time_to_send
= now
+ delay
;
561 tfifo_enqueue(skb
, sch
);
564 * Do re-ordering by putting one out of N packets at the front
567 cb
->time_to_send
= ktime_get_ns();
570 netem_enqueue_skb_head(&sch
->q
, skb
);
571 sch
->qstats
.requeues
++;
579 qdisc_skb_cb(segs
)->pkt_len
= segs
->len
;
580 last_len
= segs
->len
;
581 rc
= qdisc_enqueue(segs
, sch
, to_free
);
582 if (rc
!= NET_XMIT_SUCCESS
) {
583 if (net_xmit_drop_count(rc
))
584 qdisc_qstats_drop(sch
);
593 qdisc_tree_reduce_backlog(sch
, 1 - nb
, prev_len
- len
);
595 return NET_XMIT_SUCCESS
;
598 /* Delay the next round with a new future slot with a
599 * correct number of bytes and packets.
602 static void get_slot_next(struct netem_sched_data
*q
, u64 now
)
604 q
->slot
.slot_next
= now
+ q
->slot_config
.min_delay
+
606 (q
->slot_config
.max_delay
-
607 q
->slot_config
.min_delay
) >> 32);
608 q
->slot
.packets_left
= q
->slot_config
.max_packets
;
609 q
->slot
.bytes_left
= q
->slot_config
.max_bytes
;
612 static struct sk_buff
*netem_dequeue(struct Qdisc
*sch
)
614 struct netem_sched_data
*q
= qdisc_priv(sch
);
619 skb
= __qdisc_dequeue_head(&sch
->q
);
621 qdisc_qstats_backlog_dec(sch
, skb
);
623 qdisc_bstats_update(sch
, skb
);
626 p
= rb_first(&q
->t_root
);
629 u64 now
= ktime_get_ns();
633 /* if more time remaining? */
634 time_to_send
= netem_skb_cb(skb
)->time_to_send
;
635 if (q
->slot
.slot_next
&& q
->slot
.slot_next
< time_to_send
)
636 get_slot_next(q
, now
);
638 if (time_to_send
<= now
&& q
->slot
.slot_next
<= now
) {
639 rb_erase(p
, &q
->t_root
);
641 qdisc_qstats_backlog_dec(sch
, skb
);
644 /* skb->dev shares skb->rbnode area,
645 * we need to restore its value.
647 skb
->dev
= qdisc_dev(sch
);
649 #ifdef CONFIG_NET_CLS_ACT
651 * If it's at ingress let's pretend the delay is
652 * from the network (tstamp will be updated).
654 if (skb
->tc_redirected
&& skb
->tc_from_ingress
)
658 if (q
->slot
.slot_next
) {
659 q
->slot
.packets_left
--;
660 q
->slot
.bytes_left
-= qdisc_pkt_len(skb
);
661 if (q
->slot
.packets_left
<= 0 ||
662 q
->slot
.bytes_left
<= 0)
663 get_slot_next(q
, now
);
667 unsigned int pkt_len
= qdisc_pkt_len(skb
);
668 struct sk_buff
*to_free
= NULL
;
671 err
= qdisc_enqueue(skb
, q
->qdisc
, &to_free
);
672 kfree_skb_list(to_free
);
673 if (err
!= NET_XMIT_SUCCESS
&&
674 net_xmit_drop_count(err
)) {
675 qdisc_qstats_drop(sch
);
676 qdisc_tree_reduce_backlog(sch
, 1,
685 skb
= q
->qdisc
->ops
->dequeue(q
->qdisc
);
690 qdisc_watchdog_schedule_ns(&q
->watchdog
,
696 skb
= q
->qdisc
->ops
->dequeue(q
->qdisc
);
703 static void netem_reset(struct Qdisc
*sch
)
705 struct netem_sched_data
*q
= qdisc_priv(sch
);
707 qdisc_reset_queue(sch
);
710 qdisc_reset(q
->qdisc
);
711 qdisc_watchdog_cancel(&q
->watchdog
);
714 static void dist_free(struct disttable
*d
)
720 * Distribution data is a variable size payload containing
721 * signed 16 bit values.
724 static int get_dist_table(struct Qdisc
*sch
, const struct nlattr
*attr
)
726 struct netem_sched_data
*q
= qdisc_priv(sch
);
727 size_t n
= nla_len(attr
)/sizeof(__s16
);
728 const __s16
*data
= nla_data(attr
);
729 spinlock_t
*root_lock
;
733 if (n
> NETEM_DIST_MAX
)
736 d
= kvmalloc(sizeof(struct disttable
) + n
* sizeof(s16
), GFP_KERNEL
);
741 for (i
= 0; i
< n
; i
++)
742 d
->table
[i
] = data
[i
];
744 root_lock
= qdisc_root_sleeping_lock(sch
);
746 spin_lock_bh(root_lock
);
747 swap(q
->delay_dist
, d
);
748 spin_unlock_bh(root_lock
);
754 static void get_slot(struct netem_sched_data
*q
, const struct nlattr
*attr
)
756 const struct tc_netem_slot
*c
= nla_data(attr
);
759 if (q
->slot_config
.max_packets
== 0)
760 q
->slot_config
.max_packets
= INT_MAX
;
761 if (q
->slot_config
.max_bytes
== 0)
762 q
->slot_config
.max_bytes
= INT_MAX
;
763 q
->slot
.packets_left
= q
->slot_config
.max_packets
;
764 q
->slot
.bytes_left
= q
->slot_config
.max_bytes
;
765 if (q
->slot_config
.min_delay
| q
->slot_config
.max_delay
)
766 q
->slot
.slot_next
= ktime_get_ns();
768 q
->slot
.slot_next
= 0;
771 static void get_correlation(struct netem_sched_data
*q
, const struct nlattr
*attr
)
773 const struct tc_netem_corr
*c
= nla_data(attr
);
775 init_crandom(&q
->delay_cor
, c
->delay_corr
);
776 init_crandom(&q
->loss_cor
, c
->loss_corr
);
777 init_crandom(&q
->dup_cor
, c
->dup_corr
);
780 static void get_reorder(struct netem_sched_data
*q
, const struct nlattr
*attr
)
782 const struct tc_netem_reorder
*r
= nla_data(attr
);
784 q
->reorder
= r
->probability
;
785 init_crandom(&q
->reorder_cor
, r
->correlation
);
788 static void get_corrupt(struct netem_sched_data
*q
, const struct nlattr
*attr
)
790 const struct tc_netem_corrupt
*r
= nla_data(attr
);
792 q
->corrupt
= r
->probability
;
793 init_crandom(&q
->corrupt_cor
, r
->correlation
);
796 static void get_rate(struct netem_sched_data
*q
, const struct nlattr
*attr
)
798 const struct tc_netem_rate
*r
= nla_data(attr
);
801 q
->packet_overhead
= r
->packet_overhead
;
802 q
->cell_size
= r
->cell_size
;
803 q
->cell_overhead
= r
->cell_overhead
;
805 q
->cell_size_reciprocal
= reciprocal_value(q
->cell_size
);
807 q
->cell_size_reciprocal
= (struct reciprocal_value
) { 0 };
810 static int get_loss_clg(struct netem_sched_data
*q
, const struct nlattr
*attr
)
812 const struct nlattr
*la
;
815 nla_for_each_nested(la
, attr
, rem
) {
816 u16 type
= nla_type(la
);
819 case NETEM_LOSS_GI
: {
820 const struct tc_netem_gimodel
*gi
= nla_data(la
);
822 if (nla_len(la
) < sizeof(struct tc_netem_gimodel
)) {
823 pr_info("netem: incorrect gi model size\n");
827 q
->loss_model
= CLG_4_STATES
;
829 q
->clg
.state
= TX_IN_GAP_PERIOD
;
838 case NETEM_LOSS_GE
: {
839 const struct tc_netem_gemodel
*ge
= nla_data(la
);
841 if (nla_len(la
) < sizeof(struct tc_netem_gemodel
)) {
842 pr_info("netem: incorrect ge model size\n");
846 q
->loss_model
= CLG_GILB_ELL
;
847 q
->clg
.state
= GOOD_STATE
;
856 pr_info("netem: unknown loss type %u\n", type
);
864 static const struct nla_policy netem_policy
[TCA_NETEM_MAX
+ 1] = {
865 [TCA_NETEM_CORR
] = { .len
= sizeof(struct tc_netem_corr
) },
866 [TCA_NETEM_REORDER
] = { .len
= sizeof(struct tc_netem_reorder
) },
867 [TCA_NETEM_CORRUPT
] = { .len
= sizeof(struct tc_netem_corrupt
) },
868 [TCA_NETEM_RATE
] = { .len
= sizeof(struct tc_netem_rate
) },
869 [TCA_NETEM_LOSS
] = { .type
= NLA_NESTED
},
870 [TCA_NETEM_ECN
] = { .type
= NLA_U32
},
871 [TCA_NETEM_RATE64
] = { .type
= NLA_U64
},
872 [TCA_NETEM_LATENCY64
] = { .type
= NLA_S64
},
873 [TCA_NETEM_JITTER64
] = { .type
= NLA_S64
},
874 [TCA_NETEM_SLOT
] = { .len
= sizeof(struct tc_netem_slot
) },
877 static int parse_attr(struct nlattr
*tb
[], int maxtype
, struct nlattr
*nla
,
878 const struct nla_policy
*policy
, int len
)
880 int nested_len
= nla_len(nla
) - NLA_ALIGN(len
);
882 if (nested_len
< 0) {
883 pr_info("netem: invalid attributes len %d\n", nested_len
);
887 if (nested_len
>= nla_attr_size(0))
888 return nla_parse(tb
, maxtype
, nla_data(nla
) + NLA_ALIGN(len
),
889 nested_len
, policy
, NULL
);
891 memset(tb
, 0, sizeof(struct nlattr
*) * (maxtype
+ 1));
895 /* Parse netlink message to set options */
896 static int netem_change(struct Qdisc
*sch
, struct nlattr
*opt
,
897 struct netlink_ext_ack
*extack
)
899 struct netem_sched_data
*q
= qdisc_priv(sch
);
900 struct nlattr
*tb
[TCA_NETEM_MAX
+ 1];
901 struct tc_netem_qopt
*qopt
;
902 struct clgstate old_clg
;
903 int old_loss_model
= CLG_RANDOM
;
909 qopt
= nla_data(opt
);
910 ret
= parse_attr(tb
, TCA_NETEM_MAX
, opt
, netem_policy
, sizeof(*qopt
));
914 /* backup q->clg and q->loss_model */
916 old_loss_model
= q
->loss_model
;
918 if (tb
[TCA_NETEM_LOSS
]) {
919 ret
= get_loss_clg(q
, tb
[TCA_NETEM_LOSS
]);
921 q
->loss_model
= old_loss_model
;
925 q
->loss_model
= CLG_RANDOM
;
928 if (tb
[TCA_NETEM_DELAY_DIST
]) {
929 ret
= get_dist_table(sch
, tb
[TCA_NETEM_DELAY_DIST
]);
931 /* recover clg and loss_model, in case of
932 * q->clg and q->loss_model were modified
936 q
->loss_model
= old_loss_model
;
941 sch
->limit
= qopt
->limit
;
943 q
->latency
= PSCHED_TICKS2NS(qopt
->latency
);
944 q
->jitter
= PSCHED_TICKS2NS(qopt
->jitter
);
945 q
->limit
= qopt
->limit
;
948 q
->loss
= qopt
->loss
;
949 q
->duplicate
= qopt
->duplicate
;
951 /* for compatibility with earlier versions.
952 * if gap is set, need to assume 100% probability
957 if (tb
[TCA_NETEM_CORR
])
958 get_correlation(q
, tb
[TCA_NETEM_CORR
]);
960 if (tb
[TCA_NETEM_REORDER
])
961 get_reorder(q
, tb
[TCA_NETEM_REORDER
]);
963 if (tb
[TCA_NETEM_CORRUPT
])
964 get_corrupt(q
, tb
[TCA_NETEM_CORRUPT
]);
966 if (tb
[TCA_NETEM_RATE
])
967 get_rate(q
, tb
[TCA_NETEM_RATE
]);
969 if (tb
[TCA_NETEM_RATE64
])
970 q
->rate
= max_t(u64
, q
->rate
,
971 nla_get_u64(tb
[TCA_NETEM_RATE64
]));
973 if (tb
[TCA_NETEM_LATENCY64
])
974 q
->latency
= nla_get_s64(tb
[TCA_NETEM_LATENCY64
]);
976 if (tb
[TCA_NETEM_JITTER64
])
977 q
->jitter
= nla_get_s64(tb
[TCA_NETEM_JITTER64
]);
979 if (tb
[TCA_NETEM_ECN
])
980 q
->ecn
= nla_get_u32(tb
[TCA_NETEM_ECN
]);
982 if (tb
[TCA_NETEM_SLOT
])
983 get_slot(q
, tb
[TCA_NETEM_SLOT
]);
988 static int netem_init(struct Qdisc
*sch
, struct nlattr
*opt
,
989 struct netlink_ext_ack
*extack
)
991 struct netem_sched_data
*q
= qdisc_priv(sch
);
994 qdisc_watchdog_init(&q
->watchdog
, sch
);
999 q
->loss_model
= CLG_RANDOM
;
1000 ret
= netem_change(sch
, opt
, extack
);
1002 pr_info("netem: change failed\n");
1006 static void netem_destroy(struct Qdisc
*sch
)
1008 struct netem_sched_data
*q
= qdisc_priv(sch
);
1010 qdisc_watchdog_cancel(&q
->watchdog
);
1012 qdisc_destroy(q
->qdisc
);
1013 dist_free(q
->delay_dist
);
1016 static int dump_loss_model(const struct netem_sched_data
*q
,
1017 struct sk_buff
*skb
)
1019 struct nlattr
*nest
;
1021 nest
= nla_nest_start(skb
, TCA_NETEM_LOSS
);
1023 goto nla_put_failure
;
1025 switch (q
->loss_model
) {
1027 /* legacy loss model */
1028 nla_nest_cancel(skb
, nest
);
1029 return 0; /* no data */
1031 case CLG_4_STATES
: {
1032 struct tc_netem_gimodel gi
= {
1040 if (nla_put(skb
, NETEM_LOSS_GI
, sizeof(gi
), &gi
))
1041 goto nla_put_failure
;
1044 case CLG_GILB_ELL
: {
1045 struct tc_netem_gemodel ge
= {
1052 if (nla_put(skb
, NETEM_LOSS_GE
, sizeof(ge
), &ge
))
1053 goto nla_put_failure
;
1058 nla_nest_end(skb
, nest
);
1062 nla_nest_cancel(skb
, nest
);
1066 static int netem_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
1068 const struct netem_sched_data
*q
= qdisc_priv(sch
);
1069 struct nlattr
*nla
= (struct nlattr
*) skb_tail_pointer(skb
);
1070 struct tc_netem_qopt qopt
;
1071 struct tc_netem_corr cor
;
1072 struct tc_netem_reorder reorder
;
1073 struct tc_netem_corrupt corrupt
;
1074 struct tc_netem_rate rate
;
1075 struct tc_netem_slot slot
;
1077 qopt
.latency
= min_t(psched_tdiff_t
, PSCHED_NS2TICKS(q
->latency
),
1079 qopt
.jitter
= min_t(psched_tdiff_t
, PSCHED_NS2TICKS(q
->jitter
),
1081 qopt
.limit
= q
->limit
;
1082 qopt
.loss
= q
->loss
;
1084 qopt
.duplicate
= q
->duplicate
;
1085 if (nla_put(skb
, TCA_OPTIONS
, sizeof(qopt
), &qopt
))
1086 goto nla_put_failure
;
1088 if (nla_put(skb
, TCA_NETEM_LATENCY64
, sizeof(q
->latency
), &q
->latency
))
1089 goto nla_put_failure
;
1091 if (nla_put(skb
, TCA_NETEM_JITTER64
, sizeof(q
->jitter
), &q
->jitter
))
1092 goto nla_put_failure
;
1094 cor
.delay_corr
= q
->delay_cor
.rho
;
1095 cor
.loss_corr
= q
->loss_cor
.rho
;
1096 cor
.dup_corr
= q
->dup_cor
.rho
;
1097 if (nla_put(skb
, TCA_NETEM_CORR
, sizeof(cor
), &cor
))
1098 goto nla_put_failure
;
1100 reorder
.probability
= q
->reorder
;
1101 reorder
.correlation
= q
->reorder_cor
.rho
;
1102 if (nla_put(skb
, TCA_NETEM_REORDER
, sizeof(reorder
), &reorder
))
1103 goto nla_put_failure
;
1105 corrupt
.probability
= q
->corrupt
;
1106 corrupt
.correlation
= q
->corrupt_cor
.rho
;
1107 if (nla_put(skb
, TCA_NETEM_CORRUPT
, sizeof(corrupt
), &corrupt
))
1108 goto nla_put_failure
;
1110 if (q
->rate
>= (1ULL << 32)) {
1111 if (nla_put_u64_64bit(skb
, TCA_NETEM_RATE64
, q
->rate
,
1113 goto nla_put_failure
;
1116 rate
.rate
= q
->rate
;
1118 rate
.packet_overhead
= q
->packet_overhead
;
1119 rate
.cell_size
= q
->cell_size
;
1120 rate
.cell_overhead
= q
->cell_overhead
;
1121 if (nla_put(skb
, TCA_NETEM_RATE
, sizeof(rate
), &rate
))
1122 goto nla_put_failure
;
1124 if (q
->ecn
&& nla_put_u32(skb
, TCA_NETEM_ECN
, q
->ecn
))
1125 goto nla_put_failure
;
1127 if (dump_loss_model(q
, skb
) != 0)
1128 goto nla_put_failure
;
1130 if (q
->slot_config
.min_delay
| q
->slot_config
.max_delay
) {
1131 slot
= q
->slot_config
;
1132 if (slot
.max_packets
== INT_MAX
)
1133 slot
.max_packets
= 0;
1134 if (slot
.max_bytes
== INT_MAX
)
1136 if (nla_put(skb
, TCA_NETEM_SLOT
, sizeof(slot
), &slot
))
1137 goto nla_put_failure
;
1140 return nla_nest_end(skb
, nla
);
1143 nlmsg_trim(skb
, nla
);
1147 static int netem_dump_class(struct Qdisc
*sch
, unsigned long cl
,
1148 struct sk_buff
*skb
, struct tcmsg
*tcm
)
1150 struct netem_sched_data
*q
= qdisc_priv(sch
);
1152 if (cl
!= 1 || !q
->qdisc
) /* only one class */
1155 tcm
->tcm_handle
|= TC_H_MIN(1);
1156 tcm
->tcm_info
= q
->qdisc
->handle
;
1161 static int netem_graft(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
1162 struct Qdisc
**old
, struct netlink_ext_ack
*extack
)
1164 struct netem_sched_data
*q
= qdisc_priv(sch
);
1166 *old
= qdisc_replace(sch
, new, &q
->qdisc
);
1170 static struct Qdisc
*netem_leaf(struct Qdisc
*sch
, unsigned long arg
)
1172 struct netem_sched_data
*q
= qdisc_priv(sch
);
1176 static unsigned long netem_find(struct Qdisc
*sch
, u32 classid
)
1181 static void netem_walk(struct Qdisc
*sch
, struct qdisc_walker
*walker
)
1183 if (!walker
->stop
) {
1184 if (walker
->count
>= walker
->skip
)
1185 if (walker
->fn(sch
, 1, walker
) < 0) {
1193 static const struct Qdisc_class_ops netem_class_ops
= {
1194 .graft
= netem_graft
,
1198 .dump
= netem_dump_class
,
1201 static struct Qdisc_ops netem_qdisc_ops __read_mostly
= {
1203 .cl_ops
= &netem_class_ops
,
1204 .priv_size
= sizeof(struct netem_sched_data
),
1205 .enqueue
= netem_enqueue
,
1206 .dequeue
= netem_dequeue
,
1207 .peek
= qdisc_peek_dequeued
,
1209 .reset
= netem_reset
,
1210 .destroy
= netem_destroy
,
1211 .change
= netem_change
,
1213 .owner
= THIS_MODULE
,
1217 static int __init
netem_module_init(void)
1219 pr_info("netem: version " VERSION
"\n");
1220 return register_qdisc(&netem_qdisc_ops
);
1222 static void __exit
netem_module_exit(void)
1224 unregister_qdisc(&netem_qdisc_ops
);
1226 module_init(netem_module_init
)
1227 module_exit(netem_module_exit
)
1228 MODULE_LICENSE("GPL");