bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / net / wireless / reg.c
blob7b42f0bacfd843481adb1648c24a5f87c4395b1a
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
9 * Permission to use, copy, modify, and/or distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 /**
24 * DOC: Wireless regulatory infrastructure
26 * The usual implementation is for a driver to read a device EEPROM to
27 * determine which regulatory domain it should be operating under, then
28 * looking up the allowable channels in a driver-local table and finally
29 * registering those channels in the wiphy structure.
31 * Another set of compliance enforcement is for drivers to use their
32 * own compliance limits which can be stored on the EEPROM. The host
33 * driver or firmware may ensure these are used.
35 * In addition to all this we provide an extra layer of regulatory
36 * conformance. For drivers which do not have any regulatory
37 * information CRDA provides the complete regulatory solution.
38 * For others it provides a community effort on further restrictions
39 * to enhance compliance.
41 * Note: When number of rules --> infinity we will not be able to
42 * index on alpha2 any more, instead we'll probably have to
43 * rely on some SHA1 checksum of the regdomain for example.
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 #include <linux/kernel.h>
50 #include <linux/export.h>
51 #include <linux/slab.h>
52 #include <linux/list.h>
53 #include <linux/ctype.h>
54 #include <linux/nl80211.h>
55 #include <linux/platform_device.h>
56 #include <linux/verification.h>
57 #include <linux/moduleparam.h>
58 #include <linux/firmware.h>
59 #include <net/cfg80211.h>
60 #include "core.h"
61 #include "reg.h"
62 #include "rdev-ops.h"
63 #include "nl80211.h"
66 * Grace period we give before making sure all current interfaces reside on
67 * channels allowed by the current regulatory domain.
69 #define REG_ENFORCE_GRACE_MS 60000
71 /**
72 * enum reg_request_treatment - regulatory request treatment
74 * @REG_REQ_OK: continue processing the regulatory request
75 * @REG_REQ_IGNORE: ignore the regulatory request
76 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
77 * be intersected with the current one.
78 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
79 * regulatory settings, and no further processing is required.
81 enum reg_request_treatment {
82 REG_REQ_OK,
83 REG_REQ_IGNORE,
84 REG_REQ_INTERSECT,
85 REG_REQ_ALREADY_SET,
88 static struct regulatory_request core_request_world = {
89 .initiator = NL80211_REGDOM_SET_BY_CORE,
90 .alpha2[0] = '0',
91 .alpha2[1] = '0',
92 .intersect = false,
93 .processed = true,
94 .country_ie_env = ENVIRON_ANY,
98 * Receipt of information from last regulatory request,
99 * protected by RTNL (and can be accessed with RCU protection)
101 static struct regulatory_request __rcu *last_request =
102 (void __force __rcu *)&core_request_world;
104 /* To trigger userspace events and load firmware */
105 static struct platform_device *reg_pdev;
108 * Central wireless core regulatory domains, we only need two,
109 * the current one and a world regulatory domain in case we have no
110 * information to give us an alpha2.
111 * (protected by RTNL, can be read under RCU)
113 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
116 * Number of devices that registered to the core
117 * that support cellular base station regulatory hints
118 * (protected by RTNL)
120 static int reg_num_devs_support_basehint;
123 * State variable indicating if the platform on which the devices
124 * are attached is operating in an indoor environment. The state variable
125 * is relevant for all registered devices.
127 static bool reg_is_indoor;
128 static spinlock_t reg_indoor_lock;
130 /* Used to track the userspace process controlling the indoor setting */
131 static u32 reg_is_indoor_portid;
133 static void restore_regulatory_settings(bool reset_user);
135 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 return rtnl_dereference(cfg80211_regdomain);
140 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 return rtnl_dereference(wiphy->regd);
145 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 switch (dfs_region) {
148 case NL80211_DFS_UNSET:
149 return "unset";
150 case NL80211_DFS_FCC:
151 return "FCC";
152 case NL80211_DFS_ETSI:
153 return "ETSI";
154 case NL80211_DFS_JP:
155 return "JP";
157 return "Unknown";
160 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 const struct ieee80211_regdomain *regd = NULL;
163 const struct ieee80211_regdomain *wiphy_regd = NULL;
165 regd = get_cfg80211_regdom();
166 if (!wiphy)
167 goto out;
169 wiphy_regd = get_wiphy_regdom(wiphy);
170 if (!wiphy_regd)
171 goto out;
173 if (wiphy_regd->dfs_region == regd->dfs_region)
174 goto out;
176 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
177 dev_name(&wiphy->dev),
178 reg_dfs_region_str(wiphy_regd->dfs_region),
179 reg_dfs_region_str(regd->dfs_region));
181 out:
182 return regd->dfs_region;
185 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 if (!r)
188 return;
189 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 static struct regulatory_request *get_last_request(void)
194 return rcu_dereference_rtnl(last_request);
197 /* Used to queue up regulatory hints */
198 static LIST_HEAD(reg_requests_list);
199 static spinlock_t reg_requests_lock;
201 /* Used to queue up beacon hints for review */
202 static LIST_HEAD(reg_pending_beacons);
203 static spinlock_t reg_pending_beacons_lock;
205 /* Used to keep track of processed beacon hints */
206 static LIST_HEAD(reg_beacon_list);
208 struct reg_beacon {
209 struct list_head list;
210 struct ieee80211_channel chan;
213 static void reg_check_chans_work(struct work_struct *work);
214 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216 static void reg_todo(struct work_struct *work);
217 static DECLARE_WORK(reg_work, reg_todo);
219 /* We keep a static world regulatory domain in case of the absence of CRDA */
220 static const struct ieee80211_regdomain world_regdom = {
221 .n_reg_rules = 8,
222 .alpha2 = "00",
223 .reg_rules = {
224 /* IEEE 802.11b/g, channels 1..11 */
225 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
226 /* IEEE 802.11b/g, channels 12..13. */
227 REG_RULE(2467-10, 2472+10, 20, 6, 20,
228 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
229 /* IEEE 802.11 channel 14 - Only JP enables
230 * this and for 802.11b only */
231 REG_RULE(2484-10, 2484+10, 20, 6, 20,
232 NL80211_RRF_NO_IR |
233 NL80211_RRF_NO_OFDM),
234 /* IEEE 802.11a, channel 36..48 */
235 REG_RULE(5180-10, 5240+10, 80, 6, 20,
236 NL80211_RRF_NO_IR |
237 NL80211_RRF_AUTO_BW),
239 /* IEEE 802.11a, channel 52..64 - DFS required */
240 REG_RULE(5260-10, 5320+10, 80, 6, 20,
241 NL80211_RRF_NO_IR |
242 NL80211_RRF_AUTO_BW |
243 NL80211_RRF_DFS),
245 /* IEEE 802.11a, channel 100..144 - DFS required */
246 REG_RULE(5500-10, 5720+10, 160, 6, 20,
247 NL80211_RRF_NO_IR |
248 NL80211_RRF_DFS),
250 /* IEEE 802.11a, channel 149..165 */
251 REG_RULE(5745-10, 5825+10, 80, 6, 20,
252 NL80211_RRF_NO_IR),
254 /* IEEE 802.11ad (60GHz), channels 1..3 */
255 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
259 /* protected by RTNL */
260 static const struct ieee80211_regdomain *cfg80211_world_regdom =
261 &world_regdom;
263 static char *ieee80211_regdom = "00";
264 static char user_alpha2[2];
266 module_param(ieee80211_regdom, charp, 0444);
267 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269 static void reg_free_request(struct regulatory_request *request)
271 if (request == &core_request_world)
272 return;
274 if (request != get_last_request())
275 kfree(request);
278 static void reg_free_last_request(void)
280 struct regulatory_request *lr = get_last_request();
282 if (lr != &core_request_world && lr)
283 kfree_rcu(lr, rcu_head);
286 static void reg_update_last_request(struct regulatory_request *request)
288 struct regulatory_request *lr;
290 lr = get_last_request();
291 if (lr == request)
292 return;
294 reg_free_last_request();
295 rcu_assign_pointer(last_request, request);
298 static void reset_regdomains(bool full_reset,
299 const struct ieee80211_regdomain *new_regdom)
301 const struct ieee80211_regdomain *r;
303 ASSERT_RTNL();
305 r = get_cfg80211_regdom();
307 /* avoid freeing static information or freeing something twice */
308 if (r == cfg80211_world_regdom)
309 r = NULL;
310 if (cfg80211_world_regdom == &world_regdom)
311 cfg80211_world_regdom = NULL;
312 if (r == &world_regdom)
313 r = NULL;
315 rcu_free_regdom(r);
316 rcu_free_regdom(cfg80211_world_regdom);
318 cfg80211_world_regdom = &world_regdom;
319 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321 if (!full_reset)
322 return;
324 reg_update_last_request(&core_request_world);
328 * Dynamic world regulatory domain requested by the wireless
329 * core upon initialization
331 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 struct regulatory_request *lr;
335 lr = get_last_request();
337 WARN_ON(!lr);
339 reset_regdomains(false, rd);
341 cfg80211_world_regdom = rd;
344 bool is_world_regdom(const char *alpha2)
346 if (!alpha2)
347 return false;
348 return alpha2[0] == '0' && alpha2[1] == '0';
351 static bool is_alpha2_set(const char *alpha2)
353 if (!alpha2)
354 return false;
355 return alpha2[0] && alpha2[1];
358 static bool is_unknown_alpha2(const char *alpha2)
360 if (!alpha2)
361 return false;
363 * Special case where regulatory domain was built by driver
364 * but a specific alpha2 cannot be determined
366 return alpha2[0] == '9' && alpha2[1] == '9';
369 static bool is_intersected_alpha2(const char *alpha2)
371 if (!alpha2)
372 return false;
374 * Special case where regulatory domain is the
375 * result of an intersection between two regulatory domain
376 * structures
378 return alpha2[0] == '9' && alpha2[1] == '8';
381 static bool is_an_alpha2(const char *alpha2)
383 if (!alpha2)
384 return false;
385 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
388 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 if (!alpha2_x || !alpha2_y)
391 return false;
392 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
395 static bool regdom_changes(const char *alpha2)
397 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399 if (!r)
400 return true;
401 return !alpha2_equal(r->alpha2, alpha2);
405 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
406 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
407 * has ever been issued.
409 static bool is_user_regdom_saved(void)
411 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
412 return false;
414 /* This would indicate a mistake on the design */
415 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
416 "Unexpected user alpha2: %c%c\n",
417 user_alpha2[0], user_alpha2[1]))
418 return false;
420 return true;
423 static const struct ieee80211_regdomain *
424 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 struct ieee80211_regdomain *regd;
427 int size_of_regd;
428 unsigned int i;
430 size_of_regd =
431 sizeof(struct ieee80211_regdomain) +
432 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
434 regd = kzalloc(size_of_regd, GFP_KERNEL);
435 if (!regd)
436 return ERR_PTR(-ENOMEM);
438 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
440 for (i = 0; i < src_regd->n_reg_rules; i++)
441 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
442 sizeof(struct ieee80211_reg_rule));
444 return regd;
447 struct reg_regdb_apply_request {
448 struct list_head list;
449 const struct ieee80211_regdomain *regdom;
452 static LIST_HEAD(reg_regdb_apply_list);
453 static DEFINE_MUTEX(reg_regdb_apply_mutex);
455 static void reg_regdb_apply(struct work_struct *work)
457 struct reg_regdb_apply_request *request;
459 rtnl_lock();
461 mutex_lock(&reg_regdb_apply_mutex);
462 while (!list_empty(&reg_regdb_apply_list)) {
463 request = list_first_entry(&reg_regdb_apply_list,
464 struct reg_regdb_apply_request,
465 list);
466 list_del(&request->list);
468 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
469 kfree(request);
471 mutex_unlock(&reg_regdb_apply_mutex);
473 rtnl_unlock();
476 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
478 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
480 struct reg_regdb_apply_request *request;
482 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
483 if (!request) {
484 kfree(regdom);
485 return -ENOMEM;
488 request->regdom = regdom;
490 mutex_lock(&reg_regdb_apply_mutex);
491 list_add_tail(&request->list, &reg_regdb_apply_list);
492 mutex_unlock(&reg_regdb_apply_mutex);
494 schedule_work(&reg_regdb_work);
495 return 0;
498 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
499 /* Max number of consecutive attempts to communicate with CRDA */
500 #define REG_MAX_CRDA_TIMEOUTS 10
502 static u32 reg_crda_timeouts;
504 static void crda_timeout_work(struct work_struct *work);
505 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
507 static void crda_timeout_work(struct work_struct *work)
509 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
510 rtnl_lock();
511 reg_crda_timeouts++;
512 restore_regulatory_settings(true);
513 rtnl_unlock();
516 static void cancel_crda_timeout(void)
518 cancel_delayed_work(&crda_timeout);
521 static void cancel_crda_timeout_sync(void)
523 cancel_delayed_work_sync(&crda_timeout);
526 static void reset_crda_timeouts(void)
528 reg_crda_timeouts = 0;
532 * This lets us keep regulatory code which is updated on a regulatory
533 * basis in userspace.
535 static int call_crda(const char *alpha2)
537 char country[12];
538 char *env[] = { country, NULL };
539 int ret;
541 snprintf(country, sizeof(country), "COUNTRY=%c%c",
542 alpha2[0], alpha2[1]);
544 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
545 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
546 return -EINVAL;
549 if (!is_world_regdom((char *) alpha2))
550 pr_debug("Calling CRDA for country: %c%c\n",
551 alpha2[0], alpha2[1]);
552 else
553 pr_debug("Calling CRDA to update world regulatory domain\n");
555 ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
556 if (ret)
557 return ret;
559 queue_delayed_work(system_power_efficient_wq,
560 &crda_timeout, msecs_to_jiffies(3142));
561 return 0;
563 #else
564 static inline void cancel_crda_timeout(void) {}
565 static inline void cancel_crda_timeout_sync(void) {}
566 static inline void reset_crda_timeouts(void) {}
567 static inline int call_crda(const char *alpha2)
569 return -ENODATA;
571 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573 /* code to directly load a firmware database through request_firmware */
574 static const struct fwdb_header *regdb;
576 struct fwdb_country {
577 u8 alpha2[2];
578 __be16 coll_ptr;
579 /* this struct cannot be extended */
580 } __packed __aligned(4);
582 struct fwdb_collection {
583 u8 len;
584 u8 n_rules;
585 u8 dfs_region;
586 /* no optional data yet */
587 /* aligned to 2, then followed by __be16 array of rule pointers */
588 } __packed __aligned(4);
590 enum fwdb_flags {
591 FWDB_FLAG_NO_OFDM = BIT(0),
592 FWDB_FLAG_NO_OUTDOOR = BIT(1),
593 FWDB_FLAG_DFS = BIT(2),
594 FWDB_FLAG_NO_IR = BIT(3),
595 FWDB_FLAG_AUTO_BW = BIT(4),
598 struct fwdb_rule {
599 u8 len;
600 u8 flags;
601 __be16 max_eirp;
602 __be32 start, end, max_bw;
603 /* start of optional data */
604 __be16 cac_timeout;
605 } __packed __aligned(4);
607 #define FWDB_MAGIC 0x52474442
608 #define FWDB_VERSION 20
610 struct fwdb_header {
611 __be32 magic;
612 __be32 version;
613 struct fwdb_country country[];
614 } __packed __aligned(4);
616 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
618 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
620 if ((u8 *)rule + sizeof(rule->len) > data + size)
621 return false;
623 /* mandatory fields */
624 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
625 return false;
627 return true;
630 static bool valid_country(const u8 *data, unsigned int size,
631 const struct fwdb_country *country)
633 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
634 struct fwdb_collection *coll = (void *)(data + ptr);
635 __be16 *rules_ptr;
636 unsigned int i;
638 /* make sure we can read len/n_rules */
639 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
640 return false;
642 /* make sure base struct and all rules fit */
643 if ((u8 *)coll + ALIGN(coll->len, 2) +
644 (coll->n_rules * 2) > data + size)
645 return false;
647 /* mandatory fields must exist */
648 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
649 return false;
651 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
653 for (i = 0; i < coll->n_rules; i++) {
654 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
656 if (!valid_rule(data, size, rule_ptr))
657 return false;
660 return true;
663 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
664 static struct key *builtin_regdb_keys;
666 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
668 const u8 *end = p + buflen;
669 size_t plen;
670 key_ref_t key;
672 while (p < end) {
673 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
674 * than 256 bytes in size.
676 if (end - p < 4)
677 goto dodgy_cert;
678 if (p[0] != 0x30 &&
679 p[1] != 0x82)
680 goto dodgy_cert;
681 plen = (p[2] << 8) | p[3];
682 plen += 4;
683 if (plen > end - p)
684 goto dodgy_cert;
686 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
687 "asymmetric", NULL, p, plen,
688 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
689 KEY_USR_VIEW | KEY_USR_READ),
690 KEY_ALLOC_NOT_IN_QUOTA |
691 KEY_ALLOC_BUILT_IN |
692 KEY_ALLOC_BYPASS_RESTRICTION);
693 if (IS_ERR(key)) {
694 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
695 PTR_ERR(key));
696 } else {
697 pr_notice("Loaded X.509 cert '%s'\n",
698 key_ref_to_ptr(key)->description);
699 key_ref_put(key);
701 p += plen;
704 return;
706 dodgy_cert:
707 pr_err("Problem parsing in-kernel X.509 certificate list\n");
710 static int __init load_builtin_regdb_keys(void)
712 builtin_regdb_keys =
713 keyring_alloc(".builtin_regdb_keys",
714 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
715 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
716 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
717 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
718 if (IS_ERR(builtin_regdb_keys))
719 return PTR_ERR(builtin_regdb_keys);
721 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
723 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
724 load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
725 #endif
726 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
727 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
728 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
729 #endif
731 return 0;
734 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
736 const struct firmware *sig;
737 bool result;
739 if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
740 return false;
742 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
743 builtin_regdb_keys,
744 VERIFYING_UNSPECIFIED_SIGNATURE,
745 NULL, NULL) == 0;
747 release_firmware(sig);
749 return result;
752 static void free_regdb_keyring(void)
754 key_put(builtin_regdb_keys);
756 #else
757 static int load_builtin_regdb_keys(void)
759 return 0;
762 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
764 return true;
767 static void free_regdb_keyring(void)
770 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
772 static bool valid_regdb(const u8 *data, unsigned int size)
774 const struct fwdb_header *hdr = (void *)data;
775 const struct fwdb_country *country;
777 if (size < sizeof(*hdr))
778 return false;
780 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
781 return false;
783 if (hdr->version != cpu_to_be32(FWDB_VERSION))
784 return false;
786 if (!regdb_has_valid_signature(data, size))
787 return false;
789 country = &hdr->country[0];
790 while ((u8 *)(country + 1) <= data + size) {
791 if (!country->coll_ptr)
792 break;
793 if (!valid_country(data, size, country))
794 return false;
795 country++;
798 return true;
801 static int regdb_query_country(const struct fwdb_header *db,
802 const struct fwdb_country *country)
804 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
805 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
806 struct ieee80211_regdomain *regdom;
807 unsigned int size_of_regd;
808 unsigned int i;
810 size_of_regd =
811 sizeof(struct ieee80211_regdomain) +
812 coll->n_rules * sizeof(struct ieee80211_reg_rule);
814 regdom = kzalloc(size_of_regd, GFP_KERNEL);
815 if (!regdom)
816 return -ENOMEM;
818 regdom->n_reg_rules = coll->n_rules;
819 regdom->alpha2[0] = country->alpha2[0];
820 regdom->alpha2[1] = country->alpha2[1];
821 regdom->dfs_region = coll->dfs_region;
823 for (i = 0; i < regdom->n_reg_rules; i++) {
824 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
825 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
826 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
827 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
829 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
830 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
831 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
833 rrule->power_rule.max_antenna_gain = 0;
834 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
836 rrule->flags = 0;
837 if (rule->flags & FWDB_FLAG_NO_OFDM)
838 rrule->flags |= NL80211_RRF_NO_OFDM;
839 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
840 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
841 if (rule->flags & FWDB_FLAG_DFS)
842 rrule->flags |= NL80211_RRF_DFS;
843 if (rule->flags & FWDB_FLAG_NO_IR)
844 rrule->flags |= NL80211_RRF_NO_IR;
845 if (rule->flags & FWDB_FLAG_AUTO_BW)
846 rrule->flags |= NL80211_RRF_AUTO_BW;
848 rrule->dfs_cac_ms = 0;
850 /* handle optional data */
851 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
852 rrule->dfs_cac_ms =
853 1000 * be16_to_cpu(rule->cac_timeout);
856 return reg_schedule_apply(regdom);
859 static int query_regdb(const char *alpha2)
861 const struct fwdb_header *hdr = regdb;
862 const struct fwdb_country *country;
864 ASSERT_RTNL();
866 if (IS_ERR(regdb))
867 return PTR_ERR(regdb);
869 country = &hdr->country[0];
870 while (country->coll_ptr) {
871 if (alpha2_equal(alpha2, country->alpha2))
872 return regdb_query_country(regdb, country);
873 country++;
876 return -ENODATA;
879 static void regdb_fw_cb(const struct firmware *fw, void *context)
881 int set_error = 0;
882 bool restore = true;
883 void *db;
885 if (!fw) {
886 pr_info("failed to load regulatory.db\n");
887 set_error = -ENODATA;
888 } else if (!valid_regdb(fw->data, fw->size)) {
889 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
890 set_error = -EINVAL;
893 rtnl_lock();
894 if (WARN_ON(regdb && !IS_ERR(regdb))) {
895 /* just restore and free new db */
896 } else if (set_error) {
897 regdb = ERR_PTR(set_error);
898 } else if (fw) {
899 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
900 if (db) {
901 regdb = db;
902 restore = context && query_regdb(context);
903 } else {
904 restore = true;
908 if (restore)
909 restore_regulatory_settings(true);
911 rtnl_unlock();
913 kfree(context);
915 release_firmware(fw);
918 static int query_regdb_file(const char *alpha2)
920 ASSERT_RTNL();
922 if (regdb)
923 return query_regdb(alpha2);
925 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
926 if (!alpha2)
927 return -ENOMEM;
929 return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
930 &reg_pdev->dev, GFP_KERNEL,
931 (void *)alpha2, regdb_fw_cb);
934 int reg_reload_regdb(void)
936 const struct firmware *fw;
937 void *db;
938 int err;
940 err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
941 if (err)
942 return err;
944 if (!valid_regdb(fw->data, fw->size)) {
945 err = -ENODATA;
946 goto out;
949 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
950 if (!db) {
951 err = -ENOMEM;
952 goto out;
955 rtnl_lock();
956 if (!IS_ERR_OR_NULL(regdb))
957 kfree(regdb);
958 regdb = db;
959 rtnl_unlock();
961 out:
962 release_firmware(fw);
963 return err;
966 static bool reg_query_database(struct regulatory_request *request)
968 if (query_regdb_file(request->alpha2) == 0)
969 return true;
971 if (call_crda(request->alpha2) == 0)
972 return true;
974 return false;
977 bool reg_is_valid_request(const char *alpha2)
979 struct regulatory_request *lr = get_last_request();
981 if (!lr || lr->processed)
982 return false;
984 return alpha2_equal(lr->alpha2, alpha2);
987 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
989 struct regulatory_request *lr = get_last_request();
992 * Follow the driver's regulatory domain, if present, unless a country
993 * IE has been processed or a user wants to help complaince further
995 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
996 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
997 wiphy->regd)
998 return get_wiphy_regdom(wiphy);
1000 return get_cfg80211_regdom();
1003 static unsigned int
1004 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1005 const struct ieee80211_reg_rule *rule)
1007 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1008 const struct ieee80211_freq_range *freq_range_tmp;
1009 const struct ieee80211_reg_rule *tmp;
1010 u32 start_freq, end_freq, idx, no;
1012 for (idx = 0; idx < rd->n_reg_rules; idx++)
1013 if (rule == &rd->reg_rules[idx])
1014 break;
1016 if (idx == rd->n_reg_rules)
1017 return 0;
1019 /* get start_freq */
1020 no = idx;
1022 while (no) {
1023 tmp = &rd->reg_rules[--no];
1024 freq_range_tmp = &tmp->freq_range;
1026 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1027 break;
1029 freq_range = freq_range_tmp;
1032 start_freq = freq_range->start_freq_khz;
1034 /* get end_freq */
1035 freq_range = &rule->freq_range;
1036 no = idx;
1038 while (no < rd->n_reg_rules - 1) {
1039 tmp = &rd->reg_rules[++no];
1040 freq_range_tmp = &tmp->freq_range;
1042 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1043 break;
1045 freq_range = freq_range_tmp;
1048 end_freq = freq_range->end_freq_khz;
1050 return end_freq - start_freq;
1053 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1054 const struct ieee80211_reg_rule *rule)
1056 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1058 if (rule->flags & NL80211_RRF_NO_160MHZ)
1059 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1060 if (rule->flags & NL80211_RRF_NO_80MHZ)
1061 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1064 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1065 * are not allowed.
1067 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1068 rule->flags & NL80211_RRF_NO_HT40PLUS)
1069 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1071 return bw;
1074 /* Sanity check on a regulatory rule */
1075 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1077 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1078 u32 freq_diff;
1080 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1081 return false;
1083 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1084 return false;
1086 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1088 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1089 freq_range->max_bandwidth_khz > freq_diff)
1090 return false;
1092 return true;
1095 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1097 const struct ieee80211_reg_rule *reg_rule = NULL;
1098 unsigned int i;
1100 if (!rd->n_reg_rules)
1101 return false;
1103 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1104 return false;
1106 for (i = 0; i < rd->n_reg_rules; i++) {
1107 reg_rule = &rd->reg_rules[i];
1108 if (!is_valid_reg_rule(reg_rule))
1109 return false;
1112 return true;
1116 * freq_in_rule_band - tells us if a frequency is in a frequency band
1117 * @freq_range: frequency rule we want to query
1118 * @freq_khz: frequency we are inquiring about
1120 * This lets us know if a specific frequency rule is or is not relevant to
1121 * a specific frequency's band. Bands are device specific and artificial
1122 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1123 * however it is safe for now to assume that a frequency rule should not be
1124 * part of a frequency's band if the start freq or end freq are off by more
1125 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1126 * 60 GHz band.
1127 * This resolution can be lowered and should be considered as we add
1128 * regulatory rule support for other "bands".
1130 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1131 u32 freq_khz)
1133 #define ONE_GHZ_IN_KHZ 1000000
1135 * From 802.11ad: directional multi-gigabit (DMG):
1136 * Pertaining to operation in a frequency band containing a channel
1137 * with the Channel starting frequency above 45 GHz.
1139 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1140 10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1141 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1142 return true;
1143 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1144 return true;
1145 return false;
1146 #undef ONE_GHZ_IN_KHZ
1150 * Later on we can perhaps use the more restrictive DFS
1151 * region but we don't have information for that yet so
1152 * for now simply disallow conflicts.
1154 static enum nl80211_dfs_regions
1155 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1156 const enum nl80211_dfs_regions dfs_region2)
1158 if (dfs_region1 != dfs_region2)
1159 return NL80211_DFS_UNSET;
1160 return dfs_region1;
1164 * Helper for regdom_intersect(), this does the real
1165 * mathematical intersection fun
1167 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1168 const struct ieee80211_regdomain *rd2,
1169 const struct ieee80211_reg_rule *rule1,
1170 const struct ieee80211_reg_rule *rule2,
1171 struct ieee80211_reg_rule *intersected_rule)
1173 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1174 struct ieee80211_freq_range *freq_range;
1175 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1176 struct ieee80211_power_rule *power_rule;
1177 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1179 freq_range1 = &rule1->freq_range;
1180 freq_range2 = &rule2->freq_range;
1181 freq_range = &intersected_rule->freq_range;
1183 power_rule1 = &rule1->power_rule;
1184 power_rule2 = &rule2->power_rule;
1185 power_rule = &intersected_rule->power_rule;
1187 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1188 freq_range2->start_freq_khz);
1189 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1190 freq_range2->end_freq_khz);
1192 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1193 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1195 if (rule1->flags & NL80211_RRF_AUTO_BW)
1196 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1197 if (rule2->flags & NL80211_RRF_AUTO_BW)
1198 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1200 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1202 intersected_rule->flags = rule1->flags | rule2->flags;
1205 * In case NL80211_RRF_AUTO_BW requested for both rules
1206 * set AUTO_BW in intersected rule also. Next we will
1207 * calculate BW correctly in handle_channel function.
1208 * In other case remove AUTO_BW flag while we calculate
1209 * maximum bandwidth correctly and auto calculation is
1210 * not required.
1212 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1213 (rule2->flags & NL80211_RRF_AUTO_BW))
1214 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1215 else
1216 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1218 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1219 if (freq_range->max_bandwidth_khz > freq_diff)
1220 freq_range->max_bandwidth_khz = freq_diff;
1222 power_rule->max_eirp = min(power_rule1->max_eirp,
1223 power_rule2->max_eirp);
1224 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1225 power_rule2->max_antenna_gain);
1227 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1228 rule2->dfs_cac_ms);
1230 if (!is_valid_reg_rule(intersected_rule))
1231 return -EINVAL;
1233 return 0;
1236 /* check whether old rule contains new rule */
1237 static bool rule_contains(struct ieee80211_reg_rule *r1,
1238 struct ieee80211_reg_rule *r2)
1240 /* for simplicity, currently consider only same flags */
1241 if (r1->flags != r2->flags)
1242 return false;
1244 /* verify r1 is more restrictive */
1245 if ((r1->power_rule.max_antenna_gain >
1246 r2->power_rule.max_antenna_gain) ||
1247 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1248 return false;
1250 /* make sure r2's range is contained within r1 */
1251 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1252 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1253 return false;
1255 /* and finally verify that r1.max_bw >= r2.max_bw */
1256 if (r1->freq_range.max_bandwidth_khz <
1257 r2->freq_range.max_bandwidth_khz)
1258 return false;
1260 return true;
1263 /* add or extend current rules. do nothing if rule is already contained */
1264 static void add_rule(struct ieee80211_reg_rule *rule,
1265 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1267 struct ieee80211_reg_rule *tmp_rule;
1268 int i;
1270 for (i = 0; i < *n_rules; i++) {
1271 tmp_rule = &reg_rules[i];
1272 /* rule is already contained - do nothing */
1273 if (rule_contains(tmp_rule, rule))
1274 return;
1276 /* extend rule if possible */
1277 if (rule_contains(rule, tmp_rule)) {
1278 memcpy(tmp_rule, rule, sizeof(*rule));
1279 return;
1283 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1284 (*n_rules)++;
1288 * regdom_intersect - do the intersection between two regulatory domains
1289 * @rd1: first regulatory domain
1290 * @rd2: second regulatory domain
1292 * Use this function to get the intersection between two regulatory domains.
1293 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1294 * as no one single alpha2 can represent this regulatory domain.
1296 * Returns a pointer to the regulatory domain structure which will hold the
1297 * resulting intersection of rules between rd1 and rd2. We will
1298 * kzalloc() this structure for you.
1300 static struct ieee80211_regdomain *
1301 regdom_intersect(const struct ieee80211_regdomain *rd1,
1302 const struct ieee80211_regdomain *rd2)
1304 int r, size_of_regd;
1305 unsigned int x, y;
1306 unsigned int num_rules = 0;
1307 const struct ieee80211_reg_rule *rule1, *rule2;
1308 struct ieee80211_reg_rule intersected_rule;
1309 struct ieee80211_regdomain *rd;
1311 if (!rd1 || !rd2)
1312 return NULL;
1315 * First we get a count of the rules we'll need, then we actually
1316 * build them. This is to so we can malloc() and free() a
1317 * regdomain once. The reason we use reg_rules_intersect() here
1318 * is it will return -EINVAL if the rule computed makes no sense.
1319 * All rules that do check out OK are valid.
1322 for (x = 0; x < rd1->n_reg_rules; x++) {
1323 rule1 = &rd1->reg_rules[x];
1324 for (y = 0; y < rd2->n_reg_rules; y++) {
1325 rule2 = &rd2->reg_rules[y];
1326 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1327 &intersected_rule))
1328 num_rules++;
1332 if (!num_rules)
1333 return NULL;
1335 size_of_regd = sizeof(struct ieee80211_regdomain) +
1336 num_rules * sizeof(struct ieee80211_reg_rule);
1338 rd = kzalloc(size_of_regd, GFP_KERNEL);
1339 if (!rd)
1340 return NULL;
1342 for (x = 0; x < rd1->n_reg_rules; x++) {
1343 rule1 = &rd1->reg_rules[x];
1344 for (y = 0; y < rd2->n_reg_rules; y++) {
1345 rule2 = &rd2->reg_rules[y];
1346 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1347 &intersected_rule);
1349 * No need to memset here the intersected rule here as
1350 * we're not using the stack anymore
1352 if (r)
1353 continue;
1355 add_rule(&intersected_rule, rd->reg_rules,
1356 &rd->n_reg_rules);
1360 rd->alpha2[0] = '9';
1361 rd->alpha2[1] = '8';
1362 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1363 rd2->dfs_region);
1365 return rd;
1369 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1370 * want to just have the channel structure use these
1372 static u32 map_regdom_flags(u32 rd_flags)
1374 u32 channel_flags = 0;
1375 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1376 channel_flags |= IEEE80211_CHAN_NO_IR;
1377 if (rd_flags & NL80211_RRF_DFS)
1378 channel_flags |= IEEE80211_CHAN_RADAR;
1379 if (rd_flags & NL80211_RRF_NO_OFDM)
1380 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1381 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1382 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1383 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1384 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1385 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1386 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1387 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1388 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1389 if (rd_flags & NL80211_RRF_NO_80MHZ)
1390 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1391 if (rd_flags & NL80211_RRF_NO_160MHZ)
1392 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1393 return channel_flags;
1396 static const struct ieee80211_reg_rule *
1397 freq_reg_info_regd(u32 center_freq,
1398 const struct ieee80211_regdomain *regd, u32 bw)
1400 int i;
1401 bool band_rule_found = false;
1402 bool bw_fits = false;
1404 if (!regd)
1405 return ERR_PTR(-EINVAL);
1407 for (i = 0; i < regd->n_reg_rules; i++) {
1408 const struct ieee80211_reg_rule *rr;
1409 const struct ieee80211_freq_range *fr = NULL;
1411 rr = &regd->reg_rules[i];
1412 fr = &rr->freq_range;
1415 * We only need to know if one frequency rule was
1416 * was in center_freq's band, that's enough, so lets
1417 * not overwrite it once found
1419 if (!band_rule_found)
1420 band_rule_found = freq_in_rule_band(fr, center_freq);
1422 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1424 if (band_rule_found && bw_fits)
1425 return rr;
1428 if (!band_rule_found)
1429 return ERR_PTR(-ERANGE);
1431 return ERR_PTR(-EINVAL);
1434 static const struct ieee80211_reg_rule *
1435 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1437 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1438 const struct ieee80211_reg_rule *reg_rule = NULL;
1439 u32 bw;
1441 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1442 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1443 if (!IS_ERR(reg_rule))
1444 return reg_rule;
1447 return reg_rule;
1450 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1451 u32 center_freq)
1453 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1455 EXPORT_SYMBOL(freq_reg_info);
1457 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1459 switch (initiator) {
1460 case NL80211_REGDOM_SET_BY_CORE:
1461 return "core";
1462 case NL80211_REGDOM_SET_BY_USER:
1463 return "user";
1464 case NL80211_REGDOM_SET_BY_DRIVER:
1465 return "driver";
1466 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1467 return "country IE";
1468 default:
1469 WARN_ON(1);
1470 return "bug";
1473 EXPORT_SYMBOL(reg_initiator_name);
1475 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1476 const struct ieee80211_reg_rule *reg_rule,
1477 const struct ieee80211_channel *chan)
1479 const struct ieee80211_freq_range *freq_range = NULL;
1480 u32 max_bandwidth_khz, bw_flags = 0;
1482 freq_range = &reg_rule->freq_range;
1484 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1485 /* Check if auto calculation requested */
1486 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1487 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1489 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1490 if (!cfg80211_does_bw_fit_range(freq_range,
1491 MHZ_TO_KHZ(chan->center_freq),
1492 MHZ_TO_KHZ(10)))
1493 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1494 if (!cfg80211_does_bw_fit_range(freq_range,
1495 MHZ_TO_KHZ(chan->center_freq),
1496 MHZ_TO_KHZ(20)))
1497 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1499 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1500 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1501 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1502 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1503 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1504 bw_flags |= IEEE80211_CHAN_NO_HT40;
1505 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1506 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1507 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1508 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1509 return bw_flags;
1513 * Note that right now we assume the desired channel bandwidth
1514 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1515 * per channel, the primary and the extension channel).
1517 static void handle_channel(struct wiphy *wiphy,
1518 enum nl80211_reg_initiator initiator,
1519 struct ieee80211_channel *chan)
1521 u32 flags, bw_flags = 0;
1522 const struct ieee80211_reg_rule *reg_rule = NULL;
1523 const struct ieee80211_power_rule *power_rule = NULL;
1524 struct wiphy *request_wiphy = NULL;
1525 struct regulatory_request *lr = get_last_request();
1526 const struct ieee80211_regdomain *regd;
1528 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1530 flags = chan->orig_flags;
1532 reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1533 if (IS_ERR(reg_rule)) {
1535 * We will disable all channels that do not match our
1536 * received regulatory rule unless the hint is coming
1537 * from a Country IE and the Country IE had no information
1538 * about a band. The IEEE 802.11 spec allows for an AP
1539 * to send only a subset of the regulatory rules allowed,
1540 * so an AP in the US that only supports 2.4 GHz may only send
1541 * a country IE with information for the 2.4 GHz band
1542 * while 5 GHz is still supported.
1544 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1545 PTR_ERR(reg_rule) == -ERANGE)
1546 return;
1548 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1549 request_wiphy && request_wiphy == wiphy &&
1550 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1551 pr_debug("Disabling freq %d MHz for good\n",
1552 chan->center_freq);
1553 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1554 chan->flags = chan->orig_flags;
1555 } else {
1556 pr_debug("Disabling freq %d MHz\n",
1557 chan->center_freq);
1558 chan->flags |= IEEE80211_CHAN_DISABLED;
1560 return;
1563 regd = reg_get_regdomain(wiphy);
1565 power_rule = &reg_rule->power_rule;
1566 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1568 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1569 request_wiphy && request_wiphy == wiphy &&
1570 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1572 * This guarantees the driver's requested regulatory domain
1573 * will always be used as a base for further regulatory
1574 * settings
1576 chan->flags = chan->orig_flags =
1577 map_regdom_flags(reg_rule->flags) | bw_flags;
1578 chan->max_antenna_gain = chan->orig_mag =
1579 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1580 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1581 (int) MBM_TO_DBM(power_rule->max_eirp);
1583 if (chan->flags & IEEE80211_CHAN_RADAR) {
1584 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1585 if (reg_rule->dfs_cac_ms)
1586 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1589 return;
1592 chan->dfs_state = NL80211_DFS_USABLE;
1593 chan->dfs_state_entered = jiffies;
1595 chan->beacon_found = false;
1596 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1597 chan->max_antenna_gain =
1598 min_t(int, chan->orig_mag,
1599 MBI_TO_DBI(power_rule->max_antenna_gain));
1600 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1602 if (chan->flags & IEEE80211_CHAN_RADAR) {
1603 if (reg_rule->dfs_cac_ms)
1604 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1605 else
1606 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1609 if (chan->orig_mpwr) {
1611 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1612 * will always follow the passed country IE power settings.
1614 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1615 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1616 chan->max_power = chan->max_reg_power;
1617 else
1618 chan->max_power = min(chan->orig_mpwr,
1619 chan->max_reg_power);
1620 } else
1621 chan->max_power = chan->max_reg_power;
1624 static void handle_band(struct wiphy *wiphy,
1625 enum nl80211_reg_initiator initiator,
1626 struct ieee80211_supported_band *sband)
1628 unsigned int i;
1630 if (!sband)
1631 return;
1633 for (i = 0; i < sband->n_channels; i++)
1634 handle_channel(wiphy, initiator, &sband->channels[i]);
1637 static bool reg_request_cell_base(struct regulatory_request *request)
1639 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1640 return false;
1641 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1644 bool reg_last_request_cell_base(void)
1646 return reg_request_cell_base(get_last_request());
1649 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1650 /* Core specific check */
1651 static enum reg_request_treatment
1652 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1654 struct regulatory_request *lr = get_last_request();
1656 if (!reg_num_devs_support_basehint)
1657 return REG_REQ_IGNORE;
1659 if (reg_request_cell_base(lr) &&
1660 !regdom_changes(pending_request->alpha2))
1661 return REG_REQ_ALREADY_SET;
1663 return REG_REQ_OK;
1666 /* Device specific check */
1667 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1669 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1671 #else
1672 static enum reg_request_treatment
1673 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1675 return REG_REQ_IGNORE;
1678 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1680 return true;
1682 #endif
1684 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1686 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1687 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1688 return true;
1689 return false;
1692 static bool ignore_reg_update(struct wiphy *wiphy,
1693 enum nl80211_reg_initiator initiator)
1695 struct regulatory_request *lr = get_last_request();
1697 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1698 return true;
1700 if (!lr) {
1701 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1702 reg_initiator_name(initiator));
1703 return true;
1706 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1707 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1708 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1709 reg_initiator_name(initiator));
1710 return true;
1714 * wiphy->regd will be set once the device has its own
1715 * desired regulatory domain set
1717 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1718 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1719 !is_world_regdom(lr->alpha2)) {
1720 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1721 reg_initiator_name(initiator));
1722 return true;
1725 if (reg_request_cell_base(lr))
1726 return reg_dev_ignore_cell_hint(wiphy);
1728 return false;
1731 static bool reg_is_world_roaming(struct wiphy *wiphy)
1733 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1734 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1735 struct regulatory_request *lr = get_last_request();
1737 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1738 return true;
1740 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1741 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1742 return true;
1744 return false;
1747 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1748 struct reg_beacon *reg_beacon)
1750 struct ieee80211_supported_band *sband;
1751 struct ieee80211_channel *chan;
1752 bool channel_changed = false;
1753 struct ieee80211_channel chan_before;
1755 sband = wiphy->bands[reg_beacon->chan.band];
1756 chan = &sband->channels[chan_idx];
1758 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1759 return;
1761 if (chan->beacon_found)
1762 return;
1764 chan->beacon_found = true;
1766 if (!reg_is_world_roaming(wiphy))
1767 return;
1769 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1770 return;
1772 chan_before = *chan;
1774 if (chan->flags & IEEE80211_CHAN_NO_IR) {
1775 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1776 channel_changed = true;
1779 if (channel_changed)
1780 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1784 * Called when a scan on a wiphy finds a beacon on
1785 * new channel
1787 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1788 struct reg_beacon *reg_beacon)
1790 unsigned int i;
1791 struct ieee80211_supported_band *sband;
1793 if (!wiphy->bands[reg_beacon->chan.band])
1794 return;
1796 sband = wiphy->bands[reg_beacon->chan.band];
1798 for (i = 0; i < sband->n_channels; i++)
1799 handle_reg_beacon(wiphy, i, reg_beacon);
1803 * Called upon reg changes or a new wiphy is added
1805 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1807 unsigned int i;
1808 struct ieee80211_supported_band *sband;
1809 struct reg_beacon *reg_beacon;
1811 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1812 if (!wiphy->bands[reg_beacon->chan.band])
1813 continue;
1814 sband = wiphy->bands[reg_beacon->chan.band];
1815 for (i = 0; i < sband->n_channels; i++)
1816 handle_reg_beacon(wiphy, i, reg_beacon);
1820 /* Reap the advantages of previously found beacons */
1821 static void reg_process_beacons(struct wiphy *wiphy)
1824 * Means we are just firing up cfg80211, so no beacons would
1825 * have been processed yet.
1827 if (!last_request)
1828 return;
1829 wiphy_update_beacon_reg(wiphy);
1832 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1834 if (!chan)
1835 return false;
1836 if (chan->flags & IEEE80211_CHAN_DISABLED)
1837 return false;
1838 /* This would happen when regulatory rules disallow HT40 completely */
1839 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1840 return false;
1841 return true;
1844 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1845 struct ieee80211_channel *channel)
1847 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1848 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1849 const struct ieee80211_regdomain *regd;
1850 unsigned int i;
1851 u32 flags;
1853 if (!is_ht40_allowed(channel)) {
1854 channel->flags |= IEEE80211_CHAN_NO_HT40;
1855 return;
1859 * We need to ensure the extension channels exist to
1860 * be able to use HT40- or HT40+, this finds them (or not)
1862 for (i = 0; i < sband->n_channels; i++) {
1863 struct ieee80211_channel *c = &sband->channels[i];
1865 if (c->center_freq == (channel->center_freq - 20))
1866 channel_before = c;
1867 if (c->center_freq == (channel->center_freq + 20))
1868 channel_after = c;
1871 flags = 0;
1872 regd = get_wiphy_regdom(wiphy);
1873 if (regd) {
1874 const struct ieee80211_reg_rule *reg_rule =
1875 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
1876 regd, MHZ_TO_KHZ(20));
1878 if (!IS_ERR(reg_rule))
1879 flags = reg_rule->flags;
1883 * Please note that this assumes target bandwidth is 20 MHz,
1884 * if that ever changes we also need to change the below logic
1885 * to include that as well.
1887 if (!is_ht40_allowed(channel_before) ||
1888 flags & NL80211_RRF_NO_HT40MINUS)
1889 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1890 else
1891 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1893 if (!is_ht40_allowed(channel_after) ||
1894 flags & NL80211_RRF_NO_HT40PLUS)
1895 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1896 else
1897 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1900 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1901 struct ieee80211_supported_band *sband)
1903 unsigned int i;
1905 if (!sband)
1906 return;
1908 for (i = 0; i < sband->n_channels; i++)
1909 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1912 static void reg_process_ht_flags(struct wiphy *wiphy)
1914 enum nl80211_band band;
1916 if (!wiphy)
1917 return;
1919 for (band = 0; band < NUM_NL80211_BANDS; band++)
1920 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1923 static void reg_call_notifier(struct wiphy *wiphy,
1924 struct regulatory_request *request)
1926 if (wiphy->reg_notifier)
1927 wiphy->reg_notifier(wiphy, request);
1930 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1932 struct cfg80211_chan_def chandef;
1933 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1934 enum nl80211_iftype iftype;
1936 wdev_lock(wdev);
1937 iftype = wdev->iftype;
1939 /* make sure the interface is active */
1940 if (!wdev->netdev || !netif_running(wdev->netdev))
1941 goto wdev_inactive_unlock;
1943 switch (iftype) {
1944 case NL80211_IFTYPE_AP:
1945 case NL80211_IFTYPE_P2P_GO:
1946 if (!wdev->beacon_interval)
1947 goto wdev_inactive_unlock;
1948 chandef = wdev->chandef;
1949 break;
1950 case NL80211_IFTYPE_ADHOC:
1951 if (!wdev->ssid_len)
1952 goto wdev_inactive_unlock;
1953 chandef = wdev->chandef;
1954 break;
1955 case NL80211_IFTYPE_STATION:
1956 case NL80211_IFTYPE_P2P_CLIENT:
1957 if (!wdev->current_bss ||
1958 !wdev->current_bss->pub.channel)
1959 goto wdev_inactive_unlock;
1961 if (!rdev->ops->get_channel ||
1962 rdev_get_channel(rdev, wdev, &chandef))
1963 cfg80211_chandef_create(&chandef,
1964 wdev->current_bss->pub.channel,
1965 NL80211_CHAN_NO_HT);
1966 break;
1967 case NL80211_IFTYPE_MONITOR:
1968 case NL80211_IFTYPE_AP_VLAN:
1969 case NL80211_IFTYPE_P2P_DEVICE:
1970 /* no enforcement required */
1971 break;
1972 default:
1973 /* others not implemented for now */
1974 WARN_ON(1);
1975 break;
1978 wdev_unlock(wdev);
1980 switch (iftype) {
1981 case NL80211_IFTYPE_AP:
1982 case NL80211_IFTYPE_P2P_GO:
1983 case NL80211_IFTYPE_ADHOC:
1984 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
1985 case NL80211_IFTYPE_STATION:
1986 case NL80211_IFTYPE_P2P_CLIENT:
1987 return cfg80211_chandef_usable(wiphy, &chandef,
1988 IEEE80211_CHAN_DISABLED);
1989 default:
1990 break;
1993 return true;
1995 wdev_inactive_unlock:
1996 wdev_unlock(wdev);
1997 return true;
2000 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2002 struct wireless_dev *wdev;
2003 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2005 ASSERT_RTNL();
2007 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2008 if (!reg_wdev_chan_valid(wiphy, wdev))
2009 cfg80211_leave(rdev, wdev);
2012 static void reg_check_chans_work(struct work_struct *work)
2014 struct cfg80211_registered_device *rdev;
2016 pr_debug("Verifying active interfaces after reg change\n");
2017 rtnl_lock();
2019 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2020 if (!(rdev->wiphy.regulatory_flags &
2021 REGULATORY_IGNORE_STALE_KICKOFF))
2022 reg_leave_invalid_chans(&rdev->wiphy);
2024 rtnl_unlock();
2027 static void reg_check_channels(void)
2030 * Give usermode a chance to do something nicer (move to another
2031 * channel, orderly disconnection), before forcing a disconnection.
2033 mod_delayed_work(system_power_efficient_wq,
2034 &reg_check_chans,
2035 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2038 static void wiphy_update_regulatory(struct wiphy *wiphy,
2039 enum nl80211_reg_initiator initiator)
2041 enum nl80211_band band;
2042 struct regulatory_request *lr = get_last_request();
2044 if (ignore_reg_update(wiphy, initiator)) {
2046 * Regulatory updates set by CORE are ignored for custom
2047 * regulatory cards. Let us notify the changes to the driver,
2048 * as some drivers used this to restore its orig_* reg domain.
2050 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2051 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2052 reg_call_notifier(wiphy, lr);
2053 return;
2056 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2058 for (band = 0; band < NUM_NL80211_BANDS; band++)
2059 handle_band(wiphy, initiator, wiphy->bands[band]);
2061 reg_process_beacons(wiphy);
2062 reg_process_ht_flags(wiphy);
2063 reg_call_notifier(wiphy, lr);
2066 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2068 struct cfg80211_registered_device *rdev;
2069 struct wiphy *wiphy;
2071 ASSERT_RTNL();
2073 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2074 wiphy = &rdev->wiphy;
2075 wiphy_update_regulatory(wiphy, initiator);
2078 reg_check_channels();
2081 static void handle_channel_custom(struct wiphy *wiphy,
2082 struct ieee80211_channel *chan,
2083 const struct ieee80211_regdomain *regd)
2085 u32 bw_flags = 0;
2086 const struct ieee80211_reg_rule *reg_rule = NULL;
2087 const struct ieee80211_power_rule *power_rule = NULL;
2088 u32 bw;
2090 for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2091 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2092 regd, bw);
2093 if (!IS_ERR(reg_rule))
2094 break;
2097 if (IS_ERR(reg_rule)) {
2098 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2099 chan->center_freq);
2100 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2101 chan->flags |= IEEE80211_CHAN_DISABLED;
2102 } else {
2103 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2104 chan->flags = chan->orig_flags;
2106 return;
2109 power_rule = &reg_rule->power_rule;
2110 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2112 chan->dfs_state_entered = jiffies;
2113 chan->dfs_state = NL80211_DFS_USABLE;
2115 chan->beacon_found = false;
2117 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2118 chan->flags = chan->orig_flags | bw_flags |
2119 map_regdom_flags(reg_rule->flags);
2120 else
2121 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2123 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2124 chan->max_reg_power = chan->max_power =
2125 (int) MBM_TO_DBM(power_rule->max_eirp);
2127 if (chan->flags & IEEE80211_CHAN_RADAR) {
2128 if (reg_rule->dfs_cac_ms)
2129 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2130 else
2131 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2134 chan->max_power = chan->max_reg_power;
2137 static void handle_band_custom(struct wiphy *wiphy,
2138 struct ieee80211_supported_band *sband,
2139 const struct ieee80211_regdomain *regd)
2141 unsigned int i;
2143 if (!sband)
2144 return;
2146 for (i = 0; i < sband->n_channels; i++)
2147 handle_channel_custom(wiphy, &sband->channels[i], regd);
2150 /* Used by drivers prior to wiphy registration */
2151 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2152 const struct ieee80211_regdomain *regd)
2154 enum nl80211_band band;
2155 unsigned int bands_set = 0;
2157 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2158 "wiphy should have REGULATORY_CUSTOM_REG\n");
2159 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2161 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2162 if (!wiphy->bands[band])
2163 continue;
2164 handle_band_custom(wiphy, wiphy->bands[band], regd);
2165 bands_set++;
2169 * no point in calling this if it won't have any effect
2170 * on your device's supported bands.
2172 WARN_ON(!bands_set);
2174 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2176 static void reg_set_request_processed(void)
2178 bool need_more_processing = false;
2179 struct regulatory_request *lr = get_last_request();
2181 lr->processed = true;
2183 spin_lock(&reg_requests_lock);
2184 if (!list_empty(&reg_requests_list))
2185 need_more_processing = true;
2186 spin_unlock(&reg_requests_lock);
2188 cancel_crda_timeout();
2190 if (need_more_processing)
2191 schedule_work(&reg_work);
2195 * reg_process_hint_core - process core regulatory requests
2196 * @pending_request: a pending core regulatory request
2198 * The wireless subsystem can use this function to process
2199 * a regulatory request issued by the regulatory core.
2201 static enum reg_request_treatment
2202 reg_process_hint_core(struct regulatory_request *core_request)
2204 if (reg_query_database(core_request)) {
2205 core_request->intersect = false;
2206 core_request->processed = false;
2207 reg_update_last_request(core_request);
2208 return REG_REQ_OK;
2211 return REG_REQ_IGNORE;
2214 static enum reg_request_treatment
2215 __reg_process_hint_user(struct regulatory_request *user_request)
2217 struct regulatory_request *lr = get_last_request();
2219 if (reg_request_cell_base(user_request))
2220 return reg_ignore_cell_hint(user_request);
2222 if (reg_request_cell_base(lr))
2223 return REG_REQ_IGNORE;
2225 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2226 return REG_REQ_INTERSECT;
2228 * If the user knows better the user should set the regdom
2229 * to their country before the IE is picked up
2231 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2232 lr->intersect)
2233 return REG_REQ_IGNORE;
2235 * Process user requests only after previous user/driver/core
2236 * requests have been processed
2238 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2239 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2240 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2241 regdom_changes(lr->alpha2))
2242 return REG_REQ_IGNORE;
2244 if (!regdom_changes(user_request->alpha2))
2245 return REG_REQ_ALREADY_SET;
2247 return REG_REQ_OK;
2251 * reg_process_hint_user - process user regulatory requests
2252 * @user_request: a pending user regulatory request
2254 * The wireless subsystem can use this function to process
2255 * a regulatory request initiated by userspace.
2257 static enum reg_request_treatment
2258 reg_process_hint_user(struct regulatory_request *user_request)
2260 enum reg_request_treatment treatment;
2262 treatment = __reg_process_hint_user(user_request);
2263 if (treatment == REG_REQ_IGNORE ||
2264 treatment == REG_REQ_ALREADY_SET)
2265 return REG_REQ_IGNORE;
2267 user_request->intersect = treatment == REG_REQ_INTERSECT;
2268 user_request->processed = false;
2270 if (reg_query_database(user_request)) {
2271 reg_update_last_request(user_request);
2272 user_alpha2[0] = user_request->alpha2[0];
2273 user_alpha2[1] = user_request->alpha2[1];
2274 return REG_REQ_OK;
2277 return REG_REQ_IGNORE;
2280 static enum reg_request_treatment
2281 __reg_process_hint_driver(struct regulatory_request *driver_request)
2283 struct regulatory_request *lr = get_last_request();
2285 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2286 if (regdom_changes(driver_request->alpha2))
2287 return REG_REQ_OK;
2288 return REG_REQ_ALREADY_SET;
2292 * This would happen if you unplug and plug your card
2293 * back in or if you add a new device for which the previously
2294 * loaded card also agrees on the regulatory domain.
2296 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2297 !regdom_changes(driver_request->alpha2))
2298 return REG_REQ_ALREADY_SET;
2300 return REG_REQ_INTERSECT;
2304 * reg_process_hint_driver - process driver regulatory requests
2305 * @driver_request: a pending driver regulatory request
2307 * The wireless subsystem can use this function to process
2308 * a regulatory request issued by an 802.11 driver.
2310 * Returns one of the different reg request treatment values.
2312 static enum reg_request_treatment
2313 reg_process_hint_driver(struct wiphy *wiphy,
2314 struct regulatory_request *driver_request)
2316 const struct ieee80211_regdomain *regd, *tmp;
2317 enum reg_request_treatment treatment;
2319 treatment = __reg_process_hint_driver(driver_request);
2321 switch (treatment) {
2322 case REG_REQ_OK:
2323 break;
2324 case REG_REQ_IGNORE:
2325 return REG_REQ_IGNORE;
2326 case REG_REQ_INTERSECT:
2327 case REG_REQ_ALREADY_SET:
2328 regd = reg_copy_regd(get_cfg80211_regdom());
2329 if (IS_ERR(regd))
2330 return REG_REQ_IGNORE;
2332 tmp = get_wiphy_regdom(wiphy);
2333 rcu_assign_pointer(wiphy->regd, regd);
2334 rcu_free_regdom(tmp);
2338 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2339 driver_request->processed = false;
2342 * Since CRDA will not be called in this case as we already
2343 * have applied the requested regulatory domain before we just
2344 * inform userspace we have processed the request
2346 if (treatment == REG_REQ_ALREADY_SET) {
2347 nl80211_send_reg_change_event(driver_request);
2348 reg_update_last_request(driver_request);
2349 reg_set_request_processed();
2350 return REG_REQ_ALREADY_SET;
2353 if (reg_query_database(driver_request)) {
2354 reg_update_last_request(driver_request);
2355 return REG_REQ_OK;
2358 return REG_REQ_IGNORE;
2361 static enum reg_request_treatment
2362 __reg_process_hint_country_ie(struct wiphy *wiphy,
2363 struct regulatory_request *country_ie_request)
2365 struct wiphy *last_wiphy = NULL;
2366 struct regulatory_request *lr = get_last_request();
2368 if (reg_request_cell_base(lr)) {
2369 /* Trust a Cell base station over the AP's country IE */
2370 if (regdom_changes(country_ie_request->alpha2))
2371 return REG_REQ_IGNORE;
2372 return REG_REQ_ALREADY_SET;
2373 } else {
2374 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2375 return REG_REQ_IGNORE;
2378 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2379 return -EINVAL;
2381 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2382 return REG_REQ_OK;
2384 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2386 if (last_wiphy != wiphy) {
2388 * Two cards with two APs claiming different
2389 * Country IE alpha2s. We could
2390 * intersect them, but that seems unlikely
2391 * to be correct. Reject second one for now.
2393 if (regdom_changes(country_ie_request->alpha2))
2394 return REG_REQ_IGNORE;
2395 return REG_REQ_ALREADY_SET;
2398 if (regdom_changes(country_ie_request->alpha2))
2399 return REG_REQ_OK;
2400 return REG_REQ_ALREADY_SET;
2404 * reg_process_hint_country_ie - process regulatory requests from country IEs
2405 * @country_ie_request: a regulatory request from a country IE
2407 * The wireless subsystem can use this function to process
2408 * a regulatory request issued by a country Information Element.
2410 * Returns one of the different reg request treatment values.
2412 static enum reg_request_treatment
2413 reg_process_hint_country_ie(struct wiphy *wiphy,
2414 struct regulatory_request *country_ie_request)
2416 enum reg_request_treatment treatment;
2418 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2420 switch (treatment) {
2421 case REG_REQ_OK:
2422 break;
2423 case REG_REQ_IGNORE:
2424 return REG_REQ_IGNORE;
2425 case REG_REQ_ALREADY_SET:
2426 reg_free_request(country_ie_request);
2427 return REG_REQ_ALREADY_SET;
2428 case REG_REQ_INTERSECT:
2430 * This doesn't happen yet, not sure we
2431 * ever want to support it for this case.
2433 WARN_ONCE(1, "Unexpected intersection for country IEs");
2434 return REG_REQ_IGNORE;
2437 country_ie_request->intersect = false;
2438 country_ie_request->processed = false;
2440 if (reg_query_database(country_ie_request)) {
2441 reg_update_last_request(country_ie_request);
2442 return REG_REQ_OK;
2445 return REG_REQ_IGNORE;
2448 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2450 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2451 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2452 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2453 bool dfs_domain_same;
2455 rcu_read_lock();
2457 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2458 wiphy1_regd = rcu_dereference(wiphy1->regd);
2459 if (!wiphy1_regd)
2460 wiphy1_regd = cfg80211_regd;
2462 wiphy2_regd = rcu_dereference(wiphy2->regd);
2463 if (!wiphy2_regd)
2464 wiphy2_regd = cfg80211_regd;
2466 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2468 rcu_read_unlock();
2470 return dfs_domain_same;
2473 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2474 struct ieee80211_channel *src_chan)
2476 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2477 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2478 return;
2480 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2481 src_chan->flags & IEEE80211_CHAN_DISABLED)
2482 return;
2484 if (src_chan->center_freq == dst_chan->center_freq &&
2485 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2486 dst_chan->dfs_state = src_chan->dfs_state;
2487 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2491 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2492 struct wiphy *src_wiphy)
2494 struct ieee80211_supported_band *src_sband, *dst_sband;
2495 struct ieee80211_channel *src_chan, *dst_chan;
2496 int i, j, band;
2498 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2499 return;
2501 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2502 dst_sband = dst_wiphy->bands[band];
2503 src_sband = src_wiphy->bands[band];
2504 if (!dst_sband || !src_sband)
2505 continue;
2507 for (i = 0; i < dst_sband->n_channels; i++) {
2508 dst_chan = &dst_sband->channels[i];
2509 for (j = 0; j < src_sband->n_channels; j++) {
2510 src_chan = &src_sband->channels[j];
2511 reg_copy_dfs_chan_state(dst_chan, src_chan);
2517 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2519 struct cfg80211_registered_device *rdev;
2521 ASSERT_RTNL();
2523 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2524 if (wiphy == &rdev->wiphy)
2525 continue;
2526 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2530 /* This processes *all* regulatory hints */
2531 static void reg_process_hint(struct regulatory_request *reg_request)
2533 struct wiphy *wiphy = NULL;
2534 enum reg_request_treatment treatment;
2536 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2537 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2539 switch (reg_request->initiator) {
2540 case NL80211_REGDOM_SET_BY_CORE:
2541 treatment = reg_process_hint_core(reg_request);
2542 break;
2543 case NL80211_REGDOM_SET_BY_USER:
2544 treatment = reg_process_hint_user(reg_request);
2545 break;
2546 case NL80211_REGDOM_SET_BY_DRIVER:
2547 if (!wiphy)
2548 goto out_free;
2549 treatment = reg_process_hint_driver(wiphy, reg_request);
2550 break;
2551 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2552 if (!wiphy)
2553 goto out_free;
2554 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2555 break;
2556 default:
2557 WARN(1, "invalid initiator %d\n", reg_request->initiator);
2558 goto out_free;
2561 if (treatment == REG_REQ_IGNORE)
2562 goto out_free;
2564 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2565 "unexpected treatment value %d\n", treatment);
2567 /* This is required so that the orig_* parameters are saved.
2568 * NOTE: treatment must be set for any case that reaches here!
2570 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2571 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2572 wiphy_update_regulatory(wiphy, reg_request->initiator);
2573 wiphy_all_share_dfs_chan_state(wiphy);
2574 reg_check_channels();
2577 return;
2579 out_free:
2580 reg_free_request(reg_request);
2583 static bool reg_only_self_managed_wiphys(void)
2585 struct cfg80211_registered_device *rdev;
2586 struct wiphy *wiphy;
2587 bool self_managed_found = false;
2589 ASSERT_RTNL();
2591 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2592 wiphy = &rdev->wiphy;
2593 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2594 self_managed_found = true;
2595 else
2596 return false;
2599 /* make sure at least one self-managed wiphy exists */
2600 return self_managed_found;
2604 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2605 * Regulatory hints come on a first come first serve basis and we
2606 * must process each one atomically.
2608 static void reg_process_pending_hints(void)
2610 struct regulatory_request *reg_request, *lr;
2612 lr = get_last_request();
2614 /* When last_request->processed becomes true this will be rescheduled */
2615 if (lr && !lr->processed) {
2616 reg_process_hint(lr);
2617 return;
2620 spin_lock(&reg_requests_lock);
2622 if (list_empty(&reg_requests_list)) {
2623 spin_unlock(&reg_requests_lock);
2624 return;
2627 reg_request = list_first_entry(&reg_requests_list,
2628 struct regulatory_request,
2629 list);
2630 list_del_init(&reg_request->list);
2632 spin_unlock(&reg_requests_lock);
2634 if (reg_only_self_managed_wiphys()) {
2635 reg_free_request(reg_request);
2636 return;
2639 reg_process_hint(reg_request);
2641 lr = get_last_request();
2643 spin_lock(&reg_requests_lock);
2644 if (!list_empty(&reg_requests_list) && lr && lr->processed)
2645 schedule_work(&reg_work);
2646 spin_unlock(&reg_requests_lock);
2649 /* Processes beacon hints -- this has nothing to do with country IEs */
2650 static void reg_process_pending_beacon_hints(void)
2652 struct cfg80211_registered_device *rdev;
2653 struct reg_beacon *pending_beacon, *tmp;
2655 /* This goes through the _pending_ beacon list */
2656 spin_lock_bh(&reg_pending_beacons_lock);
2658 list_for_each_entry_safe(pending_beacon, tmp,
2659 &reg_pending_beacons, list) {
2660 list_del_init(&pending_beacon->list);
2662 /* Applies the beacon hint to current wiphys */
2663 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2664 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2666 /* Remembers the beacon hint for new wiphys or reg changes */
2667 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2670 spin_unlock_bh(&reg_pending_beacons_lock);
2673 static void reg_process_self_managed_hints(void)
2675 struct cfg80211_registered_device *rdev;
2676 struct wiphy *wiphy;
2677 const struct ieee80211_regdomain *tmp;
2678 const struct ieee80211_regdomain *regd;
2679 enum nl80211_band band;
2680 struct regulatory_request request = {};
2682 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2683 wiphy = &rdev->wiphy;
2685 spin_lock(&reg_requests_lock);
2686 regd = rdev->requested_regd;
2687 rdev->requested_regd = NULL;
2688 spin_unlock(&reg_requests_lock);
2690 if (regd == NULL)
2691 continue;
2693 tmp = get_wiphy_regdom(wiphy);
2694 rcu_assign_pointer(wiphy->regd, regd);
2695 rcu_free_regdom(tmp);
2697 for (band = 0; band < NUM_NL80211_BANDS; band++)
2698 handle_band_custom(wiphy, wiphy->bands[band], regd);
2700 reg_process_ht_flags(wiphy);
2702 request.wiphy_idx = get_wiphy_idx(wiphy);
2703 request.alpha2[0] = regd->alpha2[0];
2704 request.alpha2[1] = regd->alpha2[1];
2705 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2707 nl80211_send_wiphy_reg_change_event(&request);
2710 reg_check_channels();
2713 static void reg_todo(struct work_struct *work)
2715 rtnl_lock();
2716 reg_process_pending_hints();
2717 reg_process_pending_beacon_hints();
2718 reg_process_self_managed_hints();
2719 rtnl_unlock();
2722 static void queue_regulatory_request(struct regulatory_request *request)
2724 request->alpha2[0] = toupper(request->alpha2[0]);
2725 request->alpha2[1] = toupper(request->alpha2[1]);
2727 spin_lock(&reg_requests_lock);
2728 list_add_tail(&request->list, &reg_requests_list);
2729 spin_unlock(&reg_requests_lock);
2731 schedule_work(&reg_work);
2735 * Core regulatory hint -- happens during cfg80211_init()
2736 * and when we restore regulatory settings.
2738 static int regulatory_hint_core(const char *alpha2)
2740 struct regulatory_request *request;
2742 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2743 if (!request)
2744 return -ENOMEM;
2746 request->alpha2[0] = alpha2[0];
2747 request->alpha2[1] = alpha2[1];
2748 request->initiator = NL80211_REGDOM_SET_BY_CORE;
2750 queue_regulatory_request(request);
2752 return 0;
2755 /* User hints */
2756 int regulatory_hint_user(const char *alpha2,
2757 enum nl80211_user_reg_hint_type user_reg_hint_type)
2759 struct regulatory_request *request;
2761 if (WARN_ON(!alpha2))
2762 return -EINVAL;
2764 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2765 if (!request)
2766 return -ENOMEM;
2768 request->wiphy_idx = WIPHY_IDX_INVALID;
2769 request->alpha2[0] = alpha2[0];
2770 request->alpha2[1] = alpha2[1];
2771 request->initiator = NL80211_REGDOM_SET_BY_USER;
2772 request->user_reg_hint_type = user_reg_hint_type;
2774 /* Allow calling CRDA again */
2775 reset_crda_timeouts();
2777 queue_regulatory_request(request);
2779 return 0;
2782 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2784 spin_lock(&reg_indoor_lock);
2786 /* It is possible that more than one user space process is trying to
2787 * configure the indoor setting. To handle such cases, clear the indoor
2788 * setting in case that some process does not think that the device
2789 * is operating in an indoor environment. In addition, if a user space
2790 * process indicates that it is controlling the indoor setting, save its
2791 * portid, i.e., make it the owner.
2793 reg_is_indoor = is_indoor;
2794 if (reg_is_indoor) {
2795 if (!reg_is_indoor_portid)
2796 reg_is_indoor_portid = portid;
2797 } else {
2798 reg_is_indoor_portid = 0;
2801 spin_unlock(&reg_indoor_lock);
2803 if (!is_indoor)
2804 reg_check_channels();
2806 return 0;
2809 void regulatory_netlink_notify(u32 portid)
2811 spin_lock(&reg_indoor_lock);
2813 if (reg_is_indoor_portid != portid) {
2814 spin_unlock(&reg_indoor_lock);
2815 return;
2818 reg_is_indoor = false;
2819 reg_is_indoor_portid = 0;
2821 spin_unlock(&reg_indoor_lock);
2823 reg_check_channels();
2826 /* Driver hints */
2827 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2829 struct regulatory_request *request;
2831 if (WARN_ON(!alpha2 || !wiphy))
2832 return -EINVAL;
2834 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2836 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2837 if (!request)
2838 return -ENOMEM;
2840 request->wiphy_idx = get_wiphy_idx(wiphy);
2842 request->alpha2[0] = alpha2[0];
2843 request->alpha2[1] = alpha2[1];
2844 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2846 /* Allow calling CRDA again */
2847 reset_crda_timeouts();
2849 queue_regulatory_request(request);
2851 return 0;
2853 EXPORT_SYMBOL(regulatory_hint);
2855 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2856 const u8 *country_ie, u8 country_ie_len)
2858 char alpha2[2];
2859 enum environment_cap env = ENVIRON_ANY;
2860 struct regulatory_request *request = NULL, *lr;
2862 /* IE len must be evenly divisible by 2 */
2863 if (country_ie_len & 0x01)
2864 return;
2866 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2867 return;
2869 request = kzalloc(sizeof(*request), GFP_KERNEL);
2870 if (!request)
2871 return;
2873 alpha2[0] = country_ie[0];
2874 alpha2[1] = country_ie[1];
2876 if (country_ie[2] == 'I')
2877 env = ENVIRON_INDOOR;
2878 else if (country_ie[2] == 'O')
2879 env = ENVIRON_OUTDOOR;
2881 rcu_read_lock();
2882 lr = get_last_request();
2884 if (unlikely(!lr))
2885 goto out;
2888 * We will run this only upon a successful connection on cfg80211.
2889 * We leave conflict resolution to the workqueue, where can hold
2890 * the RTNL.
2892 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2893 lr->wiphy_idx != WIPHY_IDX_INVALID)
2894 goto out;
2896 request->wiphy_idx = get_wiphy_idx(wiphy);
2897 request->alpha2[0] = alpha2[0];
2898 request->alpha2[1] = alpha2[1];
2899 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2900 request->country_ie_env = env;
2902 /* Allow calling CRDA again */
2903 reset_crda_timeouts();
2905 queue_regulatory_request(request);
2906 request = NULL;
2907 out:
2908 kfree(request);
2909 rcu_read_unlock();
2912 static void restore_alpha2(char *alpha2, bool reset_user)
2914 /* indicates there is no alpha2 to consider for restoration */
2915 alpha2[0] = '9';
2916 alpha2[1] = '7';
2918 /* The user setting has precedence over the module parameter */
2919 if (is_user_regdom_saved()) {
2920 /* Unless we're asked to ignore it and reset it */
2921 if (reset_user) {
2922 pr_debug("Restoring regulatory settings including user preference\n");
2923 user_alpha2[0] = '9';
2924 user_alpha2[1] = '7';
2927 * If we're ignoring user settings, we still need to
2928 * check the module parameter to ensure we put things
2929 * back as they were for a full restore.
2931 if (!is_world_regdom(ieee80211_regdom)) {
2932 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2933 ieee80211_regdom[0], ieee80211_regdom[1]);
2934 alpha2[0] = ieee80211_regdom[0];
2935 alpha2[1] = ieee80211_regdom[1];
2937 } else {
2938 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
2939 user_alpha2[0], user_alpha2[1]);
2940 alpha2[0] = user_alpha2[0];
2941 alpha2[1] = user_alpha2[1];
2943 } else if (!is_world_regdom(ieee80211_regdom)) {
2944 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2945 ieee80211_regdom[0], ieee80211_regdom[1]);
2946 alpha2[0] = ieee80211_regdom[0];
2947 alpha2[1] = ieee80211_regdom[1];
2948 } else
2949 pr_debug("Restoring regulatory settings\n");
2952 static void restore_custom_reg_settings(struct wiphy *wiphy)
2954 struct ieee80211_supported_band *sband;
2955 enum nl80211_band band;
2956 struct ieee80211_channel *chan;
2957 int i;
2959 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2960 sband = wiphy->bands[band];
2961 if (!sband)
2962 continue;
2963 for (i = 0; i < sband->n_channels; i++) {
2964 chan = &sband->channels[i];
2965 chan->flags = chan->orig_flags;
2966 chan->max_antenna_gain = chan->orig_mag;
2967 chan->max_power = chan->orig_mpwr;
2968 chan->beacon_found = false;
2974 * Restoring regulatory settings involves ingoring any
2975 * possibly stale country IE information and user regulatory
2976 * settings if so desired, this includes any beacon hints
2977 * learned as we could have traveled outside to another country
2978 * after disconnection. To restore regulatory settings we do
2979 * exactly what we did at bootup:
2981 * - send a core regulatory hint
2982 * - send a user regulatory hint if applicable
2984 * Device drivers that send a regulatory hint for a specific country
2985 * keep their own regulatory domain on wiphy->regd so that does does
2986 * not need to be remembered.
2988 static void restore_regulatory_settings(bool reset_user)
2990 char alpha2[2];
2991 char world_alpha2[2];
2992 struct reg_beacon *reg_beacon, *btmp;
2993 LIST_HEAD(tmp_reg_req_list);
2994 struct cfg80211_registered_device *rdev;
2996 ASSERT_RTNL();
2999 * Clear the indoor setting in case that it is not controlled by user
3000 * space, as otherwise there is no guarantee that the device is still
3001 * operating in an indoor environment.
3003 spin_lock(&reg_indoor_lock);
3004 if (reg_is_indoor && !reg_is_indoor_portid) {
3005 reg_is_indoor = false;
3006 reg_check_channels();
3008 spin_unlock(&reg_indoor_lock);
3010 reset_regdomains(true, &world_regdom);
3011 restore_alpha2(alpha2, reset_user);
3014 * If there's any pending requests we simply
3015 * stash them to a temporary pending queue and
3016 * add then after we've restored regulatory
3017 * settings.
3019 spin_lock(&reg_requests_lock);
3020 list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3021 spin_unlock(&reg_requests_lock);
3023 /* Clear beacon hints */
3024 spin_lock_bh(&reg_pending_beacons_lock);
3025 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3026 list_del(&reg_beacon->list);
3027 kfree(reg_beacon);
3029 spin_unlock_bh(&reg_pending_beacons_lock);
3031 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3032 list_del(&reg_beacon->list);
3033 kfree(reg_beacon);
3036 /* First restore to the basic regulatory settings */
3037 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3038 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3040 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3041 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3042 continue;
3043 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3044 restore_custom_reg_settings(&rdev->wiphy);
3047 regulatory_hint_core(world_alpha2);
3050 * This restores the ieee80211_regdom module parameter
3051 * preference or the last user requested regulatory
3052 * settings, user regulatory settings takes precedence.
3054 if (is_an_alpha2(alpha2))
3055 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3057 spin_lock(&reg_requests_lock);
3058 list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3059 spin_unlock(&reg_requests_lock);
3061 pr_debug("Kicking the queue\n");
3063 schedule_work(&reg_work);
3066 void regulatory_hint_disconnect(void)
3068 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3069 restore_regulatory_settings(false);
3072 static bool freq_is_chan_12_13_14(u16 freq)
3074 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3075 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3076 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3077 return true;
3078 return false;
3081 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3083 struct reg_beacon *pending_beacon;
3085 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3086 if (beacon_chan->center_freq ==
3087 pending_beacon->chan.center_freq)
3088 return true;
3089 return false;
3092 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3093 struct ieee80211_channel *beacon_chan,
3094 gfp_t gfp)
3096 struct reg_beacon *reg_beacon;
3097 bool processing;
3099 if (beacon_chan->beacon_found ||
3100 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3101 (beacon_chan->band == NL80211_BAND_2GHZ &&
3102 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3103 return 0;
3105 spin_lock_bh(&reg_pending_beacons_lock);
3106 processing = pending_reg_beacon(beacon_chan);
3107 spin_unlock_bh(&reg_pending_beacons_lock);
3109 if (processing)
3110 return 0;
3112 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3113 if (!reg_beacon)
3114 return -ENOMEM;
3116 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3117 beacon_chan->center_freq,
3118 ieee80211_frequency_to_channel(beacon_chan->center_freq),
3119 wiphy_name(wiphy));
3121 memcpy(&reg_beacon->chan, beacon_chan,
3122 sizeof(struct ieee80211_channel));
3125 * Since we can be called from BH or and non-BH context
3126 * we must use spin_lock_bh()
3128 spin_lock_bh(&reg_pending_beacons_lock);
3129 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3130 spin_unlock_bh(&reg_pending_beacons_lock);
3132 schedule_work(&reg_work);
3134 return 0;
3137 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3139 unsigned int i;
3140 const struct ieee80211_reg_rule *reg_rule = NULL;
3141 const struct ieee80211_freq_range *freq_range = NULL;
3142 const struct ieee80211_power_rule *power_rule = NULL;
3143 char bw[32], cac_time[32];
3145 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3147 for (i = 0; i < rd->n_reg_rules; i++) {
3148 reg_rule = &rd->reg_rules[i];
3149 freq_range = &reg_rule->freq_range;
3150 power_rule = &reg_rule->power_rule;
3152 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3153 snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3154 freq_range->max_bandwidth_khz,
3155 reg_get_max_bandwidth(rd, reg_rule));
3156 else
3157 snprintf(bw, sizeof(bw), "%d KHz",
3158 freq_range->max_bandwidth_khz);
3160 if (reg_rule->flags & NL80211_RRF_DFS)
3161 scnprintf(cac_time, sizeof(cac_time), "%u s",
3162 reg_rule->dfs_cac_ms/1000);
3163 else
3164 scnprintf(cac_time, sizeof(cac_time), "N/A");
3168 * There may not be documentation for max antenna gain
3169 * in certain regions
3171 if (power_rule->max_antenna_gain)
3172 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3173 freq_range->start_freq_khz,
3174 freq_range->end_freq_khz,
3176 power_rule->max_antenna_gain,
3177 power_rule->max_eirp,
3178 cac_time);
3179 else
3180 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3181 freq_range->start_freq_khz,
3182 freq_range->end_freq_khz,
3184 power_rule->max_eirp,
3185 cac_time);
3189 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3191 switch (dfs_region) {
3192 case NL80211_DFS_UNSET:
3193 case NL80211_DFS_FCC:
3194 case NL80211_DFS_ETSI:
3195 case NL80211_DFS_JP:
3196 return true;
3197 default:
3198 pr_debug("Ignoring uknown DFS master region: %d\n", dfs_region);
3199 return false;
3203 static void print_regdomain(const struct ieee80211_regdomain *rd)
3205 struct regulatory_request *lr = get_last_request();
3207 if (is_intersected_alpha2(rd->alpha2)) {
3208 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3209 struct cfg80211_registered_device *rdev;
3210 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3211 if (rdev) {
3212 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3213 rdev->country_ie_alpha2[0],
3214 rdev->country_ie_alpha2[1]);
3215 } else
3216 pr_debug("Current regulatory domain intersected:\n");
3217 } else
3218 pr_debug("Current regulatory domain intersected:\n");
3219 } else if (is_world_regdom(rd->alpha2)) {
3220 pr_debug("World regulatory domain updated:\n");
3221 } else {
3222 if (is_unknown_alpha2(rd->alpha2))
3223 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3224 else {
3225 if (reg_request_cell_base(lr))
3226 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3227 rd->alpha2[0], rd->alpha2[1]);
3228 else
3229 pr_debug("Regulatory domain changed to country: %c%c\n",
3230 rd->alpha2[0], rd->alpha2[1]);
3234 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3235 print_rd_rules(rd);
3238 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3240 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3241 print_rd_rules(rd);
3244 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3246 if (!is_world_regdom(rd->alpha2))
3247 return -EINVAL;
3248 update_world_regdomain(rd);
3249 return 0;
3252 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3253 struct regulatory_request *user_request)
3255 const struct ieee80211_regdomain *intersected_rd = NULL;
3257 if (!regdom_changes(rd->alpha2))
3258 return -EALREADY;
3260 if (!is_valid_rd(rd)) {
3261 pr_err("Invalid regulatory domain detected: %c%c\n",
3262 rd->alpha2[0], rd->alpha2[1]);
3263 print_regdomain_info(rd);
3264 return -EINVAL;
3267 if (!user_request->intersect) {
3268 reset_regdomains(false, rd);
3269 return 0;
3272 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3273 if (!intersected_rd)
3274 return -EINVAL;
3276 kfree(rd);
3277 rd = NULL;
3278 reset_regdomains(false, intersected_rd);
3280 return 0;
3283 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3284 struct regulatory_request *driver_request)
3286 const struct ieee80211_regdomain *regd;
3287 const struct ieee80211_regdomain *intersected_rd = NULL;
3288 const struct ieee80211_regdomain *tmp;
3289 struct wiphy *request_wiphy;
3291 if (is_world_regdom(rd->alpha2))
3292 return -EINVAL;
3294 if (!regdom_changes(rd->alpha2))
3295 return -EALREADY;
3297 if (!is_valid_rd(rd)) {
3298 pr_err("Invalid regulatory domain detected: %c%c\n",
3299 rd->alpha2[0], rd->alpha2[1]);
3300 print_regdomain_info(rd);
3301 return -EINVAL;
3304 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3305 if (!request_wiphy)
3306 return -ENODEV;
3308 if (!driver_request->intersect) {
3309 if (request_wiphy->regd)
3310 return -EALREADY;
3312 regd = reg_copy_regd(rd);
3313 if (IS_ERR(regd))
3314 return PTR_ERR(regd);
3316 rcu_assign_pointer(request_wiphy->regd, regd);
3317 reset_regdomains(false, rd);
3318 return 0;
3321 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3322 if (!intersected_rd)
3323 return -EINVAL;
3326 * We can trash what CRDA provided now.
3327 * However if a driver requested this specific regulatory
3328 * domain we keep it for its private use
3330 tmp = get_wiphy_regdom(request_wiphy);
3331 rcu_assign_pointer(request_wiphy->regd, rd);
3332 rcu_free_regdom(tmp);
3334 rd = NULL;
3336 reset_regdomains(false, intersected_rd);
3338 return 0;
3341 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3342 struct regulatory_request *country_ie_request)
3344 struct wiphy *request_wiphy;
3346 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3347 !is_unknown_alpha2(rd->alpha2))
3348 return -EINVAL;
3351 * Lets only bother proceeding on the same alpha2 if the current
3352 * rd is non static (it means CRDA was present and was used last)
3353 * and the pending request came in from a country IE
3356 if (!is_valid_rd(rd)) {
3357 pr_err("Invalid regulatory domain detected: %c%c\n",
3358 rd->alpha2[0], rd->alpha2[1]);
3359 print_regdomain_info(rd);
3360 return -EINVAL;
3363 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3364 if (!request_wiphy)
3365 return -ENODEV;
3367 if (country_ie_request->intersect)
3368 return -EINVAL;
3370 reset_regdomains(false, rd);
3371 return 0;
3375 * Use this call to set the current regulatory domain. Conflicts with
3376 * multiple drivers can be ironed out later. Caller must've already
3377 * kmalloc'd the rd structure.
3379 int set_regdom(const struct ieee80211_regdomain *rd,
3380 enum ieee80211_regd_source regd_src)
3382 struct regulatory_request *lr;
3383 bool user_reset = false;
3384 int r;
3386 if (!reg_is_valid_request(rd->alpha2)) {
3387 kfree(rd);
3388 return -EINVAL;
3391 if (regd_src == REGD_SOURCE_CRDA)
3392 reset_crda_timeouts();
3394 lr = get_last_request();
3396 /* Note that this doesn't update the wiphys, this is done below */
3397 switch (lr->initiator) {
3398 case NL80211_REGDOM_SET_BY_CORE:
3399 r = reg_set_rd_core(rd);
3400 break;
3401 case NL80211_REGDOM_SET_BY_USER:
3402 r = reg_set_rd_user(rd, lr);
3403 user_reset = true;
3404 break;
3405 case NL80211_REGDOM_SET_BY_DRIVER:
3406 r = reg_set_rd_driver(rd, lr);
3407 break;
3408 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3409 r = reg_set_rd_country_ie(rd, lr);
3410 break;
3411 default:
3412 WARN(1, "invalid initiator %d\n", lr->initiator);
3413 kfree(rd);
3414 return -EINVAL;
3417 if (r) {
3418 switch (r) {
3419 case -EALREADY:
3420 reg_set_request_processed();
3421 break;
3422 default:
3423 /* Back to world regulatory in case of errors */
3424 restore_regulatory_settings(user_reset);
3427 kfree(rd);
3428 return r;
3431 /* This would make this whole thing pointless */
3432 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3433 return -EINVAL;
3435 /* update all wiphys now with the new established regulatory domain */
3436 update_all_wiphy_regulatory(lr->initiator);
3438 print_regdomain(get_cfg80211_regdom());
3440 nl80211_send_reg_change_event(lr);
3442 reg_set_request_processed();
3444 return 0;
3447 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3448 struct ieee80211_regdomain *rd)
3450 const struct ieee80211_regdomain *regd;
3451 const struct ieee80211_regdomain *prev_regd;
3452 struct cfg80211_registered_device *rdev;
3454 if (WARN_ON(!wiphy || !rd))
3455 return -EINVAL;
3457 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3458 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3459 return -EPERM;
3461 if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3462 print_regdomain_info(rd);
3463 return -EINVAL;
3466 regd = reg_copy_regd(rd);
3467 if (IS_ERR(regd))
3468 return PTR_ERR(regd);
3470 rdev = wiphy_to_rdev(wiphy);
3472 spin_lock(&reg_requests_lock);
3473 prev_regd = rdev->requested_regd;
3474 rdev->requested_regd = regd;
3475 spin_unlock(&reg_requests_lock);
3477 kfree(prev_regd);
3478 return 0;
3481 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3482 struct ieee80211_regdomain *rd)
3484 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3486 if (ret)
3487 return ret;
3489 schedule_work(&reg_work);
3490 return 0;
3492 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3494 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3495 struct ieee80211_regdomain *rd)
3497 int ret;
3499 ASSERT_RTNL();
3501 ret = __regulatory_set_wiphy_regd(wiphy, rd);
3502 if (ret)
3503 return ret;
3505 /* process the request immediately */
3506 reg_process_self_managed_hints();
3507 return 0;
3509 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3511 void wiphy_regulatory_register(struct wiphy *wiphy)
3513 struct regulatory_request *lr;
3515 /* self-managed devices ignore external hints */
3516 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3517 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3518 REGULATORY_COUNTRY_IE_IGNORE;
3520 if (!reg_dev_ignore_cell_hint(wiphy))
3521 reg_num_devs_support_basehint++;
3523 lr = get_last_request();
3524 wiphy_update_regulatory(wiphy, lr->initiator);
3525 wiphy_all_share_dfs_chan_state(wiphy);
3528 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3530 struct wiphy *request_wiphy = NULL;
3531 struct regulatory_request *lr;
3533 lr = get_last_request();
3535 if (!reg_dev_ignore_cell_hint(wiphy))
3536 reg_num_devs_support_basehint--;
3538 rcu_free_regdom(get_wiphy_regdom(wiphy));
3539 RCU_INIT_POINTER(wiphy->regd, NULL);
3541 if (lr)
3542 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3544 if (!request_wiphy || request_wiphy != wiphy)
3545 return;
3547 lr->wiphy_idx = WIPHY_IDX_INVALID;
3548 lr->country_ie_env = ENVIRON_ANY;
3552 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3553 * UNII band definitions
3555 int cfg80211_get_unii(int freq)
3557 /* UNII-1 */
3558 if (freq >= 5150 && freq <= 5250)
3559 return 0;
3561 /* UNII-2A */
3562 if (freq > 5250 && freq <= 5350)
3563 return 1;
3565 /* UNII-2B */
3566 if (freq > 5350 && freq <= 5470)
3567 return 2;
3569 /* UNII-2C */
3570 if (freq > 5470 && freq <= 5725)
3571 return 3;
3573 /* UNII-3 */
3574 if (freq > 5725 && freq <= 5825)
3575 return 4;
3577 return -EINVAL;
3580 bool regulatory_indoor_allowed(void)
3582 return reg_is_indoor;
3585 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3587 const struct ieee80211_regdomain *regd = NULL;
3588 const struct ieee80211_regdomain *wiphy_regd = NULL;
3589 bool pre_cac_allowed = false;
3591 rcu_read_lock();
3593 regd = rcu_dereference(cfg80211_regdomain);
3594 wiphy_regd = rcu_dereference(wiphy->regd);
3595 if (!wiphy_regd) {
3596 if (regd->dfs_region == NL80211_DFS_ETSI)
3597 pre_cac_allowed = true;
3599 rcu_read_unlock();
3601 return pre_cac_allowed;
3604 if (regd->dfs_region == wiphy_regd->dfs_region &&
3605 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3606 pre_cac_allowed = true;
3608 rcu_read_unlock();
3610 return pre_cac_allowed;
3613 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3614 struct cfg80211_chan_def *chandef,
3615 enum nl80211_dfs_state dfs_state,
3616 enum nl80211_radar_event event)
3618 struct cfg80211_registered_device *rdev;
3620 ASSERT_RTNL();
3622 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3623 return;
3625 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3626 if (wiphy == &rdev->wiphy)
3627 continue;
3629 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3630 continue;
3632 if (!ieee80211_get_channel(&rdev->wiphy,
3633 chandef->chan->center_freq))
3634 continue;
3636 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3638 if (event == NL80211_RADAR_DETECTED ||
3639 event == NL80211_RADAR_CAC_FINISHED)
3640 cfg80211_sched_dfs_chan_update(rdev);
3642 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3646 static int __init regulatory_init_db(void)
3648 int err;
3650 err = load_builtin_regdb_keys();
3651 if (err)
3652 return err;
3654 /* We always try to get an update for the static regdomain */
3655 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3656 if (err) {
3657 if (err == -ENOMEM) {
3658 platform_device_unregister(reg_pdev);
3659 return err;
3662 * N.B. kobject_uevent_env() can fail mainly for when we're out
3663 * memory which is handled and propagated appropriately above
3664 * but it can also fail during a netlink_broadcast() or during
3665 * early boot for call_usermodehelper(). For now treat these
3666 * errors as non-fatal.
3668 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3672 * Finally, if the user set the module parameter treat it
3673 * as a user hint.
3675 if (!is_world_regdom(ieee80211_regdom))
3676 regulatory_hint_user(ieee80211_regdom,
3677 NL80211_USER_REG_HINT_USER);
3679 return 0;
3681 #ifndef MODULE
3682 late_initcall(regulatory_init_db);
3683 #endif
3685 int __init regulatory_init(void)
3687 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3688 if (IS_ERR(reg_pdev))
3689 return PTR_ERR(reg_pdev);
3691 spin_lock_init(&reg_requests_lock);
3692 spin_lock_init(&reg_pending_beacons_lock);
3693 spin_lock_init(&reg_indoor_lock);
3695 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3697 user_alpha2[0] = '9';
3698 user_alpha2[1] = '7';
3700 #ifdef MODULE
3701 return regulatory_init_db();
3702 #else
3703 return 0;
3704 #endif
3707 void regulatory_exit(void)
3709 struct regulatory_request *reg_request, *tmp;
3710 struct reg_beacon *reg_beacon, *btmp;
3712 cancel_work_sync(&reg_work);
3713 cancel_crda_timeout_sync();
3714 cancel_delayed_work_sync(&reg_check_chans);
3716 /* Lock to suppress warnings */
3717 rtnl_lock();
3718 reset_regdomains(true, NULL);
3719 rtnl_unlock();
3721 dev_set_uevent_suppress(&reg_pdev->dev, true);
3723 platform_device_unregister(reg_pdev);
3725 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3726 list_del(&reg_beacon->list);
3727 kfree(reg_beacon);
3730 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3731 list_del(&reg_beacon->list);
3732 kfree(reg_beacon);
3735 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3736 list_del(&reg_request->list);
3737 kfree(reg_request);
3740 if (!IS_ERR_OR_NULL(regdb))
3741 kfree(regdb);
3743 free_regdb_keyring();