1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
6 #include <linux/swap.h>
8 #include <linux/blkdev.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
21 #include <trace/events/block.h>
23 #include "blk-rq-qos.h"
26 * Test patch to inline a certain number of bi_io_vec's inside the bio
27 * itself, to shrink a bio data allocation from two mempool calls to one
29 #define BIO_INLINE_VECS 4
32 * if you change this list, also change bvec_alloc or things will
33 * break badly! cannot be bigger than what you can fit into an
36 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
37 static struct biovec_slab bvec_slabs
[BVEC_POOL_NR
] __read_mostly
= {
38 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES
, max
),
43 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
44 * IO code that does not need private memory pools.
46 struct bio_set fs_bio_set
;
47 EXPORT_SYMBOL(fs_bio_set
);
50 * Our slab pool management
53 struct kmem_cache
*slab
;
54 unsigned int slab_ref
;
55 unsigned int slab_size
;
58 static DEFINE_MUTEX(bio_slab_lock
);
59 static struct bio_slab
*bio_slabs
;
60 static unsigned int bio_slab_nr
, bio_slab_max
;
62 static struct kmem_cache
*bio_find_or_create_slab(unsigned int extra_size
)
64 unsigned int sz
= sizeof(struct bio
) + extra_size
;
65 struct kmem_cache
*slab
= NULL
;
66 struct bio_slab
*bslab
, *new_bio_slabs
;
67 unsigned int new_bio_slab_max
;
68 unsigned int i
, entry
= -1;
70 mutex_lock(&bio_slab_lock
);
73 while (i
< bio_slab_nr
) {
74 bslab
= &bio_slabs
[i
];
76 if (!bslab
->slab
&& entry
== -1)
78 else if (bslab
->slab_size
== sz
) {
89 if (bio_slab_nr
== bio_slab_max
&& entry
== -1) {
90 new_bio_slab_max
= bio_slab_max
<< 1;
91 new_bio_slabs
= krealloc(bio_slabs
,
92 new_bio_slab_max
* sizeof(struct bio_slab
),
96 bio_slab_max
= new_bio_slab_max
;
97 bio_slabs
= new_bio_slabs
;
100 entry
= bio_slab_nr
++;
102 bslab
= &bio_slabs
[entry
];
104 snprintf(bslab
->name
, sizeof(bslab
->name
), "bio-%d", entry
);
105 slab
= kmem_cache_create(bslab
->name
, sz
, ARCH_KMALLOC_MINALIGN
,
106 SLAB_HWCACHE_ALIGN
, NULL
);
112 bslab
->slab_size
= sz
;
114 mutex_unlock(&bio_slab_lock
);
118 static void bio_put_slab(struct bio_set
*bs
)
120 struct bio_slab
*bslab
= NULL
;
123 mutex_lock(&bio_slab_lock
);
125 for (i
= 0; i
< bio_slab_nr
; i
++) {
126 if (bs
->bio_slab
== bio_slabs
[i
].slab
) {
127 bslab
= &bio_slabs
[i
];
132 if (WARN(!bslab
, KERN_ERR
"bio: unable to find slab!\n"))
135 WARN_ON(!bslab
->slab_ref
);
137 if (--bslab
->slab_ref
)
140 kmem_cache_destroy(bslab
->slab
);
144 mutex_unlock(&bio_slab_lock
);
147 unsigned int bvec_nr_vecs(unsigned short idx
)
149 return bvec_slabs
[--idx
].nr_vecs
;
152 void bvec_free(mempool_t
*pool
, struct bio_vec
*bv
, unsigned int idx
)
158 BIO_BUG_ON(idx
>= BVEC_POOL_NR
);
160 if (idx
== BVEC_POOL_MAX
) {
161 mempool_free(bv
, pool
);
163 struct biovec_slab
*bvs
= bvec_slabs
+ idx
;
165 kmem_cache_free(bvs
->slab
, bv
);
169 struct bio_vec
*bvec_alloc(gfp_t gfp_mask
, int nr
, unsigned long *idx
,
175 * see comment near bvec_array define!
193 case 129 ... BIO_MAX_PAGES
:
201 * idx now points to the pool we want to allocate from. only the
202 * 1-vec entry pool is mempool backed.
204 if (*idx
== BVEC_POOL_MAX
) {
206 bvl
= mempool_alloc(pool
, gfp_mask
);
208 struct biovec_slab
*bvs
= bvec_slabs
+ *idx
;
209 gfp_t __gfp_mask
= gfp_mask
& ~(__GFP_DIRECT_RECLAIM
| __GFP_IO
);
212 * Make this allocation restricted and don't dump info on
213 * allocation failures, since we'll fallback to the mempool
214 * in case of failure.
216 __gfp_mask
|= __GFP_NOMEMALLOC
| __GFP_NORETRY
| __GFP_NOWARN
;
219 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
220 * is set, retry with the 1-entry mempool
222 bvl
= kmem_cache_alloc(bvs
->slab
, __gfp_mask
);
223 if (unlikely(!bvl
&& (gfp_mask
& __GFP_DIRECT_RECLAIM
))) {
224 *idx
= BVEC_POOL_MAX
;
233 void bio_uninit(struct bio
*bio
)
235 bio_disassociate_blkg(bio
);
237 EXPORT_SYMBOL(bio_uninit
);
239 static void bio_free(struct bio
*bio
)
241 struct bio_set
*bs
= bio
->bi_pool
;
247 bvec_free(&bs
->bvec_pool
, bio
->bi_io_vec
, BVEC_POOL_IDX(bio
));
250 * If we have front padding, adjust the bio pointer before freeing
255 mempool_free(p
, &bs
->bio_pool
);
257 /* Bio was allocated by bio_kmalloc() */
263 * Users of this function have their own bio allocation. Subsequently,
264 * they must remember to pair any call to bio_init() with bio_uninit()
265 * when IO has completed, or when the bio is released.
267 void bio_init(struct bio
*bio
, struct bio_vec
*table
,
268 unsigned short max_vecs
)
270 memset(bio
, 0, sizeof(*bio
));
271 atomic_set(&bio
->__bi_remaining
, 1);
272 atomic_set(&bio
->__bi_cnt
, 1);
274 bio
->bi_io_vec
= table
;
275 bio
->bi_max_vecs
= max_vecs
;
277 EXPORT_SYMBOL(bio_init
);
280 * bio_reset - reinitialize a bio
284 * After calling bio_reset(), @bio will be in the same state as a freshly
285 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
286 * preserved are the ones that are initialized by bio_alloc_bioset(). See
287 * comment in struct bio.
289 void bio_reset(struct bio
*bio
)
291 unsigned long flags
= bio
->bi_flags
& (~0UL << BIO_RESET_BITS
);
295 memset(bio
, 0, BIO_RESET_BYTES
);
296 bio
->bi_flags
= flags
;
297 atomic_set(&bio
->__bi_remaining
, 1);
299 EXPORT_SYMBOL(bio_reset
);
301 static struct bio
*__bio_chain_endio(struct bio
*bio
)
303 struct bio
*parent
= bio
->bi_private
;
305 if (!parent
->bi_status
)
306 parent
->bi_status
= bio
->bi_status
;
311 static void bio_chain_endio(struct bio
*bio
)
313 bio_endio(__bio_chain_endio(bio
));
317 * bio_chain - chain bio completions
318 * @bio: the target bio
319 * @parent: the @bio's parent bio
321 * The caller won't have a bi_end_io called when @bio completes - instead,
322 * @parent's bi_end_io won't be called until both @parent and @bio have
323 * completed; the chained bio will also be freed when it completes.
325 * The caller must not set bi_private or bi_end_io in @bio.
327 void bio_chain(struct bio
*bio
, struct bio
*parent
)
329 BUG_ON(bio
->bi_private
|| bio
->bi_end_io
);
331 bio
->bi_private
= parent
;
332 bio
->bi_end_io
= bio_chain_endio
;
333 bio_inc_remaining(parent
);
335 EXPORT_SYMBOL(bio_chain
);
337 static void bio_alloc_rescue(struct work_struct
*work
)
339 struct bio_set
*bs
= container_of(work
, struct bio_set
, rescue_work
);
343 spin_lock(&bs
->rescue_lock
);
344 bio
= bio_list_pop(&bs
->rescue_list
);
345 spin_unlock(&bs
->rescue_lock
);
350 generic_make_request(bio
);
354 static void punt_bios_to_rescuer(struct bio_set
*bs
)
356 struct bio_list punt
, nopunt
;
359 if (WARN_ON_ONCE(!bs
->rescue_workqueue
))
362 * In order to guarantee forward progress we must punt only bios that
363 * were allocated from this bio_set; otherwise, if there was a bio on
364 * there for a stacking driver higher up in the stack, processing it
365 * could require allocating bios from this bio_set, and doing that from
366 * our own rescuer would be bad.
368 * Since bio lists are singly linked, pop them all instead of trying to
369 * remove from the middle of the list:
372 bio_list_init(&punt
);
373 bio_list_init(&nopunt
);
375 while ((bio
= bio_list_pop(¤t
->bio_list
[0])))
376 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
377 current
->bio_list
[0] = nopunt
;
379 bio_list_init(&nopunt
);
380 while ((bio
= bio_list_pop(¤t
->bio_list
[1])))
381 bio_list_add(bio
->bi_pool
== bs
? &punt
: &nopunt
, bio
);
382 current
->bio_list
[1] = nopunt
;
384 spin_lock(&bs
->rescue_lock
);
385 bio_list_merge(&bs
->rescue_list
, &punt
);
386 spin_unlock(&bs
->rescue_lock
);
388 queue_work(bs
->rescue_workqueue
, &bs
->rescue_work
);
392 * bio_alloc_bioset - allocate a bio for I/O
393 * @gfp_mask: the GFP_* mask given to the slab allocator
394 * @nr_iovecs: number of iovecs to pre-allocate
395 * @bs: the bio_set to allocate from.
398 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
399 * backed by the @bs's mempool.
401 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
402 * always be able to allocate a bio. This is due to the mempool guarantees.
403 * To make this work, callers must never allocate more than 1 bio at a time
404 * from this pool. Callers that need to allocate more than 1 bio must always
405 * submit the previously allocated bio for IO before attempting to allocate
406 * a new one. Failure to do so can cause deadlocks under memory pressure.
408 * Note that when running under generic_make_request() (i.e. any block
409 * driver), bios are not submitted until after you return - see the code in
410 * generic_make_request() that converts recursion into iteration, to prevent
413 * This would normally mean allocating multiple bios under
414 * generic_make_request() would be susceptible to deadlocks, but we have
415 * deadlock avoidance code that resubmits any blocked bios from a rescuer
418 * However, we do not guarantee forward progress for allocations from other
419 * mempools. Doing multiple allocations from the same mempool under
420 * generic_make_request() should be avoided - instead, use bio_set's front_pad
421 * for per bio allocations.
424 * Pointer to new bio on success, NULL on failure.
426 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, unsigned int nr_iovecs
,
429 gfp_t saved_gfp
= gfp_mask
;
431 unsigned inline_vecs
;
432 struct bio_vec
*bvl
= NULL
;
437 if (nr_iovecs
> UIO_MAXIOV
)
440 p
= kmalloc(sizeof(struct bio
) +
441 nr_iovecs
* sizeof(struct bio_vec
),
444 inline_vecs
= nr_iovecs
;
446 /* should not use nobvec bioset for nr_iovecs > 0 */
447 if (WARN_ON_ONCE(!mempool_initialized(&bs
->bvec_pool
) &&
451 * generic_make_request() converts recursion to iteration; this
452 * means if we're running beneath it, any bios we allocate and
453 * submit will not be submitted (and thus freed) until after we
456 * This exposes us to a potential deadlock if we allocate
457 * multiple bios from the same bio_set() while running
458 * underneath generic_make_request(). If we were to allocate
459 * multiple bios (say a stacking block driver that was splitting
460 * bios), we would deadlock if we exhausted the mempool's
463 * We solve this, and guarantee forward progress, with a rescuer
464 * workqueue per bio_set. If we go to allocate and there are
465 * bios on current->bio_list, we first try the allocation
466 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
467 * bios we would be blocking to the rescuer workqueue before
468 * we retry with the original gfp_flags.
471 if (current
->bio_list
&&
472 (!bio_list_empty(¤t
->bio_list
[0]) ||
473 !bio_list_empty(¤t
->bio_list
[1])) &&
474 bs
->rescue_workqueue
)
475 gfp_mask
&= ~__GFP_DIRECT_RECLAIM
;
477 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
478 if (!p
&& gfp_mask
!= saved_gfp
) {
479 punt_bios_to_rescuer(bs
);
480 gfp_mask
= saved_gfp
;
481 p
= mempool_alloc(&bs
->bio_pool
, gfp_mask
);
484 front_pad
= bs
->front_pad
;
485 inline_vecs
= BIO_INLINE_VECS
;
492 bio_init(bio
, NULL
, 0);
494 if (nr_iovecs
> inline_vecs
) {
495 unsigned long idx
= 0;
497 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
498 if (!bvl
&& gfp_mask
!= saved_gfp
) {
499 punt_bios_to_rescuer(bs
);
500 gfp_mask
= saved_gfp
;
501 bvl
= bvec_alloc(gfp_mask
, nr_iovecs
, &idx
, &bs
->bvec_pool
);
507 bio
->bi_flags
|= idx
<< BVEC_POOL_OFFSET
;
508 } else if (nr_iovecs
) {
509 bvl
= bio
->bi_inline_vecs
;
513 bio
->bi_max_vecs
= nr_iovecs
;
514 bio
->bi_io_vec
= bvl
;
518 mempool_free(p
, &bs
->bio_pool
);
521 EXPORT_SYMBOL(bio_alloc_bioset
);
523 void zero_fill_bio_iter(struct bio
*bio
, struct bvec_iter start
)
527 struct bvec_iter iter
;
529 __bio_for_each_segment(bv
, bio
, iter
, start
) {
530 char *data
= bvec_kmap_irq(&bv
, &flags
);
531 memset(data
, 0, bv
.bv_len
);
532 flush_dcache_page(bv
.bv_page
);
533 bvec_kunmap_irq(data
, &flags
);
536 EXPORT_SYMBOL(zero_fill_bio_iter
);
539 * bio_put - release a reference to a bio
540 * @bio: bio to release reference to
543 * Put a reference to a &struct bio, either one you have gotten with
544 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
546 void bio_put(struct bio
*bio
)
548 if (!bio_flagged(bio
, BIO_REFFED
))
551 BIO_BUG_ON(!atomic_read(&bio
->__bi_cnt
));
556 if (atomic_dec_and_test(&bio
->__bi_cnt
))
560 EXPORT_SYMBOL(bio_put
);
563 * __bio_clone_fast - clone a bio that shares the original bio's biovec
564 * @bio: destination bio
565 * @bio_src: bio to clone
567 * Clone a &bio. Caller will own the returned bio, but not
568 * the actual data it points to. Reference count of returned
571 * Caller must ensure that @bio_src is not freed before @bio.
573 void __bio_clone_fast(struct bio
*bio
, struct bio
*bio_src
)
575 BUG_ON(bio
->bi_pool
&& BVEC_POOL_IDX(bio
));
578 * most users will be overriding ->bi_disk with a new target,
579 * so we don't set nor calculate new physical/hw segment counts here
581 bio
->bi_disk
= bio_src
->bi_disk
;
582 bio
->bi_partno
= bio_src
->bi_partno
;
583 bio_set_flag(bio
, BIO_CLONED
);
584 if (bio_flagged(bio_src
, BIO_THROTTLED
))
585 bio_set_flag(bio
, BIO_THROTTLED
);
586 bio
->bi_opf
= bio_src
->bi_opf
;
587 bio
->bi_ioprio
= bio_src
->bi_ioprio
;
588 bio
->bi_write_hint
= bio_src
->bi_write_hint
;
589 bio
->bi_iter
= bio_src
->bi_iter
;
590 bio
->bi_io_vec
= bio_src
->bi_io_vec
;
592 bio_clone_blkg_association(bio
, bio_src
);
593 blkcg_bio_issue_init(bio
);
595 EXPORT_SYMBOL(__bio_clone_fast
);
598 * bio_clone_fast - clone a bio that shares the original bio's biovec
600 * @gfp_mask: allocation priority
601 * @bs: bio_set to allocate from
603 * Like __bio_clone_fast, only also allocates the returned bio
605 struct bio
*bio_clone_fast(struct bio
*bio
, gfp_t gfp_mask
, struct bio_set
*bs
)
609 b
= bio_alloc_bioset(gfp_mask
, 0, bs
);
613 __bio_clone_fast(b
, bio
);
615 if (bio_integrity(bio
)) {
618 ret
= bio_integrity_clone(b
, bio
, gfp_mask
);
628 EXPORT_SYMBOL(bio_clone_fast
);
630 static inline bool page_is_mergeable(const struct bio_vec
*bv
,
631 struct page
*page
, unsigned int len
, unsigned int off
,
634 phys_addr_t vec_end_addr
= page_to_phys(bv
->bv_page
) +
635 bv
->bv_offset
+ bv
->bv_len
- 1;
636 phys_addr_t page_addr
= page_to_phys(page
);
638 if (vec_end_addr
+ 1 != page_addr
+ off
)
640 if (xen_domain() && !xen_biovec_phys_mergeable(bv
, page
))
643 *same_page
= ((vec_end_addr
& PAGE_MASK
) == page_addr
);
644 if (!*same_page
&& pfn_to_page(PFN_DOWN(vec_end_addr
)) + 1 != page
)
650 * Check if the @page can be added to the current segment(@bv), and make
651 * sure to call it only if page_is_mergeable(@bv, @page) is true
653 static bool can_add_page_to_seg(struct request_queue
*q
,
654 struct bio_vec
*bv
, struct page
*page
, unsigned len
,
657 unsigned long mask
= queue_segment_boundary(q
);
658 phys_addr_t addr1
= page_to_phys(bv
->bv_page
) + bv
->bv_offset
;
659 phys_addr_t addr2
= page_to_phys(page
) + offset
+ len
- 1;
661 if ((addr1
| mask
) != (addr2
| mask
))
664 if (bv
->bv_len
+ len
> queue_max_segment_size(q
))
671 * __bio_add_pc_page - attempt to add page to passthrough bio
672 * @q: the target queue
673 * @bio: destination bio
675 * @len: vec entry length
676 * @offset: vec entry offset
677 * @put_same_page: put the page if it is same with last added page
679 * Attempt to add a page to the bio_vec maplist. This can fail for a
680 * number of reasons, such as the bio being full or target block device
681 * limitations. The target block device must allow bio's up to PAGE_SIZE,
682 * so it is always possible to add a single page to an empty bio.
684 * This should only be used by passthrough bios.
686 static int __bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
,
687 struct page
*page
, unsigned int len
, unsigned int offset
,
690 struct bio_vec
*bvec
;
691 bool same_page
= false;
694 * cloned bio must not modify vec list
696 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
699 if (((bio
->bi_iter
.bi_size
+ len
) >> 9) > queue_max_hw_sectors(q
))
702 if (bio
->bi_vcnt
> 0) {
703 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
705 if (page
== bvec
->bv_page
&&
706 offset
== bvec
->bv_offset
+ bvec
->bv_len
) {
714 * If the queue doesn't support SG gaps and adding this
715 * offset would create a gap, disallow it.
717 if (bvec_gap_to_prev(q
, bvec
, offset
))
720 if (page_is_mergeable(bvec
, page
, len
, offset
, &same_page
) &&
721 can_add_page_to_seg(q
, bvec
, page
, len
, offset
)) {
727 if (bio_full(bio
, len
))
730 if (bio
->bi_vcnt
>= queue_max_segments(q
))
733 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
734 bvec
->bv_page
= page
;
736 bvec
->bv_offset
= offset
;
739 bio
->bi_iter
.bi_size
+= len
;
743 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
,
744 struct page
*page
, unsigned int len
, unsigned int offset
)
746 return __bio_add_pc_page(q
, bio
, page
, len
, offset
, false);
748 EXPORT_SYMBOL(bio_add_pc_page
);
751 * __bio_try_merge_page - try appending data to an existing bvec.
752 * @bio: destination bio
753 * @page: start page to add
754 * @len: length of the data to add
755 * @off: offset of the data relative to @page
756 * @same_page: return if the segment has been merged inside the same page
758 * Try to add the data at @page + @off to the last bvec of @bio. This is a
759 * a useful optimisation for file systems with a block size smaller than the
762 * Warn if (@len, @off) crosses pages in case that @same_page is true.
764 * Return %true on success or %false on failure.
766 bool __bio_try_merge_page(struct bio
*bio
, struct page
*page
,
767 unsigned int len
, unsigned int off
, bool *same_page
)
769 if (WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
)))
772 if (bio
->bi_vcnt
> 0) {
773 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
775 if (page_is_mergeable(bv
, page
, len
, off
, same_page
)) {
777 bio
->bi_iter
.bi_size
+= len
;
783 EXPORT_SYMBOL_GPL(__bio_try_merge_page
);
786 * __bio_add_page - add page(s) to a bio in a new segment
787 * @bio: destination bio
788 * @page: start page to add
789 * @len: length of the data to add, may cross pages
790 * @off: offset of the data relative to @page, may cross pages
792 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
793 * that @bio has space for another bvec.
795 void __bio_add_page(struct bio
*bio
, struct page
*page
,
796 unsigned int len
, unsigned int off
)
798 struct bio_vec
*bv
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
800 WARN_ON_ONCE(bio_flagged(bio
, BIO_CLONED
));
801 WARN_ON_ONCE(bio_full(bio
, len
));
807 bio
->bi_iter
.bi_size
+= len
;
810 EXPORT_SYMBOL_GPL(__bio_add_page
);
813 * bio_add_page - attempt to add page(s) to bio
814 * @bio: destination bio
815 * @page: start page to add
816 * @len: vec entry length, may cross pages
817 * @offset: vec entry offset relative to @page, may cross pages
819 * Attempt to add page(s) to the bio_vec maplist. This will only fail
820 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
822 int bio_add_page(struct bio
*bio
, struct page
*page
,
823 unsigned int len
, unsigned int offset
)
825 bool same_page
= false;
827 if (!__bio_try_merge_page(bio
, page
, len
, offset
, &same_page
)) {
828 if (bio_full(bio
, len
))
830 __bio_add_page(bio
, page
, len
, offset
);
834 EXPORT_SYMBOL(bio_add_page
);
836 void bio_release_pages(struct bio
*bio
, bool mark_dirty
)
838 struct bvec_iter_all iter_all
;
839 struct bio_vec
*bvec
;
841 if (bio_flagged(bio
, BIO_NO_PAGE_REF
))
844 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
845 if (mark_dirty
&& !PageCompound(bvec
->bv_page
))
846 set_page_dirty_lock(bvec
->bv_page
);
847 put_page(bvec
->bv_page
);
851 static int __bio_iov_bvec_add_pages(struct bio
*bio
, struct iov_iter
*iter
)
853 const struct bio_vec
*bv
= iter
->bvec
;
857 if (WARN_ON_ONCE(iter
->iov_offset
> bv
->bv_len
))
860 len
= min_t(size_t, bv
->bv_len
- iter
->iov_offset
, iter
->count
);
861 size
= bio_add_page(bio
, bv
->bv_page
, len
,
862 bv
->bv_offset
+ iter
->iov_offset
);
863 if (unlikely(size
!= len
))
865 iov_iter_advance(iter
, size
);
869 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
872 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
873 * @bio: bio to add pages to
874 * @iter: iov iterator describing the region to be mapped
876 * Pins pages from *iter and appends them to @bio's bvec array. The
877 * pages will have to be released using put_page() when done.
878 * For multi-segment *iter, this function only adds pages from the
879 * the next non-empty segment of the iov iterator.
881 static int __bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
883 unsigned short nr_pages
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
884 unsigned short entries_left
= bio
->bi_max_vecs
- bio
->bi_vcnt
;
885 struct bio_vec
*bv
= bio
->bi_io_vec
+ bio
->bi_vcnt
;
886 struct page
**pages
= (struct page
**)bv
;
887 bool same_page
= false;
893 * Move page array up in the allocated memory for the bio vecs as far as
894 * possible so that we can start filling biovecs from the beginning
895 * without overwriting the temporary page array.
897 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC
< 2);
898 pages
+= entries_left
* (PAGE_PTRS_PER_BVEC
- 1);
900 size
= iov_iter_get_pages(iter
, pages
, LONG_MAX
, nr_pages
, &offset
);
901 if (unlikely(size
<= 0))
902 return size
? size
: -EFAULT
;
904 for (left
= size
, i
= 0; left
> 0; left
-= len
, i
++) {
905 struct page
*page
= pages
[i
];
907 len
= min_t(size_t, PAGE_SIZE
- offset
, left
);
909 if (__bio_try_merge_page(bio
, page
, len
, offset
, &same_page
)) {
913 if (WARN_ON_ONCE(bio_full(bio
, len
)))
915 __bio_add_page(bio
, page
, len
, offset
);
920 iov_iter_advance(iter
, size
);
925 * bio_iov_iter_get_pages - add user or kernel pages to a bio
926 * @bio: bio to add pages to
927 * @iter: iov iterator describing the region to be added
929 * This takes either an iterator pointing to user memory, or one pointing to
930 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
931 * map them into the kernel. On IO completion, the caller should put those
932 * pages. If we're adding kernel pages, and the caller told us it's safe to
933 * do so, we just have to add the pages to the bio directly. We don't grab an
934 * extra reference to those pages (the user should already have that), and we
935 * don't put the page on IO completion. The caller needs to check if the bio is
936 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
939 * The function tries, but does not guarantee, to pin as many pages as
940 * fit into the bio, or are requested in *iter, whatever is smaller. If
941 * MM encounters an error pinning the requested pages, it stops. Error
942 * is returned only if 0 pages could be pinned.
944 int bio_iov_iter_get_pages(struct bio
*bio
, struct iov_iter
*iter
)
946 const bool is_bvec
= iov_iter_is_bvec(iter
);
949 if (WARN_ON_ONCE(bio
->bi_vcnt
))
954 ret
= __bio_iov_bvec_add_pages(bio
, iter
);
956 ret
= __bio_iov_iter_get_pages(bio
, iter
);
957 } while (!ret
&& iov_iter_count(iter
) && !bio_full(bio
, 0));
960 bio_set_flag(bio
, BIO_NO_PAGE_REF
);
961 return bio
->bi_vcnt
? 0 : ret
;
964 static void submit_bio_wait_endio(struct bio
*bio
)
966 complete(bio
->bi_private
);
970 * submit_bio_wait - submit a bio, and wait until it completes
971 * @bio: The &struct bio which describes the I/O
973 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
974 * bio_endio() on failure.
976 * WARNING: Unlike to how submit_bio() is usually used, this function does not
977 * result in bio reference to be consumed. The caller must drop the reference
980 int submit_bio_wait(struct bio
*bio
)
982 DECLARE_COMPLETION_ONSTACK_MAP(done
, bio
->bi_disk
->lockdep_map
);
984 bio
->bi_private
= &done
;
985 bio
->bi_end_io
= submit_bio_wait_endio
;
986 bio
->bi_opf
|= REQ_SYNC
;
988 wait_for_completion_io(&done
);
990 return blk_status_to_errno(bio
->bi_status
);
992 EXPORT_SYMBOL(submit_bio_wait
);
995 * bio_advance - increment/complete a bio by some number of bytes
996 * @bio: bio to advance
997 * @bytes: number of bytes to complete
999 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1000 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1001 * be updated on the last bvec as well.
1003 * @bio will then represent the remaining, uncompleted portion of the io.
1005 void bio_advance(struct bio
*bio
, unsigned bytes
)
1007 if (bio_integrity(bio
))
1008 bio_integrity_advance(bio
, bytes
);
1010 bio_advance_iter(bio
, &bio
->bi_iter
, bytes
);
1012 EXPORT_SYMBOL(bio_advance
);
1014 void bio_copy_data_iter(struct bio
*dst
, struct bvec_iter
*dst_iter
,
1015 struct bio
*src
, struct bvec_iter
*src_iter
)
1017 struct bio_vec src_bv
, dst_bv
;
1018 void *src_p
, *dst_p
;
1021 while (src_iter
->bi_size
&& dst_iter
->bi_size
) {
1022 src_bv
= bio_iter_iovec(src
, *src_iter
);
1023 dst_bv
= bio_iter_iovec(dst
, *dst_iter
);
1025 bytes
= min(src_bv
.bv_len
, dst_bv
.bv_len
);
1027 src_p
= kmap_atomic(src_bv
.bv_page
);
1028 dst_p
= kmap_atomic(dst_bv
.bv_page
);
1030 memcpy(dst_p
+ dst_bv
.bv_offset
,
1031 src_p
+ src_bv
.bv_offset
,
1034 kunmap_atomic(dst_p
);
1035 kunmap_atomic(src_p
);
1037 flush_dcache_page(dst_bv
.bv_page
);
1039 bio_advance_iter(src
, src_iter
, bytes
);
1040 bio_advance_iter(dst
, dst_iter
, bytes
);
1043 EXPORT_SYMBOL(bio_copy_data_iter
);
1046 * bio_copy_data - copy contents of data buffers from one bio to another
1048 * @dst: destination bio
1050 * Stops when it reaches the end of either @src or @dst - that is, copies
1051 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1053 void bio_copy_data(struct bio
*dst
, struct bio
*src
)
1055 struct bvec_iter src_iter
= src
->bi_iter
;
1056 struct bvec_iter dst_iter
= dst
->bi_iter
;
1058 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1060 EXPORT_SYMBOL(bio_copy_data
);
1063 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1065 * @src: source bio list
1066 * @dst: destination bio list
1068 * Stops when it reaches the end of either the @src list or @dst list - that is,
1069 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1072 void bio_list_copy_data(struct bio
*dst
, struct bio
*src
)
1074 struct bvec_iter src_iter
= src
->bi_iter
;
1075 struct bvec_iter dst_iter
= dst
->bi_iter
;
1078 if (!src_iter
.bi_size
) {
1083 src_iter
= src
->bi_iter
;
1086 if (!dst_iter
.bi_size
) {
1091 dst_iter
= dst
->bi_iter
;
1094 bio_copy_data_iter(dst
, &dst_iter
, src
, &src_iter
);
1097 EXPORT_SYMBOL(bio_list_copy_data
);
1099 struct bio_map_data
{
1101 struct iov_iter iter
;
1105 static struct bio_map_data
*bio_alloc_map_data(struct iov_iter
*data
,
1108 struct bio_map_data
*bmd
;
1109 if (data
->nr_segs
> UIO_MAXIOV
)
1112 bmd
= kmalloc(struct_size(bmd
, iov
, data
->nr_segs
), gfp_mask
);
1115 memcpy(bmd
->iov
, data
->iov
, sizeof(struct iovec
) * data
->nr_segs
);
1117 bmd
->iter
.iov
= bmd
->iov
;
1122 * bio_copy_from_iter - copy all pages from iov_iter to bio
1123 * @bio: The &struct bio which describes the I/O as destination
1124 * @iter: iov_iter as source
1126 * Copy all pages from iov_iter to bio.
1127 * Returns 0 on success, or error on failure.
1129 static int bio_copy_from_iter(struct bio
*bio
, struct iov_iter
*iter
)
1131 struct bio_vec
*bvec
;
1132 struct bvec_iter_all iter_all
;
1134 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1137 ret
= copy_page_from_iter(bvec
->bv_page
,
1142 if (!iov_iter_count(iter
))
1145 if (ret
< bvec
->bv_len
)
1153 * bio_copy_to_iter - copy all pages from bio to iov_iter
1154 * @bio: The &struct bio which describes the I/O as source
1155 * @iter: iov_iter as destination
1157 * Copy all pages from bio to iov_iter.
1158 * Returns 0 on success, or error on failure.
1160 static int bio_copy_to_iter(struct bio
*bio
, struct iov_iter iter
)
1162 struct bio_vec
*bvec
;
1163 struct bvec_iter_all iter_all
;
1165 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1168 ret
= copy_page_to_iter(bvec
->bv_page
,
1173 if (!iov_iter_count(&iter
))
1176 if (ret
< bvec
->bv_len
)
1183 void bio_free_pages(struct bio
*bio
)
1185 struct bio_vec
*bvec
;
1186 struct bvec_iter_all iter_all
;
1188 bio_for_each_segment_all(bvec
, bio
, iter_all
)
1189 __free_page(bvec
->bv_page
);
1191 EXPORT_SYMBOL(bio_free_pages
);
1194 * bio_uncopy_user - finish previously mapped bio
1195 * @bio: bio being terminated
1197 * Free pages allocated from bio_copy_user_iov() and write back data
1198 * to user space in case of a read.
1200 int bio_uncopy_user(struct bio
*bio
)
1202 struct bio_map_data
*bmd
= bio
->bi_private
;
1205 if (!bio_flagged(bio
, BIO_NULL_MAPPED
)) {
1207 * if we're in a workqueue, the request is orphaned, so
1208 * don't copy into a random user address space, just free
1209 * and return -EINTR so user space doesn't expect any data.
1213 else if (bio_data_dir(bio
) == READ
)
1214 ret
= bio_copy_to_iter(bio
, bmd
->iter
);
1215 if (bmd
->is_our_pages
)
1216 bio_free_pages(bio
);
1224 * bio_copy_user_iov - copy user data to bio
1225 * @q: destination block queue
1226 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1227 * @iter: iovec iterator
1228 * @gfp_mask: memory allocation flags
1230 * Prepares and returns a bio for indirect user io, bouncing data
1231 * to/from kernel pages as necessary. Must be paired with
1232 * call bio_uncopy_user() on io completion.
1234 struct bio
*bio_copy_user_iov(struct request_queue
*q
,
1235 struct rq_map_data
*map_data
,
1236 struct iov_iter
*iter
,
1239 struct bio_map_data
*bmd
;
1244 unsigned int len
= iter
->count
;
1245 unsigned int offset
= map_data
? offset_in_page(map_data
->offset
) : 0;
1247 bmd
= bio_alloc_map_data(iter
, gfp_mask
);
1249 return ERR_PTR(-ENOMEM
);
1252 * We need to do a deep copy of the iov_iter including the iovecs.
1253 * The caller provided iov might point to an on-stack or otherwise
1256 bmd
->is_our_pages
= map_data
? 0 : 1;
1258 nr_pages
= DIV_ROUND_UP(offset
+ len
, PAGE_SIZE
);
1259 if (nr_pages
> BIO_MAX_PAGES
)
1260 nr_pages
= BIO_MAX_PAGES
;
1263 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1270 nr_pages
= 1 << map_data
->page_order
;
1271 i
= map_data
->offset
/ PAGE_SIZE
;
1274 unsigned int bytes
= PAGE_SIZE
;
1282 if (i
== map_data
->nr_entries
* nr_pages
) {
1287 page
= map_data
->pages
[i
/ nr_pages
];
1288 page
+= (i
% nr_pages
);
1292 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1299 if (bio_add_pc_page(q
, bio
, page
, bytes
, offset
) < bytes
) {
1313 map_data
->offset
+= bio
->bi_iter
.bi_size
;
1318 if ((iov_iter_rw(iter
) == WRITE
&& (!map_data
|| !map_data
->null_mapped
)) ||
1319 (map_data
&& map_data
->from_user
)) {
1320 ret
= bio_copy_from_iter(bio
, iter
);
1324 if (bmd
->is_our_pages
)
1326 iov_iter_advance(iter
, bio
->bi_iter
.bi_size
);
1329 bio
->bi_private
= bmd
;
1330 if (map_data
&& map_data
->null_mapped
)
1331 bio_set_flag(bio
, BIO_NULL_MAPPED
);
1335 bio_free_pages(bio
);
1339 return ERR_PTR(ret
);
1343 * bio_map_user_iov - map user iovec into bio
1344 * @q: the struct request_queue for the bio
1345 * @iter: iovec iterator
1346 * @gfp_mask: memory allocation flags
1348 * Map the user space address into a bio suitable for io to a block
1349 * device. Returns an error pointer in case of error.
1351 struct bio
*bio_map_user_iov(struct request_queue
*q
,
1352 struct iov_iter
*iter
,
1359 if (!iov_iter_count(iter
))
1360 return ERR_PTR(-EINVAL
);
1362 bio
= bio_kmalloc(gfp_mask
, iov_iter_npages(iter
, BIO_MAX_PAGES
));
1364 return ERR_PTR(-ENOMEM
);
1366 while (iov_iter_count(iter
)) {
1367 struct page
**pages
;
1369 size_t offs
, added
= 0;
1372 bytes
= iov_iter_get_pages_alloc(iter
, &pages
, LONG_MAX
, &offs
);
1373 if (unlikely(bytes
<= 0)) {
1374 ret
= bytes
? bytes
: -EFAULT
;
1378 npages
= DIV_ROUND_UP(offs
+ bytes
, PAGE_SIZE
);
1380 if (unlikely(offs
& queue_dma_alignment(q
))) {
1384 for (j
= 0; j
< npages
; j
++) {
1385 struct page
*page
= pages
[j
];
1386 unsigned int n
= PAGE_SIZE
- offs
;
1391 if (!__bio_add_pc_page(q
, bio
, page
, n
, offs
,
1399 iov_iter_advance(iter
, added
);
1402 * release the pages we didn't map into the bio, if any
1405 put_page(pages
[j
++]);
1407 /* couldn't stuff something into bio? */
1412 bio_set_flag(bio
, BIO_USER_MAPPED
);
1415 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1416 * it would normally disappear when its bi_end_io is run.
1417 * however, we need it for the unmap, so grab an extra
1424 bio_release_pages(bio
, false);
1426 return ERR_PTR(ret
);
1430 * bio_unmap_user - unmap a bio
1431 * @bio: the bio being unmapped
1433 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1436 * bio_unmap_user() may sleep.
1438 void bio_unmap_user(struct bio
*bio
)
1440 bio_release_pages(bio
, bio_data_dir(bio
) == READ
);
1445 static void bio_invalidate_vmalloc_pages(struct bio
*bio
)
1447 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
1448 if (bio
->bi_private
&& !op_is_write(bio_op(bio
))) {
1449 unsigned long i
, len
= 0;
1451 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
1452 len
+= bio
->bi_io_vec
[i
].bv_len
;
1453 invalidate_kernel_vmap_range(bio
->bi_private
, len
);
1458 static void bio_map_kern_endio(struct bio
*bio
)
1460 bio_invalidate_vmalloc_pages(bio
);
1465 * bio_map_kern - map kernel address into bio
1466 * @q: the struct request_queue for the bio
1467 * @data: pointer to buffer to map
1468 * @len: length in bytes
1469 * @gfp_mask: allocation flags for bio allocation
1471 * Map the kernel address into a bio suitable for io to a block
1472 * device. Returns an error pointer in case of error.
1474 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1477 unsigned long kaddr
= (unsigned long)data
;
1478 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1479 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1480 const int nr_pages
= end
- start
;
1481 bool is_vmalloc
= is_vmalloc_addr(data
);
1486 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1488 return ERR_PTR(-ENOMEM
);
1491 flush_kernel_vmap_range(data
, len
);
1492 bio
->bi_private
= data
;
1495 offset
= offset_in_page(kaddr
);
1496 for (i
= 0; i
< nr_pages
; i
++) {
1497 unsigned int bytes
= PAGE_SIZE
- offset
;
1506 page
= virt_to_page(data
);
1508 page
= vmalloc_to_page(data
);
1509 if (bio_add_pc_page(q
, bio
, page
, bytes
,
1511 /* we don't support partial mappings */
1513 return ERR_PTR(-EINVAL
);
1521 bio
->bi_end_io
= bio_map_kern_endio
;
1524 EXPORT_SYMBOL(bio_map_kern
);
1526 static void bio_copy_kern_endio(struct bio
*bio
)
1528 bio_free_pages(bio
);
1532 static void bio_copy_kern_endio_read(struct bio
*bio
)
1534 char *p
= bio
->bi_private
;
1535 struct bio_vec
*bvec
;
1536 struct bvec_iter_all iter_all
;
1538 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1539 memcpy(p
, page_address(bvec
->bv_page
), bvec
->bv_len
);
1543 bio_copy_kern_endio(bio
);
1547 * bio_copy_kern - copy kernel address into bio
1548 * @q: the struct request_queue for the bio
1549 * @data: pointer to buffer to copy
1550 * @len: length in bytes
1551 * @gfp_mask: allocation flags for bio and page allocation
1552 * @reading: data direction is READ
1554 * copy the kernel address into a bio suitable for io to a block
1555 * device. Returns an error pointer in case of error.
1557 struct bio
*bio_copy_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1558 gfp_t gfp_mask
, int reading
)
1560 unsigned long kaddr
= (unsigned long)data
;
1561 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1562 unsigned long start
= kaddr
>> PAGE_SHIFT
;
1571 return ERR_PTR(-EINVAL
);
1573 nr_pages
= end
- start
;
1574 bio
= bio_kmalloc(gfp_mask
, nr_pages
);
1576 return ERR_PTR(-ENOMEM
);
1580 unsigned int bytes
= PAGE_SIZE
;
1585 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
1590 memcpy(page_address(page
), p
, bytes
);
1592 if (bio_add_pc_page(q
, bio
, page
, bytes
, 0) < bytes
)
1600 bio
->bi_end_io
= bio_copy_kern_endio_read
;
1601 bio
->bi_private
= data
;
1603 bio
->bi_end_io
= bio_copy_kern_endio
;
1609 bio_free_pages(bio
);
1611 return ERR_PTR(-ENOMEM
);
1615 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1616 * for performing direct-IO in BIOs.
1618 * The problem is that we cannot run set_page_dirty() from interrupt context
1619 * because the required locks are not interrupt-safe. So what we can do is to
1620 * mark the pages dirty _before_ performing IO. And in interrupt context,
1621 * check that the pages are still dirty. If so, fine. If not, redirty them
1622 * in process context.
1624 * We special-case compound pages here: normally this means reads into hugetlb
1625 * pages. The logic in here doesn't really work right for compound pages
1626 * because the VM does not uniformly chase down the head page in all cases.
1627 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1628 * handle them at all. So we skip compound pages here at an early stage.
1630 * Note that this code is very hard to test under normal circumstances because
1631 * direct-io pins the pages with get_user_pages(). This makes
1632 * is_page_cache_freeable return false, and the VM will not clean the pages.
1633 * But other code (eg, flusher threads) could clean the pages if they are mapped
1636 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1637 * deferred bio dirtying paths.
1641 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1643 void bio_set_pages_dirty(struct bio
*bio
)
1645 struct bio_vec
*bvec
;
1646 struct bvec_iter_all iter_all
;
1648 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1649 if (!PageCompound(bvec
->bv_page
))
1650 set_page_dirty_lock(bvec
->bv_page
);
1655 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1656 * If they are, then fine. If, however, some pages are clean then they must
1657 * have been written out during the direct-IO read. So we take another ref on
1658 * the BIO and re-dirty the pages in process context.
1660 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1661 * here on. It will run one put_page() against each page and will run one
1662 * bio_put() against the BIO.
1665 static void bio_dirty_fn(struct work_struct
*work
);
1667 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1668 static DEFINE_SPINLOCK(bio_dirty_lock
);
1669 static struct bio
*bio_dirty_list
;
1672 * This runs in process context
1674 static void bio_dirty_fn(struct work_struct
*work
)
1676 struct bio
*bio
, *next
;
1678 spin_lock_irq(&bio_dirty_lock
);
1679 next
= bio_dirty_list
;
1680 bio_dirty_list
= NULL
;
1681 spin_unlock_irq(&bio_dirty_lock
);
1683 while ((bio
= next
) != NULL
) {
1684 next
= bio
->bi_private
;
1686 bio_release_pages(bio
, true);
1691 void bio_check_pages_dirty(struct bio
*bio
)
1693 struct bio_vec
*bvec
;
1694 unsigned long flags
;
1695 struct bvec_iter_all iter_all
;
1697 bio_for_each_segment_all(bvec
, bio
, iter_all
) {
1698 if (!PageDirty(bvec
->bv_page
) && !PageCompound(bvec
->bv_page
))
1702 bio_release_pages(bio
, false);
1706 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1707 bio
->bi_private
= bio_dirty_list
;
1708 bio_dirty_list
= bio
;
1709 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1710 schedule_work(&bio_dirty_work
);
1713 void update_io_ticks(struct hd_struct
*part
, unsigned long now
)
1715 unsigned long stamp
;
1717 stamp
= READ_ONCE(part
->stamp
);
1718 if (unlikely(stamp
!= now
)) {
1719 if (likely(cmpxchg(&part
->stamp
, stamp
, now
) == stamp
)) {
1720 __part_stat_add(part
, io_ticks
, 1);
1724 part
= &part_to_disk(part
)->part0
;
1729 void generic_start_io_acct(struct request_queue
*q
, int op
,
1730 unsigned long sectors
, struct hd_struct
*part
)
1732 const int sgrp
= op_stat_group(op
);
1736 update_io_ticks(part
, jiffies
);
1737 part_stat_inc(part
, ios
[sgrp
]);
1738 part_stat_add(part
, sectors
[sgrp
], sectors
);
1739 part_inc_in_flight(q
, part
, op_is_write(op
));
1743 EXPORT_SYMBOL(generic_start_io_acct
);
1745 void generic_end_io_acct(struct request_queue
*q
, int req_op
,
1746 struct hd_struct
*part
, unsigned long start_time
)
1748 unsigned long now
= jiffies
;
1749 unsigned long duration
= now
- start_time
;
1750 const int sgrp
= op_stat_group(req_op
);
1754 update_io_ticks(part
, now
);
1755 part_stat_add(part
, nsecs
[sgrp
], jiffies_to_nsecs(duration
));
1756 part_stat_add(part
, time_in_queue
, duration
);
1757 part_dec_in_flight(q
, part
, op_is_write(req_op
));
1761 EXPORT_SYMBOL(generic_end_io_acct
);
1763 static inline bool bio_remaining_done(struct bio
*bio
)
1766 * If we're not chaining, then ->__bi_remaining is always 1 and
1767 * we always end io on the first invocation.
1769 if (!bio_flagged(bio
, BIO_CHAIN
))
1772 BUG_ON(atomic_read(&bio
->__bi_remaining
) <= 0);
1774 if (atomic_dec_and_test(&bio
->__bi_remaining
)) {
1775 bio_clear_flag(bio
, BIO_CHAIN
);
1783 * bio_endio - end I/O on a bio
1787 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1788 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1789 * bio unless they own it and thus know that it has an end_io function.
1791 * bio_endio() can be called several times on a bio that has been chained
1792 * using bio_chain(). The ->bi_end_io() function will only be called the
1793 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1794 * generated if BIO_TRACE_COMPLETION is set.
1796 void bio_endio(struct bio
*bio
)
1799 if (!bio_remaining_done(bio
))
1801 if (!bio_integrity_endio(bio
))
1805 rq_qos_done_bio(bio
->bi_disk
->queue
, bio
);
1808 * Need to have a real endio function for chained bios, otherwise
1809 * various corner cases will break (like stacking block devices that
1810 * save/restore bi_end_io) - however, we want to avoid unbounded
1811 * recursion and blowing the stack. Tail call optimization would
1812 * handle this, but compiling with frame pointers also disables
1813 * gcc's sibling call optimization.
1815 if (bio
->bi_end_io
== bio_chain_endio
) {
1816 bio
= __bio_chain_endio(bio
);
1820 if (bio
->bi_disk
&& bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
1821 trace_block_bio_complete(bio
->bi_disk
->queue
, bio
,
1822 blk_status_to_errno(bio
->bi_status
));
1823 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
1826 blk_throtl_bio_endio(bio
);
1827 /* release cgroup info */
1830 bio
->bi_end_io(bio
);
1832 EXPORT_SYMBOL(bio_endio
);
1835 * bio_split - split a bio
1836 * @bio: bio to split
1837 * @sectors: number of sectors to split from the front of @bio
1839 * @bs: bio set to allocate from
1841 * Allocates and returns a new bio which represents @sectors from the start of
1842 * @bio, and updates @bio to represent the remaining sectors.
1844 * Unless this is a discard request the newly allocated bio will point
1845 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1846 * @bio is not freed before the split.
1848 struct bio
*bio_split(struct bio
*bio
, int sectors
,
1849 gfp_t gfp
, struct bio_set
*bs
)
1853 BUG_ON(sectors
<= 0);
1854 BUG_ON(sectors
>= bio_sectors(bio
));
1856 split
= bio_clone_fast(bio
, gfp
, bs
);
1860 split
->bi_iter
.bi_size
= sectors
<< 9;
1862 if (bio_integrity(split
))
1863 bio_integrity_trim(split
);
1865 bio_advance(bio
, split
->bi_iter
.bi_size
);
1867 if (bio_flagged(bio
, BIO_TRACE_COMPLETION
))
1868 bio_set_flag(split
, BIO_TRACE_COMPLETION
);
1872 EXPORT_SYMBOL(bio_split
);
1875 * bio_trim - trim a bio
1877 * @offset: number of sectors to trim from the front of @bio
1878 * @size: size we want to trim @bio to, in sectors
1880 void bio_trim(struct bio
*bio
, int offset
, int size
)
1882 /* 'bio' is a cloned bio which we need to trim to match
1883 * the given offset and size.
1887 if (offset
== 0 && size
== bio
->bi_iter
.bi_size
)
1890 bio_advance(bio
, offset
<< 9);
1891 bio
->bi_iter
.bi_size
= size
;
1893 if (bio_integrity(bio
))
1894 bio_integrity_trim(bio
);
1897 EXPORT_SYMBOL_GPL(bio_trim
);
1900 * create memory pools for biovec's in a bio_set.
1901 * use the global biovec slabs created for general use.
1903 int biovec_init_pool(mempool_t
*pool
, int pool_entries
)
1905 struct biovec_slab
*bp
= bvec_slabs
+ BVEC_POOL_MAX
;
1907 return mempool_init_slab_pool(pool
, pool_entries
, bp
->slab
);
1911 * bioset_exit - exit a bioset initialized with bioset_init()
1913 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1916 void bioset_exit(struct bio_set
*bs
)
1918 if (bs
->rescue_workqueue
)
1919 destroy_workqueue(bs
->rescue_workqueue
);
1920 bs
->rescue_workqueue
= NULL
;
1922 mempool_exit(&bs
->bio_pool
);
1923 mempool_exit(&bs
->bvec_pool
);
1925 bioset_integrity_free(bs
);
1928 bs
->bio_slab
= NULL
;
1930 EXPORT_SYMBOL(bioset_exit
);
1933 * bioset_init - Initialize a bio_set
1934 * @bs: pool to initialize
1935 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1936 * @front_pad: Number of bytes to allocate in front of the returned bio
1937 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1938 * and %BIOSET_NEED_RESCUER
1941 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1942 * to ask for a number of bytes to be allocated in front of the bio.
1943 * Front pad allocation is useful for embedding the bio inside
1944 * another structure, to avoid allocating extra data to go with the bio.
1945 * Note that the bio must be embedded at the END of that structure always,
1946 * or things will break badly.
1947 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1948 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1949 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1950 * dispatch queued requests when the mempool runs out of space.
1953 int bioset_init(struct bio_set
*bs
,
1954 unsigned int pool_size
,
1955 unsigned int front_pad
,
1958 unsigned int back_pad
= BIO_INLINE_VECS
* sizeof(struct bio_vec
);
1960 bs
->front_pad
= front_pad
;
1962 spin_lock_init(&bs
->rescue_lock
);
1963 bio_list_init(&bs
->rescue_list
);
1964 INIT_WORK(&bs
->rescue_work
, bio_alloc_rescue
);
1966 bs
->bio_slab
= bio_find_or_create_slab(front_pad
+ back_pad
);
1970 if (mempool_init_slab_pool(&bs
->bio_pool
, pool_size
, bs
->bio_slab
))
1973 if ((flags
& BIOSET_NEED_BVECS
) &&
1974 biovec_init_pool(&bs
->bvec_pool
, pool_size
))
1977 if (!(flags
& BIOSET_NEED_RESCUER
))
1980 bs
->rescue_workqueue
= alloc_workqueue("bioset", WQ_MEM_RECLAIM
, 0);
1981 if (!bs
->rescue_workqueue
)
1989 EXPORT_SYMBOL(bioset_init
);
1992 * Initialize and setup a new bio_set, based on the settings from
1995 int bioset_init_from_src(struct bio_set
*bs
, struct bio_set
*src
)
2000 if (src
->bvec_pool
.min_nr
)
2001 flags
|= BIOSET_NEED_BVECS
;
2002 if (src
->rescue_workqueue
)
2003 flags
|= BIOSET_NEED_RESCUER
;
2005 return bioset_init(bs
, src
->bio_pool
.min_nr
, src
->front_pad
, flags
);
2007 EXPORT_SYMBOL(bioset_init_from_src
);
2009 #ifdef CONFIG_BLK_CGROUP
2012 * bio_disassociate_blkg - puts back the blkg reference if associated
2015 * Helper to disassociate the blkg from @bio if a blkg is associated.
2017 void bio_disassociate_blkg(struct bio
*bio
)
2020 blkg_put(bio
->bi_blkg
);
2021 bio
->bi_blkg
= NULL
;
2024 EXPORT_SYMBOL_GPL(bio_disassociate_blkg
);
2027 * __bio_associate_blkg - associate a bio with the a blkg
2029 * @blkg: the blkg to associate
2031 * This tries to associate @bio with the specified @blkg. Association failure
2032 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2033 * be anything between @blkg and the root_blkg. This situation only happens
2034 * when a cgroup is dying and then the remaining bios will spill to the closest
2037 * A reference will be taken on the @blkg and will be released when @bio is
2040 static void __bio_associate_blkg(struct bio
*bio
, struct blkcg_gq
*blkg
)
2042 bio_disassociate_blkg(bio
);
2044 bio
->bi_blkg
= blkg_tryget_closest(blkg
);
2048 * bio_associate_blkg_from_css - associate a bio with a specified css
2052 * Associate @bio with the blkg found by combining the css's blkg and the
2053 * request_queue of the @bio. This falls back to the queue's root_blkg if
2054 * the association fails with the css.
2056 void bio_associate_blkg_from_css(struct bio
*bio
,
2057 struct cgroup_subsys_state
*css
)
2059 struct request_queue
*q
= bio
->bi_disk
->queue
;
2060 struct blkcg_gq
*blkg
;
2064 if (!css
|| !css
->parent
)
2065 blkg
= q
->root_blkg
;
2067 blkg
= blkg_lookup_create(css_to_blkcg(css
), q
);
2069 __bio_associate_blkg(bio
, blkg
);
2073 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css
);
2077 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2079 * @page: the page to lookup the blkcg from
2081 * Associate @bio with the blkg from @page's owning memcg and the respective
2082 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2085 void bio_associate_blkg_from_page(struct bio
*bio
, struct page
*page
)
2087 struct cgroup_subsys_state
*css
;
2089 if (!page
->mem_cgroup
)
2094 css
= cgroup_e_css(page
->mem_cgroup
->css
.cgroup
, &io_cgrp_subsys
);
2095 bio_associate_blkg_from_css(bio
, css
);
2099 #endif /* CONFIG_MEMCG */
2102 * bio_associate_blkg - associate a bio with a blkg
2105 * Associate @bio with the blkg found from the bio's css and request_queue.
2106 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2107 * already associated, the css is reused and association redone as the
2108 * request_queue may have changed.
2110 void bio_associate_blkg(struct bio
*bio
)
2112 struct cgroup_subsys_state
*css
;
2117 css
= &bio_blkcg(bio
)->css
;
2121 bio_associate_blkg_from_css(bio
, css
);
2125 EXPORT_SYMBOL_GPL(bio_associate_blkg
);
2128 * bio_clone_blkg_association - clone blkg association from src to dst bio
2129 * @dst: destination bio
2132 void bio_clone_blkg_association(struct bio
*dst
, struct bio
*src
)
2137 __bio_associate_blkg(dst
, src
->bi_blkg
);
2141 EXPORT_SYMBOL_GPL(bio_clone_blkg_association
);
2142 #endif /* CONFIG_BLK_CGROUP */
2144 static void __init
biovec_init_slabs(void)
2148 for (i
= 0; i
< BVEC_POOL_NR
; i
++) {
2150 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
2152 if (bvs
->nr_vecs
<= BIO_INLINE_VECS
) {
2157 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
2158 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
2159 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2163 static int __init
init_bio(void)
2167 bio_slabs
= kcalloc(bio_slab_max
, sizeof(struct bio_slab
),
2170 BUILD_BUG_ON(BIO_FLAG_LAST
> BVEC_POOL_OFFSET
);
2173 panic("bio: can't allocate bios\n");
2175 bio_integrity_init();
2176 biovec_init_slabs();
2178 if (bioset_init(&fs_bio_set
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
))
2179 panic("bio: can't allocate bios\n");
2181 if (bioset_integrity_create(&fs_bio_set
, BIO_POOL_SIZE
))
2182 panic("bio: can't create integrity pool\n");
2186 subsys_initcall(init_bio
);