2 * IA-32 Huge TLB Page Support for Kernel.
4 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
7 #include <linux/init.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/err.h>
13 #include <linux/sysctl.h>
16 #include <asm/tlbflush.h>
17 #include <asm/pgalloc.h>
19 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
20 struct vm_area_struct
*vma
,
21 unsigned long addr
, pgoff_t idx
)
23 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
25 unsigned long sbase
= saddr
& PUD_MASK
;
26 unsigned long s_end
= sbase
+ PUD_SIZE
;
28 /* Allow segments to share if only one is marked locked */
29 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
30 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
33 * match the virtual addresses, permission and the alignment of the
36 if (pmd_index(addr
) != pmd_index(saddr
) ||
37 vm_flags
!= svm_flags
||
38 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
44 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
46 unsigned long base
= addr
& PUD_MASK
;
47 unsigned long end
= base
+ PUD_SIZE
;
50 * check on proper vm_flags and page table alignment
52 if (vma
->vm_flags
& VM_MAYSHARE
&&
53 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
59 * search for a shareable pmd page for hugetlb.
61 static void huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
63 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
64 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
65 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
67 struct prio_tree_iter iter
;
68 struct vm_area_struct
*svma
;
72 if (!vma_shareable(vma
, addr
))
75 spin_lock(&mapping
->i_mmap_lock
);
76 vma_prio_tree_foreach(svma
, &iter
, &mapping
->i_mmap
, idx
, idx
) {
80 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
82 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
84 get_page(virt_to_page(spte
));
93 spin_lock(&mm
->page_table_lock
);
95 pud_populate(mm
, pud
, (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
97 put_page(virt_to_page(spte
));
98 spin_unlock(&mm
->page_table_lock
);
100 spin_unlock(&mapping
->i_mmap_lock
);
104 * unmap huge page backed by shared pte.
106 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
107 * indicated by page_count > 1, unmap is achieved by clearing pud and
108 * decrementing the ref count. If count == 1, the pte page is not shared.
110 * called with vma->vm_mm->page_table_lock held.
112 * returns: 1 successfully unmapped a shared pte page
113 * 0 the underlying pte page is not shared, or it is the last user
115 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
117 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
118 pud_t
*pud
= pud_offset(pgd
, *addr
);
120 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
121 if (page_count(virt_to_page(ptep
)) == 1)
125 put_page(virt_to_page(ptep
));
126 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
130 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
131 unsigned long addr
, unsigned long sz
)
137 pgd
= pgd_offset(mm
, addr
);
138 pud
= pud_alloc(mm
, pgd
, addr
);
140 if (sz
== PUD_SIZE
) {
143 BUG_ON(sz
!= PMD_SIZE
);
145 huge_pmd_share(mm
, addr
, pud
);
146 pte
= (pte_t
*) pmd_alloc(mm
, pud
, addr
);
149 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
154 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
160 pgd
= pgd_offset(mm
, addr
);
161 if (pgd_present(*pgd
)) {
162 pud
= pud_offset(pgd
, addr
);
163 if (pud_present(*pud
)) {
166 pmd
= pmd_offset(pud
, addr
);
169 return (pte_t
*) pmd
;
172 #if 0 /* This is just for testing */
174 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
176 unsigned long start
= address
;
180 struct vm_area_struct
*vma
;
182 vma
= find_vma(mm
, addr
);
183 if (!vma
|| !is_vm_hugetlb_page(vma
))
184 return ERR_PTR(-EINVAL
);
186 pte
= huge_pte_offset(mm
, address
);
188 /* hugetlb should be locked, and hence, prefaulted */
189 WARN_ON(!pte
|| pte_none(*pte
));
191 page
= &pte_page(*pte
)[vpfn
% (HPAGE_SIZE
/PAGE_SIZE
)];
193 WARN_ON(!PageHead(page
));
198 int pmd_huge(pmd_t pmd
)
203 int pud_huge(pud_t pud
)
209 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
210 pmd_t
*pmd
, int write
)
218 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
, int write
)
220 return ERR_PTR(-EINVAL
);
223 int pmd_huge(pmd_t pmd
)
225 return !!(pmd_val(pmd
) & _PAGE_PSE
);
228 int pud_huge(pud_t pud
)
230 return !!(pud_val(pud
) & _PAGE_PSE
);
234 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
235 pmd_t
*pmd
, int write
)
239 page
= pte_page(*(pte_t
*)pmd
);
241 page
+= ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
246 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
247 pud_t
*pud
, int write
)
251 page
= pte_page(*(pte_t
*)pud
);
253 page
+= ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
259 /* x86_64 also uses this file */
261 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
262 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file
*file
,
263 unsigned long addr
, unsigned long len
,
264 unsigned long pgoff
, unsigned long flags
)
266 struct hstate
*h
= hstate_file(file
);
267 struct mm_struct
*mm
= current
->mm
;
268 struct vm_area_struct
*vma
;
269 unsigned long start_addr
;
271 if (len
> mm
->cached_hole_size
) {
272 start_addr
= mm
->free_area_cache
;
274 start_addr
= TASK_UNMAPPED_BASE
;
275 mm
->cached_hole_size
= 0;
279 addr
= ALIGN(start_addr
, huge_page_size(h
));
281 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
282 /* At this point: (!vma || addr < vma->vm_end). */
283 if (TASK_SIZE
- len
< addr
) {
285 * Start a new search - just in case we missed
288 if (start_addr
!= TASK_UNMAPPED_BASE
) {
289 start_addr
= TASK_UNMAPPED_BASE
;
290 mm
->cached_hole_size
= 0;
295 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
296 mm
->free_area_cache
= addr
+ len
;
299 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
300 mm
->cached_hole_size
= vma
->vm_start
- addr
;
301 addr
= ALIGN(vma
->vm_end
, huge_page_size(h
));
305 static unsigned long hugetlb_get_unmapped_area_topdown(struct file
*file
,
306 unsigned long addr0
, unsigned long len
,
307 unsigned long pgoff
, unsigned long flags
)
309 struct hstate
*h
= hstate_file(file
);
310 struct mm_struct
*mm
= current
->mm
;
311 struct vm_area_struct
*vma
, *prev_vma
;
312 unsigned long base
= mm
->mmap_base
, addr
= addr0
;
313 unsigned long largest_hole
= mm
->cached_hole_size
;
316 /* don't allow allocations above current base */
317 if (mm
->free_area_cache
> base
)
318 mm
->free_area_cache
= base
;
320 if (len
<= largest_hole
) {
322 mm
->free_area_cache
= base
;
325 /* make sure it can fit in the remaining address space */
326 if (mm
->free_area_cache
< len
)
329 /* either no address requested or cant fit in requested address hole */
330 addr
= (mm
->free_area_cache
- len
) & huge_page_mask(h
);
333 * Lookup failure means no vma is above this address,
334 * i.e. return with success:
336 if (!(vma
= find_vma_prev(mm
, addr
, &prev_vma
)))
340 * new region fits between prev_vma->vm_end and
341 * vma->vm_start, use it:
343 if (addr
+ len
<= vma
->vm_start
&&
344 (!prev_vma
|| (addr
>= prev_vma
->vm_end
))) {
345 /* remember the address as a hint for next time */
346 mm
->cached_hole_size
= largest_hole
;
347 return (mm
->free_area_cache
= addr
);
349 /* pull free_area_cache down to the first hole */
350 if (mm
->free_area_cache
== vma
->vm_end
) {
351 mm
->free_area_cache
= vma
->vm_start
;
352 mm
->cached_hole_size
= largest_hole
;
356 /* remember the largest hole we saw so far */
357 if (addr
+ largest_hole
< vma
->vm_start
)
358 largest_hole
= vma
->vm_start
- addr
;
360 /* try just below the current vma->vm_start */
361 addr
= (vma
->vm_start
- len
) & huge_page_mask(h
);
362 } while (len
<= vma
->vm_start
);
366 * if hint left us with no space for the requested
367 * mapping then try again:
370 mm
->free_area_cache
= base
;
376 * A failed mmap() very likely causes application failure,
377 * so fall back to the bottom-up function here. This scenario
378 * can happen with large stack limits and large mmap()
381 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
382 mm
->cached_hole_size
= ~0UL;
383 addr
= hugetlb_get_unmapped_area_bottomup(file
, addr0
,
387 * Restore the topdown base:
389 mm
->free_area_cache
= base
;
390 mm
->cached_hole_size
= ~0UL;
396 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
397 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
399 struct hstate
*h
= hstate_file(file
);
400 struct mm_struct
*mm
= current
->mm
;
401 struct vm_area_struct
*vma
;
403 if (len
& ~huge_page_mask(h
))
408 if (flags
& MAP_FIXED
) {
409 if (prepare_hugepage_range(file
, addr
, len
))
415 addr
= ALIGN(addr
, huge_page_size(h
));
416 vma
= find_vma(mm
, addr
);
417 if (TASK_SIZE
- len
>= addr
&&
418 (!vma
|| addr
+ len
<= vma
->vm_start
))
421 if (mm
->get_unmapped_area
== arch_get_unmapped_area
)
422 return hugetlb_get_unmapped_area_bottomup(file
, addr
, len
,
425 return hugetlb_get_unmapped_area_topdown(file
, addr
, len
,
429 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
432 static __init
int setup_hugepagesz(char *opt
)
434 unsigned long ps
= memparse(opt
, &opt
);
435 if (ps
== PMD_SIZE
) {
436 hugetlb_add_hstate(PMD_SHIFT
- PAGE_SHIFT
);
437 } else if (ps
== PUD_SIZE
&& cpu_has_gbpages
) {
438 hugetlb_add_hstate(PUD_SHIFT
- PAGE_SHIFT
);
440 printk(KERN_ERR
"hugepagesz: Unsupported page size %lu M\n",
446 __setup("hugepagesz=", setup_hugepagesz
);