xfs: calculate XFS_TRANS_QM_QUOTAOFF_END space log reservation at mount time
[linux/fpc-iii.git] / arch / arm / include / asm / cacheflush.h
blobe1489c54cd12b4dcb8b997e8e327e2875b183b0c
1 /*
2 * arch/arm/include/asm/cacheflush.h
4 * Copyright (C) 1999-2002 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #ifndef _ASMARM_CACHEFLUSH_H
11 #define _ASMARM_CACHEFLUSH_H
13 #include <linux/mm.h>
15 #include <asm/glue-cache.h>
16 #include <asm/shmparam.h>
17 #include <asm/cachetype.h>
18 #include <asm/outercache.h>
20 #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
23 * This flag is used to indicate that the page pointed to by a pte is clean
24 * and does not require cleaning before returning it to the user.
26 #define PG_dcache_clean PG_arch_1
29 * MM Cache Management
30 * ===================
32 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
33 * implement these methods.
35 * Start addresses are inclusive and end addresses are exclusive;
36 * start addresses should be rounded down, end addresses up.
38 * See Documentation/cachetlb.txt for more information.
39 * Please note that the implementation of these, and the required
40 * effects are cache-type (VIVT/VIPT/PIPT) specific.
42 * flush_icache_all()
44 * Unconditionally clean and invalidate the entire icache.
45 * Currently only needed for cache-v6.S and cache-v7.S, see
46 * __flush_icache_all for the generic implementation.
48 * flush_kern_all()
50 * Unconditionally clean and invalidate the entire cache.
52 * flush_kern_louis()
54 * Flush data cache levels up to the level of unification
55 * inner shareable and invalidate the I-cache.
56 * Only needed from v7 onwards, falls back to flush_cache_all()
57 * for all other processor versions.
59 * flush_user_all()
61 * Clean and invalidate all user space cache entries
62 * before a change of page tables.
64 * flush_user_range(start, end, flags)
66 * Clean and invalidate a range of cache entries in the
67 * specified address space before a change of page tables.
68 * - start - user start address (inclusive, page aligned)
69 * - end - user end address (exclusive, page aligned)
70 * - flags - vma->vm_flags field
72 * coherent_kern_range(start, end)
74 * Ensure coherency between the Icache and the Dcache in the
75 * region described by start, end. If you have non-snooping
76 * Harvard caches, you need to implement this function.
77 * - start - virtual start address
78 * - end - virtual end address
80 * coherent_user_range(start, end)
82 * Ensure coherency between the Icache and the Dcache in the
83 * region described by start, end. If you have non-snooping
84 * Harvard caches, you need to implement this function.
85 * - start - virtual start address
86 * - end - virtual end address
88 * flush_kern_dcache_area(kaddr, size)
90 * Ensure that the data held in page is written back.
91 * - kaddr - page address
92 * - size - region size
94 * DMA Cache Coherency
95 * ===================
97 * dma_flush_range(start, end)
99 * Clean and invalidate the specified virtual address range.
100 * - start - virtual start address
101 * - end - virtual end address
104 struct cpu_cache_fns {
105 void (*flush_icache_all)(void);
106 void (*flush_kern_all)(void);
107 void (*flush_kern_louis)(void);
108 void (*flush_user_all)(void);
109 void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
111 void (*coherent_kern_range)(unsigned long, unsigned long);
112 int (*coherent_user_range)(unsigned long, unsigned long);
113 void (*flush_kern_dcache_area)(void *, size_t);
115 void (*dma_map_area)(const void *, size_t, int);
116 void (*dma_unmap_area)(const void *, size_t, int);
118 void (*dma_flush_range)(const void *, const void *);
122 * Select the calling method
124 #ifdef MULTI_CACHE
126 extern struct cpu_cache_fns cpu_cache;
128 #define __cpuc_flush_icache_all cpu_cache.flush_icache_all
129 #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
130 #define __cpuc_flush_kern_louis cpu_cache.flush_kern_louis
131 #define __cpuc_flush_user_all cpu_cache.flush_user_all
132 #define __cpuc_flush_user_range cpu_cache.flush_user_range
133 #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
134 #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
135 #define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area
138 * These are private to the dma-mapping API. Do not use directly.
139 * Their sole purpose is to ensure that data held in the cache
140 * is visible to DMA, or data written by DMA to system memory is
141 * visible to the CPU.
143 #define dmac_map_area cpu_cache.dma_map_area
144 #define dmac_unmap_area cpu_cache.dma_unmap_area
145 #define dmac_flush_range cpu_cache.dma_flush_range
147 #else
149 extern void __cpuc_flush_icache_all(void);
150 extern void __cpuc_flush_kern_all(void);
151 extern void __cpuc_flush_kern_louis(void);
152 extern void __cpuc_flush_user_all(void);
153 extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
154 extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
155 extern int __cpuc_coherent_user_range(unsigned long, unsigned long);
156 extern void __cpuc_flush_dcache_area(void *, size_t);
159 * These are private to the dma-mapping API. Do not use directly.
160 * Their sole purpose is to ensure that data held in the cache
161 * is visible to DMA, or data written by DMA to system memory is
162 * visible to the CPU.
164 extern void dmac_map_area(const void *, size_t, int);
165 extern void dmac_unmap_area(const void *, size_t, int);
166 extern void dmac_flush_range(const void *, const void *);
168 #endif
171 * Copy user data from/to a page which is mapped into a different
172 * processes address space. Really, we want to allow our "user
173 * space" model to handle this.
175 extern void copy_to_user_page(struct vm_area_struct *, struct page *,
176 unsigned long, void *, const void *, unsigned long);
177 #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
178 do { \
179 memcpy(dst, src, len); \
180 } while (0)
183 * Convert calls to our calling convention.
186 /* Invalidate I-cache */
187 #define __flush_icache_all_generic() \
188 asm("mcr p15, 0, %0, c7, c5, 0" \
189 : : "r" (0));
191 /* Invalidate I-cache inner shareable */
192 #define __flush_icache_all_v7_smp() \
193 asm("mcr p15, 0, %0, c7, c1, 0" \
194 : : "r" (0));
197 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
198 * will fall through to use __flush_icache_all_generic.
200 #if (defined(CONFIG_CPU_V7) && \
201 (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
202 defined(CONFIG_SMP_ON_UP)
203 #define __flush_icache_preferred __cpuc_flush_icache_all
204 #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
205 #define __flush_icache_preferred __flush_icache_all_v7_smp
206 #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
207 #define __flush_icache_preferred __cpuc_flush_icache_all
208 #else
209 #define __flush_icache_preferred __flush_icache_all_generic
210 #endif
212 static inline void __flush_icache_all(void)
214 __flush_icache_preferred();
218 * Flush caches up to Level of Unification Inner Shareable
220 #define flush_cache_louis() __cpuc_flush_kern_louis()
222 #define flush_cache_all() __cpuc_flush_kern_all()
224 static inline void vivt_flush_cache_mm(struct mm_struct *mm)
226 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
227 __cpuc_flush_user_all();
230 static inline void
231 vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
233 struct mm_struct *mm = vma->vm_mm;
235 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
236 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
237 vma->vm_flags);
240 static inline void
241 vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
243 struct mm_struct *mm = vma->vm_mm;
245 if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
246 unsigned long addr = user_addr & PAGE_MASK;
247 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
251 #ifndef CONFIG_CPU_CACHE_VIPT
252 #define flush_cache_mm(mm) \
253 vivt_flush_cache_mm(mm)
254 #define flush_cache_range(vma,start,end) \
255 vivt_flush_cache_range(vma,start,end)
256 #define flush_cache_page(vma,addr,pfn) \
257 vivt_flush_cache_page(vma,addr,pfn)
258 #else
259 extern void flush_cache_mm(struct mm_struct *mm);
260 extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
261 extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
262 #endif
264 #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
267 * flush_cache_user_range is used when we want to ensure that the
268 * Harvard caches are synchronised for the user space address range.
269 * This is used for the ARM private sys_cacheflush system call.
271 #define flush_cache_user_range(start,end) \
272 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end))
275 * Perform necessary cache operations to ensure that data previously
276 * stored within this range of addresses can be executed by the CPU.
278 #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
281 * Perform necessary cache operations to ensure that the TLB will
282 * see data written in the specified area.
284 #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
287 * flush_dcache_page is used when the kernel has written to the page
288 * cache page at virtual address page->virtual.
290 * If this page isn't mapped (ie, page_mapping == NULL), or it might
291 * have userspace mappings, then we _must_ always clean + invalidate
292 * the dcache entries associated with the kernel mapping.
294 * Otherwise we can defer the operation, and clean the cache when we are
295 * about to change to user space. This is the same method as used on SPARC64.
296 * See update_mmu_cache for the user space part.
298 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
299 extern void flush_dcache_page(struct page *);
301 static inline void flush_kernel_vmap_range(void *addr, int size)
303 if ((cache_is_vivt() || cache_is_vipt_aliasing()))
304 __cpuc_flush_dcache_area(addr, (size_t)size);
306 static inline void invalidate_kernel_vmap_range(void *addr, int size)
308 if ((cache_is_vivt() || cache_is_vipt_aliasing()))
309 __cpuc_flush_dcache_area(addr, (size_t)size);
312 #define ARCH_HAS_FLUSH_ANON_PAGE
313 static inline void flush_anon_page(struct vm_area_struct *vma,
314 struct page *page, unsigned long vmaddr)
316 extern void __flush_anon_page(struct vm_area_struct *vma,
317 struct page *, unsigned long);
318 if (PageAnon(page))
319 __flush_anon_page(vma, page, vmaddr);
322 #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
323 static inline void flush_kernel_dcache_page(struct page *page)
327 #define flush_dcache_mmap_lock(mapping) \
328 spin_lock_irq(&(mapping)->tree_lock)
329 #define flush_dcache_mmap_unlock(mapping) \
330 spin_unlock_irq(&(mapping)->tree_lock)
332 #define flush_icache_user_range(vma,page,addr,len) \
333 flush_dcache_page(page)
336 * We don't appear to need to do anything here. In fact, if we did, we'd
337 * duplicate cache flushing elsewhere performed by flush_dcache_page().
339 #define flush_icache_page(vma,page) do { } while (0)
342 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
343 * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
344 * caches, since the direct-mappings of these pages may contain cached
345 * data, we need to do a full cache flush to ensure that writebacks
346 * don't corrupt data placed into these pages via the new mappings.
348 static inline void flush_cache_vmap(unsigned long start, unsigned long end)
350 if (!cache_is_vipt_nonaliasing())
351 flush_cache_all();
352 else
354 * set_pte_at() called from vmap_pte_range() does not
355 * have a DSB after cleaning the cache line.
357 dsb();
360 static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
362 if (!cache_is_vipt_nonaliasing())
363 flush_cache_all();
366 #endif