2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
10 * Maintainer: Kumar Gala
12 * Copyright (c) 2002-2004 Freescale Semiconductor, Inc.
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
19 * Gianfar: AKA Lambda Draconis, "Dragon"
27 * The driver is initialized through platform_device. Structures which
28 * define the configuration needed by the board are defined in a
29 * board structure in arch/ppc/platforms (though I do not
30 * discount the possibility that other architectures could one
33 * The Gianfar Ethernet Controller uses a ring of buffer
34 * descriptors. The beginning is indicated by a register
35 * pointing to the physical address of the start of the ring.
36 * The end is determined by a "wrap" bit being set in the
37 * last descriptor of the ring.
39 * When a packet is received, the RXF bit in the
40 * IEVENT register is set, triggering an interrupt when the
41 * corresponding bit in the IMASK register is also set (if
42 * interrupt coalescing is active, then the interrupt may not
43 * happen immediately, but will wait until either a set number
44 * of frames or amount of time have passed). In NAPI, the
45 * interrupt handler will signal there is work to be done, and
46 * exit. Without NAPI, the packet(s) will be handled
47 * immediately. Both methods will start at the last known empty
48 * descriptor, and process every subsequent descriptor until there
49 * are none left with data (NAPI will stop after a set number of
50 * packets to give time to other tasks, but will eventually
51 * process all the packets). The data arrives inside a
52 * pre-allocated skb, and so after the skb is passed up to the
53 * stack, a new skb must be allocated, and the address field in
54 * the buffer descriptor must be updated to indicate this new
57 * When the kernel requests that a packet be transmitted, the
58 * driver starts where it left off last time, and points the
59 * descriptor at the buffer which was passed in. The driver
60 * then informs the DMA engine that there are packets ready to
61 * be transmitted. Once the controller is finished transmitting
62 * the packet, an interrupt may be triggered (under the same
63 * conditions as for reception, but depending on the TXF bit).
64 * The driver then cleans up the buffer.
67 #include <linux/config.h>
68 #include <linux/kernel.h>
69 #include <linux/sched.h>
70 #include <linux/string.h>
71 #include <linux/errno.h>
72 #include <linux/unistd.h>
73 #include <linux/slab.h>
74 #include <linux/interrupt.h>
75 #include <linux/init.h>
76 #include <linux/delay.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/if_vlan.h>
81 #include <linux/spinlock.h>
83 #include <linux/platform_device.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
91 #include <asm/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
99 #include "gianfar_mii.h"
101 #define TX_TIMEOUT (1*HZ)
102 #define SKB_ALLOC_TIMEOUT 1000000
103 #undef BRIEF_GFAR_ERRORS
104 #undef VERBOSE_GFAR_ERRORS
106 #ifdef CONFIG_GFAR_NAPI
107 #define RECEIVE(x) netif_receive_skb(x)
109 #define RECEIVE(x) netif_rx(x)
112 const char gfar_driver_name
[] = "Gianfar Ethernet";
113 const char gfar_driver_version
[] = "1.3";
115 static int gfar_enet_open(struct net_device
*dev
);
116 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
117 static void gfar_timeout(struct net_device
*dev
);
118 static int gfar_close(struct net_device
*dev
);
119 struct sk_buff
*gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
);
120 static struct net_device_stats
*gfar_get_stats(struct net_device
*dev
);
121 static int gfar_set_mac_address(struct net_device
*dev
);
122 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
);
123 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
);
124 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
);
125 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
);
126 static void adjust_link(struct net_device
*dev
);
127 static void init_registers(struct net_device
*dev
);
128 static int init_phy(struct net_device
*dev
);
129 static int gfar_probe(struct platform_device
*pdev
);
130 static int gfar_remove(struct platform_device
*pdev
);
131 static void free_skb_resources(struct gfar_private
*priv
);
132 static void gfar_set_multi(struct net_device
*dev
);
133 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
);
134 #ifdef CONFIG_GFAR_NAPI
135 static int gfar_poll(struct net_device
*dev
, int *budget
);
137 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
);
138 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
, int length
);
139 static void gfar_vlan_rx_register(struct net_device
*netdev
,
140 struct vlan_group
*grp
);
141 static void gfar_vlan_rx_kill_vid(struct net_device
*netdev
, uint16_t vid
);
142 void gfar_halt(struct net_device
*dev
);
143 void gfar_start(struct net_device
*dev
);
144 static void gfar_clear_exact_match(struct net_device
*dev
);
145 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
);
147 extern struct ethtool_ops gfar_ethtool_ops
;
149 MODULE_AUTHOR("Freescale Semiconductor, Inc");
150 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
151 MODULE_LICENSE("GPL");
153 /* Returns 1 if incoming frames use an FCB */
154 static inline int gfar_uses_fcb(struct gfar_private
*priv
)
156 return (priv
->vlan_enable
|| priv
->rx_csum_enable
);
159 /* Set up the ethernet device structure, private data,
160 * and anything else we need before we start */
161 static int gfar_probe(struct platform_device
*pdev
)
164 struct net_device
*dev
= NULL
;
165 struct gfar_private
*priv
= NULL
;
166 struct gianfar_platform_data
*einfo
;
171 einfo
= (struct gianfar_platform_data
*) pdev
->dev
.platform_data
;
174 printk(KERN_ERR
"gfar %d: Missing additional data!\n",
180 /* Create an ethernet device instance */
181 dev
= alloc_etherdev(sizeof (*priv
));
186 priv
= netdev_priv(dev
);
188 /* Set the info in the priv to the current info */
191 /* fill out IRQ fields */
192 if (einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
193 priv
->interruptTransmit
= platform_get_irq_byname(pdev
, "tx");
194 priv
->interruptReceive
= platform_get_irq_byname(pdev
, "rx");
195 priv
->interruptError
= platform_get_irq_byname(pdev
, "error");
196 if (priv
->interruptTransmit
< 0 || priv
->interruptReceive
< 0 || priv
->interruptError
< 0)
199 priv
->interruptTransmit
= platform_get_irq(pdev
, 0);
200 if (priv
->interruptTransmit
< 0)
204 /* get a pointer to the register memory */
205 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
206 priv
->regs
= ioremap(r
->start
, sizeof (struct gfar
));
208 if (NULL
== priv
->regs
) {
213 spin_lock_init(&priv
->txlock
);
214 spin_lock_init(&priv
->rxlock
);
216 platform_set_drvdata(pdev
, dev
);
218 /* Stop the DMA engine now, in case it was running before */
219 /* (The firmware could have used it, and left it running). */
220 /* To do this, we write Graceful Receive Stop and Graceful */
221 /* Transmit Stop, and then wait until the corresponding bits */
222 /* in IEVENT indicate the stops have completed. */
223 tempval
= gfar_read(&priv
->regs
->dmactrl
);
224 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
225 gfar_write(&priv
->regs
->dmactrl
, tempval
);
227 tempval
= gfar_read(&priv
->regs
->dmactrl
);
228 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
229 gfar_write(&priv
->regs
->dmactrl
, tempval
);
231 while (!(gfar_read(&priv
->regs
->ievent
) & (IEVENT_GRSC
| IEVENT_GTSC
)))
234 /* Reset MAC layer */
235 gfar_write(&priv
->regs
->maccfg1
, MACCFG1_SOFT_RESET
);
237 tempval
= (MACCFG1_TX_FLOW
| MACCFG1_RX_FLOW
);
238 gfar_write(&priv
->regs
->maccfg1
, tempval
);
240 /* Initialize MACCFG2. */
241 gfar_write(&priv
->regs
->maccfg2
, MACCFG2_INIT_SETTINGS
);
243 /* Initialize ECNTRL */
244 gfar_write(&priv
->regs
->ecntrl
, ECNTRL_INIT_SETTINGS
);
246 /* Copy the station address into the dev structure, */
247 memcpy(dev
->dev_addr
, einfo
->mac_addr
, MAC_ADDR_LEN
);
249 /* Set the dev->base_addr to the gfar reg region */
250 dev
->base_addr
= (unsigned long) (priv
->regs
);
252 SET_MODULE_OWNER(dev
);
253 SET_NETDEV_DEV(dev
, &pdev
->dev
);
255 /* Fill in the dev structure */
256 dev
->open
= gfar_enet_open
;
257 dev
->hard_start_xmit
= gfar_start_xmit
;
258 dev
->tx_timeout
= gfar_timeout
;
259 dev
->watchdog_timeo
= TX_TIMEOUT
;
260 #ifdef CONFIG_GFAR_NAPI
261 dev
->poll
= gfar_poll
;
262 dev
->weight
= GFAR_DEV_WEIGHT
;
264 dev
->stop
= gfar_close
;
265 dev
->get_stats
= gfar_get_stats
;
266 dev
->change_mtu
= gfar_change_mtu
;
268 dev
->set_multicast_list
= gfar_set_multi
;
270 dev
->ethtool_ops
= &gfar_ethtool_ops
;
272 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_CSUM
) {
273 priv
->rx_csum_enable
= 1;
274 dev
->features
|= NETIF_F_IP_CSUM
;
276 priv
->rx_csum_enable
= 0;
280 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_VLAN
) {
281 dev
->vlan_rx_register
= gfar_vlan_rx_register
;
282 dev
->vlan_rx_kill_vid
= gfar_vlan_rx_kill_vid
;
284 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
286 priv
->vlan_enable
= 1;
289 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_EXTENDED_HASH
) {
290 priv
->extended_hash
= 1;
291 priv
->hash_width
= 9;
293 priv
->hash_regs
[0] = &priv
->regs
->igaddr0
;
294 priv
->hash_regs
[1] = &priv
->regs
->igaddr1
;
295 priv
->hash_regs
[2] = &priv
->regs
->igaddr2
;
296 priv
->hash_regs
[3] = &priv
->regs
->igaddr3
;
297 priv
->hash_regs
[4] = &priv
->regs
->igaddr4
;
298 priv
->hash_regs
[5] = &priv
->regs
->igaddr5
;
299 priv
->hash_regs
[6] = &priv
->regs
->igaddr6
;
300 priv
->hash_regs
[7] = &priv
->regs
->igaddr7
;
301 priv
->hash_regs
[8] = &priv
->regs
->gaddr0
;
302 priv
->hash_regs
[9] = &priv
->regs
->gaddr1
;
303 priv
->hash_regs
[10] = &priv
->regs
->gaddr2
;
304 priv
->hash_regs
[11] = &priv
->regs
->gaddr3
;
305 priv
->hash_regs
[12] = &priv
->regs
->gaddr4
;
306 priv
->hash_regs
[13] = &priv
->regs
->gaddr5
;
307 priv
->hash_regs
[14] = &priv
->regs
->gaddr6
;
308 priv
->hash_regs
[15] = &priv
->regs
->gaddr7
;
311 priv
->extended_hash
= 0;
312 priv
->hash_width
= 8;
314 priv
->hash_regs
[0] = &priv
->regs
->gaddr0
;
315 priv
->hash_regs
[1] = &priv
->regs
->gaddr1
;
316 priv
->hash_regs
[2] = &priv
->regs
->gaddr2
;
317 priv
->hash_regs
[3] = &priv
->regs
->gaddr3
;
318 priv
->hash_regs
[4] = &priv
->regs
->gaddr4
;
319 priv
->hash_regs
[5] = &priv
->regs
->gaddr5
;
320 priv
->hash_regs
[6] = &priv
->regs
->gaddr6
;
321 priv
->hash_regs
[7] = &priv
->regs
->gaddr7
;
324 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_PADDING
)
325 priv
->padding
= DEFAULT_PADDING
;
329 if (dev
->features
& NETIF_F_IP_CSUM
)
330 dev
->hard_header_len
+= GMAC_FCB_LEN
;
332 priv
->rx_buffer_size
= DEFAULT_RX_BUFFER_SIZE
;
333 priv
->tx_ring_size
= DEFAULT_TX_RING_SIZE
;
334 priv
->rx_ring_size
= DEFAULT_RX_RING_SIZE
;
336 priv
->txcoalescing
= DEFAULT_TX_COALESCE
;
337 priv
->txcount
= DEFAULT_TXCOUNT
;
338 priv
->txtime
= DEFAULT_TXTIME
;
339 priv
->rxcoalescing
= DEFAULT_RX_COALESCE
;
340 priv
->rxcount
= DEFAULT_RXCOUNT
;
341 priv
->rxtime
= DEFAULT_RXTIME
;
343 /* Enable most messages by default */
344 priv
->msg_enable
= (NETIF_MSG_IFUP
<< 1 ) - 1;
346 err
= register_netdev(dev
);
349 printk(KERN_ERR
"%s: Cannot register net device, aborting.\n",
354 /* Create all the sysfs files */
355 gfar_init_sysfs(dev
);
357 /* Print out the device info */
358 printk(KERN_INFO DEVICE_NAME
, dev
->name
);
359 for (idx
= 0; idx
< 6; idx
++)
360 printk("%2.2x%c", dev
->dev_addr
[idx
], idx
== 5 ? ' ' : ':');
363 /* Even more device info helps when determining which kernel */
364 /* provided which set of benchmarks. */
365 #ifdef CONFIG_GFAR_NAPI
366 printk(KERN_INFO
"%s: Running with NAPI enabled\n", dev
->name
);
368 printk(KERN_INFO
"%s: Running with NAPI disabled\n", dev
->name
);
370 printk(KERN_INFO
"%s: %d/%d RX/TX BD ring size\n",
371 dev
->name
, priv
->rx_ring_size
, priv
->tx_ring_size
);
382 static int gfar_remove(struct platform_device
*pdev
)
384 struct net_device
*dev
= platform_get_drvdata(pdev
);
385 struct gfar_private
*priv
= netdev_priv(dev
);
387 platform_set_drvdata(pdev
, NULL
);
396 /* Initializes driver's PHY state, and attaches to the PHY.
397 * Returns 0 on success.
399 static int init_phy(struct net_device
*dev
)
401 struct gfar_private
*priv
= netdev_priv(dev
);
402 uint gigabit_support
=
403 priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_GIGABIT
?
404 SUPPORTED_1000baseT_Full
: 0;
405 struct phy_device
*phydev
;
406 char phy_id
[BUS_ID_SIZE
];
410 priv
->oldduplex
= -1;
412 snprintf(phy_id
, BUS_ID_SIZE
, PHY_ID_FMT
, priv
->einfo
->bus_id
, priv
->einfo
->phy_id
);
414 phydev
= phy_connect(dev
, phy_id
, &adjust_link
, 0);
416 if (IS_ERR(phydev
)) {
417 printk(KERN_ERR
"%s: Could not attach to PHY\n", dev
->name
);
418 return PTR_ERR(phydev
);
421 /* Remove any features not supported by the controller */
422 phydev
->supported
&= (GFAR_SUPPORTED
| gigabit_support
);
423 phydev
->advertising
= phydev
->supported
;
425 priv
->phydev
= phydev
;
430 static void init_registers(struct net_device
*dev
)
432 struct gfar_private
*priv
= netdev_priv(dev
);
435 gfar_write(&priv
->regs
->ievent
, IEVENT_INIT_CLEAR
);
437 /* Initialize IMASK */
438 gfar_write(&priv
->regs
->imask
, IMASK_INIT_CLEAR
);
440 /* Init hash registers to zero */
441 gfar_write(&priv
->regs
->igaddr0
, 0);
442 gfar_write(&priv
->regs
->igaddr1
, 0);
443 gfar_write(&priv
->regs
->igaddr2
, 0);
444 gfar_write(&priv
->regs
->igaddr3
, 0);
445 gfar_write(&priv
->regs
->igaddr4
, 0);
446 gfar_write(&priv
->regs
->igaddr5
, 0);
447 gfar_write(&priv
->regs
->igaddr6
, 0);
448 gfar_write(&priv
->regs
->igaddr7
, 0);
450 gfar_write(&priv
->regs
->gaddr0
, 0);
451 gfar_write(&priv
->regs
->gaddr1
, 0);
452 gfar_write(&priv
->regs
->gaddr2
, 0);
453 gfar_write(&priv
->regs
->gaddr3
, 0);
454 gfar_write(&priv
->regs
->gaddr4
, 0);
455 gfar_write(&priv
->regs
->gaddr5
, 0);
456 gfar_write(&priv
->regs
->gaddr6
, 0);
457 gfar_write(&priv
->regs
->gaddr7
, 0);
459 /* Zero out the rmon mib registers if it has them */
460 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_RMON
) {
461 memset_io(&(priv
->regs
->rmon
), 0, sizeof (struct rmon_mib
));
463 /* Mask off the CAM interrupts */
464 gfar_write(&priv
->regs
->rmon
.cam1
, 0xffffffff);
465 gfar_write(&priv
->regs
->rmon
.cam2
, 0xffffffff);
468 /* Initialize the max receive buffer length */
469 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
471 /* Initialize the Minimum Frame Length Register */
472 gfar_write(&priv
->regs
->minflr
, MINFLR_INIT_SETTINGS
);
474 /* Assign the TBI an address which won't conflict with the PHYs */
475 gfar_write(&priv
->regs
->tbipa
, TBIPA_VALUE
);
479 /* Halt the receive and transmit queues */
480 void gfar_halt(struct net_device
*dev
)
482 struct gfar_private
*priv
= netdev_priv(dev
);
483 struct gfar __iomem
*regs
= priv
->regs
;
486 /* Mask all interrupts */
487 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
489 /* Clear all interrupts */
490 gfar_write(®s
->ievent
, IEVENT_INIT_CLEAR
);
492 /* Stop the DMA, and wait for it to stop */
493 tempval
= gfar_read(&priv
->regs
->dmactrl
);
494 if ((tempval
& (DMACTRL_GRS
| DMACTRL_GTS
))
495 != (DMACTRL_GRS
| DMACTRL_GTS
)) {
496 tempval
|= (DMACTRL_GRS
| DMACTRL_GTS
);
497 gfar_write(&priv
->regs
->dmactrl
, tempval
);
499 while (!(gfar_read(&priv
->regs
->ievent
) &
500 (IEVENT_GRSC
| IEVENT_GTSC
)))
504 /* Disable Rx and Tx */
505 tempval
= gfar_read(®s
->maccfg1
);
506 tempval
&= ~(MACCFG1_RX_EN
| MACCFG1_TX_EN
);
507 gfar_write(®s
->maccfg1
, tempval
);
510 void stop_gfar(struct net_device
*dev
)
512 struct gfar_private
*priv
= netdev_priv(dev
);
513 struct gfar __iomem
*regs
= priv
->regs
;
516 phy_stop(priv
->phydev
);
519 spin_lock_irqsave(&priv
->txlock
, flags
);
520 spin_lock(&priv
->rxlock
);
524 spin_unlock(&priv
->rxlock
);
525 spin_unlock_irqrestore(&priv
->txlock
, flags
);
528 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
529 free_irq(priv
->interruptError
, dev
);
530 free_irq(priv
->interruptTransmit
, dev
);
531 free_irq(priv
->interruptReceive
, dev
);
533 free_irq(priv
->interruptTransmit
, dev
);
536 free_skb_resources(priv
);
538 dma_free_coherent(NULL
,
539 sizeof(struct txbd8
)*priv
->tx_ring_size
540 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
542 gfar_read(®s
->tbase0
));
545 /* If there are any tx skbs or rx skbs still around, free them.
546 * Then free tx_skbuff and rx_skbuff */
547 static void free_skb_resources(struct gfar_private
*priv
)
553 /* Go through all the buffer descriptors and free their data buffers */
554 txbdp
= priv
->tx_bd_base
;
556 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
558 if (priv
->tx_skbuff
[i
]) {
559 dma_unmap_single(NULL
, txbdp
->bufPtr
,
562 dev_kfree_skb_any(priv
->tx_skbuff
[i
]);
563 priv
->tx_skbuff
[i
] = NULL
;
567 kfree(priv
->tx_skbuff
);
569 rxbdp
= priv
->rx_bd_base
;
571 /* rx_skbuff is not guaranteed to be allocated, so only
572 * free it and its contents if it is allocated */
573 if(priv
->rx_skbuff
!= NULL
) {
574 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
575 if (priv
->rx_skbuff
[i
]) {
576 dma_unmap_single(NULL
, rxbdp
->bufPtr
,
577 priv
->rx_buffer_size
,
580 dev_kfree_skb_any(priv
->rx_skbuff
[i
]);
581 priv
->rx_skbuff
[i
] = NULL
;
591 kfree(priv
->rx_skbuff
);
595 void gfar_start(struct net_device
*dev
)
597 struct gfar_private
*priv
= netdev_priv(dev
);
598 struct gfar __iomem
*regs
= priv
->regs
;
601 /* Enable Rx and Tx in MACCFG1 */
602 tempval
= gfar_read(®s
->maccfg1
);
603 tempval
|= (MACCFG1_RX_EN
| MACCFG1_TX_EN
);
604 gfar_write(®s
->maccfg1
, tempval
);
606 /* Initialize DMACTRL to have WWR and WOP */
607 tempval
= gfar_read(&priv
->regs
->dmactrl
);
608 tempval
|= DMACTRL_INIT_SETTINGS
;
609 gfar_write(&priv
->regs
->dmactrl
, tempval
);
611 /* Make sure we aren't stopped */
612 tempval
= gfar_read(&priv
->regs
->dmactrl
);
613 tempval
&= ~(DMACTRL_GRS
| DMACTRL_GTS
);
614 gfar_write(&priv
->regs
->dmactrl
, tempval
);
616 /* Clear THLT/RHLT, so that the DMA starts polling now */
617 gfar_write(®s
->tstat
, TSTAT_CLEAR_THALT
);
618 gfar_write(®s
->rstat
, RSTAT_CLEAR_RHALT
);
620 /* Unmask the interrupts we look for */
621 gfar_write(®s
->imask
, IMASK_DEFAULT
);
624 /* Bring the controller up and running */
625 int startup_gfar(struct net_device
*dev
)
632 struct gfar_private
*priv
= netdev_priv(dev
);
633 struct gfar __iomem
*regs
= priv
->regs
;
638 gfar_write(®s
->imask
, IMASK_INIT_CLEAR
);
640 /* Allocate memory for the buffer descriptors */
641 vaddr
= (unsigned long) dma_alloc_coherent(NULL
,
642 sizeof (struct txbd8
) * priv
->tx_ring_size
+
643 sizeof (struct rxbd8
) * priv
->rx_ring_size
,
647 if (netif_msg_ifup(priv
))
648 printk(KERN_ERR
"%s: Could not allocate buffer descriptors!\n",
653 priv
->tx_bd_base
= (struct txbd8
*) vaddr
;
655 /* enet DMA only understands physical addresses */
656 gfar_write(®s
->tbase0
, addr
);
658 /* Start the rx descriptor ring where the tx ring leaves off */
659 addr
= addr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
660 vaddr
= vaddr
+ sizeof (struct txbd8
) * priv
->tx_ring_size
;
661 priv
->rx_bd_base
= (struct rxbd8
*) vaddr
;
662 gfar_write(®s
->rbase0
, addr
);
664 /* Setup the skbuff rings */
666 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
667 priv
->tx_ring_size
, GFP_KERNEL
);
669 if (NULL
== priv
->tx_skbuff
) {
670 if (netif_msg_ifup(priv
))
671 printk(KERN_ERR
"%s: Could not allocate tx_skbuff\n",
677 for (i
= 0; i
< priv
->tx_ring_size
; i
++)
678 priv
->tx_skbuff
[i
] = NULL
;
681 (struct sk_buff
**) kmalloc(sizeof (struct sk_buff
*) *
682 priv
->rx_ring_size
, GFP_KERNEL
);
684 if (NULL
== priv
->rx_skbuff
) {
685 if (netif_msg_ifup(priv
))
686 printk(KERN_ERR
"%s: Could not allocate rx_skbuff\n",
692 for (i
= 0; i
< priv
->rx_ring_size
; i
++)
693 priv
->rx_skbuff
[i
] = NULL
;
695 /* Initialize some variables in our dev structure */
696 priv
->dirty_tx
= priv
->cur_tx
= priv
->tx_bd_base
;
697 priv
->cur_rx
= priv
->rx_bd_base
;
698 priv
->skb_curtx
= priv
->skb_dirtytx
= 0;
701 /* Initialize Transmit Descriptor Ring */
702 txbdp
= priv
->tx_bd_base
;
703 for (i
= 0; i
< priv
->tx_ring_size
; i
++) {
710 /* Set the last descriptor in the ring to indicate wrap */
712 txbdp
->status
|= TXBD_WRAP
;
714 rxbdp
= priv
->rx_bd_base
;
715 for (i
= 0; i
< priv
->rx_ring_size
; i
++) {
716 struct sk_buff
*skb
= NULL
;
720 skb
= gfar_new_skb(dev
, rxbdp
);
722 priv
->rx_skbuff
[i
] = skb
;
727 /* Set the last descriptor in the ring to wrap */
729 rxbdp
->status
|= RXBD_WRAP
;
731 /* If the device has multiple interrupts, register for
732 * them. Otherwise, only register for the one */
733 if (priv
->einfo
->device_flags
& FSL_GIANFAR_DEV_HAS_MULTI_INTR
) {
734 /* Install our interrupt handlers for Error,
735 * Transmit, and Receive */
736 if (request_irq(priv
->interruptError
, gfar_error
,
737 0, "enet_error", dev
) < 0) {
738 if (netif_msg_intr(priv
))
739 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
740 dev
->name
, priv
->interruptError
);
746 if (request_irq(priv
->interruptTransmit
, gfar_transmit
,
747 0, "enet_tx", dev
) < 0) {
748 if (netif_msg_intr(priv
))
749 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
750 dev
->name
, priv
->interruptTransmit
);
757 if (request_irq(priv
->interruptReceive
, gfar_receive
,
758 0, "enet_rx", dev
) < 0) {
759 if (netif_msg_intr(priv
))
760 printk(KERN_ERR
"%s: Can't get IRQ %d (receive0)\n",
761 dev
->name
, priv
->interruptReceive
);
767 if (request_irq(priv
->interruptTransmit
, gfar_interrupt
,
768 0, "gfar_interrupt", dev
) < 0) {
769 if (netif_msg_intr(priv
))
770 printk(KERN_ERR
"%s: Can't get IRQ %d\n",
771 dev
->name
, priv
->interruptError
);
778 phy_start(priv
->phydev
);
780 /* Configure the coalescing support */
781 if (priv
->txcoalescing
)
782 gfar_write(®s
->txic
,
783 mk_ic_value(priv
->txcount
, priv
->txtime
));
785 gfar_write(®s
->txic
, 0);
787 if (priv
->rxcoalescing
)
788 gfar_write(®s
->rxic
,
789 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
791 gfar_write(®s
->rxic
, 0);
793 if (priv
->rx_csum_enable
)
794 rctrl
|= RCTRL_CHECKSUMMING
;
796 if (priv
->extended_hash
) {
797 rctrl
|= RCTRL_EXTHASH
;
799 gfar_clear_exact_match(dev
);
803 if (priv
->vlan_enable
)
807 rctrl
&= ~RCTRL_PAL_MASK
;
808 rctrl
|= RCTRL_PADDING(priv
->padding
);
811 /* Init rctrl based on our settings */
812 gfar_write(&priv
->regs
->rctrl
, rctrl
);
814 if (dev
->features
& NETIF_F_IP_CSUM
)
815 gfar_write(&priv
->regs
->tctrl
, TCTRL_INIT_CSUM
);
817 /* Set the extraction length and index */
818 attrs
= ATTRELI_EL(priv
->rx_stash_size
) |
819 ATTRELI_EI(priv
->rx_stash_index
);
821 gfar_write(&priv
->regs
->attreli
, attrs
);
823 /* Start with defaults, and add stashing or locking
824 * depending on the approprate variables */
825 attrs
= ATTR_INIT_SETTINGS
;
827 if (priv
->bd_stash_en
)
828 attrs
|= ATTR_BDSTASH
;
830 if (priv
->rx_stash_size
!= 0)
831 attrs
|= ATTR_BUFSTASH
;
833 gfar_write(&priv
->regs
->attr
, attrs
);
835 gfar_write(&priv
->regs
->fifo_tx_thr
, priv
->fifo_threshold
);
836 gfar_write(&priv
->regs
->fifo_tx_starve
, priv
->fifo_starve
);
837 gfar_write(&priv
->regs
->fifo_tx_starve_shutoff
, priv
->fifo_starve_off
);
839 /* Start the controller */
845 free_irq(priv
->interruptTransmit
, dev
);
847 free_irq(priv
->interruptError
, dev
);
850 free_skb_resources(priv
);
852 dma_free_coherent(NULL
,
853 sizeof(struct txbd8
)*priv
->tx_ring_size
854 + sizeof(struct rxbd8
)*priv
->rx_ring_size
,
856 gfar_read(®s
->tbase0
));
861 /* Called when something needs to use the ethernet device */
862 /* Returns 0 for success. */
863 static int gfar_enet_open(struct net_device
*dev
)
867 /* Initialize a bunch of registers */
870 gfar_set_mac_address(dev
);
877 err
= startup_gfar(dev
);
879 netif_start_queue(dev
);
884 static inline struct txfcb
*gfar_add_fcb(struct sk_buff
*skb
, struct txbd8
*bdp
)
886 struct txfcb
*fcb
= (struct txfcb
*)skb_push (skb
, GMAC_FCB_LEN
);
888 memset(fcb
, 0, GMAC_FCB_LEN
);
893 static inline void gfar_tx_checksum(struct sk_buff
*skb
, struct txfcb
*fcb
)
897 /* If we're here, it's a IP packet with a TCP or UDP
898 * payload. We set it to checksum, using a pseudo-header
901 flags
= TXFCB_DEFAULT
;
903 /* Tell the controller what the protocol is */
904 /* And provide the already calculated phcs */
905 if (skb
->nh
.iph
->protocol
== IPPROTO_UDP
) {
907 fcb
->phcs
= skb
->h
.uh
->check
;
909 fcb
->phcs
= skb
->h
.th
->check
;
911 /* l3os is the distance between the start of the
912 * frame (skb->data) and the start of the IP hdr.
913 * l4os is the distance between the start of the
914 * l3 hdr and the l4 hdr */
915 fcb
->l3os
= (u16
)(skb
->nh
.raw
- skb
->data
- GMAC_FCB_LEN
);
916 fcb
->l4os
= (u16
)(skb
->h
.raw
- skb
->nh
.raw
);
921 void inline gfar_tx_vlan(struct sk_buff
*skb
, struct txfcb
*fcb
)
923 fcb
->flags
|= TXFCB_VLN
;
924 fcb
->vlctl
= vlan_tx_tag_get(skb
);
927 /* This is called by the kernel when a frame is ready for transmission. */
928 /* It is pointed to by the dev->hard_start_xmit function pointer */
929 static int gfar_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
931 struct gfar_private
*priv
= netdev_priv(dev
);
932 struct txfcb
*fcb
= NULL
;
937 /* Update transmit stats */
938 priv
->stats
.tx_bytes
+= skb
->len
;
941 spin_lock_irqsave(&priv
->txlock
, flags
);
943 /* Point at the first free tx descriptor */
944 txbdp
= priv
->cur_tx
;
946 /* Clear all but the WRAP status flags */
947 status
= txbdp
->status
& TXBD_WRAP
;
949 /* Set up checksumming */
950 if (likely((dev
->features
& NETIF_F_IP_CSUM
)
951 && (CHECKSUM_HW
== skb
->ip_summed
))) {
952 fcb
= gfar_add_fcb(skb
, txbdp
);
954 gfar_tx_checksum(skb
, fcb
);
957 if (priv
->vlan_enable
&&
958 unlikely(priv
->vlgrp
&& vlan_tx_tag_present(skb
))) {
959 if (unlikely(NULL
== fcb
)) {
960 fcb
= gfar_add_fcb(skb
, txbdp
);
964 gfar_tx_vlan(skb
, fcb
);
967 /* Set buffer length and pointer */
968 txbdp
->length
= skb
->len
;
969 txbdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
970 skb
->len
, DMA_TO_DEVICE
);
972 /* Save the skb pointer so we can free it later */
973 priv
->tx_skbuff
[priv
->skb_curtx
] = skb
;
975 /* Update the current skb pointer (wrapping if this was the last) */
977 (priv
->skb_curtx
+ 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
979 /* Flag the BD as interrupt-causing */
980 status
|= TXBD_INTERRUPT
;
982 /* Flag the BD as ready to go, last in frame, and */
984 status
|= (TXBD_READY
| TXBD_LAST
| TXBD_CRC
);
986 dev
->trans_start
= jiffies
;
988 txbdp
->status
= status
;
990 /* If this was the last BD in the ring, the next one */
991 /* is at the beginning of the ring */
992 if (txbdp
->status
& TXBD_WRAP
)
993 txbdp
= priv
->tx_bd_base
;
997 /* If the next BD still needs to be cleaned up, then the bds
998 are full. We need to tell the kernel to stop sending us stuff. */
999 if (txbdp
== priv
->dirty_tx
) {
1000 netif_stop_queue(dev
);
1002 priv
->stats
.tx_fifo_errors
++;
1005 /* Update the current txbd to the next one */
1006 priv
->cur_tx
= txbdp
;
1008 /* Tell the DMA to go go go */
1009 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1012 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1017 /* Stops the kernel queue, and halts the controller */
1018 static int gfar_close(struct net_device
*dev
)
1020 struct gfar_private
*priv
= netdev_priv(dev
);
1023 /* Disconnect from the PHY */
1024 phy_disconnect(priv
->phydev
);
1025 priv
->phydev
= NULL
;
1027 netif_stop_queue(dev
);
1032 /* returns a net_device_stats structure pointer */
1033 static struct net_device_stats
* gfar_get_stats(struct net_device
*dev
)
1035 struct gfar_private
*priv
= netdev_priv(dev
);
1037 return &(priv
->stats
);
1040 /* Changes the mac address if the controller is not running. */
1041 int gfar_set_mac_address(struct net_device
*dev
)
1043 gfar_set_mac_for_addr(dev
, 0, dev
->dev_addr
);
1049 /* Enables and disables VLAN insertion/extraction */
1050 static void gfar_vlan_rx_register(struct net_device
*dev
,
1051 struct vlan_group
*grp
)
1053 struct gfar_private
*priv
= netdev_priv(dev
);
1054 unsigned long flags
;
1057 spin_lock_irqsave(&priv
->rxlock
, flags
);
1062 /* Enable VLAN tag insertion */
1063 tempval
= gfar_read(&priv
->regs
->tctrl
);
1064 tempval
|= TCTRL_VLINS
;
1066 gfar_write(&priv
->regs
->tctrl
, tempval
);
1068 /* Enable VLAN tag extraction */
1069 tempval
= gfar_read(&priv
->regs
->rctrl
);
1070 tempval
|= RCTRL_VLEX
;
1071 gfar_write(&priv
->regs
->rctrl
, tempval
);
1073 /* Disable VLAN tag insertion */
1074 tempval
= gfar_read(&priv
->regs
->tctrl
);
1075 tempval
&= ~TCTRL_VLINS
;
1076 gfar_write(&priv
->regs
->tctrl
, tempval
);
1078 /* Disable VLAN tag extraction */
1079 tempval
= gfar_read(&priv
->regs
->rctrl
);
1080 tempval
&= ~RCTRL_VLEX
;
1081 gfar_write(&priv
->regs
->rctrl
, tempval
);
1084 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1088 static void gfar_vlan_rx_kill_vid(struct net_device
*dev
, uint16_t vid
)
1090 struct gfar_private
*priv
= netdev_priv(dev
);
1091 unsigned long flags
;
1093 spin_lock_irqsave(&priv
->rxlock
, flags
);
1096 priv
->vlgrp
->vlan_devices
[vid
] = NULL
;
1098 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1102 static int gfar_change_mtu(struct net_device
*dev
, int new_mtu
)
1104 int tempsize
, tempval
;
1105 struct gfar_private
*priv
= netdev_priv(dev
);
1106 int oldsize
= priv
->rx_buffer_size
;
1107 int frame_size
= new_mtu
+ ETH_HLEN
;
1109 if (priv
->vlan_enable
)
1110 frame_size
+= VLAN_ETH_HLEN
;
1112 if (gfar_uses_fcb(priv
))
1113 frame_size
+= GMAC_FCB_LEN
;
1115 frame_size
+= priv
->padding
;
1117 if ((frame_size
< 64) || (frame_size
> JUMBO_FRAME_SIZE
)) {
1118 if (netif_msg_drv(priv
))
1119 printk(KERN_ERR
"%s: Invalid MTU setting\n",
1125 (frame_size
& ~(INCREMENTAL_BUFFER_SIZE
- 1)) +
1126 INCREMENTAL_BUFFER_SIZE
;
1128 /* Only stop and start the controller if it isn't already
1129 * stopped, and we changed something */
1130 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1133 priv
->rx_buffer_size
= tempsize
;
1137 gfar_write(&priv
->regs
->mrblr
, priv
->rx_buffer_size
);
1138 gfar_write(&priv
->regs
->maxfrm
, priv
->rx_buffer_size
);
1140 /* If the mtu is larger than the max size for standard
1141 * ethernet frames (ie, a jumbo frame), then set maccfg2
1142 * to allow huge frames, and to check the length */
1143 tempval
= gfar_read(&priv
->regs
->maccfg2
);
1145 if (priv
->rx_buffer_size
> DEFAULT_RX_BUFFER_SIZE
)
1146 tempval
|= (MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1148 tempval
&= ~(MACCFG2_HUGEFRAME
| MACCFG2_LENGTHCHECK
);
1150 gfar_write(&priv
->regs
->maccfg2
, tempval
);
1152 if ((oldsize
!= tempsize
) && (dev
->flags
& IFF_UP
))
1158 /* gfar_timeout gets called when a packet has not been
1159 * transmitted after a set amount of time.
1160 * For now, assume that clearing out all the structures, and
1161 * starting over will fix the problem. */
1162 static void gfar_timeout(struct net_device
*dev
)
1164 struct gfar_private
*priv
= netdev_priv(dev
);
1166 priv
->stats
.tx_errors
++;
1168 if (dev
->flags
& IFF_UP
) {
1173 netif_schedule(dev
);
1176 /* Interrupt Handler for Transmit complete */
1177 static irqreturn_t
gfar_transmit(int irq
, void *dev_id
, struct pt_regs
*regs
)
1179 struct net_device
*dev
= (struct net_device
*) dev_id
;
1180 struct gfar_private
*priv
= netdev_priv(dev
);
1184 gfar_write(&priv
->regs
->ievent
, IEVENT_TX_MASK
);
1187 spin_lock(&priv
->txlock
);
1188 bdp
= priv
->dirty_tx
;
1189 while ((bdp
->status
& TXBD_READY
) == 0) {
1190 /* If dirty_tx and cur_tx are the same, then either the */
1191 /* ring is empty or full now (it could only be full in the beginning, */
1192 /* obviously). If it is empty, we are done. */
1193 if ((bdp
== priv
->cur_tx
) && (netif_queue_stopped(dev
) == 0))
1196 priv
->stats
.tx_packets
++;
1198 /* Deferred means some collisions occurred during transmit, */
1199 /* but we eventually sent the packet. */
1200 if (bdp
->status
& TXBD_DEF
)
1201 priv
->stats
.collisions
++;
1203 /* Free the sk buffer associated with this TxBD */
1204 dev_kfree_skb_irq(priv
->tx_skbuff
[priv
->skb_dirtytx
]);
1205 priv
->tx_skbuff
[priv
->skb_dirtytx
] = NULL
;
1207 (priv
->skb_dirtytx
+
1208 1) & TX_RING_MOD_MASK(priv
->tx_ring_size
);
1210 /* update bdp to point at next bd in the ring (wrapping if necessary) */
1211 if (bdp
->status
& TXBD_WRAP
)
1212 bdp
= priv
->tx_bd_base
;
1216 /* Move dirty_tx to be the next bd */
1217 priv
->dirty_tx
= bdp
;
1219 /* We freed a buffer, so now we can restart transmission */
1220 if (netif_queue_stopped(dev
))
1221 netif_wake_queue(dev
);
1222 } /* while ((bdp->status & TXBD_READY) == 0) */
1224 /* If we are coalescing the interrupts, reset the timer */
1225 /* Otherwise, clear it */
1226 if (priv
->txcoalescing
)
1227 gfar_write(&priv
->regs
->txic
,
1228 mk_ic_value(priv
->txcount
, priv
->txtime
));
1230 gfar_write(&priv
->regs
->txic
, 0);
1232 spin_unlock(&priv
->txlock
);
1237 struct sk_buff
* gfar_new_skb(struct net_device
*dev
, struct rxbd8
*bdp
)
1239 unsigned int alignamount
;
1240 struct gfar_private
*priv
= netdev_priv(dev
);
1241 struct sk_buff
*skb
= NULL
;
1242 unsigned int timeout
= SKB_ALLOC_TIMEOUT
;
1244 /* We have to allocate the skb, so keep trying till we succeed */
1245 while ((!skb
) && timeout
--)
1246 skb
= dev_alloc_skb(priv
->rx_buffer_size
+ RXBUF_ALIGNMENT
);
1251 alignamount
= RXBUF_ALIGNMENT
-
1252 (((unsigned) skb
->data
) & (RXBUF_ALIGNMENT
- 1));
1254 /* We need the data buffer to be aligned properly. We will reserve
1255 * as many bytes as needed to align the data properly
1257 skb_reserve(skb
, alignamount
);
1261 bdp
->bufPtr
= dma_map_single(NULL
, skb
->data
,
1262 priv
->rx_buffer_size
, DMA_FROM_DEVICE
);
1266 /* Mark the buffer empty */
1267 bdp
->status
|= (RXBD_EMPTY
| RXBD_INTERRUPT
);
1272 static inline void count_errors(unsigned short status
, struct gfar_private
*priv
)
1274 struct net_device_stats
*stats
= &priv
->stats
;
1275 struct gfar_extra_stats
*estats
= &priv
->extra_stats
;
1277 /* If the packet was truncated, none of the other errors
1279 if (status
& RXBD_TRUNCATED
) {
1280 stats
->rx_length_errors
++;
1286 /* Count the errors, if there were any */
1287 if (status
& (RXBD_LARGE
| RXBD_SHORT
)) {
1288 stats
->rx_length_errors
++;
1290 if (status
& RXBD_LARGE
)
1295 if (status
& RXBD_NONOCTET
) {
1296 stats
->rx_frame_errors
++;
1297 estats
->rx_nonoctet
++;
1299 if (status
& RXBD_CRCERR
) {
1300 estats
->rx_crcerr
++;
1301 stats
->rx_crc_errors
++;
1303 if (status
& RXBD_OVERRUN
) {
1304 estats
->rx_overrun
++;
1305 stats
->rx_crc_errors
++;
1309 irqreturn_t
gfar_receive(int irq
, void *dev_id
, struct pt_regs
*regs
)
1311 struct net_device
*dev
= (struct net_device
*) dev_id
;
1312 struct gfar_private
*priv
= netdev_priv(dev
);
1313 #ifdef CONFIG_GFAR_NAPI
1316 unsigned long flags
;
1319 /* Clear IEVENT, so rx interrupt isn't called again
1320 * because of this interrupt */
1321 gfar_write(&priv
->regs
->ievent
, IEVENT_RX_MASK
);
1324 #ifdef CONFIG_GFAR_NAPI
1325 if (netif_rx_schedule_prep(dev
)) {
1326 tempval
= gfar_read(&priv
->regs
->imask
);
1327 tempval
&= IMASK_RX_DISABLED
;
1328 gfar_write(&priv
->regs
->imask
, tempval
);
1330 __netif_rx_schedule(dev
);
1332 if (netif_msg_rx_err(priv
))
1333 printk(KERN_DEBUG
"%s: receive called twice (%x)[%x]\n",
1334 dev
->name
, gfar_read(&priv
->regs
->ievent
),
1335 gfar_read(&priv
->regs
->imask
));
1339 spin_lock_irqsave(&priv
->rxlock
, flags
);
1340 gfar_clean_rx_ring(dev
, priv
->rx_ring_size
);
1342 /* If we are coalescing interrupts, update the timer */
1343 /* Otherwise, clear it */
1344 if (priv
->rxcoalescing
)
1345 gfar_write(&priv
->regs
->rxic
,
1346 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1348 gfar_write(&priv
->regs
->rxic
, 0);
1350 spin_unlock_irqrestore(&priv
->rxlock
, flags
);
1356 static inline int gfar_rx_vlan(struct sk_buff
*skb
,
1357 struct vlan_group
*vlgrp
, unsigned short vlctl
)
1359 #ifdef CONFIG_GFAR_NAPI
1360 return vlan_hwaccel_receive_skb(skb
, vlgrp
, vlctl
);
1362 return vlan_hwaccel_rx(skb
, vlgrp
, vlctl
);
1366 static inline void gfar_rx_checksum(struct sk_buff
*skb
, struct rxfcb
*fcb
)
1368 /* If valid headers were found, and valid sums
1369 * were verified, then we tell the kernel that no
1370 * checksumming is necessary. Otherwise, it is */
1371 if ((fcb
->flags
& RXFCB_CSUM_MASK
) == (RXFCB_CIP
| RXFCB_CTU
))
1372 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1374 skb
->ip_summed
= CHECKSUM_NONE
;
1378 static inline struct rxfcb
*gfar_get_fcb(struct sk_buff
*skb
)
1380 struct rxfcb
*fcb
= (struct rxfcb
*)skb
->data
;
1382 /* Remove the FCB from the skb */
1383 skb_pull(skb
, GMAC_FCB_LEN
);
1388 /* gfar_process_frame() -- handle one incoming packet if skb
1390 static int gfar_process_frame(struct net_device
*dev
, struct sk_buff
*skb
,
1393 struct gfar_private
*priv
= netdev_priv(dev
);
1394 struct rxfcb
*fcb
= NULL
;
1397 if (netif_msg_rx_err(priv
))
1398 printk(KERN_WARNING
"%s: Missing skb!!.\n", dev
->name
);
1399 priv
->stats
.rx_dropped
++;
1400 priv
->extra_stats
.rx_skbmissing
++;
1404 /* Prep the skb for the packet */
1405 skb_put(skb
, length
);
1407 /* Grab the FCB if there is one */
1408 if (gfar_uses_fcb(priv
))
1409 fcb
= gfar_get_fcb(skb
);
1411 /* Remove the padded bytes, if there are any */
1413 skb_pull(skb
, priv
->padding
);
1415 if (priv
->rx_csum_enable
)
1416 gfar_rx_checksum(skb
, fcb
);
1418 /* Tell the skb what kind of packet this is */
1419 skb
->protocol
= eth_type_trans(skb
, dev
);
1421 /* Send the packet up the stack */
1422 if (unlikely(priv
->vlgrp
&& (fcb
->flags
& RXFCB_VLN
)))
1423 ret
= gfar_rx_vlan(skb
, priv
->vlgrp
, fcb
->vlctl
);
1427 if (NET_RX_DROP
== ret
)
1428 priv
->extra_stats
.kernel_dropped
++;
1434 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
1435 * until the budget/quota has been reached. Returns the number
1438 int gfar_clean_rx_ring(struct net_device
*dev
, int rx_work_limit
)
1441 struct sk_buff
*skb
;
1444 struct gfar_private
*priv
= netdev_priv(dev
);
1446 /* Get the first full descriptor */
1449 while (!((bdp
->status
& RXBD_EMPTY
) || (--rx_work_limit
< 0))) {
1450 skb
= priv
->rx_skbuff
[priv
->skb_currx
];
1453 (RXBD_LARGE
| RXBD_SHORT
| RXBD_NONOCTET
1454 | RXBD_CRCERR
| RXBD_OVERRUN
| RXBD_TRUNCATED
))) {
1455 /* Increment the number of packets */
1456 priv
->stats
.rx_packets
++;
1459 /* Remove the FCS from the packet length */
1460 pkt_len
= bdp
->length
- 4;
1462 gfar_process_frame(dev
, skb
, pkt_len
);
1464 priv
->stats
.rx_bytes
+= pkt_len
;
1466 count_errors(bdp
->status
, priv
);
1469 dev_kfree_skb_any(skb
);
1471 priv
->rx_skbuff
[priv
->skb_currx
] = NULL
;
1474 dev
->last_rx
= jiffies
;
1476 /* Clear the status flags for this buffer */
1477 bdp
->status
&= ~RXBD_STATS
;
1479 /* Add another skb for the future */
1480 skb
= gfar_new_skb(dev
, bdp
);
1481 priv
->rx_skbuff
[priv
->skb_currx
] = skb
;
1483 /* Update to the next pointer */
1484 if (bdp
->status
& RXBD_WRAP
)
1485 bdp
= priv
->rx_bd_base
;
1489 /* update to point at the next skb */
1492 1) & RX_RING_MOD_MASK(priv
->rx_ring_size
);
1496 /* Update the current rxbd pointer to be the next one */
1502 #ifdef CONFIG_GFAR_NAPI
1503 static int gfar_poll(struct net_device
*dev
, int *budget
)
1506 struct gfar_private
*priv
= netdev_priv(dev
);
1507 int rx_work_limit
= *budget
;
1509 if (rx_work_limit
> dev
->quota
)
1510 rx_work_limit
= dev
->quota
;
1512 howmany
= gfar_clean_rx_ring(dev
, rx_work_limit
);
1514 dev
->quota
-= howmany
;
1515 rx_work_limit
-= howmany
;
1518 if (rx_work_limit
> 0) {
1519 netif_rx_complete(dev
);
1521 /* Clear the halt bit in RSTAT */
1522 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1524 gfar_write(&priv
->regs
->imask
, IMASK_DEFAULT
);
1526 /* If we are coalescing interrupts, update the timer */
1527 /* Otherwise, clear it */
1528 if (priv
->rxcoalescing
)
1529 gfar_write(&priv
->regs
->rxic
,
1530 mk_ic_value(priv
->rxcount
, priv
->rxtime
));
1532 gfar_write(&priv
->regs
->rxic
, 0);
1535 /* Return 1 if there's more work to do */
1536 return (rx_work_limit
> 0) ? 0 : 1;
1540 /* The interrupt handler for devices with one interrupt */
1541 static irqreturn_t
gfar_interrupt(int irq
, void *dev_id
, struct pt_regs
*regs
)
1543 struct net_device
*dev
= dev_id
;
1544 struct gfar_private
*priv
= netdev_priv(dev
);
1546 /* Save ievent for future reference */
1547 u32 events
= gfar_read(&priv
->regs
->ievent
);
1550 gfar_write(&priv
->regs
->ievent
, events
);
1552 /* Check for reception */
1553 if ((events
& IEVENT_RXF0
) || (events
& IEVENT_RXB0
))
1554 gfar_receive(irq
, dev_id
, regs
);
1556 /* Check for transmit completion */
1557 if ((events
& IEVENT_TXF
) || (events
& IEVENT_TXB
))
1558 gfar_transmit(irq
, dev_id
, regs
);
1560 /* Update error statistics */
1561 if (events
& IEVENT_TXE
) {
1562 priv
->stats
.tx_errors
++;
1564 if (events
& IEVENT_LC
)
1565 priv
->stats
.tx_window_errors
++;
1566 if (events
& IEVENT_CRL
)
1567 priv
->stats
.tx_aborted_errors
++;
1568 if (events
& IEVENT_XFUN
) {
1569 if (netif_msg_tx_err(priv
))
1570 printk(KERN_WARNING
"%s: tx underrun. dropped packet\n", dev
->name
);
1571 priv
->stats
.tx_dropped
++;
1572 priv
->extra_stats
.tx_underrun
++;
1574 /* Reactivate the Tx Queues */
1575 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1578 if (events
& IEVENT_BSY
) {
1579 priv
->stats
.rx_errors
++;
1580 priv
->extra_stats
.rx_bsy
++;
1582 gfar_receive(irq
, dev_id
, regs
);
1584 #ifndef CONFIG_GFAR_NAPI
1585 /* Clear the halt bit in RSTAT */
1586 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1589 if (netif_msg_rx_err(priv
))
1590 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n",
1592 gfar_read(&priv
->regs
->rstat
));
1594 if (events
& IEVENT_BABR
) {
1595 priv
->stats
.rx_errors
++;
1596 priv
->extra_stats
.rx_babr
++;
1598 if (netif_msg_rx_err(priv
))
1599 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1601 if (events
& IEVENT_EBERR
) {
1602 priv
->extra_stats
.eberr
++;
1603 if (netif_msg_rx_err(priv
))
1604 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1606 if ((events
& IEVENT_RXC
) && (netif_msg_rx_err(priv
)))
1607 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1609 if (events
& IEVENT_BABT
) {
1610 priv
->extra_stats
.tx_babt
++;
1611 if (netif_msg_rx_err(priv
))
1612 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1618 /* Called every time the controller might need to be made
1619 * aware of new link state. The PHY code conveys this
1620 * information through variables in the phydev structure, and this
1621 * function converts those variables into the appropriate
1622 * register values, and can bring down the device if needed.
1624 static void adjust_link(struct net_device
*dev
)
1626 struct gfar_private
*priv
= netdev_priv(dev
);
1627 struct gfar __iomem
*regs
= priv
->regs
;
1628 unsigned long flags
;
1629 struct phy_device
*phydev
= priv
->phydev
;
1632 spin_lock_irqsave(&priv
->txlock
, flags
);
1634 u32 tempval
= gfar_read(®s
->maccfg2
);
1635 u32 ecntrl
= gfar_read(®s
->ecntrl
);
1637 /* Now we make sure that we can be in full duplex mode.
1638 * If not, we operate in half-duplex mode. */
1639 if (phydev
->duplex
!= priv
->oldduplex
) {
1641 if (!(phydev
->duplex
))
1642 tempval
&= ~(MACCFG2_FULL_DUPLEX
);
1644 tempval
|= MACCFG2_FULL_DUPLEX
;
1646 priv
->oldduplex
= phydev
->duplex
;
1649 if (phydev
->speed
!= priv
->oldspeed
) {
1651 switch (phydev
->speed
) {
1654 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_GMII
);
1659 ((tempval
& ~(MACCFG2_IF
)) | MACCFG2_MII
);
1661 /* Reduced mode distinguishes
1662 * between 10 and 100 */
1663 if (phydev
->speed
== SPEED_100
)
1664 ecntrl
|= ECNTRL_R100
;
1666 ecntrl
&= ~(ECNTRL_R100
);
1669 if (netif_msg_link(priv
))
1671 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
1672 dev
->name
, phydev
->speed
);
1676 priv
->oldspeed
= phydev
->speed
;
1679 gfar_write(®s
->maccfg2
, tempval
);
1680 gfar_write(®s
->ecntrl
, ecntrl
);
1682 if (!priv
->oldlink
) {
1685 netif_schedule(dev
);
1687 } else if (priv
->oldlink
) {
1691 priv
->oldduplex
= -1;
1694 if (new_state
&& netif_msg_link(priv
))
1695 phy_print_status(phydev
);
1697 spin_unlock_irqrestore(&priv
->txlock
, flags
);
1700 /* Update the hash table based on the current list of multicast
1701 * addresses we subscribe to. Also, change the promiscuity of
1702 * the device based on the flags (this function is called
1703 * whenever dev->flags is changed */
1704 static void gfar_set_multi(struct net_device
*dev
)
1706 struct dev_mc_list
*mc_ptr
;
1707 struct gfar_private
*priv
= netdev_priv(dev
);
1708 struct gfar __iomem
*regs
= priv
->regs
;
1711 if(dev
->flags
& IFF_PROMISC
) {
1712 if (netif_msg_drv(priv
))
1713 printk(KERN_INFO
"%s: Entering promiscuous mode.\n",
1715 /* Set RCTRL to PROM */
1716 tempval
= gfar_read(®s
->rctrl
);
1717 tempval
|= RCTRL_PROM
;
1718 gfar_write(®s
->rctrl
, tempval
);
1720 /* Set RCTRL to not PROM */
1721 tempval
= gfar_read(®s
->rctrl
);
1722 tempval
&= ~(RCTRL_PROM
);
1723 gfar_write(®s
->rctrl
, tempval
);
1726 if(dev
->flags
& IFF_ALLMULTI
) {
1727 /* Set the hash to rx all multicast frames */
1728 gfar_write(®s
->igaddr0
, 0xffffffff);
1729 gfar_write(®s
->igaddr1
, 0xffffffff);
1730 gfar_write(®s
->igaddr2
, 0xffffffff);
1731 gfar_write(®s
->igaddr3
, 0xffffffff);
1732 gfar_write(®s
->igaddr4
, 0xffffffff);
1733 gfar_write(®s
->igaddr5
, 0xffffffff);
1734 gfar_write(®s
->igaddr6
, 0xffffffff);
1735 gfar_write(®s
->igaddr7
, 0xffffffff);
1736 gfar_write(®s
->gaddr0
, 0xffffffff);
1737 gfar_write(®s
->gaddr1
, 0xffffffff);
1738 gfar_write(®s
->gaddr2
, 0xffffffff);
1739 gfar_write(®s
->gaddr3
, 0xffffffff);
1740 gfar_write(®s
->gaddr4
, 0xffffffff);
1741 gfar_write(®s
->gaddr5
, 0xffffffff);
1742 gfar_write(®s
->gaddr6
, 0xffffffff);
1743 gfar_write(®s
->gaddr7
, 0xffffffff);
1748 /* zero out the hash */
1749 gfar_write(®s
->igaddr0
, 0x0);
1750 gfar_write(®s
->igaddr1
, 0x0);
1751 gfar_write(®s
->igaddr2
, 0x0);
1752 gfar_write(®s
->igaddr3
, 0x0);
1753 gfar_write(®s
->igaddr4
, 0x0);
1754 gfar_write(®s
->igaddr5
, 0x0);
1755 gfar_write(®s
->igaddr6
, 0x0);
1756 gfar_write(®s
->igaddr7
, 0x0);
1757 gfar_write(®s
->gaddr0
, 0x0);
1758 gfar_write(®s
->gaddr1
, 0x0);
1759 gfar_write(®s
->gaddr2
, 0x0);
1760 gfar_write(®s
->gaddr3
, 0x0);
1761 gfar_write(®s
->gaddr4
, 0x0);
1762 gfar_write(®s
->gaddr5
, 0x0);
1763 gfar_write(®s
->gaddr6
, 0x0);
1764 gfar_write(®s
->gaddr7
, 0x0);
1766 /* If we have extended hash tables, we need to
1767 * clear the exact match registers to prepare for
1769 if (priv
->extended_hash
) {
1770 em_num
= GFAR_EM_NUM
+ 1;
1771 gfar_clear_exact_match(dev
);
1778 if(dev
->mc_count
== 0)
1781 /* Parse the list, and set the appropriate bits */
1782 for(mc_ptr
= dev
->mc_list
; mc_ptr
; mc_ptr
= mc_ptr
->next
) {
1784 gfar_set_mac_for_addr(dev
, idx
,
1788 gfar_set_hash_for_addr(dev
, mc_ptr
->dmi_addr
);
1796 /* Clears each of the exact match registers to zero, so they
1797 * don't interfere with normal reception */
1798 static void gfar_clear_exact_match(struct net_device
*dev
)
1801 u8 zero_arr
[MAC_ADDR_LEN
] = {0,0,0,0,0,0};
1803 for(idx
= 1;idx
< GFAR_EM_NUM
+ 1;idx
++)
1804 gfar_set_mac_for_addr(dev
, idx
, (u8
*)zero_arr
);
1807 /* Set the appropriate hash bit for the given addr */
1808 /* The algorithm works like so:
1809 * 1) Take the Destination Address (ie the multicast address), and
1810 * do a CRC on it (little endian), and reverse the bits of the
1812 * 2) Use the 8 most significant bits as a hash into a 256-entry
1813 * table. The table is controlled through 8 32-bit registers:
1814 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
1815 * gaddr7. This means that the 3 most significant bits in the
1816 * hash index which gaddr register to use, and the 5 other bits
1817 * indicate which bit (assuming an IBM numbering scheme, which
1818 * for PowerPC (tm) is usually the case) in the register holds
1820 static void gfar_set_hash_for_addr(struct net_device
*dev
, u8
*addr
)
1823 struct gfar_private
*priv
= netdev_priv(dev
);
1824 u32 result
= ether_crc(MAC_ADDR_LEN
, addr
);
1825 int width
= priv
->hash_width
;
1826 u8 whichbit
= (result
>> (32 - width
)) & 0x1f;
1827 u8 whichreg
= result
>> (32 - width
+ 5);
1828 u32 value
= (1 << (31-whichbit
));
1830 tempval
= gfar_read(priv
->hash_regs
[whichreg
]);
1832 gfar_write(priv
->hash_regs
[whichreg
], tempval
);
1838 /* There are multiple MAC Address register pairs on some controllers
1839 * This function sets the numth pair to a given address
1841 static void gfar_set_mac_for_addr(struct net_device
*dev
, int num
, u8
*addr
)
1843 struct gfar_private
*priv
= netdev_priv(dev
);
1845 char tmpbuf
[MAC_ADDR_LEN
];
1847 u32 __iomem
*macptr
= &priv
->regs
->macstnaddr1
;
1851 /* Now copy it into the mac registers backwards, cuz */
1852 /* little endian is silly */
1853 for (idx
= 0; idx
< MAC_ADDR_LEN
; idx
++)
1854 tmpbuf
[MAC_ADDR_LEN
- 1 - idx
] = addr
[idx
];
1856 gfar_write(macptr
, *((u32
*) (tmpbuf
)));
1858 tempval
= *((u32
*) (tmpbuf
+ 4));
1860 gfar_write(macptr
+1, tempval
);
1863 /* GFAR error interrupt handler */
1864 static irqreturn_t
gfar_error(int irq
, void *dev_id
, struct pt_regs
*regs
)
1866 struct net_device
*dev
= dev_id
;
1867 struct gfar_private
*priv
= netdev_priv(dev
);
1869 /* Save ievent for future reference */
1870 u32 events
= gfar_read(&priv
->regs
->ievent
);
1873 gfar_write(&priv
->regs
->ievent
, IEVENT_ERR_MASK
);
1876 if (netif_msg_rx_err(priv
) || netif_msg_tx_err(priv
))
1877 printk(KERN_DEBUG
"%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
1878 dev
->name
, events
, gfar_read(&priv
->regs
->imask
));
1880 /* Update the error counters */
1881 if (events
& IEVENT_TXE
) {
1882 priv
->stats
.tx_errors
++;
1884 if (events
& IEVENT_LC
)
1885 priv
->stats
.tx_window_errors
++;
1886 if (events
& IEVENT_CRL
)
1887 priv
->stats
.tx_aborted_errors
++;
1888 if (events
& IEVENT_XFUN
) {
1889 if (netif_msg_tx_err(priv
))
1890 printk(KERN_DEBUG
"%s: underrun. packet dropped.\n",
1892 priv
->stats
.tx_dropped
++;
1893 priv
->extra_stats
.tx_underrun
++;
1895 /* Reactivate the Tx Queues */
1896 gfar_write(&priv
->regs
->tstat
, TSTAT_CLEAR_THALT
);
1898 if (netif_msg_tx_err(priv
))
1899 printk(KERN_DEBUG
"%s: Transmit Error\n", dev
->name
);
1901 if (events
& IEVENT_BSY
) {
1902 priv
->stats
.rx_errors
++;
1903 priv
->extra_stats
.rx_bsy
++;
1905 gfar_receive(irq
, dev_id
, regs
);
1907 #ifndef CONFIG_GFAR_NAPI
1908 /* Clear the halt bit in RSTAT */
1909 gfar_write(&priv
->regs
->rstat
, RSTAT_CLEAR_RHALT
);
1912 if (netif_msg_rx_err(priv
))
1913 printk(KERN_DEBUG
"%s: busy error (rhalt: %x)\n",
1915 gfar_read(&priv
->regs
->rstat
));
1917 if (events
& IEVENT_BABR
) {
1918 priv
->stats
.rx_errors
++;
1919 priv
->extra_stats
.rx_babr
++;
1921 if (netif_msg_rx_err(priv
))
1922 printk(KERN_DEBUG
"%s: babbling error\n", dev
->name
);
1924 if (events
& IEVENT_EBERR
) {
1925 priv
->extra_stats
.eberr
++;
1926 if (netif_msg_rx_err(priv
))
1927 printk(KERN_DEBUG
"%s: EBERR\n", dev
->name
);
1929 if ((events
& IEVENT_RXC
) && netif_msg_rx_status(priv
))
1930 if (netif_msg_rx_status(priv
))
1931 printk(KERN_DEBUG
"%s: control frame\n", dev
->name
);
1933 if (events
& IEVENT_BABT
) {
1934 priv
->extra_stats
.tx_babt
++;
1935 if (netif_msg_tx_err(priv
))
1936 printk(KERN_DEBUG
"%s: babt error\n", dev
->name
);
1941 /* Structure for a device driver */
1942 static struct platform_driver gfar_driver
= {
1943 .probe
= gfar_probe
,
1944 .remove
= gfar_remove
,
1946 .name
= "fsl-gianfar",
1950 static int __init
gfar_init(void)
1952 int err
= gfar_mdio_init();
1957 err
= platform_driver_register(&gfar_driver
);
1965 static void __exit
gfar_exit(void)
1967 platform_driver_unregister(&gfar_driver
);
1971 module_init(gfar_init
);
1972 module_exit(gfar_exit
);