IPVS: netns, svc counters moved in ip_vs_ctl,c
[linux/fpc-iii.git] / arch / x86 / mm / pageattr.c
blob8b830ca14ac46c08facc1a848ddcb3c42c0d56cf
1 /*
2 * Copyright 2002 Andi Kleen, SuSE Labs.
3 * Thanks to Ben LaHaise for precious feedback.
4 */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
29 * The current flushing context - we pass it instead of 5 arguments:
31 struct cpa_data {
32 unsigned long *vaddr;
33 pgprot_t mask_set;
34 pgprot_t mask_clr;
35 int numpages;
36 int flags;
37 unsigned long pfn;
38 unsigned force_split : 1;
39 int curpage;
40 struct page **pages;
44 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
45 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
46 * entries change the page attribute in parallel to some other cpu
47 * splitting a large page entry along with changing the attribute.
49 static DEFINE_SPINLOCK(cpa_lock);
51 #define CPA_FLUSHTLB 1
52 #define CPA_ARRAY 2
53 #define CPA_PAGES_ARRAY 4
55 #ifdef CONFIG_PROC_FS
56 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58 void update_page_count(int level, unsigned long pages)
60 unsigned long flags;
62 /* Protect against CPA */
63 spin_lock_irqsave(&pgd_lock, flags);
64 direct_pages_count[level] += pages;
65 spin_unlock_irqrestore(&pgd_lock, flags);
68 static void split_page_count(int level)
70 direct_pages_count[level]--;
71 direct_pages_count[level - 1] += PTRS_PER_PTE;
74 void arch_report_meminfo(struct seq_file *m)
76 seq_printf(m, "DirectMap4k: %8lu kB\n",
77 direct_pages_count[PG_LEVEL_4K] << 2);
78 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
79 seq_printf(m, "DirectMap2M: %8lu kB\n",
80 direct_pages_count[PG_LEVEL_2M] << 11);
81 #else
82 seq_printf(m, "DirectMap4M: %8lu kB\n",
83 direct_pages_count[PG_LEVEL_2M] << 12);
84 #endif
85 #ifdef CONFIG_X86_64
86 if (direct_gbpages)
87 seq_printf(m, "DirectMap1G: %8lu kB\n",
88 direct_pages_count[PG_LEVEL_1G] << 20);
89 #endif
91 #else
92 static inline void split_page_count(int level) { }
93 #endif
95 #ifdef CONFIG_X86_64
97 static inline unsigned long highmap_start_pfn(void)
99 return __pa(_text) >> PAGE_SHIFT;
102 static inline unsigned long highmap_end_pfn(void)
104 return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
107 #endif
109 #ifdef CONFIG_DEBUG_PAGEALLOC
110 # define debug_pagealloc 1
111 #else
112 # define debug_pagealloc 0
113 #endif
115 static inline int
116 within(unsigned long addr, unsigned long start, unsigned long end)
118 return addr >= start && addr < end;
122 * Flushing functions
126 * clflush_cache_range - flush a cache range with clflush
127 * @addr: virtual start address
128 * @size: number of bytes to flush
130 * clflush is an unordered instruction which needs fencing with mfence
131 * to avoid ordering issues.
133 void clflush_cache_range(void *vaddr, unsigned int size)
135 void *vend = vaddr + size - 1;
137 mb();
139 for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
140 clflush(vaddr);
142 * Flush any possible final partial cacheline:
144 clflush(vend);
146 mb();
148 EXPORT_SYMBOL_GPL(clflush_cache_range);
150 static void __cpa_flush_all(void *arg)
152 unsigned long cache = (unsigned long)arg;
155 * Flush all to work around Errata in early athlons regarding
156 * large page flushing.
158 __flush_tlb_all();
160 if (cache && boot_cpu_data.x86 >= 4)
161 wbinvd();
164 static void cpa_flush_all(unsigned long cache)
166 BUG_ON(irqs_disabled());
168 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
171 static void __cpa_flush_range(void *arg)
174 * We could optimize that further and do individual per page
175 * tlb invalidates for a low number of pages. Caveat: we must
176 * flush the high aliases on 64bit as well.
178 __flush_tlb_all();
181 static void cpa_flush_range(unsigned long start, int numpages, int cache)
183 unsigned int i, level;
184 unsigned long addr;
186 BUG_ON(irqs_disabled());
187 WARN_ON(PAGE_ALIGN(start) != start);
189 on_each_cpu(__cpa_flush_range, NULL, 1);
191 if (!cache)
192 return;
195 * We only need to flush on one CPU,
196 * clflush is a MESI-coherent instruction that
197 * will cause all other CPUs to flush the same
198 * cachelines:
200 for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
201 pte_t *pte = lookup_address(addr, &level);
204 * Only flush present addresses:
206 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
207 clflush_cache_range((void *) addr, PAGE_SIZE);
211 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
212 int in_flags, struct page **pages)
214 unsigned int i, level;
215 unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
217 BUG_ON(irqs_disabled());
219 on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
221 if (!cache || do_wbinvd)
222 return;
225 * We only need to flush on one CPU,
226 * clflush is a MESI-coherent instruction that
227 * will cause all other CPUs to flush the same
228 * cachelines:
230 for (i = 0; i < numpages; i++) {
231 unsigned long addr;
232 pte_t *pte;
234 if (in_flags & CPA_PAGES_ARRAY)
235 addr = (unsigned long)page_address(pages[i]);
236 else
237 addr = start[i];
239 pte = lookup_address(addr, &level);
242 * Only flush present addresses:
244 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
245 clflush_cache_range((void *)addr, PAGE_SIZE);
250 * Certain areas of memory on x86 require very specific protection flags,
251 * for example the BIOS area or kernel text. Callers don't always get this
252 * right (again, ioremap() on BIOS memory is not uncommon) so this function
253 * checks and fixes these known static required protection bits.
255 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
256 unsigned long pfn)
258 pgprot_t forbidden = __pgprot(0);
259 pgprot_t required = __pgprot(0);
262 * The BIOS area between 640k and 1Mb needs to be executable for
263 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
265 #ifdef CONFIG_PCI_BIOS
266 if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
267 pgprot_val(forbidden) |= _PAGE_NX;
268 #endif
271 * The kernel text needs to be executable for obvious reasons
272 * Does not cover __inittext since that is gone later on. On
273 * 64bit we do not enforce !NX on the low mapping
275 if (within(address, (unsigned long)_text, (unsigned long)_etext))
276 pgprot_val(forbidden) |= _PAGE_NX;
279 * The .rodata section needs to be read-only. Using the pfn
280 * catches all aliases.
282 if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
283 __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
284 pgprot_val(forbidden) |= _PAGE_RW;
286 * .data and .bss should always be writable.
288 if (within(address, (unsigned long)_sdata, (unsigned long)_edata) ||
289 within(address, (unsigned long)__bss_start, (unsigned long)__bss_stop))
290 pgprot_val(required) |= _PAGE_RW;
292 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
294 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
295 * kernel text mappings for the large page aligned text, rodata sections
296 * will be always read-only. For the kernel identity mappings covering
297 * the holes caused by this alignment can be anything that user asks.
299 * This will preserve the large page mappings for kernel text/data
300 * at no extra cost.
302 if (kernel_set_to_readonly &&
303 within(address, (unsigned long)_text,
304 (unsigned long)__end_rodata_hpage_align)) {
305 unsigned int level;
308 * Don't enforce the !RW mapping for the kernel text mapping,
309 * if the current mapping is already using small page mapping.
310 * No need to work hard to preserve large page mappings in this
311 * case.
313 * This also fixes the Linux Xen paravirt guest boot failure
314 * (because of unexpected read-only mappings for kernel identity
315 * mappings). In this paravirt guest case, the kernel text
316 * mapping and the kernel identity mapping share the same
317 * page-table pages. Thus we can't really use different
318 * protections for the kernel text and identity mappings. Also,
319 * these shared mappings are made of small page mappings.
320 * Thus this don't enforce !RW mapping for small page kernel
321 * text mapping logic will help Linux Xen parvirt guest boot
322 * aswell.
324 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
325 pgprot_val(forbidden) |= _PAGE_RW;
327 #endif
329 prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
330 prot = __pgprot(pgprot_val(prot) | pgprot_val(required));
332 return prot;
336 * Lookup the page table entry for a virtual address. Return a pointer
337 * to the entry and the level of the mapping.
339 * Note: We return pud and pmd either when the entry is marked large
340 * or when the present bit is not set. Otherwise we would return a
341 * pointer to a nonexisting mapping.
343 pte_t *lookup_address(unsigned long address, unsigned int *level)
345 pgd_t *pgd = pgd_offset_k(address);
346 pud_t *pud;
347 pmd_t *pmd;
349 *level = PG_LEVEL_NONE;
351 if (pgd_none(*pgd))
352 return NULL;
354 pud = pud_offset(pgd, address);
355 if (pud_none(*pud))
356 return NULL;
358 *level = PG_LEVEL_1G;
359 if (pud_large(*pud) || !pud_present(*pud))
360 return (pte_t *)pud;
362 pmd = pmd_offset(pud, address);
363 if (pmd_none(*pmd))
364 return NULL;
366 *level = PG_LEVEL_2M;
367 if (pmd_large(*pmd) || !pmd_present(*pmd))
368 return (pte_t *)pmd;
370 *level = PG_LEVEL_4K;
372 return pte_offset_kernel(pmd, address);
374 EXPORT_SYMBOL_GPL(lookup_address);
377 * Set the new pmd in all the pgds we know about:
379 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
381 /* change init_mm */
382 set_pte_atomic(kpte, pte);
383 #ifdef CONFIG_X86_32
384 if (!SHARED_KERNEL_PMD) {
385 struct page *page;
387 list_for_each_entry(page, &pgd_list, lru) {
388 pgd_t *pgd;
389 pud_t *pud;
390 pmd_t *pmd;
392 pgd = (pgd_t *)page_address(page) + pgd_index(address);
393 pud = pud_offset(pgd, address);
394 pmd = pmd_offset(pud, address);
395 set_pte_atomic((pte_t *)pmd, pte);
398 #endif
401 static int
402 try_preserve_large_page(pte_t *kpte, unsigned long address,
403 struct cpa_data *cpa)
405 unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
406 pte_t new_pte, old_pte, *tmp;
407 pgprot_t old_prot, new_prot, req_prot;
408 int i, do_split = 1;
409 unsigned int level;
411 if (cpa->force_split)
412 return 1;
414 spin_lock_irqsave(&pgd_lock, flags);
416 * Check for races, another CPU might have split this page
417 * up already:
419 tmp = lookup_address(address, &level);
420 if (tmp != kpte)
421 goto out_unlock;
423 switch (level) {
424 case PG_LEVEL_2M:
425 psize = PMD_PAGE_SIZE;
426 pmask = PMD_PAGE_MASK;
427 break;
428 #ifdef CONFIG_X86_64
429 case PG_LEVEL_1G:
430 psize = PUD_PAGE_SIZE;
431 pmask = PUD_PAGE_MASK;
432 break;
433 #endif
434 default:
435 do_split = -EINVAL;
436 goto out_unlock;
440 * Calculate the number of pages, which fit into this large
441 * page starting at address:
443 nextpage_addr = (address + psize) & pmask;
444 numpages = (nextpage_addr - address) >> PAGE_SHIFT;
445 if (numpages < cpa->numpages)
446 cpa->numpages = numpages;
449 * We are safe now. Check whether the new pgprot is the same:
451 old_pte = *kpte;
452 old_prot = new_prot = req_prot = pte_pgprot(old_pte);
454 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
455 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
458 * old_pte points to the large page base address. So we need
459 * to add the offset of the virtual address:
461 pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
462 cpa->pfn = pfn;
464 new_prot = static_protections(req_prot, address, pfn);
467 * We need to check the full range, whether
468 * static_protection() requires a different pgprot for one of
469 * the pages in the range we try to preserve:
471 addr = address & pmask;
472 pfn = pte_pfn(old_pte);
473 for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
474 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
476 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
477 goto out_unlock;
481 * If there are no changes, return. maxpages has been updated
482 * above:
484 if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
485 do_split = 0;
486 goto out_unlock;
490 * We need to change the attributes. Check, whether we can
491 * change the large page in one go. We request a split, when
492 * the address is not aligned and the number of pages is
493 * smaller than the number of pages in the large page. Note
494 * that we limited the number of possible pages already to
495 * the number of pages in the large page.
497 if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
499 * The address is aligned and the number of pages
500 * covers the full page.
502 new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
503 __set_pmd_pte(kpte, address, new_pte);
504 cpa->flags |= CPA_FLUSHTLB;
505 do_split = 0;
508 out_unlock:
509 spin_unlock_irqrestore(&pgd_lock, flags);
511 return do_split;
514 static int split_large_page(pte_t *kpte, unsigned long address)
516 unsigned long flags, pfn, pfninc = 1;
517 unsigned int i, level;
518 pte_t *pbase, *tmp;
519 pgprot_t ref_prot;
520 struct page *base;
522 if (!debug_pagealloc)
523 spin_unlock(&cpa_lock);
524 base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
525 if (!debug_pagealloc)
526 spin_lock(&cpa_lock);
527 if (!base)
528 return -ENOMEM;
530 spin_lock_irqsave(&pgd_lock, flags);
532 * Check for races, another CPU might have split this page
533 * up for us already:
535 tmp = lookup_address(address, &level);
536 if (tmp != kpte)
537 goto out_unlock;
539 pbase = (pte_t *)page_address(base);
540 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
541 ref_prot = pte_pgprot(pte_clrhuge(*kpte));
543 * If we ever want to utilize the PAT bit, we need to
544 * update this function to make sure it's converted from
545 * bit 12 to bit 7 when we cross from the 2MB level to
546 * the 4K level:
548 WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
550 #ifdef CONFIG_X86_64
551 if (level == PG_LEVEL_1G) {
552 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
553 pgprot_val(ref_prot) |= _PAGE_PSE;
555 #endif
558 * Get the target pfn from the original entry:
560 pfn = pte_pfn(*kpte);
561 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
562 set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
564 if (address >= (unsigned long)__va(0) &&
565 address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
566 split_page_count(level);
568 #ifdef CONFIG_X86_64
569 if (address >= (unsigned long)__va(1UL<<32) &&
570 address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
571 split_page_count(level);
572 #endif
575 * Install the new, split up pagetable.
577 * We use the standard kernel pagetable protections for the new
578 * pagetable protections, the actual ptes set above control the
579 * primary protection behavior:
581 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
584 * Intel Atom errata AAH41 workaround.
586 * The real fix should be in hw or in a microcode update, but
587 * we also probabilistically try to reduce the window of having
588 * a large TLB mixed with 4K TLBs while instruction fetches are
589 * going on.
591 __flush_tlb_all();
593 base = NULL;
595 out_unlock:
597 * If we dropped out via the lookup_address check under
598 * pgd_lock then stick the page back into the pool:
600 if (base)
601 __free_page(base);
602 spin_unlock_irqrestore(&pgd_lock, flags);
604 return 0;
607 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
608 int primary)
611 * Ignore all non primary paths.
613 if (!primary)
614 return 0;
617 * Ignore the NULL PTE for kernel identity mapping, as it is expected
618 * to have holes.
619 * Also set numpages to '1' indicating that we processed cpa req for
620 * one virtual address page and its pfn. TBD: numpages can be set based
621 * on the initial value and the level returned by lookup_address().
623 if (within(vaddr, PAGE_OFFSET,
624 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
625 cpa->numpages = 1;
626 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
627 return 0;
628 } else {
629 WARN(1, KERN_WARNING "CPA: called for zero pte. "
630 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
631 *cpa->vaddr);
633 return -EFAULT;
637 static int __change_page_attr(struct cpa_data *cpa, int primary)
639 unsigned long address;
640 int do_split, err;
641 unsigned int level;
642 pte_t *kpte, old_pte;
644 if (cpa->flags & CPA_PAGES_ARRAY) {
645 struct page *page = cpa->pages[cpa->curpage];
646 if (unlikely(PageHighMem(page)))
647 return 0;
648 address = (unsigned long)page_address(page);
649 } else if (cpa->flags & CPA_ARRAY)
650 address = cpa->vaddr[cpa->curpage];
651 else
652 address = *cpa->vaddr;
653 repeat:
654 kpte = lookup_address(address, &level);
655 if (!kpte)
656 return __cpa_process_fault(cpa, address, primary);
658 old_pte = *kpte;
659 if (!pte_val(old_pte))
660 return __cpa_process_fault(cpa, address, primary);
662 if (level == PG_LEVEL_4K) {
663 pte_t new_pte;
664 pgprot_t new_prot = pte_pgprot(old_pte);
665 unsigned long pfn = pte_pfn(old_pte);
667 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
668 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
670 new_prot = static_protections(new_prot, address, pfn);
673 * We need to keep the pfn from the existing PTE,
674 * after all we're only going to change it's attributes
675 * not the memory it points to
677 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
678 cpa->pfn = pfn;
680 * Do we really change anything ?
682 if (pte_val(old_pte) != pte_val(new_pte)) {
683 set_pte_atomic(kpte, new_pte);
684 cpa->flags |= CPA_FLUSHTLB;
686 cpa->numpages = 1;
687 return 0;
691 * Check, whether we can keep the large page intact
692 * and just change the pte:
694 do_split = try_preserve_large_page(kpte, address, cpa);
696 * When the range fits into the existing large page,
697 * return. cp->numpages and cpa->tlbflush have been updated in
698 * try_large_page:
700 if (do_split <= 0)
701 return do_split;
704 * We have to split the large page:
706 err = split_large_page(kpte, address);
707 if (!err) {
709 * Do a global flush tlb after splitting the large page
710 * and before we do the actual change page attribute in the PTE.
712 * With out this, we violate the TLB application note, that says
713 * "The TLBs may contain both ordinary and large-page
714 * translations for a 4-KByte range of linear addresses. This
715 * may occur if software modifies the paging structures so that
716 * the page size used for the address range changes. If the two
717 * translations differ with respect to page frame or attributes
718 * (e.g., permissions), processor behavior is undefined and may
719 * be implementation-specific."
721 * We do this global tlb flush inside the cpa_lock, so that we
722 * don't allow any other cpu, with stale tlb entries change the
723 * page attribute in parallel, that also falls into the
724 * just split large page entry.
726 flush_tlb_all();
727 goto repeat;
730 return err;
733 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
735 static int cpa_process_alias(struct cpa_data *cpa)
737 struct cpa_data alias_cpa;
738 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
739 unsigned long vaddr;
740 int ret;
742 if (cpa->pfn >= max_pfn_mapped)
743 return 0;
745 #ifdef CONFIG_X86_64
746 if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
747 return 0;
748 #endif
750 * No need to redo, when the primary call touched the direct
751 * mapping already:
753 if (cpa->flags & CPA_PAGES_ARRAY) {
754 struct page *page = cpa->pages[cpa->curpage];
755 if (unlikely(PageHighMem(page)))
756 return 0;
757 vaddr = (unsigned long)page_address(page);
758 } else if (cpa->flags & CPA_ARRAY)
759 vaddr = cpa->vaddr[cpa->curpage];
760 else
761 vaddr = *cpa->vaddr;
763 if (!(within(vaddr, PAGE_OFFSET,
764 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
766 alias_cpa = *cpa;
767 alias_cpa.vaddr = &laddr;
768 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
770 ret = __change_page_attr_set_clr(&alias_cpa, 0);
771 if (ret)
772 return ret;
775 #ifdef CONFIG_X86_64
777 * If the primary call didn't touch the high mapping already
778 * and the physical address is inside the kernel map, we need
779 * to touch the high mapped kernel as well:
781 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
782 within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
783 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
784 __START_KERNEL_map - phys_base;
785 alias_cpa = *cpa;
786 alias_cpa.vaddr = &temp_cpa_vaddr;
787 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
790 * The high mapping range is imprecise, so ignore the
791 * return value.
793 __change_page_attr_set_clr(&alias_cpa, 0);
795 #endif
797 return 0;
800 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
802 int ret, numpages = cpa->numpages;
804 while (numpages) {
806 * Store the remaining nr of pages for the large page
807 * preservation check.
809 cpa->numpages = numpages;
810 /* for array changes, we can't use large page */
811 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
812 cpa->numpages = 1;
814 if (!debug_pagealloc)
815 spin_lock(&cpa_lock);
816 ret = __change_page_attr(cpa, checkalias);
817 if (!debug_pagealloc)
818 spin_unlock(&cpa_lock);
819 if (ret)
820 return ret;
822 if (checkalias) {
823 ret = cpa_process_alias(cpa);
824 if (ret)
825 return ret;
829 * Adjust the number of pages with the result of the
830 * CPA operation. Either a large page has been
831 * preserved or a single page update happened.
833 BUG_ON(cpa->numpages > numpages);
834 numpages -= cpa->numpages;
835 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
836 cpa->curpage++;
837 else
838 *cpa->vaddr += cpa->numpages * PAGE_SIZE;
841 return 0;
844 static inline int cache_attr(pgprot_t attr)
846 return pgprot_val(attr) &
847 (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
850 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
851 pgprot_t mask_set, pgprot_t mask_clr,
852 int force_split, int in_flag,
853 struct page **pages)
855 struct cpa_data cpa;
856 int ret, cache, checkalias;
857 unsigned long baddr = 0;
860 * Check, if we are requested to change a not supported
861 * feature:
863 mask_set = canon_pgprot(mask_set);
864 mask_clr = canon_pgprot(mask_clr);
865 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
866 return 0;
868 /* Ensure we are PAGE_SIZE aligned */
869 if (in_flag & CPA_ARRAY) {
870 int i;
871 for (i = 0; i < numpages; i++) {
872 if (addr[i] & ~PAGE_MASK) {
873 addr[i] &= PAGE_MASK;
874 WARN_ON_ONCE(1);
877 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
879 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
880 * No need to cehck in that case
882 if (*addr & ~PAGE_MASK) {
883 *addr &= PAGE_MASK;
885 * People should not be passing in unaligned addresses:
887 WARN_ON_ONCE(1);
890 * Save address for cache flush. *addr is modified in the call
891 * to __change_page_attr_set_clr() below.
893 baddr = *addr;
896 /* Must avoid aliasing mappings in the highmem code */
897 kmap_flush_unused();
899 vm_unmap_aliases();
901 cpa.vaddr = addr;
902 cpa.pages = pages;
903 cpa.numpages = numpages;
904 cpa.mask_set = mask_set;
905 cpa.mask_clr = mask_clr;
906 cpa.flags = 0;
907 cpa.curpage = 0;
908 cpa.force_split = force_split;
910 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
911 cpa.flags |= in_flag;
913 /* No alias checking for _NX bit modifications */
914 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
916 ret = __change_page_attr_set_clr(&cpa, checkalias);
919 * Check whether we really changed something:
921 if (!(cpa.flags & CPA_FLUSHTLB))
922 goto out;
925 * No need to flush, when we did not set any of the caching
926 * attributes:
928 cache = cache_attr(mask_set);
931 * On success we use clflush, when the CPU supports it to
932 * avoid the wbindv. If the CPU does not support it and in the
933 * error case we fall back to cpa_flush_all (which uses
934 * wbindv):
936 if (!ret && cpu_has_clflush) {
937 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
938 cpa_flush_array(addr, numpages, cache,
939 cpa.flags, pages);
940 } else
941 cpa_flush_range(baddr, numpages, cache);
942 } else
943 cpa_flush_all(cache);
945 out:
946 return ret;
949 static inline int change_page_attr_set(unsigned long *addr, int numpages,
950 pgprot_t mask, int array)
952 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
953 (array ? CPA_ARRAY : 0), NULL);
956 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
957 pgprot_t mask, int array)
959 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
960 (array ? CPA_ARRAY : 0), NULL);
963 static inline int cpa_set_pages_array(struct page **pages, int numpages,
964 pgprot_t mask)
966 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
967 CPA_PAGES_ARRAY, pages);
970 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
971 pgprot_t mask)
973 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
974 CPA_PAGES_ARRAY, pages);
977 int _set_memory_uc(unsigned long addr, int numpages)
980 * for now UC MINUS. see comments in ioremap_nocache()
982 return change_page_attr_set(&addr, numpages,
983 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
986 int set_memory_uc(unsigned long addr, int numpages)
988 int ret;
991 * for now UC MINUS. see comments in ioremap_nocache()
993 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
994 _PAGE_CACHE_UC_MINUS, NULL);
995 if (ret)
996 goto out_err;
998 ret = _set_memory_uc(addr, numpages);
999 if (ret)
1000 goto out_free;
1002 return 0;
1004 out_free:
1005 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1006 out_err:
1007 return ret;
1009 EXPORT_SYMBOL(set_memory_uc);
1011 int _set_memory_array(unsigned long *addr, int addrinarray,
1012 unsigned long new_type)
1014 int i, j;
1015 int ret;
1018 * for now UC MINUS. see comments in ioremap_nocache()
1020 for (i = 0; i < addrinarray; i++) {
1021 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1022 new_type, NULL);
1023 if (ret)
1024 goto out_free;
1027 ret = change_page_attr_set(addr, addrinarray,
1028 __pgprot(_PAGE_CACHE_UC_MINUS), 1);
1030 if (!ret && new_type == _PAGE_CACHE_WC)
1031 ret = change_page_attr_set_clr(addr, addrinarray,
1032 __pgprot(_PAGE_CACHE_WC),
1033 __pgprot(_PAGE_CACHE_MASK),
1034 0, CPA_ARRAY, NULL);
1035 if (ret)
1036 goto out_free;
1038 return 0;
1040 out_free:
1041 for (j = 0; j < i; j++)
1042 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1044 return ret;
1047 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1049 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
1051 EXPORT_SYMBOL(set_memory_array_uc);
1053 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1055 return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
1057 EXPORT_SYMBOL(set_memory_array_wc);
1059 int _set_memory_wc(unsigned long addr, int numpages)
1061 int ret;
1062 unsigned long addr_copy = addr;
1064 ret = change_page_attr_set(&addr, numpages,
1065 __pgprot(_PAGE_CACHE_UC_MINUS), 0);
1066 if (!ret) {
1067 ret = change_page_attr_set_clr(&addr_copy, numpages,
1068 __pgprot(_PAGE_CACHE_WC),
1069 __pgprot(_PAGE_CACHE_MASK),
1070 0, 0, NULL);
1072 return ret;
1075 int set_memory_wc(unsigned long addr, int numpages)
1077 int ret;
1079 if (!pat_enabled)
1080 return set_memory_uc(addr, numpages);
1082 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1083 _PAGE_CACHE_WC, NULL);
1084 if (ret)
1085 goto out_err;
1087 ret = _set_memory_wc(addr, numpages);
1088 if (ret)
1089 goto out_free;
1091 return 0;
1093 out_free:
1094 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1095 out_err:
1096 return ret;
1098 EXPORT_SYMBOL(set_memory_wc);
1100 int _set_memory_wb(unsigned long addr, int numpages)
1102 return change_page_attr_clear(&addr, numpages,
1103 __pgprot(_PAGE_CACHE_MASK), 0);
1106 int set_memory_wb(unsigned long addr, int numpages)
1108 int ret;
1110 ret = _set_memory_wb(addr, numpages);
1111 if (ret)
1112 return ret;
1114 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1115 return 0;
1117 EXPORT_SYMBOL(set_memory_wb);
1119 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1121 int i;
1122 int ret;
1124 ret = change_page_attr_clear(addr, addrinarray,
1125 __pgprot(_PAGE_CACHE_MASK), 1);
1126 if (ret)
1127 return ret;
1129 for (i = 0; i < addrinarray; i++)
1130 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1132 return 0;
1134 EXPORT_SYMBOL(set_memory_array_wb);
1136 int set_memory_x(unsigned long addr, int numpages)
1138 if (!(__supported_pte_mask & _PAGE_NX))
1139 return 0;
1141 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1143 EXPORT_SYMBOL(set_memory_x);
1145 int set_memory_nx(unsigned long addr, int numpages)
1147 if (!(__supported_pte_mask & _PAGE_NX))
1148 return 0;
1150 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1152 EXPORT_SYMBOL(set_memory_nx);
1154 int set_memory_ro(unsigned long addr, int numpages)
1156 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1158 EXPORT_SYMBOL_GPL(set_memory_ro);
1160 int set_memory_rw(unsigned long addr, int numpages)
1162 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1164 EXPORT_SYMBOL_GPL(set_memory_rw);
1166 int set_memory_np(unsigned long addr, int numpages)
1168 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1171 int set_memory_4k(unsigned long addr, int numpages)
1173 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1174 __pgprot(0), 1, 0, NULL);
1177 int set_pages_uc(struct page *page, int numpages)
1179 unsigned long addr = (unsigned long)page_address(page);
1181 return set_memory_uc(addr, numpages);
1183 EXPORT_SYMBOL(set_pages_uc);
1185 static int _set_pages_array(struct page **pages, int addrinarray,
1186 unsigned long new_type)
1188 unsigned long start;
1189 unsigned long end;
1190 int i;
1191 int free_idx;
1192 int ret;
1194 for (i = 0; i < addrinarray; i++) {
1195 if (PageHighMem(pages[i]))
1196 continue;
1197 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1198 end = start + PAGE_SIZE;
1199 if (reserve_memtype(start, end, new_type, NULL))
1200 goto err_out;
1203 ret = cpa_set_pages_array(pages, addrinarray,
1204 __pgprot(_PAGE_CACHE_UC_MINUS));
1205 if (!ret && new_type == _PAGE_CACHE_WC)
1206 ret = change_page_attr_set_clr(NULL, addrinarray,
1207 __pgprot(_PAGE_CACHE_WC),
1208 __pgprot(_PAGE_CACHE_MASK),
1209 0, CPA_PAGES_ARRAY, pages);
1210 if (ret)
1211 goto err_out;
1212 return 0; /* Success */
1213 err_out:
1214 free_idx = i;
1215 for (i = 0; i < free_idx; i++) {
1216 if (PageHighMem(pages[i]))
1217 continue;
1218 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1219 end = start + PAGE_SIZE;
1220 free_memtype(start, end);
1222 return -EINVAL;
1225 int set_pages_array_uc(struct page **pages, int addrinarray)
1227 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
1229 EXPORT_SYMBOL(set_pages_array_uc);
1231 int set_pages_array_wc(struct page **pages, int addrinarray)
1233 return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
1235 EXPORT_SYMBOL(set_pages_array_wc);
1237 int set_pages_wb(struct page *page, int numpages)
1239 unsigned long addr = (unsigned long)page_address(page);
1241 return set_memory_wb(addr, numpages);
1243 EXPORT_SYMBOL(set_pages_wb);
1245 int set_pages_array_wb(struct page **pages, int addrinarray)
1247 int retval;
1248 unsigned long start;
1249 unsigned long end;
1250 int i;
1252 retval = cpa_clear_pages_array(pages, addrinarray,
1253 __pgprot(_PAGE_CACHE_MASK));
1254 if (retval)
1255 return retval;
1257 for (i = 0; i < addrinarray; i++) {
1258 if (PageHighMem(pages[i]))
1259 continue;
1260 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1261 end = start + PAGE_SIZE;
1262 free_memtype(start, end);
1265 return 0;
1267 EXPORT_SYMBOL(set_pages_array_wb);
1269 int set_pages_x(struct page *page, int numpages)
1271 unsigned long addr = (unsigned long)page_address(page);
1273 return set_memory_x(addr, numpages);
1275 EXPORT_SYMBOL(set_pages_x);
1277 int set_pages_nx(struct page *page, int numpages)
1279 unsigned long addr = (unsigned long)page_address(page);
1281 return set_memory_nx(addr, numpages);
1283 EXPORT_SYMBOL(set_pages_nx);
1285 int set_pages_ro(struct page *page, int numpages)
1287 unsigned long addr = (unsigned long)page_address(page);
1289 return set_memory_ro(addr, numpages);
1292 int set_pages_rw(struct page *page, int numpages)
1294 unsigned long addr = (unsigned long)page_address(page);
1296 return set_memory_rw(addr, numpages);
1299 #ifdef CONFIG_DEBUG_PAGEALLOC
1301 static int __set_pages_p(struct page *page, int numpages)
1303 unsigned long tempaddr = (unsigned long) page_address(page);
1304 struct cpa_data cpa = { .vaddr = &tempaddr,
1305 .numpages = numpages,
1306 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1307 .mask_clr = __pgprot(0),
1308 .flags = 0};
1311 * No alias checking needed for setting present flag. otherwise,
1312 * we may need to break large pages for 64-bit kernel text
1313 * mappings (this adds to complexity if we want to do this from
1314 * atomic context especially). Let's keep it simple!
1316 return __change_page_attr_set_clr(&cpa, 0);
1319 static int __set_pages_np(struct page *page, int numpages)
1321 unsigned long tempaddr = (unsigned long) page_address(page);
1322 struct cpa_data cpa = { .vaddr = &tempaddr,
1323 .numpages = numpages,
1324 .mask_set = __pgprot(0),
1325 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1326 .flags = 0};
1329 * No alias checking needed for setting not present flag. otherwise,
1330 * we may need to break large pages for 64-bit kernel text
1331 * mappings (this adds to complexity if we want to do this from
1332 * atomic context especially). Let's keep it simple!
1334 return __change_page_attr_set_clr(&cpa, 0);
1337 void kernel_map_pages(struct page *page, int numpages, int enable)
1339 if (PageHighMem(page))
1340 return;
1341 if (!enable) {
1342 debug_check_no_locks_freed(page_address(page),
1343 numpages * PAGE_SIZE);
1347 * If page allocator is not up yet then do not call c_p_a():
1349 if (!debug_pagealloc_enabled)
1350 return;
1353 * The return value is ignored as the calls cannot fail.
1354 * Large pages for identity mappings are not used at boot time
1355 * and hence no memory allocations during large page split.
1357 if (enable)
1358 __set_pages_p(page, numpages);
1359 else
1360 __set_pages_np(page, numpages);
1363 * We should perform an IPI and flush all tlbs,
1364 * but that can deadlock->flush only current cpu:
1366 __flush_tlb_all();
1369 #ifdef CONFIG_HIBERNATION
1371 bool kernel_page_present(struct page *page)
1373 unsigned int level;
1374 pte_t *pte;
1376 if (PageHighMem(page))
1377 return false;
1379 pte = lookup_address((unsigned long)page_address(page), &level);
1380 return (pte_val(*pte) & _PAGE_PRESENT);
1383 #endif /* CONFIG_HIBERNATION */
1385 #endif /* CONFIG_DEBUG_PAGEALLOC */
1388 * The testcases use internal knowledge of the implementation that shouldn't
1389 * be exposed to the rest of the kernel. Include these directly here.
1391 #ifdef CONFIG_CPA_DEBUG
1392 #include "pageattr-test.c"
1393 #endif