ahci: AHCI-mode SATA patch for Intel Avoton DeviceIDs
[linux/fpc-iii.git] / kernel / sched_rt.c
blob6ad4fb394b08db3857413d287ac28c3ab8134a94
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 #ifdef CONFIG_RT_GROUP_SCHED
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15 return container_of(rt_se, struct task_struct, rt);
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
20 return rt_rq->rq;
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
25 return rt_se->rt_rq;
28 #else /* CONFIG_RT_GROUP_SCHED */
30 #define rt_entity_is_task(rt_se) (1)
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
34 return container_of(rt_se, struct task_struct, rt);
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
39 return container_of(rt_rq, struct rq, rt);
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
47 return &rq->rt;
50 #endif /* CONFIG_RT_GROUP_SCHED */
52 #ifdef CONFIG_SMP
54 static inline int rt_overloaded(struct rq *rq)
56 return atomic_read(&rq->rd->rto_count);
59 static inline void rt_set_overload(struct rq *rq)
61 if (!rq->online)
62 return;
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
72 wmb();
73 atomic_inc(&rq->rd->rto_count);
76 static inline void rt_clear_overload(struct rq *rq)
78 if (!rq->online)
79 return;
81 /* the order here really doesn't matter */
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
86 static void update_rt_migration(struct rt_rq *rt_rq)
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
101 if (!rt_entity_is_task(rt_se))
102 return;
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
110 update_rt_migration(rt_rq);
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
115 if (!rt_entity_is_task(rt_se))
116 return;
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
124 update_rt_migration(rt_rq);
127 static inline int has_pushable_tasks(struct rq *rq)
129 return !plist_head_empty(&rq->rt.pushable_tasks);
132 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
134 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
135 plist_node_init(&p->pushable_tasks, p->prio);
136 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
138 /* Update the highest prio pushable task */
139 if (p->prio < rq->rt.highest_prio.next)
140 rq->rt.highest_prio.next = p->prio;
143 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
145 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
147 /* Update the new highest prio pushable task */
148 if (has_pushable_tasks(rq)) {
149 p = plist_first_entry(&rq->rt.pushable_tasks,
150 struct task_struct, pushable_tasks);
151 rq->rt.highest_prio.next = p->prio;
152 } else
153 rq->rt.highest_prio.next = MAX_RT_PRIO;
156 #else
158 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
162 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
166 static inline
167 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
171 static inline
172 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
176 #endif /* CONFIG_SMP */
178 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
180 return !list_empty(&rt_se->run_list);
183 #ifdef CONFIG_RT_GROUP_SCHED
185 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
187 if (!rt_rq->tg)
188 return RUNTIME_INF;
190 return rt_rq->rt_runtime;
193 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
195 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
198 typedef struct task_group *rt_rq_iter_t;
200 static inline struct task_group *next_task_group(struct task_group *tg)
202 do {
203 tg = list_entry_rcu(tg->list.next,
204 typeof(struct task_group), list);
205 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
207 if (&tg->list == &task_groups)
208 tg = NULL;
210 return tg;
213 #define for_each_rt_rq(rt_rq, iter, rq) \
214 for (iter = container_of(&task_groups, typeof(*iter), list); \
215 (iter = next_task_group(iter)) && \
216 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
218 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
220 list_add_rcu(&rt_rq->leaf_rt_rq_list,
221 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
224 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
226 list_del_rcu(&rt_rq->leaf_rt_rq_list);
229 #define for_each_leaf_rt_rq(rt_rq, rq) \
230 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
232 #define for_each_sched_rt_entity(rt_se) \
233 for (; rt_se; rt_se = rt_se->parent)
235 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
237 return rt_se->my_q;
240 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
241 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
243 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
245 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
246 struct sched_rt_entity *rt_se;
248 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
250 rt_se = rt_rq->tg->rt_se[cpu];
252 if (rt_rq->rt_nr_running) {
253 if (rt_se && !on_rt_rq(rt_se))
254 enqueue_rt_entity(rt_se, false);
255 if (rt_rq->highest_prio.curr < curr->prio)
256 resched_task(curr);
260 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
262 struct sched_rt_entity *rt_se;
263 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
265 rt_se = rt_rq->tg->rt_se[cpu];
267 if (rt_se && on_rt_rq(rt_se))
268 dequeue_rt_entity(rt_se);
271 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
273 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
276 static int rt_se_boosted(struct sched_rt_entity *rt_se)
278 struct rt_rq *rt_rq = group_rt_rq(rt_se);
279 struct task_struct *p;
281 if (rt_rq)
282 return !!rt_rq->rt_nr_boosted;
284 p = rt_task_of(rt_se);
285 return p->prio != p->normal_prio;
288 #ifdef CONFIG_SMP
289 static inline const struct cpumask *sched_rt_period_mask(void)
291 return cpu_rq(smp_processor_id())->rd->span;
293 #else
294 static inline const struct cpumask *sched_rt_period_mask(void)
296 return cpu_online_mask;
298 #endif
300 static inline
301 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
303 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
306 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
308 return &rt_rq->tg->rt_bandwidth;
311 #else /* !CONFIG_RT_GROUP_SCHED */
313 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
315 return rt_rq->rt_runtime;
318 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
320 return ktime_to_ns(def_rt_bandwidth.rt_period);
323 typedef struct rt_rq *rt_rq_iter_t;
325 #define for_each_rt_rq(rt_rq, iter, rq) \
326 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
328 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
332 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
336 #define for_each_leaf_rt_rq(rt_rq, rq) \
337 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
339 #define for_each_sched_rt_entity(rt_se) \
340 for (; rt_se; rt_se = NULL)
342 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
344 return NULL;
347 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
349 if (rt_rq->rt_nr_running)
350 resched_task(rq_of_rt_rq(rt_rq)->curr);
353 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
357 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
359 return rt_rq->rt_throttled;
362 static inline const struct cpumask *sched_rt_period_mask(void)
364 return cpu_online_mask;
367 static inline
368 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
370 return &cpu_rq(cpu)->rt;
373 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
375 return &def_rt_bandwidth;
378 #endif /* CONFIG_RT_GROUP_SCHED */
380 #ifdef CONFIG_SMP
382 * We ran out of runtime, see if we can borrow some from our neighbours.
384 static int do_balance_runtime(struct rt_rq *rt_rq)
386 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
387 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
388 int i, weight, more = 0;
389 u64 rt_period;
391 weight = cpumask_weight(rd->span);
393 raw_spin_lock(&rt_b->rt_runtime_lock);
394 rt_period = ktime_to_ns(rt_b->rt_period);
395 for_each_cpu(i, rd->span) {
396 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
397 s64 diff;
399 if (iter == rt_rq)
400 continue;
402 raw_spin_lock(&iter->rt_runtime_lock);
404 * Either all rqs have inf runtime and there's nothing to steal
405 * or __disable_runtime() below sets a specific rq to inf to
406 * indicate its been disabled and disalow stealing.
408 if (iter->rt_runtime == RUNTIME_INF)
409 goto next;
412 * From runqueues with spare time, take 1/n part of their
413 * spare time, but no more than our period.
415 diff = iter->rt_runtime - iter->rt_time;
416 if (diff > 0) {
417 diff = div_u64((u64)diff, weight);
418 if (rt_rq->rt_runtime + diff > rt_period)
419 diff = rt_period - rt_rq->rt_runtime;
420 iter->rt_runtime -= diff;
421 rt_rq->rt_runtime += diff;
422 more = 1;
423 if (rt_rq->rt_runtime == rt_period) {
424 raw_spin_unlock(&iter->rt_runtime_lock);
425 break;
428 next:
429 raw_spin_unlock(&iter->rt_runtime_lock);
431 raw_spin_unlock(&rt_b->rt_runtime_lock);
433 return more;
437 * Ensure this RQ takes back all the runtime it lend to its neighbours.
439 static void __disable_runtime(struct rq *rq)
441 struct root_domain *rd = rq->rd;
442 rt_rq_iter_t iter;
443 struct rt_rq *rt_rq;
445 if (unlikely(!scheduler_running))
446 return;
448 for_each_rt_rq(rt_rq, iter, rq) {
449 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
450 s64 want;
451 int i;
453 raw_spin_lock(&rt_b->rt_runtime_lock);
454 raw_spin_lock(&rt_rq->rt_runtime_lock);
456 * Either we're all inf and nobody needs to borrow, or we're
457 * already disabled and thus have nothing to do, or we have
458 * exactly the right amount of runtime to take out.
460 if (rt_rq->rt_runtime == RUNTIME_INF ||
461 rt_rq->rt_runtime == rt_b->rt_runtime)
462 goto balanced;
463 raw_spin_unlock(&rt_rq->rt_runtime_lock);
466 * Calculate the difference between what we started out with
467 * and what we current have, that's the amount of runtime
468 * we lend and now have to reclaim.
470 want = rt_b->rt_runtime - rt_rq->rt_runtime;
473 * Greedy reclaim, take back as much as we can.
475 for_each_cpu(i, rd->span) {
476 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
477 s64 diff;
480 * Can't reclaim from ourselves or disabled runqueues.
482 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
483 continue;
485 raw_spin_lock(&iter->rt_runtime_lock);
486 if (want > 0) {
487 diff = min_t(s64, iter->rt_runtime, want);
488 iter->rt_runtime -= diff;
489 want -= diff;
490 } else {
491 iter->rt_runtime -= want;
492 want -= want;
494 raw_spin_unlock(&iter->rt_runtime_lock);
496 if (!want)
497 break;
500 raw_spin_lock(&rt_rq->rt_runtime_lock);
502 * We cannot be left wanting - that would mean some runtime
503 * leaked out of the system.
505 BUG_ON(want);
506 balanced:
508 * Disable all the borrow logic by pretending we have inf
509 * runtime - in which case borrowing doesn't make sense.
511 rt_rq->rt_runtime = RUNTIME_INF;
512 raw_spin_unlock(&rt_rq->rt_runtime_lock);
513 raw_spin_unlock(&rt_b->rt_runtime_lock);
517 static void disable_runtime(struct rq *rq)
519 unsigned long flags;
521 raw_spin_lock_irqsave(&rq->lock, flags);
522 __disable_runtime(rq);
523 raw_spin_unlock_irqrestore(&rq->lock, flags);
526 static void __enable_runtime(struct rq *rq)
528 rt_rq_iter_t iter;
529 struct rt_rq *rt_rq;
531 if (unlikely(!scheduler_running))
532 return;
535 * Reset each runqueue's bandwidth settings
537 for_each_rt_rq(rt_rq, iter, rq) {
538 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
540 raw_spin_lock(&rt_b->rt_runtime_lock);
541 raw_spin_lock(&rt_rq->rt_runtime_lock);
542 rt_rq->rt_runtime = rt_b->rt_runtime;
543 rt_rq->rt_time = 0;
544 rt_rq->rt_throttled = 0;
545 raw_spin_unlock(&rt_rq->rt_runtime_lock);
546 raw_spin_unlock(&rt_b->rt_runtime_lock);
550 static void enable_runtime(struct rq *rq)
552 unsigned long flags;
554 raw_spin_lock_irqsave(&rq->lock, flags);
555 __enable_runtime(rq);
556 raw_spin_unlock_irqrestore(&rq->lock, flags);
559 static int balance_runtime(struct rt_rq *rt_rq)
561 int more = 0;
563 if (!sched_feat(RT_RUNTIME_SHARE))
564 return more;
566 if (rt_rq->rt_time > rt_rq->rt_runtime) {
567 raw_spin_unlock(&rt_rq->rt_runtime_lock);
568 more = do_balance_runtime(rt_rq);
569 raw_spin_lock(&rt_rq->rt_runtime_lock);
572 return more;
574 #else /* !CONFIG_SMP */
575 static inline int balance_runtime(struct rt_rq *rt_rq)
577 return 0;
579 #endif /* CONFIG_SMP */
581 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
583 int i, idle = 1;
584 const struct cpumask *span;
586 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
587 return 1;
589 span = sched_rt_period_mask();
590 for_each_cpu(i, span) {
591 int enqueue = 0;
592 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
593 struct rq *rq = rq_of_rt_rq(rt_rq);
595 raw_spin_lock(&rq->lock);
596 if (rt_rq->rt_time) {
597 u64 runtime;
599 raw_spin_lock(&rt_rq->rt_runtime_lock);
600 if (rt_rq->rt_throttled)
601 balance_runtime(rt_rq);
602 runtime = rt_rq->rt_runtime;
603 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
604 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
605 rt_rq->rt_throttled = 0;
606 enqueue = 1;
609 * Force a clock update if the CPU was idle,
610 * lest wakeup -> unthrottle time accumulate.
612 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
613 rq->skip_clock_update = -1;
615 if (rt_rq->rt_time || rt_rq->rt_nr_running)
616 idle = 0;
617 raw_spin_unlock(&rt_rq->rt_runtime_lock);
618 } else if (rt_rq->rt_nr_running) {
619 idle = 0;
620 if (!rt_rq_throttled(rt_rq))
621 enqueue = 1;
624 if (enqueue)
625 sched_rt_rq_enqueue(rt_rq);
626 raw_spin_unlock(&rq->lock);
629 return idle;
632 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
634 #ifdef CONFIG_RT_GROUP_SCHED
635 struct rt_rq *rt_rq = group_rt_rq(rt_se);
637 if (rt_rq)
638 return rt_rq->highest_prio.curr;
639 #endif
641 return rt_task_of(rt_se)->prio;
644 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
646 u64 runtime = sched_rt_runtime(rt_rq);
648 if (rt_rq->rt_throttled)
649 return rt_rq_throttled(rt_rq);
651 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
652 return 0;
654 balance_runtime(rt_rq);
655 runtime = sched_rt_runtime(rt_rq);
656 if (runtime == RUNTIME_INF)
657 return 0;
659 if (rt_rq->rt_time > runtime) {
660 rt_rq->rt_throttled = 1;
661 printk_once(KERN_WARNING "sched: RT throttling activated\n");
662 if (rt_rq_throttled(rt_rq)) {
663 sched_rt_rq_dequeue(rt_rq);
664 return 1;
668 return 0;
672 * Update the current task's runtime statistics. Skip current tasks that
673 * are not in our scheduling class.
675 static void update_curr_rt(struct rq *rq)
677 struct task_struct *curr = rq->curr;
678 struct sched_rt_entity *rt_se = &curr->rt;
679 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
680 u64 delta_exec;
682 if (curr->sched_class != &rt_sched_class)
683 return;
685 delta_exec = rq->clock_task - curr->se.exec_start;
686 if (unlikely((s64)delta_exec < 0))
687 delta_exec = 0;
689 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
691 curr->se.sum_exec_runtime += delta_exec;
692 account_group_exec_runtime(curr, delta_exec);
694 curr->se.exec_start = rq->clock_task;
695 cpuacct_charge(curr, delta_exec);
697 sched_rt_avg_update(rq, delta_exec);
699 if (!rt_bandwidth_enabled())
700 return;
702 for_each_sched_rt_entity(rt_se) {
703 rt_rq = rt_rq_of_se(rt_se);
705 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
706 raw_spin_lock(&rt_rq->rt_runtime_lock);
707 rt_rq->rt_time += delta_exec;
708 if (sched_rt_runtime_exceeded(rt_rq))
709 resched_task(curr);
710 raw_spin_unlock(&rt_rq->rt_runtime_lock);
715 #if defined CONFIG_SMP
717 static void
718 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
720 struct rq *rq = rq_of_rt_rq(rt_rq);
722 if (rq->online && prio < prev_prio)
723 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
726 static void
727 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
729 struct rq *rq = rq_of_rt_rq(rt_rq);
731 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
732 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
735 #else /* CONFIG_SMP */
737 static inline
738 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
739 static inline
740 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
742 #endif /* CONFIG_SMP */
744 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
745 static void
746 inc_rt_prio(struct rt_rq *rt_rq, int prio)
748 int prev_prio = rt_rq->highest_prio.curr;
750 if (prio < prev_prio)
751 rt_rq->highest_prio.curr = prio;
753 inc_rt_prio_smp(rt_rq, prio, prev_prio);
756 static void
757 dec_rt_prio(struct rt_rq *rt_rq, int prio)
759 int prev_prio = rt_rq->highest_prio.curr;
761 if (rt_rq->rt_nr_running) {
763 WARN_ON(prio < prev_prio);
766 * This may have been our highest task, and therefore
767 * we may have some recomputation to do
769 if (prio == prev_prio) {
770 struct rt_prio_array *array = &rt_rq->active;
772 rt_rq->highest_prio.curr =
773 sched_find_first_bit(array->bitmap);
776 } else
777 rt_rq->highest_prio.curr = MAX_RT_PRIO;
779 dec_rt_prio_smp(rt_rq, prio, prev_prio);
782 #else
784 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
785 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
787 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
789 #ifdef CONFIG_RT_GROUP_SCHED
791 static void
792 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
794 if (rt_se_boosted(rt_se))
795 rt_rq->rt_nr_boosted++;
797 if (rt_rq->tg)
798 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
801 static void
802 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
804 if (rt_se_boosted(rt_se))
805 rt_rq->rt_nr_boosted--;
807 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
810 #else /* CONFIG_RT_GROUP_SCHED */
812 static void
813 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
815 start_rt_bandwidth(&def_rt_bandwidth);
818 static inline
819 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
821 #endif /* CONFIG_RT_GROUP_SCHED */
823 static inline
824 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
826 int prio = rt_se_prio(rt_se);
828 WARN_ON(!rt_prio(prio));
829 rt_rq->rt_nr_running++;
831 inc_rt_prio(rt_rq, prio);
832 inc_rt_migration(rt_se, rt_rq);
833 inc_rt_group(rt_se, rt_rq);
836 static inline
837 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
839 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
840 WARN_ON(!rt_rq->rt_nr_running);
841 rt_rq->rt_nr_running--;
843 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
844 dec_rt_migration(rt_se, rt_rq);
845 dec_rt_group(rt_se, rt_rq);
848 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
850 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
851 struct rt_prio_array *array = &rt_rq->active;
852 struct rt_rq *group_rq = group_rt_rq(rt_se);
853 struct list_head *queue = array->queue + rt_se_prio(rt_se);
856 * Don't enqueue the group if its throttled, or when empty.
857 * The latter is a consequence of the former when a child group
858 * get throttled and the current group doesn't have any other
859 * active members.
861 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
862 return;
864 if (!rt_rq->rt_nr_running)
865 list_add_leaf_rt_rq(rt_rq);
867 if (head)
868 list_add(&rt_se->run_list, queue);
869 else
870 list_add_tail(&rt_se->run_list, queue);
871 __set_bit(rt_se_prio(rt_se), array->bitmap);
873 inc_rt_tasks(rt_se, rt_rq);
876 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
878 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
879 struct rt_prio_array *array = &rt_rq->active;
881 list_del_init(&rt_se->run_list);
882 if (list_empty(array->queue + rt_se_prio(rt_se)))
883 __clear_bit(rt_se_prio(rt_se), array->bitmap);
885 dec_rt_tasks(rt_se, rt_rq);
886 if (!rt_rq->rt_nr_running)
887 list_del_leaf_rt_rq(rt_rq);
891 * Because the prio of an upper entry depends on the lower
892 * entries, we must remove entries top - down.
894 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
896 struct sched_rt_entity *back = NULL;
898 for_each_sched_rt_entity(rt_se) {
899 rt_se->back = back;
900 back = rt_se;
903 for (rt_se = back; rt_se; rt_se = rt_se->back) {
904 if (on_rt_rq(rt_se))
905 __dequeue_rt_entity(rt_se);
909 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
911 dequeue_rt_stack(rt_se);
912 for_each_sched_rt_entity(rt_se)
913 __enqueue_rt_entity(rt_se, head);
916 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
918 dequeue_rt_stack(rt_se);
920 for_each_sched_rt_entity(rt_se) {
921 struct rt_rq *rt_rq = group_rt_rq(rt_se);
923 if (rt_rq && rt_rq->rt_nr_running)
924 __enqueue_rt_entity(rt_se, false);
929 * Adding/removing a task to/from a priority array:
931 static void
932 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
934 struct sched_rt_entity *rt_se = &p->rt;
936 if (flags & ENQUEUE_WAKEUP)
937 rt_se->timeout = 0;
939 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
941 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
942 enqueue_pushable_task(rq, p);
944 inc_nr_running(rq);
947 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
949 struct sched_rt_entity *rt_se = &p->rt;
951 update_curr_rt(rq);
952 dequeue_rt_entity(rt_se);
954 dequeue_pushable_task(rq, p);
956 dec_nr_running(rq);
960 * Put task to the end of the run list without the overhead of dequeue
961 * followed by enqueue.
963 static void
964 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
966 if (on_rt_rq(rt_se)) {
967 struct rt_prio_array *array = &rt_rq->active;
968 struct list_head *queue = array->queue + rt_se_prio(rt_se);
970 if (head)
971 list_move(&rt_se->run_list, queue);
972 else
973 list_move_tail(&rt_se->run_list, queue);
977 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
979 struct sched_rt_entity *rt_se = &p->rt;
980 struct rt_rq *rt_rq;
982 for_each_sched_rt_entity(rt_se) {
983 rt_rq = rt_rq_of_se(rt_se);
984 requeue_rt_entity(rt_rq, rt_se, head);
988 static void yield_task_rt(struct rq *rq)
990 requeue_task_rt(rq, rq->curr, 0);
993 #ifdef CONFIG_SMP
994 static int find_lowest_rq(struct task_struct *task);
996 static int
997 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
999 struct task_struct *curr;
1000 struct rq *rq;
1001 int cpu;
1003 cpu = task_cpu(p);
1005 /* For anything but wake ups, just return the task_cpu */
1006 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1007 goto out;
1009 rq = cpu_rq(cpu);
1011 rcu_read_lock();
1012 curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1015 * If the current task on @p's runqueue is an RT task, then
1016 * try to see if we can wake this RT task up on another
1017 * runqueue. Otherwise simply start this RT task
1018 * on its current runqueue.
1020 * We want to avoid overloading runqueues. If the woken
1021 * task is a higher priority, then it will stay on this CPU
1022 * and the lower prio task should be moved to another CPU.
1023 * Even though this will probably make the lower prio task
1024 * lose its cache, we do not want to bounce a higher task
1025 * around just because it gave up its CPU, perhaps for a
1026 * lock?
1028 * For equal prio tasks, we just let the scheduler sort it out.
1030 * Otherwise, just let it ride on the affined RQ and the
1031 * post-schedule router will push the preempted task away
1033 * This test is optimistic, if we get it wrong the load-balancer
1034 * will have to sort it out.
1036 if (curr && unlikely(rt_task(curr)) &&
1037 (curr->rt.nr_cpus_allowed < 2 ||
1038 curr->prio <= p->prio) &&
1039 (p->rt.nr_cpus_allowed > 1)) {
1040 int target = find_lowest_rq(p);
1042 if (target != -1)
1043 cpu = target;
1045 rcu_read_unlock();
1047 out:
1048 return cpu;
1051 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1053 if (rq->curr->rt.nr_cpus_allowed == 1)
1054 return;
1056 if (p->rt.nr_cpus_allowed != 1
1057 && cpupri_find(&rq->rd->cpupri, p, NULL))
1058 return;
1060 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1061 return;
1064 * There appears to be other cpus that can accept
1065 * current and none to run 'p', so lets reschedule
1066 * to try and push current away:
1068 requeue_task_rt(rq, p, 1);
1069 resched_task(rq->curr);
1072 #endif /* CONFIG_SMP */
1075 * Preempt the current task with a newly woken task if needed:
1077 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1079 if (p->prio < rq->curr->prio) {
1080 resched_task(rq->curr);
1081 return;
1084 #ifdef CONFIG_SMP
1086 * If:
1088 * - the newly woken task is of equal priority to the current task
1089 * - the newly woken task is non-migratable while current is migratable
1090 * - current will be preempted on the next reschedule
1092 * we should check to see if current can readily move to a different
1093 * cpu. If so, we will reschedule to allow the push logic to try
1094 * to move current somewhere else, making room for our non-migratable
1095 * task.
1097 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1098 check_preempt_equal_prio(rq, p);
1099 #endif
1102 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1103 struct rt_rq *rt_rq)
1105 struct rt_prio_array *array = &rt_rq->active;
1106 struct sched_rt_entity *next = NULL;
1107 struct list_head *queue;
1108 int idx;
1110 idx = sched_find_first_bit(array->bitmap);
1111 BUG_ON(idx >= MAX_RT_PRIO);
1113 queue = array->queue + idx;
1114 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1116 return next;
1119 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1121 struct sched_rt_entity *rt_se;
1122 struct task_struct *p;
1123 struct rt_rq *rt_rq;
1125 rt_rq = &rq->rt;
1127 if (!rt_rq->rt_nr_running)
1128 return NULL;
1130 if (rt_rq_throttled(rt_rq))
1131 return NULL;
1133 do {
1134 rt_se = pick_next_rt_entity(rq, rt_rq);
1135 BUG_ON(!rt_se);
1136 rt_rq = group_rt_rq(rt_se);
1137 } while (rt_rq);
1139 p = rt_task_of(rt_se);
1140 p->se.exec_start = rq->clock_task;
1142 return p;
1145 static struct task_struct *pick_next_task_rt(struct rq *rq)
1147 struct task_struct *p = _pick_next_task_rt(rq);
1149 /* The running task is never eligible for pushing */
1150 if (p)
1151 dequeue_pushable_task(rq, p);
1153 #ifdef CONFIG_SMP
1155 * We detect this state here so that we can avoid taking the RQ
1156 * lock again later if there is no need to push
1158 rq->post_schedule = has_pushable_tasks(rq);
1159 #endif
1161 return p;
1164 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1166 update_curr_rt(rq);
1169 * The previous task needs to be made eligible for pushing
1170 * if it is still active
1172 if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1173 enqueue_pushable_task(rq, p);
1176 #ifdef CONFIG_SMP
1178 /* Only try algorithms three times */
1179 #define RT_MAX_TRIES 3
1181 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1183 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1185 if (!task_running(rq, p) &&
1186 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1187 (p->rt.nr_cpus_allowed > 1))
1188 return 1;
1189 return 0;
1192 /* Return the second highest RT task, NULL otherwise */
1193 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1195 struct task_struct *next = NULL;
1196 struct sched_rt_entity *rt_se;
1197 struct rt_prio_array *array;
1198 struct rt_rq *rt_rq;
1199 int idx;
1201 for_each_leaf_rt_rq(rt_rq, rq) {
1202 array = &rt_rq->active;
1203 idx = sched_find_first_bit(array->bitmap);
1204 next_idx:
1205 if (idx >= MAX_RT_PRIO)
1206 continue;
1207 if (next && next->prio < idx)
1208 continue;
1209 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1210 struct task_struct *p;
1212 if (!rt_entity_is_task(rt_se))
1213 continue;
1215 p = rt_task_of(rt_se);
1216 if (pick_rt_task(rq, p, cpu)) {
1217 next = p;
1218 break;
1221 if (!next) {
1222 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1223 goto next_idx;
1227 return next;
1230 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1232 static int find_lowest_rq(struct task_struct *task)
1234 struct sched_domain *sd;
1235 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1236 int this_cpu = smp_processor_id();
1237 int cpu = task_cpu(task);
1239 /* Make sure the mask is initialized first */
1240 if (unlikely(!lowest_mask))
1241 return -1;
1243 if (task->rt.nr_cpus_allowed == 1)
1244 return -1; /* No other targets possible */
1246 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1247 return -1; /* No targets found */
1250 * At this point we have built a mask of cpus representing the
1251 * lowest priority tasks in the system. Now we want to elect
1252 * the best one based on our affinity and topology.
1254 * We prioritize the last cpu that the task executed on since
1255 * it is most likely cache-hot in that location.
1257 if (cpumask_test_cpu(cpu, lowest_mask))
1258 return cpu;
1261 * Otherwise, we consult the sched_domains span maps to figure
1262 * out which cpu is logically closest to our hot cache data.
1264 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1265 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1267 rcu_read_lock();
1268 for_each_domain(cpu, sd) {
1269 if (sd->flags & SD_WAKE_AFFINE) {
1270 int best_cpu;
1273 * "this_cpu" is cheaper to preempt than a
1274 * remote processor.
1276 if (this_cpu != -1 &&
1277 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1278 rcu_read_unlock();
1279 return this_cpu;
1282 best_cpu = cpumask_first_and(lowest_mask,
1283 sched_domain_span(sd));
1284 if (best_cpu < nr_cpu_ids) {
1285 rcu_read_unlock();
1286 return best_cpu;
1290 rcu_read_unlock();
1293 * And finally, if there were no matches within the domains
1294 * just give the caller *something* to work with from the compatible
1295 * locations.
1297 if (this_cpu != -1)
1298 return this_cpu;
1300 cpu = cpumask_any(lowest_mask);
1301 if (cpu < nr_cpu_ids)
1302 return cpu;
1303 return -1;
1306 /* Will lock the rq it finds */
1307 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1309 struct rq *lowest_rq = NULL;
1310 int tries;
1311 int cpu;
1313 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1314 cpu = find_lowest_rq(task);
1316 if ((cpu == -1) || (cpu == rq->cpu))
1317 break;
1319 lowest_rq = cpu_rq(cpu);
1321 /* if the prio of this runqueue changed, try again */
1322 if (double_lock_balance(rq, lowest_rq)) {
1324 * We had to unlock the run queue. In
1325 * the mean time, task could have
1326 * migrated already or had its affinity changed.
1327 * Also make sure that it wasn't scheduled on its rq.
1329 if (unlikely(task_rq(task) != rq ||
1330 !cpumask_test_cpu(lowest_rq->cpu,
1331 tsk_cpus_allowed(task)) ||
1332 task_running(rq, task) ||
1333 !task->on_rq)) {
1335 raw_spin_unlock(&lowest_rq->lock);
1336 lowest_rq = NULL;
1337 break;
1341 /* If this rq is still suitable use it. */
1342 if (lowest_rq->rt.highest_prio.curr > task->prio)
1343 break;
1345 /* try again */
1346 double_unlock_balance(rq, lowest_rq);
1347 lowest_rq = NULL;
1350 return lowest_rq;
1353 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1355 struct task_struct *p;
1357 if (!has_pushable_tasks(rq))
1358 return NULL;
1360 p = plist_first_entry(&rq->rt.pushable_tasks,
1361 struct task_struct, pushable_tasks);
1363 BUG_ON(rq->cpu != task_cpu(p));
1364 BUG_ON(task_current(rq, p));
1365 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1367 BUG_ON(!p->on_rq);
1368 BUG_ON(!rt_task(p));
1370 return p;
1374 * If the current CPU has more than one RT task, see if the non
1375 * running task can migrate over to a CPU that is running a task
1376 * of lesser priority.
1378 static int push_rt_task(struct rq *rq)
1380 struct task_struct *next_task;
1381 struct rq *lowest_rq;
1382 int ret = 0;
1384 if (!rq->rt.overloaded)
1385 return 0;
1387 next_task = pick_next_pushable_task(rq);
1388 if (!next_task)
1389 return 0;
1391 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1392 if (unlikely(task_running(rq, next_task)))
1393 return 0;
1394 #endif
1396 retry:
1397 if (unlikely(next_task == rq->curr)) {
1398 WARN_ON(1);
1399 return 0;
1403 * It's possible that the next_task slipped in of
1404 * higher priority than current. If that's the case
1405 * just reschedule current.
1407 if (unlikely(next_task->prio < rq->curr->prio)) {
1408 resched_task(rq->curr);
1409 return 0;
1412 /* We might release rq lock */
1413 get_task_struct(next_task);
1415 /* find_lock_lowest_rq locks the rq if found */
1416 lowest_rq = find_lock_lowest_rq(next_task, rq);
1417 if (!lowest_rq) {
1418 struct task_struct *task;
1420 * find_lock_lowest_rq releases rq->lock
1421 * so it is possible that next_task has migrated.
1423 * We need to make sure that the task is still on the same
1424 * run-queue and is also still the next task eligible for
1425 * pushing.
1427 task = pick_next_pushable_task(rq);
1428 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1430 * The task hasn't migrated, and is still the next
1431 * eligible task, but we failed to find a run-queue
1432 * to push it to. Do not retry in this case, since
1433 * other cpus will pull from us when ready.
1435 goto out;
1438 if (!task)
1439 /* No more tasks, just exit */
1440 goto out;
1443 * Something has shifted, try again.
1445 put_task_struct(next_task);
1446 next_task = task;
1447 goto retry;
1450 deactivate_task(rq, next_task, 0);
1451 set_task_cpu(next_task, lowest_rq->cpu);
1452 activate_task(lowest_rq, next_task, 0);
1453 ret = 1;
1455 resched_task(lowest_rq->curr);
1457 double_unlock_balance(rq, lowest_rq);
1459 out:
1460 put_task_struct(next_task);
1462 return ret;
1465 static void push_rt_tasks(struct rq *rq)
1467 /* push_rt_task will return true if it moved an RT */
1468 while (push_rt_task(rq))
1472 static int pull_rt_task(struct rq *this_rq)
1474 int this_cpu = this_rq->cpu, ret = 0, cpu;
1475 struct task_struct *p;
1476 struct rq *src_rq;
1478 if (likely(!rt_overloaded(this_rq)))
1479 return 0;
1481 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1482 if (this_cpu == cpu)
1483 continue;
1485 src_rq = cpu_rq(cpu);
1488 * Don't bother taking the src_rq->lock if the next highest
1489 * task is known to be lower-priority than our current task.
1490 * This may look racy, but if this value is about to go
1491 * logically higher, the src_rq will push this task away.
1492 * And if its going logically lower, we do not care
1494 if (src_rq->rt.highest_prio.next >=
1495 this_rq->rt.highest_prio.curr)
1496 continue;
1499 * We can potentially drop this_rq's lock in
1500 * double_lock_balance, and another CPU could
1501 * alter this_rq
1503 double_lock_balance(this_rq, src_rq);
1506 * Are there still pullable RT tasks?
1508 if (src_rq->rt.rt_nr_running <= 1)
1509 goto skip;
1511 p = pick_next_highest_task_rt(src_rq, this_cpu);
1514 * Do we have an RT task that preempts
1515 * the to-be-scheduled task?
1517 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1518 WARN_ON(p == src_rq->curr);
1519 WARN_ON(!p->on_rq);
1522 * There's a chance that p is higher in priority
1523 * than what's currently running on its cpu.
1524 * This is just that p is wakeing up and hasn't
1525 * had a chance to schedule. We only pull
1526 * p if it is lower in priority than the
1527 * current task on the run queue
1529 if (p->prio < src_rq->curr->prio)
1530 goto skip;
1532 ret = 1;
1534 deactivate_task(src_rq, p, 0);
1535 set_task_cpu(p, this_cpu);
1536 activate_task(this_rq, p, 0);
1538 * We continue with the search, just in
1539 * case there's an even higher prio task
1540 * in another runqueue. (low likelihood
1541 * but possible)
1544 skip:
1545 double_unlock_balance(this_rq, src_rq);
1548 return ret;
1551 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1553 /* Try to pull RT tasks here if we lower this rq's prio */
1554 if (rq->rt.highest_prio.curr > prev->prio)
1555 pull_rt_task(rq);
1558 static void post_schedule_rt(struct rq *rq)
1560 push_rt_tasks(rq);
1564 * If we are not running and we are not going to reschedule soon, we should
1565 * try to push tasks away now
1567 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1569 if (!task_running(rq, p) &&
1570 !test_tsk_need_resched(rq->curr) &&
1571 has_pushable_tasks(rq) &&
1572 p->rt.nr_cpus_allowed > 1 &&
1573 rt_task(rq->curr) &&
1574 (rq->curr->rt.nr_cpus_allowed < 2 ||
1575 rq->curr->prio <= p->prio))
1576 push_rt_tasks(rq);
1579 static void set_cpus_allowed_rt(struct task_struct *p,
1580 const struct cpumask *new_mask)
1582 int weight = cpumask_weight(new_mask);
1584 BUG_ON(!rt_task(p));
1587 * Update the migration status of the RQ if we have an RT task
1588 * which is running AND changing its weight value.
1590 if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1591 struct rq *rq = task_rq(p);
1593 if (!task_current(rq, p)) {
1595 * Make sure we dequeue this task from the pushable list
1596 * before going further. It will either remain off of
1597 * the list because we are no longer pushable, or it
1598 * will be requeued.
1600 if (p->rt.nr_cpus_allowed > 1)
1601 dequeue_pushable_task(rq, p);
1604 * Requeue if our weight is changing and still > 1
1606 if (weight > 1)
1607 enqueue_pushable_task(rq, p);
1611 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1612 rq->rt.rt_nr_migratory++;
1613 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1614 BUG_ON(!rq->rt.rt_nr_migratory);
1615 rq->rt.rt_nr_migratory--;
1618 update_rt_migration(&rq->rt);
1622 /* Assumes rq->lock is held */
1623 static void rq_online_rt(struct rq *rq)
1625 if (rq->rt.overloaded)
1626 rt_set_overload(rq);
1628 __enable_runtime(rq);
1630 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1633 /* Assumes rq->lock is held */
1634 static void rq_offline_rt(struct rq *rq)
1636 if (rq->rt.overloaded)
1637 rt_clear_overload(rq);
1639 __disable_runtime(rq);
1641 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1645 * When switch from the rt queue, we bring ourselves to a position
1646 * that we might want to pull RT tasks from other runqueues.
1648 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1651 * If there are other RT tasks then we will reschedule
1652 * and the scheduling of the other RT tasks will handle
1653 * the balancing. But if we are the last RT task
1654 * we may need to handle the pulling of RT tasks
1655 * now.
1657 if (p->on_rq && !rq->rt.rt_nr_running)
1658 pull_rt_task(rq);
1661 static inline void init_sched_rt_class(void)
1663 unsigned int i;
1665 for_each_possible_cpu(i)
1666 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1667 GFP_KERNEL, cpu_to_node(i));
1669 #endif /* CONFIG_SMP */
1672 * When switching a task to RT, we may overload the runqueue
1673 * with RT tasks. In this case we try to push them off to
1674 * other runqueues.
1676 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1678 int check_resched = 1;
1681 * If we are already running, then there's nothing
1682 * that needs to be done. But if we are not running
1683 * we may need to preempt the current running task.
1684 * If that current running task is also an RT task
1685 * then see if we can move to another run queue.
1687 if (p->on_rq && rq->curr != p) {
1688 #ifdef CONFIG_SMP
1689 if (rq->rt.overloaded && push_rt_task(rq) &&
1690 /* Don't resched if we changed runqueues */
1691 rq != task_rq(p))
1692 check_resched = 0;
1693 #endif /* CONFIG_SMP */
1694 if (check_resched && p->prio < rq->curr->prio)
1695 resched_task(rq->curr);
1700 * Priority of the task has changed. This may cause
1701 * us to initiate a push or pull.
1703 static void
1704 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1706 if (!p->on_rq)
1707 return;
1709 if (rq->curr == p) {
1710 #ifdef CONFIG_SMP
1712 * If our priority decreases while running, we
1713 * may need to pull tasks to this runqueue.
1715 if (oldprio < p->prio)
1716 pull_rt_task(rq);
1718 * If there's a higher priority task waiting to run
1719 * then reschedule. Note, the above pull_rt_task
1720 * can release the rq lock and p could migrate.
1721 * Only reschedule if p is still on the same runqueue.
1723 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1724 resched_task(p);
1725 #else
1726 /* For UP simply resched on drop of prio */
1727 if (oldprio < p->prio)
1728 resched_task(p);
1729 #endif /* CONFIG_SMP */
1730 } else {
1732 * This task is not running, but if it is
1733 * greater than the current running task
1734 * then reschedule.
1736 if (p->prio < rq->curr->prio)
1737 resched_task(rq->curr);
1741 static void watchdog(struct rq *rq, struct task_struct *p)
1743 unsigned long soft, hard;
1745 /* max may change after cur was read, this will be fixed next tick */
1746 soft = task_rlimit(p, RLIMIT_RTTIME);
1747 hard = task_rlimit_max(p, RLIMIT_RTTIME);
1749 if (soft != RLIM_INFINITY) {
1750 unsigned long next;
1752 p->rt.timeout++;
1753 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1754 if (p->rt.timeout > next)
1755 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1759 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1761 update_curr_rt(rq);
1763 watchdog(rq, p);
1766 * RR tasks need a special form of timeslice management.
1767 * FIFO tasks have no timeslices.
1769 if (p->policy != SCHED_RR)
1770 return;
1772 if (--p->rt.time_slice)
1773 return;
1775 p->rt.time_slice = DEF_TIMESLICE;
1778 * Requeue to the end of queue if we are not the only element
1779 * on the queue:
1781 if (p->rt.run_list.prev != p->rt.run_list.next) {
1782 requeue_task_rt(rq, p, 0);
1783 set_tsk_need_resched(p);
1787 static void set_curr_task_rt(struct rq *rq)
1789 struct task_struct *p = rq->curr;
1791 p->se.exec_start = rq->clock_task;
1793 /* The running task is never eligible for pushing */
1794 dequeue_pushable_task(rq, p);
1797 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1800 * Time slice is 0 for SCHED_FIFO tasks
1802 if (task->policy == SCHED_RR)
1803 return DEF_TIMESLICE;
1804 else
1805 return 0;
1808 static const struct sched_class rt_sched_class = {
1809 .next = &fair_sched_class,
1810 .enqueue_task = enqueue_task_rt,
1811 .dequeue_task = dequeue_task_rt,
1812 .yield_task = yield_task_rt,
1814 .check_preempt_curr = check_preempt_curr_rt,
1816 .pick_next_task = pick_next_task_rt,
1817 .put_prev_task = put_prev_task_rt,
1819 #ifdef CONFIG_SMP
1820 .select_task_rq = select_task_rq_rt,
1822 .set_cpus_allowed = set_cpus_allowed_rt,
1823 .rq_online = rq_online_rt,
1824 .rq_offline = rq_offline_rt,
1825 .pre_schedule = pre_schedule_rt,
1826 .post_schedule = post_schedule_rt,
1827 .task_woken = task_woken_rt,
1828 .switched_from = switched_from_rt,
1829 #endif
1831 .set_curr_task = set_curr_task_rt,
1832 .task_tick = task_tick_rt,
1834 .get_rr_interval = get_rr_interval_rt,
1836 .prio_changed = prio_changed_rt,
1837 .switched_to = switched_to_rt,
1840 #ifdef CONFIG_SCHED_DEBUG
1841 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1843 static void print_rt_stats(struct seq_file *m, int cpu)
1845 rt_rq_iter_t iter;
1846 struct rt_rq *rt_rq;
1848 rcu_read_lock();
1849 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1850 print_rt_rq(m, cpu, rt_rq);
1851 rcu_read_unlock();
1853 #endif /* CONFIG_SCHED_DEBUG */