bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / net / sunrpc / auth_gss / gss_krb5_crypto.c
blob8654494b4d0a39c2ad970597fd7919640b948885
1 /*
2 * linux/net/sunrpc/gss_krb5_crypto.c
4 * Copyright (c) 2000-2008 The Regents of the University of Michigan.
5 * All rights reserved.
7 * Andy Adamson <andros@umich.edu>
8 * Bruce Fields <bfields@umich.edu>
9 */
12 * Copyright (C) 1998 by the FundsXpress, INC.
14 * All rights reserved.
16 * Export of this software from the United States of America may require
17 * a specific license from the United States Government. It is the
18 * responsibility of any person or organization contemplating export to
19 * obtain such a license before exporting.
21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
22 * distribute this software and its documentation for any purpose and
23 * without fee is hereby granted, provided that the above copyright
24 * notice appear in all copies and that both that copyright notice and
25 * this permission notice appear in supporting documentation, and that
26 * the name of FundsXpress. not be used in advertising or publicity pertaining
27 * to distribution of the software without specific, written prior
28 * permission. FundsXpress makes no representations about the suitability of
29 * this software for any purpose. It is provided "as is" without express
30 * or implied warranty.
32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
37 #include <crypto/algapi.h>
38 #include <crypto/hash.h>
39 #include <crypto/skcipher.h>
40 #include <linux/err.h>
41 #include <linux/types.h>
42 #include <linux/mm.h>
43 #include <linux/scatterlist.h>
44 #include <linux/highmem.h>
45 #include <linux/pagemap.h>
46 #include <linux/random.h>
47 #include <linux/sunrpc/gss_krb5.h>
48 #include <linux/sunrpc/xdr.h>
50 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
51 # define RPCDBG_FACILITY RPCDBG_AUTH
52 #endif
54 u32
55 krb5_encrypt(
56 struct crypto_skcipher *tfm,
57 void * iv,
58 void * in,
59 void * out,
60 int length)
62 u32 ret = -EINVAL;
63 struct scatterlist sg[1];
64 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
65 SKCIPHER_REQUEST_ON_STACK(req, tfm);
67 if (length % crypto_skcipher_blocksize(tfm) != 0)
68 goto out;
70 if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
71 dprintk("RPC: gss_k5encrypt: tfm iv size too large %d\n",
72 crypto_skcipher_ivsize(tfm));
73 goto out;
76 if (iv)
77 memcpy(local_iv, iv, crypto_skcipher_ivsize(tfm));
79 memcpy(out, in, length);
80 sg_init_one(sg, out, length);
82 skcipher_request_set_tfm(req, tfm);
83 skcipher_request_set_callback(req, 0, NULL, NULL);
84 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
86 ret = crypto_skcipher_encrypt(req);
87 skcipher_request_zero(req);
88 out:
89 dprintk("RPC: krb5_encrypt returns %d\n", ret);
90 return ret;
93 u32
94 krb5_decrypt(
95 struct crypto_skcipher *tfm,
96 void * iv,
97 void * in,
98 void * out,
99 int length)
101 u32 ret = -EINVAL;
102 struct scatterlist sg[1];
103 u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
104 SKCIPHER_REQUEST_ON_STACK(req, tfm);
106 if (length % crypto_skcipher_blocksize(tfm) != 0)
107 goto out;
109 if (crypto_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
110 dprintk("RPC: gss_k5decrypt: tfm iv size too large %d\n",
111 crypto_skcipher_ivsize(tfm));
112 goto out;
114 if (iv)
115 memcpy(local_iv,iv, crypto_skcipher_ivsize(tfm));
117 memcpy(out, in, length);
118 sg_init_one(sg, out, length);
120 skcipher_request_set_tfm(req, tfm);
121 skcipher_request_set_callback(req, 0, NULL, NULL);
122 skcipher_request_set_crypt(req, sg, sg, length, local_iv);
124 ret = crypto_skcipher_decrypt(req);
125 skcipher_request_zero(req);
126 out:
127 dprintk("RPC: gss_k5decrypt returns %d\n",ret);
128 return ret;
131 static int
132 checksummer(struct scatterlist *sg, void *data)
134 struct ahash_request *req = data;
136 ahash_request_set_crypt(req, sg, NULL, sg->length);
138 return crypto_ahash_update(req);
141 static int
142 arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
144 unsigned int ms_usage;
146 switch (usage) {
147 case KG_USAGE_SIGN:
148 ms_usage = 15;
149 break;
150 case KG_USAGE_SEAL:
151 ms_usage = 13;
152 break;
153 default:
154 return -EINVAL;
156 salt[0] = (ms_usage >> 0) & 0xff;
157 salt[1] = (ms_usage >> 8) & 0xff;
158 salt[2] = (ms_usage >> 16) & 0xff;
159 salt[3] = (ms_usage >> 24) & 0xff;
161 return 0;
164 static u32
165 make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
166 struct xdr_buf *body, int body_offset, u8 *cksumkey,
167 unsigned int usage, struct xdr_netobj *cksumout)
169 struct scatterlist sg[1];
170 int err = -1;
171 u8 *checksumdata;
172 u8 rc4salt[4];
173 struct crypto_ahash *md5;
174 struct crypto_ahash *hmac_md5;
175 struct ahash_request *req;
177 if (cksumkey == NULL)
178 return GSS_S_FAILURE;
180 if (cksumout->len < kctx->gk5e->cksumlength) {
181 dprintk("%s: checksum buffer length, %u, too small for %s\n",
182 __func__, cksumout->len, kctx->gk5e->name);
183 return GSS_S_FAILURE;
186 if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
187 dprintk("%s: invalid usage value %u\n", __func__, usage);
188 return GSS_S_FAILURE;
191 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
192 if (!checksumdata)
193 return GSS_S_FAILURE;
195 md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
196 if (IS_ERR(md5))
197 goto out_free_cksum;
199 hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
200 CRYPTO_ALG_ASYNC);
201 if (IS_ERR(hmac_md5))
202 goto out_free_md5;
204 req = ahash_request_alloc(md5, GFP_NOFS);
205 if (!req)
206 goto out_free_hmac_md5;
208 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
210 err = crypto_ahash_init(req);
211 if (err)
212 goto out;
213 sg_init_one(sg, rc4salt, 4);
214 ahash_request_set_crypt(req, sg, NULL, 4);
215 err = crypto_ahash_update(req);
216 if (err)
217 goto out;
219 sg_init_one(sg, header, hdrlen);
220 ahash_request_set_crypt(req, sg, NULL, hdrlen);
221 err = crypto_ahash_update(req);
222 if (err)
223 goto out;
224 err = xdr_process_buf(body, body_offset, body->len - body_offset,
225 checksummer, req);
226 if (err)
227 goto out;
228 ahash_request_set_crypt(req, NULL, checksumdata, 0);
229 err = crypto_ahash_final(req);
230 if (err)
231 goto out;
233 ahash_request_free(req);
234 req = ahash_request_alloc(hmac_md5, GFP_NOFS);
235 if (!req)
236 goto out_free_hmac_md5;
238 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
240 err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
241 if (err)
242 goto out;
244 sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
245 ahash_request_set_crypt(req, sg, checksumdata,
246 crypto_ahash_digestsize(md5));
247 err = crypto_ahash_digest(req);
248 if (err)
249 goto out;
251 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
252 cksumout->len = kctx->gk5e->cksumlength;
253 out:
254 ahash_request_free(req);
255 out_free_hmac_md5:
256 crypto_free_ahash(hmac_md5);
257 out_free_md5:
258 crypto_free_ahash(md5);
259 out_free_cksum:
260 kfree(checksumdata);
261 return err ? GSS_S_FAILURE : 0;
265 * checksum the plaintext data and hdrlen bytes of the token header
266 * The checksum is performed over the first 8 bytes of the
267 * gss token header and then over the data body
270 make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
271 struct xdr_buf *body, int body_offset, u8 *cksumkey,
272 unsigned int usage, struct xdr_netobj *cksumout)
274 struct crypto_ahash *tfm;
275 struct ahash_request *req;
276 struct scatterlist sg[1];
277 int err = -1;
278 u8 *checksumdata;
279 unsigned int checksumlen;
281 if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
282 return make_checksum_hmac_md5(kctx, header, hdrlen,
283 body, body_offset,
284 cksumkey, usage, cksumout);
286 if (cksumout->len < kctx->gk5e->cksumlength) {
287 dprintk("%s: checksum buffer length, %u, too small for %s\n",
288 __func__, cksumout->len, kctx->gk5e->name);
289 return GSS_S_FAILURE;
292 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
293 if (checksumdata == NULL)
294 return GSS_S_FAILURE;
296 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
297 if (IS_ERR(tfm))
298 goto out_free_cksum;
300 req = ahash_request_alloc(tfm, GFP_NOFS);
301 if (!req)
302 goto out_free_ahash;
304 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
306 checksumlen = crypto_ahash_digestsize(tfm);
308 if (cksumkey != NULL) {
309 err = crypto_ahash_setkey(tfm, cksumkey,
310 kctx->gk5e->keylength);
311 if (err)
312 goto out;
315 err = crypto_ahash_init(req);
316 if (err)
317 goto out;
318 sg_init_one(sg, header, hdrlen);
319 ahash_request_set_crypt(req, sg, NULL, hdrlen);
320 err = crypto_ahash_update(req);
321 if (err)
322 goto out;
323 err = xdr_process_buf(body, body_offset, body->len - body_offset,
324 checksummer, req);
325 if (err)
326 goto out;
327 ahash_request_set_crypt(req, NULL, checksumdata, 0);
328 err = crypto_ahash_final(req);
329 if (err)
330 goto out;
332 switch (kctx->gk5e->ctype) {
333 case CKSUMTYPE_RSA_MD5:
334 err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
335 checksumdata, checksumlen);
336 if (err)
337 goto out;
338 memcpy(cksumout->data,
339 checksumdata + checksumlen - kctx->gk5e->cksumlength,
340 kctx->gk5e->cksumlength);
341 break;
342 case CKSUMTYPE_HMAC_SHA1_DES3:
343 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
344 break;
345 default:
346 BUG();
347 break;
349 cksumout->len = kctx->gk5e->cksumlength;
350 out:
351 ahash_request_free(req);
352 out_free_ahash:
353 crypto_free_ahash(tfm);
354 out_free_cksum:
355 kfree(checksumdata);
356 return err ? GSS_S_FAILURE : 0;
360 * checksum the plaintext data and hdrlen bytes of the token header
361 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
362 * body then over the first 16 octets of the MIC token
363 * Inclusion of the header data in the calculation of the
364 * checksum is optional.
367 make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
368 struct xdr_buf *body, int body_offset, u8 *cksumkey,
369 unsigned int usage, struct xdr_netobj *cksumout)
371 struct crypto_ahash *tfm;
372 struct ahash_request *req;
373 struct scatterlist sg[1];
374 int err = -1;
375 u8 *checksumdata;
376 unsigned int checksumlen;
378 if (kctx->gk5e->keyed_cksum == 0) {
379 dprintk("%s: expected keyed hash for %s\n",
380 __func__, kctx->gk5e->name);
381 return GSS_S_FAILURE;
383 if (cksumkey == NULL) {
384 dprintk("%s: no key supplied for %s\n",
385 __func__, kctx->gk5e->name);
386 return GSS_S_FAILURE;
389 checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
390 if (!checksumdata)
391 return GSS_S_FAILURE;
393 tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
394 if (IS_ERR(tfm))
395 goto out_free_cksum;
396 checksumlen = crypto_ahash_digestsize(tfm);
398 req = ahash_request_alloc(tfm, GFP_NOFS);
399 if (!req)
400 goto out_free_ahash;
402 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
404 err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
405 if (err)
406 goto out;
408 err = crypto_ahash_init(req);
409 if (err)
410 goto out;
411 err = xdr_process_buf(body, body_offset, body->len - body_offset,
412 checksummer, req);
413 if (err)
414 goto out;
415 if (header != NULL) {
416 sg_init_one(sg, header, hdrlen);
417 ahash_request_set_crypt(req, sg, NULL, hdrlen);
418 err = crypto_ahash_update(req);
419 if (err)
420 goto out;
422 ahash_request_set_crypt(req, NULL, checksumdata, 0);
423 err = crypto_ahash_final(req);
424 if (err)
425 goto out;
427 cksumout->len = kctx->gk5e->cksumlength;
429 switch (kctx->gk5e->ctype) {
430 case CKSUMTYPE_HMAC_SHA1_96_AES128:
431 case CKSUMTYPE_HMAC_SHA1_96_AES256:
432 /* note that this truncates the hash */
433 memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
434 break;
435 default:
436 BUG();
437 break;
439 out:
440 ahash_request_free(req);
441 out_free_ahash:
442 crypto_free_ahash(tfm);
443 out_free_cksum:
444 kfree(checksumdata);
445 return err ? GSS_S_FAILURE : 0;
448 struct encryptor_desc {
449 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
450 struct skcipher_request *req;
451 int pos;
452 struct xdr_buf *outbuf;
453 struct page **pages;
454 struct scatterlist infrags[4];
455 struct scatterlist outfrags[4];
456 int fragno;
457 int fraglen;
460 static int
461 encryptor(struct scatterlist *sg, void *data)
463 struct encryptor_desc *desc = data;
464 struct xdr_buf *outbuf = desc->outbuf;
465 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
466 struct page *in_page;
467 int thislen = desc->fraglen + sg->length;
468 int fraglen, ret;
469 int page_pos;
471 /* Worst case is 4 fragments: head, end of page 1, start
472 * of page 2, tail. Anything more is a bug. */
473 BUG_ON(desc->fragno > 3);
475 page_pos = desc->pos - outbuf->head[0].iov_len;
476 if (page_pos >= 0 && page_pos < outbuf->page_len) {
477 /* pages are not in place: */
478 int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
479 in_page = desc->pages[i];
480 } else {
481 in_page = sg_page(sg);
483 sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
484 sg->offset);
485 sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
486 sg->offset);
487 desc->fragno++;
488 desc->fraglen += sg->length;
489 desc->pos += sg->length;
491 fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
492 thislen -= fraglen;
494 if (thislen == 0)
495 return 0;
497 sg_mark_end(&desc->infrags[desc->fragno - 1]);
498 sg_mark_end(&desc->outfrags[desc->fragno - 1]);
500 skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
501 thislen, desc->iv);
503 ret = crypto_skcipher_encrypt(desc->req);
504 if (ret)
505 return ret;
507 sg_init_table(desc->infrags, 4);
508 sg_init_table(desc->outfrags, 4);
510 if (fraglen) {
511 sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
512 sg->offset + sg->length - fraglen);
513 desc->infrags[0] = desc->outfrags[0];
514 sg_assign_page(&desc->infrags[0], in_page);
515 desc->fragno = 1;
516 desc->fraglen = fraglen;
517 } else {
518 desc->fragno = 0;
519 desc->fraglen = 0;
521 return 0;
525 gss_encrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
526 int offset, struct page **pages)
528 int ret;
529 struct encryptor_desc desc;
530 SKCIPHER_REQUEST_ON_STACK(req, tfm);
532 BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
534 skcipher_request_set_tfm(req, tfm);
535 skcipher_request_set_callback(req, 0, NULL, NULL);
537 memset(desc.iv, 0, sizeof(desc.iv));
538 desc.req = req;
539 desc.pos = offset;
540 desc.outbuf = buf;
541 desc.pages = pages;
542 desc.fragno = 0;
543 desc.fraglen = 0;
545 sg_init_table(desc.infrags, 4);
546 sg_init_table(desc.outfrags, 4);
548 ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
549 skcipher_request_zero(req);
550 return ret;
553 struct decryptor_desc {
554 u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
555 struct skcipher_request *req;
556 struct scatterlist frags[4];
557 int fragno;
558 int fraglen;
561 static int
562 decryptor(struct scatterlist *sg, void *data)
564 struct decryptor_desc *desc = data;
565 int thislen = desc->fraglen + sg->length;
566 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(desc->req);
567 int fraglen, ret;
569 /* Worst case is 4 fragments: head, end of page 1, start
570 * of page 2, tail. Anything more is a bug. */
571 BUG_ON(desc->fragno > 3);
572 sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
573 sg->offset);
574 desc->fragno++;
575 desc->fraglen += sg->length;
577 fraglen = thislen & (crypto_skcipher_blocksize(tfm) - 1);
578 thislen -= fraglen;
580 if (thislen == 0)
581 return 0;
583 sg_mark_end(&desc->frags[desc->fragno - 1]);
585 skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
586 thislen, desc->iv);
588 ret = crypto_skcipher_decrypt(desc->req);
589 if (ret)
590 return ret;
592 sg_init_table(desc->frags, 4);
594 if (fraglen) {
595 sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
596 sg->offset + sg->length - fraglen);
597 desc->fragno = 1;
598 desc->fraglen = fraglen;
599 } else {
600 desc->fragno = 0;
601 desc->fraglen = 0;
603 return 0;
607 gss_decrypt_xdr_buf(struct crypto_skcipher *tfm, struct xdr_buf *buf,
608 int offset)
610 int ret;
611 struct decryptor_desc desc;
612 SKCIPHER_REQUEST_ON_STACK(req, tfm);
614 /* XXXJBF: */
615 BUG_ON((buf->len - offset) % crypto_skcipher_blocksize(tfm) != 0);
617 skcipher_request_set_tfm(req, tfm);
618 skcipher_request_set_callback(req, 0, NULL, NULL);
620 memset(desc.iv, 0, sizeof(desc.iv));
621 desc.req = req;
622 desc.fragno = 0;
623 desc.fraglen = 0;
625 sg_init_table(desc.frags, 4);
627 ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
628 skcipher_request_zero(req);
629 return ret;
633 * This function makes the assumption that it was ultimately called
634 * from gss_wrap().
636 * The client auth_gss code moves any existing tail data into a
637 * separate page before calling gss_wrap.
638 * The server svcauth_gss code ensures that both the head and the
639 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
641 * Even with that guarantee, this function may be called more than
642 * once in the processing of gss_wrap(). The best we can do is
643 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
644 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
645 * At run-time we can verify that a single invocation of this
646 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
650 xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
652 u8 *p;
654 if (shiftlen == 0)
655 return 0;
657 BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
658 BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
660 p = buf->head[0].iov_base + base;
662 memmove(p + shiftlen, p, buf->head[0].iov_len - base);
664 buf->head[0].iov_len += shiftlen;
665 buf->len += shiftlen;
667 return 0;
670 static u32
671 gss_krb5_cts_crypt(struct crypto_skcipher *cipher, struct xdr_buf *buf,
672 u32 offset, u8 *iv, struct page **pages, int encrypt)
674 u32 ret;
675 struct scatterlist sg[1];
676 SKCIPHER_REQUEST_ON_STACK(req, cipher);
677 u8 *data;
678 struct page **save_pages;
679 u32 len = buf->len - offset;
681 if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
682 WARN_ON(0);
683 return -ENOMEM;
685 data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
686 if (!data)
687 return -ENOMEM;
690 * For encryption, we want to read from the cleartext
691 * page cache pages, and write the encrypted data to
692 * the supplied xdr_buf pages.
694 save_pages = buf->pages;
695 if (encrypt)
696 buf->pages = pages;
698 ret = read_bytes_from_xdr_buf(buf, offset, data, len);
699 buf->pages = save_pages;
700 if (ret)
701 goto out;
703 sg_init_one(sg, data, len);
705 skcipher_request_set_tfm(req, cipher);
706 skcipher_request_set_callback(req, 0, NULL, NULL);
707 skcipher_request_set_crypt(req, sg, sg, len, iv);
709 if (encrypt)
710 ret = crypto_skcipher_encrypt(req);
711 else
712 ret = crypto_skcipher_decrypt(req);
714 skcipher_request_zero(req);
716 if (ret)
717 goto out;
719 ret = write_bytes_to_xdr_buf(buf, offset, data, len);
721 out:
722 kfree(data);
723 return ret;
727 gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
728 struct xdr_buf *buf, struct page **pages)
730 u32 err;
731 struct xdr_netobj hmac;
732 u8 *cksumkey;
733 u8 *ecptr;
734 struct crypto_skcipher *cipher, *aux_cipher;
735 int blocksize;
736 struct page **save_pages;
737 int nblocks, nbytes;
738 struct encryptor_desc desc;
739 u32 cbcbytes;
740 unsigned int usage;
742 if (kctx->initiate) {
743 cipher = kctx->initiator_enc;
744 aux_cipher = kctx->initiator_enc_aux;
745 cksumkey = kctx->initiator_integ;
746 usage = KG_USAGE_INITIATOR_SEAL;
747 } else {
748 cipher = kctx->acceptor_enc;
749 aux_cipher = kctx->acceptor_enc_aux;
750 cksumkey = kctx->acceptor_integ;
751 usage = KG_USAGE_ACCEPTOR_SEAL;
753 blocksize = crypto_skcipher_blocksize(cipher);
755 /* hide the gss token header and insert the confounder */
756 offset += GSS_KRB5_TOK_HDR_LEN;
757 if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
758 return GSS_S_FAILURE;
759 gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
760 offset -= GSS_KRB5_TOK_HDR_LEN;
762 if (buf->tail[0].iov_base != NULL) {
763 ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
764 } else {
765 buf->tail[0].iov_base = buf->head[0].iov_base
766 + buf->head[0].iov_len;
767 buf->tail[0].iov_len = 0;
768 ecptr = buf->tail[0].iov_base;
771 /* copy plaintext gss token header after filler (if any) */
772 memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
773 buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
774 buf->len += GSS_KRB5_TOK_HDR_LEN;
776 /* Do the HMAC */
777 hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
778 hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
781 * When we are called, pages points to the real page cache
782 * data -- which we can't go and encrypt! buf->pages points
783 * to scratch pages which we are going to send off to the
784 * client/server. Swap in the plaintext pages to calculate
785 * the hmac.
787 save_pages = buf->pages;
788 buf->pages = pages;
790 err = make_checksum_v2(kctx, NULL, 0, buf,
791 offset + GSS_KRB5_TOK_HDR_LEN,
792 cksumkey, usage, &hmac);
793 buf->pages = save_pages;
794 if (err)
795 return GSS_S_FAILURE;
797 nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
798 nblocks = (nbytes + blocksize - 1) / blocksize;
799 cbcbytes = 0;
800 if (nblocks > 2)
801 cbcbytes = (nblocks - 2) * blocksize;
803 memset(desc.iv, 0, sizeof(desc.iv));
805 if (cbcbytes) {
806 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
808 desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
809 desc.fragno = 0;
810 desc.fraglen = 0;
811 desc.pages = pages;
812 desc.outbuf = buf;
813 desc.req = req;
815 skcipher_request_set_tfm(req, aux_cipher);
816 skcipher_request_set_callback(req, 0, NULL, NULL);
818 sg_init_table(desc.infrags, 4);
819 sg_init_table(desc.outfrags, 4);
821 err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
822 cbcbytes, encryptor, &desc);
823 skcipher_request_zero(req);
824 if (err)
825 goto out_err;
828 /* Make sure IV carries forward from any CBC results. */
829 err = gss_krb5_cts_crypt(cipher, buf,
830 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
831 desc.iv, pages, 1);
832 if (err) {
833 err = GSS_S_FAILURE;
834 goto out_err;
837 /* Now update buf to account for HMAC */
838 buf->tail[0].iov_len += kctx->gk5e->cksumlength;
839 buf->len += kctx->gk5e->cksumlength;
841 out_err:
842 if (err)
843 err = GSS_S_FAILURE;
844 return err;
848 gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
849 u32 *headskip, u32 *tailskip)
851 struct xdr_buf subbuf;
852 u32 ret = 0;
853 u8 *cksum_key;
854 struct crypto_skcipher *cipher, *aux_cipher;
855 struct xdr_netobj our_hmac_obj;
856 u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
857 u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
858 int nblocks, blocksize, cbcbytes;
859 struct decryptor_desc desc;
860 unsigned int usage;
862 if (kctx->initiate) {
863 cipher = kctx->acceptor_enc;
864 aux_cipher = kctx->acceptor_enc_aux;
865 cksum_key = kctx->acceptor_integ;
866 usage = KG_USAGE_ACCEPTOR_SEAL;
867 } else {
868 cipher = kctx->initiator_enc;
869 aux_cipher = kctx->initiator_enc_aux;
870 cksum_key = kctx->initiator_integ;
871 usage = KG_USAGE_INITIATOR_SEAL;
873 blocksize = crypto_skcipher_blocksize(cipher);
876 /* create a segment skipping the header and leaving out the checksum */
877 xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
878 (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
879 kctx->gk5e->cksumlength));
881 nblocks = (subbuf.len + blocksize - 1) / blocksize;
883 cbcbytes = 0;
884 if (nblocks > 2)
885 cbcbytes = (nblocks - 2) * blocksize;
887 memset(desc.iv, 0, sizeof(desc.iv));
889 if (cbcbytes) {
890 SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
892 desc.fragno = 0;
893 desc.fraglen = 0;
894 desc.req = req;
896 skcipher_request_set_tfm(req, aux_cipher);
897 skcipher_request_set_callback(req, 0, NULL, NULL);
899 sg_init_table(desc.frags, 4);
901 ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
902 skcipher_request_zero(req);
903 if (ret)
904 goto out_err;
907 /* Make sure IV carries forward from any CBC results. */
908 ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
909 if (ret)
910 goto out_err;
913 /* Calculate our hmac over the plaintext data */
914 our_hmac_obj.len = sizeof(our_hmac);
915 our_hmac_obj.data = our_hmac;
917 ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
918 cksum_key, usage, &our_hmac_obj);
919 if (ret)
920 goto out_err;
922 /* Get the packet's hmac value */
923 ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
924 pkt_hmac, kctx->gk5e->cksumlength);
925 if (ret)
926 goto out_err;
928 if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
929 ret = GSS_S_BAD_SIG;
930 goto out_err;
932 *headskip = kctx->gk5e->conflen;
933 *tailskip = kctx->gk5e->cksumlength;
934 out_err:
935 if (ret && ret != GSS_S_BAD_SIG)
936 ret = GSS_S_FAILURE;
937 return ret;
941 * Compute Kseq given the initial session key and the checksum.
942 * Set the key of the given cipher.
945 krb5_rc4_setup_seq_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
946 unsigned char *cksum)
948 struct crypto_shash *hmac;
949 struct shash_desc *desc;
950 u8 Kseq[GSS_KRB5_MAX_KEYLEN];
951 u32 zeroconstant = 0;
952 int err;
954 dprintk("%s: entered\n", __func__);
956 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
957 if (IS_ERR(hmac)) {
958 dprintk("%s: error %ld, allocating hash '%s'\n",
959 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
960 return PTR_ERR(hmac);
963 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
964 GFP_NOFS);
965 if (!desc) {
966 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
967 __func__, kctx->gk5e->cksum_name);
968 crypto_free_shash(hmac);
969 return -ENOMEM;
972 desc->tfm = hmac;
973 desc->flags = 0;
975 /* Compute intermediate Kseq from session key */
976 err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
977 if (err)
978 goto out_err;
980 err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
981 if (err)
982 goto out_err;
984 /* Compute final Kseq from the checksum and intermediate Kseq */
985 err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
986 if (err)
987 goto out_err;
989 err = crypto_shash_digest(desc, cksum, 8, Kseq);
990 if (err)
991 goto out_err;
993 err = crypto_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
994 if (err)
995 goto out_err;
997 err = 0;
999 out_err:
1000 kzfree(desc);
1001 crypto_free_shash(hmac);
1002 dprintk("%s: returning %d\n", __func__, err);
1003 return err;
1007 * Compute Kcrypt given the initial session key and the plaintext seqnum.
1008 * Set the key of cipher kctx->enc.
1011 krb5_rc4_setup_enc_key(struct krb5_ctx *kctx, struct crypto_skcipher *cipher,
1012 s32 seqnum)
1014 struct crypto_shash *hmac;
1015 struct shash_desc *desc;
1016 u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1017 u8 zeroconstant[4] = {0};
1018 u8 seqnumarray[4];
1019 int err, i;
1021 dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1023 hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1024 if (IS_ERR(hmac)) {
1025 dprintk("%s: error %ld, allocating hash '%s'\n",
1026 __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1027 return PTR_ERR(hmac);
1030 desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1031 GFP_NOFS);
1032 if (!desc) {
1033 dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1034 __func__, kctx->gk5e->cksum_name);
1035 crypto_free_shash(hmac);
1036 return -ENOMEM;
1039 desc->tfm = hmac;
1040 desc->flags = 0;
1042 /* Compute intermediate Kcrypt from session key */
1043 for (i = 0; i < kctx->gk5e->keylength; i++)
1044 Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1046 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1047 if (err)
1048 goto out_err;
1050 err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1051 if (err)
1052 goto out_err;
1054 /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1055 err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1056 if (err)
1057 goto out_err;
1059 seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1060 seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1061 seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1062 seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1064 err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1065 if (err)
1066 goto out_err;
1068 err = crypto_skcipher_setkey(cipher, Kcrypt, kctx->gk5e->keylength);
1069 if (err)
1070 goto out_err;
1072 err = 0;
1074 out_err:
1075 kzfree(desc);
1076 crypto_free_shash(hmac);
1077 dprintk("%s: returning %d\n", __func__, err);
1078 return err;