ahci: AHCI-mode SATA patch for Intel Avoton DeviceIDs
[linux/fpc-iii.git] / kernel / workqueue.c
blob0ad24209221b0c160da4fc2dda3814c5f290d2e3
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
4 * Copyright (C) 2002 Ingo Molnar
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
12 * Made to use alloc_percpu by Christoph Lameter.
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
23 * Please read Documentation/workqueue.txt for details.
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
45 #include "workqueue_sched.h"
47 enum {
48 /* global_cwq flags */
49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
55 /* worker flags */
56 WORKER_STARTED = 1 << 0, /* started */
57 WORKER_DIE = 1 << 1, /* die die die */
58 WORKER_IDLE = 1 << 2, /* is idle */
59 WORKER_PREP = 1 << 3, /* preparing to run works */
60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
61 WORKER_REBIND = 1 << 5, /* mom is home, come back */
62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
68 /* gcwq->trustee_state */
69 TRUSTEE_START = 0, /* start */
70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
71 TRUSTEE_BUTCHER = 2, /* butcher workers */
72 TRUSTEE_RELEASE = 3, /* release workers */
73 TRUSTEE_DONE = 4, /* trustee is done */
75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
82 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
83 /* call for help after 10ms
84 (min two ticks) */
85 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
86 CREATE_COOLDOWN = HZ, /* time to breath after fail */
87 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
90 * Rescue workers are used only on emergencies and shared by
91 * all cpus. Give -20.
93 RESCUER_NICE_LEVEL = -20,
97 * Structure fields follow one of the following exclusion rules.
99 * I: Modifiable by initialization/destruction paths and read-only for
100 * everyone else.
102 * P: Preemption protected. Disabling preemption is enough and should
103 * only be modified and accessed from the local cpu.
105 * L: gcwq->lock protected. Access with gcwq->lock held.
107 * X: During normal operation, modification requires gcwq->lock and
108 * should be done only from local cpu. Either disabling preemption
109 * on local cpu or grabbing gcwq->lock is enough for read access.
110 * If GCWQ_DISASSOCIATED is set, it's identical to L.
112 * F: wq->flush_mutex protected.
114 * W: workqueue_lock protected.
117 struct global_cwq;
120 * The poor guys doing the actual heavy lifting. All on-duty workers
121 * are either serving the manager role, on idle list or on busy hash.
123 struct worker {
124 /* on idle list while idle, on busy hash table while busy */
125 union {
126 struct list_head entry; /* L: while idle */
127 struct hlist_node hentry; /* L: while busy */
130 struct work_struct *current_work; /* L: work being processed */
131 work_func_t current_func; /* L: current_work's fn */
132 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
133 struct list_head scheduled; /* L: scheduled works */
134 struct task_struct *task; /* I: worker task */
135 struct global_cwq *gcwq; /* I: the associated gcwq */
136 /* 64 bytes boundary on 64bit, 32 on 32bit */
137 unsigned long last_active; /* L: last active timestamp */
138 unsigned int flags; /* X: flags */
139 int id; /* I: worker id */
140 struct work_struct rebind_work; /* L: rebind worker to cpu */
144 * Global per-cpu workqueue. There's one and only one for each cpu
145 * and all works are queued and processed here regardless of their
146 * target workqueues.
148 struct global_cwq {
149 spinlock_t lock; /* the gcwq lock */
150 struct list_head worklist; /* L: list of pending works */
151 unsigned int cpu; /* I: the associated cpu */
152 unsigned int flags; /* L: GCWQ_* flags */
154 int nr_workers; /* L: total number of workers */
155 int nr_idle; /* L: currently idle ones */
157 /* workers are chained either in the idle_list or busy_hash */
158 struct list_head idle_list; /* X: list of idle workers */
159 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
160 /* L: hash of busy workers */
162 struct timer_list idle_timer; /* L: worker idle timeout */
163 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
165 struct ida worker_ida; /* L: for worker IDs */
167 struct task_struct *trustee; /* L: for gcwq shutdown */
168 unsigned int trustee_state; /* L: trustee state */
169 wait_queue_head_t trustee_wait; /* trustee wait */
170 struct worker *first_idle; /* L: first idle worker */
171 } ____cacheline_aligned_in_smp;
174 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
175 * work_struct->data are used for flags and thus cwqs need to be
176 * aligned at two's power of the number of flag bits.
178 struct cpu_workqueue_struct {
179 struct global_cwq *gcwq; /* I: the associated gcwq */
180 struct workqueue_struct *wq; /* I: the owning workqueue */
181 int work_color; /* L: current color */
182 int flush_color; /* L: flushing color */
183 int nr_in_flight[WORK_NR_COLORS];
184 /* L: nr of in_flight works */
185 int nr_active; /* L: nr of active works */
186 int max_active; /* L: max active works */
187 struct list_head delayed_works; /* L: delayed works */
191 * Structure used to wait for workqueue flush.
193 struct wq_flusher {
194 struct list_head list; /* F: list of flushers */
195 int flush_color; /* F: flush color waiting for */
196 struct completion done; /* flush completion */
200 * All cpumasks are assumed to be always set on UP and thus can't be
201 * used to determine whether there's something to be done.
203 #ifdef CONFIG_SMP
204 typedef cpumask_var_t mayday_mask_t;
205 #define mayday_test_and_set_cpu(cpu, mask) \
206 cpumask_test_and_set_cpu((cpu), (mask))
207 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
208 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
209 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
210 #define free_mayday_mask(mask) free_cpumask_var((mask))
211 #else
212 typedef unsigned long mayday_mask_t;
213 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
214 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
215 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
216 #define alloc_mayday_mask(maskp, gfp) true
217 #define free_mayday_mask(mask) do { } while (0)
218 #endif
221 * The externally visible workqueue abstraction is an array of
222 * per-CPU workqueues:
224 struct workqueue_struct {
225 unsigned int flags; /* W: WQ_* flags */
226 union {
227 struct cpu_workqueue_struct __percpu *pcpu;
228 struct cpu_workqueue_struct *single;
229 unsigned long v;
230 } cpu_wq; /* I: cwq's */
231 struct list_head list; /* W: list of all workqueues */
233 struct mutex flush_mutex; /* protects wq flushing */
234 int work_color; /* F: current work color */
235 int flush_color; /* F: current flush color */
236 atomic_t nr_cwqs_to_flush; /* flush in progress */
237 struct wq_flusher *first_flusher; /* F: first flusher */
238 struct list_head flusher_queue; /* F: flush waiters */
239 struct list_head flusher_overflow; /* F: flush overflow list */
241 mayday_mask_t mayday_mask; /* cpus requesting rescue */
242 struct worker *rescuer; /* I: rescue worker */
244 int nr_drainers; /* W: drain in progress */
245 int saved_max_active; /* W: saved cwq max_active */
246 const char *name; /* I: workqueue name */
247 #ifdef CONFIG_LOCKDEP
248 struct lockdep_map lockdep_map;
249 #endif
252 struct workqueue_struct *system_wq __read_mostly;
253 struct workqueue_struct *system_long_wq __read_mostly;
254 struct workqueue_struct *system_nrt_wq __read_mostly;
255 struct workqueue_struct *system_unbound_wq __read_mostly;
256 struct workqueue_struct *system_freezable_wq __read_mostly;
257 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
258 EXPORT_SYMBOL_GPL(system_wq);
259 EXPORT_SYMBOL_GPL(system_long_wq);
260 EXPORT_SYMBOL_GPL(system_nrt_wq);
261 EXPORT_SYMBOL_GPL(system_unbound_wq);
262 EXPORT_SYMBOL_GPL(system_freezable_wq);
263 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
265 #define CREATE_TRACE_POINTS
266 #include <trace/events/workqueue.h>
268 #define for_each_busy_worker(worker, i, pos, gcwq) \
269 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
270 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
272 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
273 unsigned int sw)
275 if (cpu < nr_cpu_ids) {
276 if (sw & 1) {
277 cpu = cpumask_next(cpu, mask);
278 if (cpu < nr_cpu_ids)
279 return cpu;
281 if (sw & 2)
282 return WORK_CPU_UNBOUND;
284 return WORK_CPU_NONE;
287 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
288 struct workqueue_struct *wq)
290 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
294 * CPU iterators
296 * An extra gcwq is defined for an invalid cpu number
297 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
298 * specific CPU. The following iterators are similar to
299 * for_each_*_cpu() iterators but also considers the unbound gcwq.
301 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
302 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
303 * for_each_cwq_cpu() : possible CPUs for bound workqueues,
304 * WORK_CPU_UNBOUND for unbound workqueues
306 #define for_each_gcwq_cpu(cpu) \
307 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
308 (cpu) < WORK_CPU_NONE; \
309 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
311 #define for_each_online_gcwq_cpu(cpu) \
312 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
313 (cpu) < WORK_CPU_NONE; \
314 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
316 #define for_each_cwq_cpu(cpu, wq) \
317 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
318 (cpu) < WORK_CPU_NONE; \
319 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
321 #ifdef CONFIG_DEBUG_OBJECTS_WORK
323 static struct debug_obj_descr work_debug_descr;
325 static void *work_debug_hint(void *addr)
327 return ((struct work_struct *) addr)->func;
331 * fixup_init is called when:
332 * - an active object is initialized
334 static int work_fixup_init(void *addr, enum debug_obj_state state)
336 struct work_struct *work = addr;
338 switch (state) {
339 case ODEBUG_STATE_ACTIVE:
340 cancel_work_sync(work);
341 debug_object_init(work, &work_debug_descr);
342 return 1;
343 default:
344 return 0;
349 * fixup_activate is called when:
350 * - an active object is activated
351 * - an unknown object is activated (might be a statically initialized object)
353 static int work_fixup_activate(void *addr, enum debug_obj_state state)
355 struct work_struct *work = addr;
357 switch (state) {
359 case ODEBUG_STATE_NOTAVAILABLE:
361 * This is not really a fixup. The work struct was
362 * statically initialized. We just make sure that it
363 * is tracked in the object tracker.
365 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
366 debug_object_init(work, &work_debug_descr);
367 debug_object_activate(work, &work_debug_descr);
368 return 0;
370 WARN_ON_ONCE(1);
371 return 0;
373 case ODEBUG_STATE_ACTIVE:
374 WARN_ON(1);
376 default:
377 return 0;
382 * fixup_free is called when:
383 * - an active object is freed
385 static int work_fixup_free(void *addr, enum debug_obj_state state)
387 struct work_struct *work = addr;
389 switch (state) {
390 case ODEBUG_STATE_ACTIVE:
391 cancel_work_sync(work);
392 debug_object_free(work, &work_debug_descr);
393 return 1;
394 default:
395 return 0;
399 static struct debug_obj_descr work_debug_descr = {
400 .name = "work_struct",
401 .debug_hint = work_debug_hint,
402 .fixup_init = work_fixup_init,
403 .fixup_activate = work_fixup_activate,
404 .fixup_free = work_fixup_free,
407 static inline void debug_work_activate(struct work_struct *work)
409 debug_object_activate(work, &work_debug_descr);
412 static inline void debug_work_deactivate(struct work_struct *work)
414 debug_object_deactivate(work, &work_debug_descr);
417 void __init_work(struct work_struct *work, int onstack)
419 if (onstack)
420 debug_object_init_on_stack(work, &work_debug_descr);
421 else
422 debug_object_init(work, &work_debug_descr);
424 EXPORT_SYMBOL_GPL(__init_work);
426 void destroy_work_on_stack(struct work_struct *work)
428 debug_object_free(work, &work_debug_descr);
430 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
432 #else
433 static inline void debug_work_activate(struct work_struct *work) { }
434 static inline void debug_work_deactivate(struct work_struct *work) { }
435 #endif
437 /* Serializes the accesses to the list of workqueues. */
438 static DEFINE_SPINLOCK(workqueue_lock);
439 static LIST_HEAD(workqueues);
440 static bool workqueue_freezing; /* W: have wqs started freezing? */
443 * The almighty global cpu workqueues. nr_running is the only field
444 * which is expected to be used frequently by other cpus via
445 * try_to_wake_up(). Put it in a separate cacheline.
447 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
448 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
451 * Global cpu workqueue and nr_running counter for unbound gcwq. The
452 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
453 * workers have WORKER_UNBOUND set.
455 static struct global_cwq unbound_global_cwq;
456 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
458 static int worker_thread(void *__worker);
460 static struct global_cwq *get_gcwq(unsigned int cpu)
462 if (cpu != WORK_CPU_UNBOUND)
463 return &per_cpu(global_cwq, cpu);
464 else
465 return &unbound_global_cwq;
468 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
470 if (cpu != WORK_CPU_UNBOUND)
471 return &per_cpu(gcwq_nr_running, cpu);
472 else
473 return &unbound_gcwq_nr_running;
476 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
477 struct workqueue_struct *wq)
479 if (!(wq->flags & WQ_UNBOUND)) {
480 if (likely(cpu < nr_cpu_ids)) {
481 #ifdef CONFIG_SMP
482 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
483 #else
484 return wq->cpu_wq.single;
485 #endif
487 } else if (likely(cpu == WORK_CPU_UNBOUND))
488 return wq->cpu_wq.single;
489 return NULL;
492 static unsigned int work_color_to_flags(int color)
494 return color << WORK_STRUCT_COLOR_SHIFT;
497 static int get_work_color(struct work_struct *work)
499 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
500 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
503 static int work_next_color(int color)
505 return (color + 1) % WORK_NR_COLORS;
509 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
510 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
511 * cleared and the work data contains the cpu number it was last on.
513 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
514 * cwq, cpu or clear work->data. These functions should only be
515 * called while the work is owned - ie. while the PENDING bit is set.
517 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
518 * corresponding to a work. gcwq is available once the work has been
519 * queued anywhere after initialization. cwq is available only from
520 * queueing until execution starts.
522 static inline void set_work_data(struct work_struct *work, unsigned long data,
523 unsigned long flags)
525 BUG_ON(!work_pending(work));
526 atomic_long_set(&work->data, data | flags | work_static(work));
529 static void set_work_cwq(struct work_struct *work,
530 struct cpu_workqueue_struct *cwq,
531 unsigned long extra_flags)
533 set_work_data(work, (unsigned long)cwq,
534 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
537 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
539 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
542 static void clear_work_data(struct work_struct *work)
544 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
547 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
549 unsigned long data = atomic_long_read(&work->data);
551 if (data & WORK_STRUCT_CWQ)
552 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
553 else
554 return NULL;
557 static struct global_cwq *get_work_gcwq(struct work_struct *work)
559 unsigned long data = atomic_long_read(&work->data);
560 unsigned int cpu;
562 if (data & WORK_STRUCT_CWQ)
563 return ((struct cpu_workqueue_struct *)
564 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
566 cpu = data >> WORK_STRUCT_FLAG_BITS;
567 if (cpu == WORK_CPU_NONE)
568 return NULL;
570 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
571 return get_gcwq(cpu);
575 * Policy functions. These define the policies on how the global
576 * worker pool is managed. Unless noted otherwise, these functions
577 * assume that they're being called with gcwq->lock held.
580 static bool __need_more_worker(struct global_cwq *gcwq)
582 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
583 gcwq->flags & GCWQ_HIGHPRI_PENDING;
587 * Need to wake up a worker? Called from anything but currently
588 * running workers.
590 static bool need_more_worker(struct global_cwq *gcwq)
592 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
595 /* Can I start working? Called from busy but !running workers. */
596 static bool may_start_working(struct global_cwq *gcwq)
598 return gcwq->nr_idle;
601 /* Do I need to keep working? Called from currently running workers. */
602 static bool keep_working(struct global_cwq *gcwq)
604 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
606 return !list_empty(&gcwq->worklist) &&
607 (atomic_read(nr_running) <= 1 ||
608 gcwq->flags & GCWQ_HIGHPRI_PENDING);
611 /* Do we need a new worker? Called from manager. */
612 static bool need_to_create_worker(struct global_cwq *gcwq)
614 return need_more_worker(gcwq) && !may_start_working(gcwq);
617 /* Do I need to be the manager? */
618 static bool need_to_manage_workers(struct global_cwq *gcwq)
620 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
623 /* Do we have too many workers and should some go away? */
624 static bool too_many_workers(struct global_cwq *gcwq)
626 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
627 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
628 int nr_busy = gcwq->nr_workers - nr_idle;
630 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
634 * Wake up functions.
637 /* Return the first worker. Safe with preemption disabled */
638 static struct worker *first_worker(struct global_cwq *gcwq)
640 if (unlikely(list_empty(&gcwq->idle_list)))
641 return NULL;
643 return list_first_entry(&gcwq->idle_list, struct worker, entry);
647 * wake_up_worker - wake up an idle worker
648 * @gcwq: gcwq to wake worker for
650 * Wake up the first idle worker of @gcwq.
652 * CONTEXT:
653 * spin_lock_irq(gcwq->lock).
655 static void wake_up_worker(struct global_cwq *gcwq)
657 struct worker *worker = first_worker(gcwq);
659 if (likely(worker))
660 wake_up_process(worker->task);
664 * wq_worker_waking_up - a worker is waking up
665 * @task: task waking up
666 * @cpu: CPU @task is waking up to
668 * This function is called during try_to_wake_up() when a worker is
669 * being awoken.
671 * CONTEXT:
672 * spin_lock_irq(rq->lock)
674 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
676 struct worker *worker = kthread_data(task);
678 if (!(worker->flags & WORKER_NOT_RUNNING))
679 atomic_inc(get_gcwq_nr_running(cpu));
683 * wq_worker_sleeping - a worker is going to sleep
684 * @task: task going to sleep
685 * @cpu: CPU in question, must be the current CPU number
687 * This function is called during schedule() when a busy worker is
688 * going to sleep. Worker on the same cpu can be woken up by
689 * returning pointer to its task.
691 * CONTEXT:
692 * spin_lock_irq(rq->lock)
694 * RETURNS:
695 * Worker task on @cpu to wake up, %NULL if none.
697 struct task_struct *wq_worker_sleeping(struct task_struct *task,
698 unsigned int cpu)
700 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
701 struct global_cwq *gcwq = get_gcwq(cpu);
702 atomic_t *nr_running = get_gcwq_nr_running(cpu);
704 if (worker->flags & WORKER_NOT_RUNNING)
705 return NULL;
707 /* this can only happen on the local cpu */
708 BUG_ON(cpu != raw_smp_processor_id());
711 * The counterpart of the following dec_and_test, implied mb,
712 * worklist not empty test sequence is in insert_work().
713 * Please read comment there.
715 * NOT_RUNNING is clear. This means that trustee is not in
716 * charge and we're running on the local cpu w/ rq lock held
717 * and preemption disabled, which in turn means that none else
718 * could be manipulating idle_list, so dereferencing idle_list
719 * without gcwq lock is safe.
721 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
722 to_wakeup = first_worker(gcwq);
723 return to_wakeup ? to_wakeup->task : NULL;
727 * worker_set_flags - set worker flags and adjust nr_running accordingly
728 * @worker: self
729 * @flags: flags to set
730 * @wakeup: wakeup an idle worker if necessary
732 * Set @flags in @worker->flags and adjust nr_running accordingly. If
733 * nr_running becomes zero and @wakeup is %true, an idle worker is
734 * woken up.
736 * CONTEXT:
737 * spin_lock_irq(gcwq->lock)
739 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
740 bool wakeup)
742 struct global_cwq *gcwq = worker->gcwq;
744 WARN_ON_ONCE(worker->task != current);
747 * If transitioning into NOT_RUNNING, adjust nr_running and
748 * wake up an idle worker as necessary if requested by
749 * @wakeup.
751 if ((flags & WORKER_NOT_RUNNING) &&
752 !(worker->flags & WORKER_NOT_RUNNING)) {
753 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
755 if (wakeup) {
756 if (atomic_dec_and_test(nr_running) &&
757 !list_empty(&gcwq->worklist))
758 wake_up_worker(gcwq);
759 } else
760 atomic_dec(nr_running);
763 worker->flags |= flags;
767 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
768 * @worker: self
769 * @flags: flags to clear
771 * Clear @flags in @worker->flags and adjust nr_running accordingly.
773 * CONTEXT:
774 * spin_lock_irq(gcwq->lock)
776 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
778 struct global_cwq *gcwq = worker->gcwq;
779 unsigned int oflags = worker->flags;
781 WARN_ON_ONCE(worker->task != current);
783 worker->flags &= ~flags;
786 * If transitioning out of NOT_RUNNING, increment nr_running. Note
787 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
788 * of multiple flags, not a single flag.
790 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
791 if (!(worker->flags & WORKER_NOT_RUNNING))
792 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
796 * busy_worker_head - return the busy hash head for a work
797 * @gcwq: gcwq of interest
798 * @work: work to be hashed
800 * Return hash head of @gcwq for @work.
802 * CONTEXT:
803 * spin_lock_irq(gcwq->lock).
805 * RETURNS:
806 * Pointer to the hash head.
808 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
809 struct work_struct *work)
811 const int base_shift = ilog2(sizeof(struct work_struct));
812 unsigned long v = (unsigned long)work;
814 /* simple shift and fold hash, do we need something better? */
815 v >>= base_shift;
816 v += v >> BUSY_WORKER_HASH_ORDER;
817 v &= BUSY_WORKER_HASH_MASK;
819 return &gcwq->busy_hash[v];
823 * __find_worker_executing_work - find worker which is executing a work
824 * @gcwq: gcwq of interest
825 * @bwh: hash head as returned by busy_worker_head()
826 * @work: work to find worker for
828 * Find a worker which is executing @work on @gcwq. @bwh should be
829 * the hash head obtained by calling busy_worker_head() with the same
830 * work.
832 * CONTEXT:
833 * spin_lock_irq(gcwq->lock).
835 * RETURNS:
836 * Pointer to worker which is executing @work if found, NULL
837 * otherwise.
839 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
840 struct hlist_head *bwh,
841 struct work_struct *work)
843 struct worker *worker;
844 struct hlist_node *tmp;
846 hlist_for_each_entry(worker, tmp, bwh, hentry)
847 if (worker->current_work == work &&
848 worker->current_func == work->func)
849 return worker;
850 return NULL;
854 * find_worker_executing_work - find worker which is executing a work
855 * @gcwq: gcwq of interest
856 * @work: work to find worker for
858 * Find a worker which is executing @work on @gcwq by searching
859 * @gcwq->busy_hash which is keyed by the address of @work. For a worker
860 * to match, its current execution should match the address of @work and
861 * its work function. This is to avoid unwanted dependency between
862 * unrelated work executions through a work item being recycled while still
863 * being executed.
865 * This is a bit tricky. A work item may be freed once its execution
866 * starts and nothing prevents the freed area from being recycled for
867 * another work item. If the same work item address ends up being reused
868 * before the original execution finishes, workqueue will identify the
869 * recycled work item as currently executing and make it wait until the
870 * current execution finishes, introducing an unwanted dependency.
872 * This function checks the work item address, work function and workqueue
873 * to avoid false positives. Note that this isn't complete as one may
874 * construct a work function which can introduce dependency onto itself
875 * through a recycled work item. Well, if somebody wants to shoot oneself
876 * in the foot that badly, there's only so much we can do, and if such
877 * deadlock actually occurs, it should be easy to locate the culprit work
878 * function.
880 * CONTEXT:
881 * spin_lock_irq(gcwq->lock).
883 * RETURNS:
884 * Pointer to worker which is executing @work if found, NULL
885 * otherwise.
887 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
888 struct work_struct *work)
890 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
891 work);
895 * gcwq_determine_ins_pos - find insertion position
896 * @gcwq: gcwq of interest
897 * @cwq: cwq a work is being queued for
899 * A work for @cwq is about to be queued on @gcwq, determine insertion
900 * position for the work. If @cwq is for HIGHPRI wq, the work is
901 * queued at the head of the queue but in FIFO order with respect to
902 * other HIGHPRI works; otherwise, at the end of the queue. This
903 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
904 * there are HIGHPRI works pending.
906 * CONTEXT:
907 * spin_lock_irq(gcwq->lock).
909 * RETURNS:
910 * Pointer to inserstion position.
912 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
913 struct cpu_workqueue_struct *cwq)
915 struct work_struct *twork;
917 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
918 return &gcwq->worklist;
920 list_for_each_entry(twork, &gcwq->worklist, entry) {
921 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
923 if (!(tcwq->wq->flags & WQ_HIGHPRI))
924 break;
927 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
928 return &twork->entry;
932 * insert_work - insert a work into gcwq
933 * @cwq: cwq @work belongs to
934 * @work: work to insert
935 * @head: insertion point
936 * @extra_flags: extra WORK_STRUCT_* flags to set
938 * Insert @work which belongs to @cwq into @gcwq after @head.
939 * @extra_flags is or'd to work_struct flags.
941 * CONTEXT:
942 * spin_lock_irq(gcwq->lock).
944 static void insert_work(struct cpu_workqueue_struct *cwq,
945 struct work_struct *work, struct list_head *head,
946 unsigned int extra_flags)
948 struct global_cwq *gcwq = cwq->gcwq;
950 /* we own @work, set data and link */
951 set_work_cwq(work, cwq, extra_flags);
954 * Ensure that we get the right work->data if we see the
955 * result of list_add() below, see try_to_grab_pending().
957 smp_wmb();
959 list_add_tail(&work->entry, head);
962 * Ensure either worker_sched_deactivated() sees the above
963 * list_add_tail() or we see zero nr_running to avoid workers
964 * lying around lazily while there are works to be processed.
966 smp_mb();
968 if (__need_more_worker(gcwq))
969 wake_up_worker(gcwq);
973 * Test whether @work is being queued from another work executing on the
974 * same workqueue. This is rather expensive and should only be used from
975 * cold paths.
977 static bool is_chained_work(struct workqueue_struct *wq)
979 unsigned long flags;
980 unsigned int cpu;
982 for_each_gcwq_cpu(cpu) {
983 struct global_cwq *gcwq = get_gcwq(cpu);
984 struct worker *worker;
985 struct hlist_node *pos;
986 int i;
988 spin_lock_irqsave(&gcwq->lock, flags);
989 for_each_busy_worker(worker, i, pos, gcwq) {
990 if (worker->task != current)
991 continue;
992 spin_unlock_irqrestore(&gcwq->lock, flags);
994 * I'm @worker, no locking necessary. See if @work
995 * is headed to the same workqueue.
997 return worker->current_cwq->wq == wq;
999 spin_unlock_irqrestore(&gcwq->lock, flags);
1001 return false;
1004 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1005 struct work_struct *work)
1007 struct global_cwq *gcwq;
1008 struct cpu_workqueue_struct *cwq;
1009 struct list_head *worklist;
1010 unsigned int work_flags;
1011 unsigned long flags;
1013 debug_work_activate(work);
1015 /* if dying, only works from the same workqueue are allowed */
1016 if (unlikely(wq->flags & WQ_DRAINING) &&
1017 WARN_ON_ONCE(!is_chained_work(wq)))
1018 return;
1020 /* determine gcwq to use */
1021 if (!(wq->flags & WQ_UNBOUND)) {
1022 struct global_cwq *last_gcwq;
1024 if (unlikely(cpu == WORK_CPU_UNBOUND))
1025 cpu = raw_smp_processor_id();
1028 * It's multi cpu. If @wq is non-reentrant and @work
1029 * was previously on a different cpu, it might still
1030 * be running there, in which case the work needs to
1031 * be queued on that cpu to guarantee non-reentrance.
1033 gcwq = get_gcwq(cpu);
1034 if (wq->flags & WQ_NON_REENTRANT &&
1035 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1036 struct worker *worker;
1038 spin_lock_irqsave(&last_gcwq->lock, flags);
1040 worker = find_worker_executing_work(last_gcwq, work);
1042 if (worker && worker->current_cwq->wq == wq)
1043 gcwq = last_gcwq;
1044 else {
1045 /* meh... not running there, queue here */
1046 spin_unlock_irqrestore(&last_gcwq->lock, flags);
1047 spin_lock_irqsave(&gcwq->lock, flags);
1049 } else
1050 spin_lock_irqsave(&gcwq->lock, flags);
1051 } else {
1052 gcwq = get_gcwq(WORK_CPU_UNBOUND);
1053 spin_lock_irqsave(&gcwq->lock, flags);
1056 /* gcwq determined, get cwq and queue */
1057 cwq = get_cwq(gcwq->cpu, wq);
1058 trace_workqueue_queue_work(cpu, cwq, work);
1060 BUG_ON(!list_empty(&work->entry));
1062 cwq->nr_in_flight[cwq->work_color]++;
1063 work_flags = work_color_to_flags(cwq->work_color);
1065 if (likely(cwq->nr_active < cwq->max_active)) {
1066 trace_workqueue_activate_work(work);
1067 cwq->nr_active++;
1068 worklist = gcwq_determine_ins_pos(gcwq, cwq);
1069 } else {
1070 work_flags |= WORK_STRUCT_DELAYED;
1071 worklist = &cwq->delayed_works;
1074 insert_work(cwq, work, worklist, work_flags);
1076 spin_unlock_irqrestore(&gcwq->lock, flags);
1080 * queue_work - queue work on a workqueue
1081 * @wq: workqueue to use
1082 * @work: work to queue
1084 * Returns 0 if @work was already on a queue, non-zero otherwise.
1086 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1087 * it can be processed by another CPU.
1089 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1091 int ret;
1093 ret = queue_work_on(get_cpu(), wq, work);
1094 put_cpu();
1096 return ret;
1098 EXPORT_SYMBOL_GPL(queue_work);
1101 * queue_work_on - queue work on specific cpu
1102 * @cpu: CPU number to execute work on
1103 * @wq: workqueue to use
1104 * @work: work to queue
1106 * Returns 0 if @work was already on a queue, non-zero otherwise.
1108 * We queue the work to a specific CPU, the caller must ensure it
1109 * can't go away.
1112 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1114 int ret = 0;
1116 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1117 __queue_work(cpu, wq, work);
1118 ret = 1;
1120 return ret;
1122 EXPORT_SYMBOL_GPL(queue_work_on);
1124 static void delayed_work_timer_fn(unsigned long __data)
1126 struct delayed_work *dwork = (struct delayed_work *)__data;
1127 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1129 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1133 * queue_delayed_work - queue work on a workqueue after delay
1134 * @wq: workqueue to use
1135 * @dwork: delayable work to queue
1136 * @delay: number of jiffies to wait before queueing
1138 * Returns 0 if @work was already on a queue, non-zero otherwise.
1140 int queue_delayed_work(struct workqueue_struct *wq,
1141 struct delayed_work *dwork, unsigned long delay)
1143 if (delay == 0)
1144 return queue_work(wq, &dwork->work);
1146 return queue_delayed_work_on(-1, wq, dwork, delay);
1148 EXPORT_SYMBOL_GPL(queue_delayed_work);
1151 * queue_delayed_work_on - queue work on specific CPU after delay
1152 * @cpu: CPU number to execute work on
1153 * @wq: workqueue to use
1154 * @dwork: work to queue
1155 * @delay: number of jiffies to wait before queueing
1157 * Returns 0 if @work was already on a queue, non-zero otherwise.
1159 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1160 struct delayed_work *dwork, unsigned long delay)
1162 int ret = 0;
1163 struct timer_list *timer = &dwork->timer;
1164 struct work_struct *work = &dwork->work;
1166 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1167 unsigned int lcpu;
1169 WARN_ON_ONCE(timer_pending(timer));
1170 WARN_ON_ONCE(!list_empty(&work->entry));
1172 timer_stats_timer_set_start_info(&dwork->timer);
1175 * This stores cwq for the moment, for the timer_fn.
1176 * Note that the work's gcwq is preserved to allow
1177 * reentrance detection for delayed works.
1179 if (!(wq->flags & WQ_UNBOUND)) {
1180 struct global_cwq *gcwq = get_work_gcwq(work);
1182 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1183 lcpu = gcwq->cpu;
1184 else
1185 lcpu = raw_smp_processor_id();
1186 } else
1187 lcpu = WORK_CPU_UNBOUND;
1189 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1191 timer->expires = jiffies + delay;
1192 timer->data = (unsigned long)dwork;
1193 timer->function = delayed_work_timer_fn;
1195 if (unlikely(cpu >= 0))
1196 add_timer_on(timer, cpu);
1197 else
1198 add_timer(timer);
1199 ret = 1;
1201 return ret;
1203 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1206 * worker_enter_idle - enter idle state
1207 * @worker: worker which is entering idle state
1209 * @worker is entering idle state. Update stats and idle timer if
1210 * necessary.
1212 * LOCKING:
1213 * spin_lock_irq(gcwq->lock).
1215 static void worker_enter_idle(struct worker *worker)
1217 struct global_cwq *gcwq = worker->gcwq;
1219 BUG_ON(worker->flags & WORKER_IDLE);
1220 BUG_ON(!list_empty(&worker->entry) &&
1221 (worker->hentry.next || worker->hentry.pprev));
1223 /* can't use worker_set_flags(), also called from start_worker() */
1224 worker->flags |= WORKER_IDLE;
1225 gcwq->nr_idle++;
1226 worker->last_active = jiffies;
1228 /* idle_list is LIFO */
1229 list_add(&worker->entry, &gcwq->idle_list);
1231 if (likely(!(worker->flags & WORKER_ROGUE))) {
1232 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1233 mod_timer(&gcwq->idle_timer,
1234 jiffies + IDLE_WORKER_TIMEOUT);
1235 } else
1236 wake_up_all(&gcwq->trustee_wait);
1239 * Sanity check nr_running. Because trustee releases gcwq->lock
1240 * between setting %WORKER_ROGUE and zapping nr_running, the
1241 * warning may trigger spuriously. Check iff trustee is idle.
1243 WARN_ON_ONCE(gcwq->trustee_state == TRUSTEE_DONE &&
1244 gcwq->nr_workers == gcwq->nr_idle &&
1245 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1249 * worker_leave_idle - leave idle state
1250 * @worker: worker which is leaving idle state
1252 * @worker is leaving idle state. Update stats.
1254 * LOCKING:
1255 * spin_lock_irq(gcwq->lock).
1257 static void worker_leave_idle(struct worker *worker)
1259 struct global_cwq *gcwq = worker->gcwq;
1261 BUG_ON(!(worker->flags & WORKER_IDLE));
1262 worker_clr_flags(worker, WORKER_IDLE);
1263 gcwq->nr_idle--;
1264 list_del_init(&worker->entry);
1268 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1269 * @worker: self
1271 * Works which are scheduled while the cpu is online must at least be
1272 * scheduled to a worker which is bound to the cpu so that if they are
1273 * flushed from cpu callbacks while cpu is going down, they are
1274 * guaranteed to execute on the cpu.
1276 * This function is to be used by rogue workers and rescuers to bind
1277 * themselves to the target cpu and may race with cpu going down or
1278 * coming online. kthread_bind() can't be used because it may put the
1279 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1280 * verbatim as it's best effort and blocking and gcwq may be
1281 * [dis]associated in the meantime.
1283 * This function tries set_cpus_allowed() and locks gcwq and verifies
1284 * the binding against GCWQ_DISASSOCIATED which is set during
1285 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1286 * idle state or fetches works without dropping lock, it can guarantee
1287 * the scheduling requirement described in the first paragraph.
1289 * CONTEXT:
1290 * Might sleep. Called without any lock but returns with gcwq->lock
1291 * held.
1293 * RETURNS:
1294 * %true if the associated gcwq is online (@worker is successfully
1295 * bound), %false if offline.
1297 static bool worker_maybe_bind_and_lock(struct worker *worker)
1298 __acquires(&gcwq->lock)
1300 struct global_cwq *gcwq = worker->gcwq;
1301 struct task_struct *task = worker->task;
1303 while (true) {
1305 * The following call may fail, succeed or succeed
1306 * without actually migrating the task to the cpu if
1307 * it races with cpu hotunplug operation. Verify
1308 * against GCWQ_DISASSOCIATED.
1310 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1311 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1313 spin_lock_irq(&gcwq->lock);
1314 if (gcwq->flags & GCWQ_DISASSOCIATED)
1315 return false;
1316 if (task_cpu(task) == gcwq->cpu &&
1317 cpumask_equal(&current->cpus_allowed,
1318 get_cpu_mask(gcwq->cpu)))
1319 return true;
1320 spin_unlock_irq(&gcwq->lock);
1323 * We've raced with CPU hot[un]plug. Give it a breather
1324 * and retry migration. cond_resched() is required here;
1325 * otherwise, we might deadlock against cpu_stop trying to
1326 * bring down the CPU on non-preemptive kernel.
1328 cpu_relax();
1329 cond_resched();
1334 * Function for worker->rebind_work used to rebind rogue busy workers
1335 * to the associated cpu which is coming back online. This is
1336 * scheduled by cpu up but can race with other cpu hotplug operations
1337 * and may be executed twice without intervening cpu down.
1339 static void worker_rebind_fn(struct work_struct *work)
1341 struct worker *worker = container_of(work, struct worker, rebind_work);
1342 struct global_cwq *gcwq = worker->gcwq;
1344 if (worker_maybe_bind_and_lock(worker))
1345 worker_clr_flags(worker, WORKER_REBIND);
1347 spin_unlock_irq(&gcwq->lock);
1350 static struct worker *alloc_worker(void)
1352 struct worker *worker;
1354 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1355 if (worker) {
1356 INIT_LIST_HEAD(&worker->entry);
1357 INIT_LIST_HEAD(&worker->scheduled);
1358 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1359 /* on creation a worker is in !idle && prep state */
1360 worker->flags = WORKER_PREP;
1362 return worker;
1366 * create_worker - create a new workqueue worker
1367 * @gcwq: gcwq the new worker will belong to
1368 * @bind: whether to set affinity to @cpu or not
1370 * Create a new worker which is bound to @gcwq. The returned worker
1371 * can be started by calling start_worker() or destroyed using
1372 * destroy_worker().
1374 * CONTEXT:
1375 * Might sleep. Does GFP_KERNEL allocations.
1377 * RETURNS:
1378 * Pointer to the newly created worker.
1380 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1382 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1383 struct worker *worker = NULL;
1384 int id = -1;
1386 spin_lock_irq(&gcwq->lock);
1387 while (ida_get_new(&gcwq->worker_ida, &id)) {
1388 spin_unlock_irq(&gcwq->lock);
1389 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1390 goto fail;
1391 spin_lock_irq(&gcwq->lock);
1393 spin_unlock_irq(&gcwq->lock);
1395 worker = alloc_worker();
1396 if (!worker)
1397 goto fail;
1399 worker->gcwq = gcwq;
1400 worker->id = id;
1402 if (!on_unbound_cpu)
1403 worker->task = kthread_create_on_node(worker_thread,
1404 worker,
1405 cpu_to_node(gcwq->cpu),
1406 "kworker/%u:%d", gcwq->cpu, id);
1407 else
1408 worker->task = kthread_create(worker_thread, worker,
1409 "kworker/u:%d", id);
1410 if (IS_ERR(worker->task))
1411 goto fail;
1414 * A rogue worker will become a regular one if CPU comes
1415 * online later on. Make sure every worker has
1416 * PF_THREAD_BOUND set.
1418 if (bind && !on_unbound_cpu)
1419 kthread_bind(worker->task, gcwq->cpu);
1420 else {
1421 worker->task->flags |= PF_THREAD_BOUND;
1422 if (on_unbound_cpu)
1423 worker->flags |= WORKER_UNBOUND;
1426 return worker;
1427 fail:
1428 if (id >= 0) {
1429 spin_lock_irq(&gcwq->lock);
1430 ida_remove(&gcwq->worker_ida, id);
1431 spin_unlock_irq(&gcwq->lock);
1433 kfree(worker);
1434 return NULL;
1438 * start_worker - start a newly created worker
1439 * @worker: worker to start
1441 * Make the gcwq aware of @worker and start it.
1443 * CONTEXT:
1444 * spin_lock_irq(gcwq->lock).
1446 static void start_worker(struct worker *worker)
1448 worker->flags |= WORKER_STARTED;
1449 worker->gcwq->nr_workers++;
1450 worker_enter_idle(worker);
1451 wake_up_process(worker->task);
1455 * destroy_worker - destroy a workqueue worker
1456 * @worker: worker to be destroyed
1458 * Destroy @worker and adjust @gcwq stats accordingly.
1460 * CONTEXT:
1461 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1463 static void destroy_worker(struct worker *worker)
1465 struct global_cwq *gcwq = worker->gcwq;
1466 int id = worker->id;
1468 /* sanity check frenzy */
1469 BUG_ON(worker->current_work);
1470 BUG_ON(!list_empty(&worker->scheduled));
1472 if (worker->flags & WORKER_STARTED)
1473 gcwq->nr_workers--;
1474 if (worker->flags & WORKER_IDLE)
1475 gcwq->nr_idle--;
1477 list_del_init(&worker->entry);
1478 worker->flags |= WORKER_DIE;
1480 spin_unlock_irq(&gcwq->lock);
1482 kthread_stop(worker->task);
1483 kfree(worker);
1485 spin_lock_irq(&gcwq->lock);
1486 ida_remove(&gcwq->worker_ida, id);
1489 static void idle_worker_timeout(unsigned long __gcwq)
1491 struct global_cwq *gcwq = (void *)__gcwq;
1493 spin_lock_irq(&gcwq->lock);
1495 if (too_many_workers(gcwq)) {
1496 struct worker *worker;
1497 unsigned long expires;
1499 /* idle_list is kept in LIFO order, check the last one */
1500 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1501 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1503 if (time_before(jiffies, expires))
1504 mod_timer(&gcwq->idle_timer, expires);
1505 else {
1506 /* it's been idle for too long, wake up manager */
1507 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1508 wake_up_worker(gcwq);
1512 spin_unlock_irq(&gcwq->lock);
1515 static bool send_mayday(struct work_struct *work)
1517 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1518 struct workqueue_struct *wq = cwq->wq;
1519 unsigned int cpu;
1521 if (!(wq->flags & WQ_RESCUER))
1522 return false;
1524 /* mayday mayday mayday */
1525 cpu = cwq->gcwq->cpu;
1526 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1527 if (cpu == WORK_CPU_UNBOUND)
1528 cpu = 0;
1529 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1530 wake_up_process(wq->rescuer->task);
1531 return true;
1534 static void gcwq_mayday_timeout(unsigned long __gcwq)
1536 struct global_cwq *gcwq = (void *)__gcwq;
1537 struct work_struct *work;
1539 spin_lock_irq(&gcwq->lock);
1541 if (need_to_create_worker(gcwq)) {
1543 * We've been trying to create a new worker but
1544 * haven't been successful. We might be hitting an
1545 * allocation deadlock. Send distress signals to
1546 * rescuers.
1548 list_for_each_entry(work, &gcwq->worklist, entry)
1549 send_mayday(work);
1552 spin_unlock_irq(&gcwq->lock);
1554 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1558 * maybe_create_worker - create a new worker if necessary
1559 * @gcwq: gcwq to create a new worker for
1561 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1562 * have at least one idle worker on return from this function. If
1563 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1564 * sent to all rescuers with works scheduled on @gcwq to resolve
1565 * possible allocation deadlock.
1567 * On return, need_to_create_worker() is guaranteed to be false and
1568 * may_start_working() true.
1570 * LOCKING:
1571 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1572 * multiple times. Does GFP_KERNEL allocations. Called only from
1573 * manager.
1575 * RETURNS:
1576 * false if no action was taken and gcwq->lock stayed locked, true
1577 * otherwise.
1579 static bool maybe_create_worker(struct global_cwq *gcwq)
1580 __releases(&gcwq->lock)
1581 __acquires(&gcwq->lock)
1583 if (!need_to_create_worker(gcwq))
1584 return false;
1585 restart:
1586 spin_unlock_irq(&gcwq->lock);
1588 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1589 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1591 while (true) {
1592 struct worker *worker;
1594 worker = create_worker(gcwq, true);
1595 if (worker) {
1596 del_timer_sync(&gcwq->mayday_timer);
1597 spin_lock_irq(&gcwq->lock);
1598 start_worker(worker);
1599 BUG_ON(need_to_create_worker(gcwq));
1600 return true;
1603 if (!need_to_create_worker(gcwq))
1604 break;
1606 __set_current_state(TASK_INTERRUPTIBLE);
1607 schedule_timeout(CREATE_COOLDOWN);
1609 if (!need_to_create_worker(gcwq))
1610 break;
1613 del_timer_sync(&gcwq->mayday_timer);
1614 spin_lock_irq(&gcwq->lock);
1615 if (need_to_create_worker(gcwq))
1616 goto restart;
1617 return true;
1621 * maybe_destroy_worker - destroy workers which have been idle for a while
1622 * @gcwq: gcwq to destroy workers for
1624 * Destroy @gcwq workers which have been idle for longer than
1625 * IDLE_WORKER_TIMEOUT.
1627 * LOCKING:
1628 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1629 * multiple times. Called only from manager.
1631 * RETURNS:
1632 * false if no action was taken and gcwq->lock stayed locked, true
1633 * otherwise.
1635 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1637 bool ret = false;
1639 while (too_many_workers(gcwq)) {
1640 struct worker *worker;
1641 unsigned long expires;
1643 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1644 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1646 if (time_before(jiffies, expires)) {
1647 mod_timer(&gcwq->idle_timer, expires);
1648 break;
1651 destroy_worker(worker);
1652 ret = true;
1655 return ret;
1659 * manage_workers - manage worker pool
1660 * @worker: self
1662 * Assume the manager role and manage gcwq worker pool @worker belongs
1663 * to. At any given time, there can be only zero or one manager per
1664 * gcwq. The exclusion is handled automatically by this function.
1666 * The caller can safely start processing works on false return. On
1667 * true return, it's guaranteed that need_to_create_worker() is false
1668 * and may_start_working() is true.
1670 * CONTEXT:
1671 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1672 * multiple times. Does GFP_KERNEL allocations.
1674 * RETURNS:
1675 * false if no action was taken and gcwq->lock stayed locked, true if
1676 * some action was taken.
1678 static bool manage_workers(struct worker *worker)
1680 struct global_cwq *gcwq = worker->gcwq;
1681 bool ret = false;
1683 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1684 return ret;
1686 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1687 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1690 * Destroy and then create so that may_start_working() is true
1691 * on return.
1693 ret |= maybe_destroy_workers(gcwq);
1694 ret |= maybe_create_worker(gcwq);
1696 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1699 * The trustee might be waiting to take over the manager
1700 * position, tell it we're done.
1702 if (unlikely(gcwq->trustee))
1703 wake_up_all(&gcwq->trustee_wait);
1705 return ret;
1709 * move_linked_works - move linked works to a list
1710 * @work: start of series of works to be scheduled
1711 * @head: target list to append @work to
1712 * @nextp: out paramter for nested worklist walking
1714 * Schedule linked works starting from @work to @head. Work series to
1715 * be scheduled starts at @work and includes any consecutive work with
1716 * WORK_STRUCT_LINKED set in its predecessor.
1718 * If @nextp is not NULL, it's updated to point to the next work of
1719 * the last scheduled work. This allows move_linked_works() to be
1720 * nested inside outer list_for_each_entry_safe().
1722 * CONTEXT:
1723 * spin_lock_irq(gcwq->lock).
1725 static void move_linked_works(struct work_struct *work, struct list_head *head,
1726 struct work_struct **nextp)
1728 struct work_struct *n;
1731 * Linked worklist will always end before the end of the list,
1732 * use NULL for list head.
1734 list_for_each_entry_safe_from(work, n, NULL, entry) {
1735 list_move_tail(&work->entry, head);
1736 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1737 break;
1741 * If we're already inside safe list traversal and have moved
1742 * multiple works to the scheduled queue, the next position
1743 * needs to be updated.
1745 if (nextp)
1746 *nextp = n;
1749 static void cwq_activate_delayed_work(struct work_struct *work)
1751 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1752 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1754 trace_workqueue_activate_work(work);
1755 move_linked_works(work, pos, NULL);
1756 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1757 cwq->nr_active++;
1760 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1762 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1763 struct work_struct, entry);
1765 cwq_activate_delayed_work(work);
1769 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1770 * @cwq: cwq of interest
1771 * @color: color of work which left the queue
1772 * @delayed: for a delayed work
1774 * A work either has completed or is removed from pending queue,
1775 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1777 * CONTEXT:
1778 * spin_lock_irq(gcwq->lock).
1780 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1781 bool delayed)
1783 /* ignore uncolored works */
1784 if (color == WORK_NO_COLOR)
1785 return;
1787 cwq->nr_in_flight[color]--;
1789 if (!delayed) {
1790 cwq->nr_active--;
1791 if (!list_empty(&cwq->delayed_works)) {
1792 /* one down, submit a delayed one */
1793 if (cwq->nr_active < cwq->max_active)
1794 cwq_activate_first_delayed(cwq);
1798 /* is flush in progress and are we at the flushing tip? */
1799 if (likely(cwq->flush_color != color))
1800 return;
1802 /* are there still in-flight works? */
1803 if (cwq->nr_in_flight[color])
1804 return;
1806 /* this cwq is done, clear flush_color */
1807 cwq->flush_color = -1;
1810 * If this was the last cwq, wake up the first flusher. It
1811 * will handle the rest.
1813 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1814 complete(&cwq->wq->first_flusher->done);
1818 * process_one_work - process single work
1819 * @worker: self
1820 * @work: work to process
1822 * Process @work. This function contains all the logics necessary to
1823 * process a single work including synchronization against and
1824 * interaction with other workers on the same cpu, queueing and
1825 * flushing. As long as context requirement is met, any worker can
1826 * call this function to process a work.
1828 * CONTEXT:
1829 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1831 static void process_one_work(struct worker *worker, struct work_struct *work)
1832 __releases(&gcwq->lock)
1833 __acquires(&gcwq->lock)
1835 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1836 struct global_cwq *gcwq = cwq->gcwq;
1837 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1838 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1839 int work_color;
1840 struct worker *collision;
1841 #ifdef CONFIG_LOCKDEP
1843 * It is permissible to free the struct work_struct from
1844 * inside the function that is called from it, this we need to
1845 * take into account for lockdep too. To avoid bogus "held
1846 * lock freed" warnings as well as problems when looking into
1847 * work->lockdep_map, make a copy and use that here.
1849 struct lockdep_map lockdep_map = work->lockdep_map;
1850 #endif
1852 * A single work shouldn't be executed concurrently by
1853 * multiple workers on a single cpu. Check whether anyone is
1854 * already processing the work. If so, defer the work to the
1855 * currently executing one.
1857 collision = __find_worker_executing_work(gcwq, bwh, work);
1858 if (unlikely(collision)) {
1859 move_linked_works(work, &collision->scheduled, NULL);
1860 return;
1863 /* claim and process */
1864 debug_work_deactivate(work);
1865 hlist_add_head(&worker->hentry, bwh);
1866 worker->current_work = work;
1867 worker->current_func = work->func;
1868 worker->current_cwq = cwq;
1869 work_color = get_work_color(work);
1871 /* record the current cpu number in the work data and dequeue */
1872 set_work_cpu(work, gcwq->cpu);
1873 list_del_init(&work->entry);
1876 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1877 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1879 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1880 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1881 struct work_struct, entry);
1883 if (!list_empty(&gcwq->worklist) &&
1884 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1885 wake_up_worker(gcwq);
1886 else
1887 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1891 * CPU intensive works don't participate in concurrency
1892 * management. They're the scheduler's responsibility.
1894 if (unlikely(cpu_intensive))
1895 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1897 spin_unlock_irq(&gcwq->lock);
1899 smp_wmb(); /* paired with test_and_set_bit(PENDING) */
1900 work_clear_pending(work);
1902 lock_map_acquire_read(&cwq->wq->lockdep_map);
1903 lock_map_acquire(&lockdep_map);
1904 trace_workqueue_execute_start(work);
1905 worker->current_func(work);
1907 * While we must be careful to not use "work" after this, the trace
1908 * point will only record its address.
1910 trace_workqueue_execute_end(work);
1911 lock_map_release(&lockdep_map);
1912 lock_map_release(&cwq->wq->lockdep_map);
1914 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1915 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
1916 " last function: %pf\n",
1917 current->comm, preempt_count(), task_pid_nr(current),
1918 worker->current_func);
1919 debug_show_held_locks(current);
1920 dump_stack();
1923 spin_lock_irq(&gcwq->lock);
1925 /* clear cpu intensive status */
1926 if (unlikely(cpu_intensive))
1927 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1929 /* we're done with it, release */
1930 hlist_del_init(&worker->hentry);
1931 worker->current_work = NULL;
1932 worker->current_func = NULL;
1933 worker->current_cwq = NULL;
1934 cwq_dec_nr_in_flight(cwq, work_color, false);
1938 * process_scheduled_works - process scheduled works
1939 * @worker: self
1941 * Process all scheduled works. Please note that the scheduled list
1942 * may change while processing a work, so this function repeatedly
1943 * fetches a work from the top and executes it.
1945 * CONTEXT:
1946 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1947 * multiple times.
1949 static void process_scheduled_works(struct worker *worker)
1951 while (!list_empty(&worker->scheduled)) {
1952 struct work_struct *work = list_first_entry(&worker->scheduled,
1953 struct work_struct, entry);
1954 process_one_work(worker, work);
1959 * worker_thread - the worker thread function
1960 * @__worker: self
1962 * The gcwq worker thread function. There's a single dynamic pool of
1963 * these per each cpu. These workers process all works regardless of
1964 * their specific target workqueue. The only exception is works which
1965 * belong to workqueues with a rescuer which will be explained in
1966 * rescuer_thread().
1968 static int worker_thread(void *__worker)
1970 struct worker *worker = __worker;
1971 struct global_cwq *gcwq = worker->gcwq;
1973 /* tell the scheduler that this is a workqueue worker */
1974 worker->task->flags |= PF_WQ_WORKER;
1975 woke_up:
1976 spin_lock_irq(&gcwq->lock);
1978 /* DIE can be set only while we're idle, checking here is enough */
1979 if (worker->flags & WORKER_DIE) {
1980 spin_unlock_irq(&gcwq->lock);
1981 worker->task->flags &= ~PF_WQ_WORKER;
1982 return 0;
1985 worker_leave_idle(worker);
1986 recheck:
1987 /* no more worker necessary? */
1988 if (!need_more_worker(gcwq))
1989 goto sleep;
1991 /* do we need to manage? */
1992 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1993 goto recheck;
1996 * ->scheduled list can only be filled while a worker is
1997 * preparing to process a work or actually processing it.
1998 * Make sure nobody diddled with it while I was sleeping.
2000 BUG_ON(!list_empty(&worker->scheduled));
2003 * When control reaches this point, we're guaranteed to have
2004 * at least one idle worker or that someone else has already
2005 * assumed the manager role.
2007 worker_clr_flags(worker, WORKER_PREP);
2009 do {
2010 struct work_struct *work =
2011 list_first_entry(&gcwq->worklist,
2012 struct work_struct, entry);
2014 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2015 /* optimization path, not strictly necessary */
2016 process_one_work(worker, work);
2017 if (unlikely(!list_empty(&worker->scheduled)))
2018 process_scheduled_works(worker);
2019 } else {
2020 move_linked_works(work, &worker->scheduled, NULL);
2021 process_scheduled_works(worker);
2023 } while (keep_working(gcwq));
2025 worker_set_flags(worker, WORKER_PREP, false);
2026 sleep:
2027 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
2028 goto recheck;
2031 * gcwq->lock is held and there's no work to process and no
2032 * need to manage, sleep. Workers are woken up only while
2033 * holding gcwq->lock or from local cpu, so setting the
2034 * current state before releasing gcwq->lock is enough to
2035 * prevent losing any event.
2037 worker_enter_idle(worker);
2038 __set_current_state(TASK_INTERRUPTIBLE);
2039 spin_unlock_irq(&gcwq->lock);
2040 schedule();
2041 goto woke_up;
2045 * rescuer_thread - the rescuer thread function
2046 * @__wq: the associated workqueue
2048 * Workqueue rescuer thread function. There's one rescuer for each
2049 * workqueue which has WQ_RESCUER set.
2051 * Regular work processing on a gcwq may block trying to create a new
2052 * worker which uses GFP_KERNEL allocation which has slight chance of
2053 * developing into deadlock if some works currently on the same queue
2054 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2055 * the problem rescuer solves.
2057 * When such condition is possible, the gcwq summons rescuers of all
2058 * workqueues which have works queued on the gcwq and let them process
2059 * those works so that forward progress can be guaranteed.
2061 * This should happen rarely.
2063 static int rescuer_thread(void *__wq)
2065 struct workqueue_struct *wq = __wq;
2066 struct worker *rescuer = wq->rescuer;
2067 struct list_head *scheduled = &rescuer->scheduled;
2068 bool is_unbound = wq->flags & WQ_UNBOUND;
2069 unsigned int cpu;
2071 set_user_nice(current, RESCUER_NICE_LEVEL);
2072 repeat:
2073 set_current_state(TASK_INTERRUPTIBLE);
2075 if (kthread_should_stop()) {
2076 __set_current_state(TASK_RUNNING);
2077 return 0;
2081 * See whether any cpu is asking for help. Unbounded
2082 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2084 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2085 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2086 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2087 struct global_cwq *gcwq = cwq->gcwq;
2088 struct work_struct *work, *n;
2090 __set_current_state(TASK_RUNNING);
2091 mayday_clear_cpu(cpu, wq->mayday_mask);
2093 /* migrate to the target cpu if possible */
2094 rescuer->gcwq = gcwq;
2095 worker_maybe_bind_and_lock(rescuer);
2098 * Slurp in all works issued via this workqueue and
2099 * process'em.
2101 BUG_ON(!list_empty(&rescuer->scheduled));
2102 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2103 if (get_work_cwq(work) == cwq)
2104 move_linked_works(work, scheduled, &n);
2106 process_scheduled_works(rescuer);
2109 * Leave this gcwq. If keep_working() is %true, notify a
2110 * regular worker; otherwise, we end up with 0 concurrency
2111 * and stalling the execution.
2113 if (keep_working(gcwq))
2114 wake_up_worker(gcwq);
2116 spin_unlock_irq(&gcwq->lock);
2119 schedule();
2120 goto repeat;
2123 struct wq_barrier {
2124 struct work_struct work;
2125 struct completion done;
2128 static void wq_barrier_func(struct work_struct *work)
2130 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2131 complete(&barr->done);
2135 * insert_wq_barrier - insert a barrier work
2136 * @cwq: cwq to insert barrier into
2137 * @barr: wq_barrier to insert
2138 * @target: target work to attach @barr to
2139 * @worker: worker currently executing @target, NULL if @target is not executing
2141 * @barr is linked to @target such that @barr is completed only after
2142 * @target finishes execution. Please note that the ordering
2143 * guarantee is observed only with respect to @target and on the local
2144 * cpu.
2146 * Currently, a queued barrier can't be canceled. This is because
2147 * try_to_grab_pending() can't determine whether the work to be
2148 * grabbed is at the head of the queue and thus can't clear LINKED
2149 * flag of the previous work while there must be a valid next work
2150 * after a work with LINKED flag set.
2152 * Note that when @worker is non-NULL, @target may be modified
2153 * underneath us, so we can't reliably determine cwq from @target.
2155 * CONTEXT:
2156 * spin_lock_irq(gcwq->lock).
2158 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2159 struct wq_barrier *barr,
2160 struct work_struct *target, struct worker *worker)
2162 struct list_head *head;
2163 unsigned int linked = 0;
2166 * debugobject calls are safe here even with gcwq->lock locked
2167 * as we know for sure that this will not trigger any of the
2168 * checks and call back into the fixup functions where we
2169 * might deadlock.
2171 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2172 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2173 init_completion(&barr->done);
2176 * If @target is currently being executed, schedule the
2177 * barrier to the worker; otherwise, put it after @target.
2179 if (worker)
2180 head = worker->scheduled.next;
2181 else {
2182 unsigned long *bits = work_data_bits(target);
2184 head = target->entry.next;
2185 /* there can already be other linked works, inherit and set */
2186 linked = *bits & WORK_STRUCT_LINKED;
2187 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2190 debug_work_activate(&barr->work);
2191 insert_work(cwq, &barr->work, head,
2192 work_color_to_flags(WORK_NO_COLOR) | linked);
2196 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2197 * @wq: workqueue being flushed
2198 * @flush_color: new flush color, < 0 for no-op
2199 * @work_color: new work color, < 0 for no-op
2201 * Prepare cwqs for workqueue flushing.
2203 * If @flush_color is non-negative, flush_color on all cwqs should be
2204 * -1. If no cwq has in-flight commands at the specified color, all
2205 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2206 * has in flight commands, its cwq->flush_color is set to
2207 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2208 * wakeup logic is armed and %true is returned.
2210 * The caller should have initialized @wq->first_flusher prior to
2211 * calling this function with non-negative @flush_color. If
2212 * @flush_color is negative, no flush color update is done and %false
2213 * is returned.
2215 * If @work_color is non-negative, all cwqs should have the same
2216 * work_color which is previous to @work_color and all will be
2217 * advanced to @work_color.
2219 * CONTEXT:
2220 * mutex_lock(wq->flush_mutex).
2222 * RETURNS:
2223 * %true if @flush_color >= 0 and there's something to flush. %false
2224 * otherwise.
2226 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2227 int flush_color, int work_color)
2229 bool wait = false;
2230 unsigned int cpu;
2232 if (flush_color >= 0) {
2233 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2234 atomic_set(&wq->nr_cwqs_to_flush, 1);
2237 for_each_cwq_cpu(cpu, wq) {
2238 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2239 struct global_cwq *gcwq = cwq->gcwq;
2241 spin_lock_irq(&gcwq->lock);
2243 if (flush_color >= 0) {
2244 BUG_ON(cwq->flush_color != -1);
2246 if (cwq->nr_in_flight[flush_color]) {
2247 cwq->flush_color = flush_color;
2248 atomic_inc(&wq->nr_cwqs_to_flush);
2249 wait = true;
2253 if (work_color >= 0) {
2254 BUG_ON(work_color != work_next_color(cwq->work_color));
2255 cwq->work_color = work_color;
2258 spin_unlock_irq(&gcwq->lock);
2261 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2262 complete(&wq->first_flusher->done);
2264 return wait;
2268 * flush_workqueue - ensure that any scheduled work has run to completion.
2269 * @wq: workqueue to flush
2271 * Forces execution of the workqueue and blocks until its completion.
2272 * This is typically used in driver shutdown handlers.
2274 * We sleep until all works which were queued on entry have been handled,
2275 * but we are not livelocked by new incoming ones.
2277 void flush_workqueue(struct workqueue_struct *wq)
2279 struct wq_flusher this_flusher = {
2280 .list = LIST_HEAD_INIT(this_flusher.list),
2281 .flush_color = -1,
2282 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2284 int next_color;
2286 lock_map_acquire(&wq->lockdep_map);
2287 lock_map_release(&wq->lockdep_map);
2289 mutex_lock(&wq->flush_mutex);
2292 * Start-to-wait phase
2294 next_color = work_next_color(wq->work_color);
2296 if (next_color != wq->flush_color) {
2298 * Color space is not full. The current work_color
2299 * becomes our flush_color and work_color is advanced
2300 * by one.
2302 BUG_ON(!list_empty(&wq->flusher_overflow));
2303 this_flusher.flush_color = wq->work_color;
2304 wq->work_color = next_color;
2306 if (!wq->first_flusher) {
2307 /* no flush in progress, become the first flusher */
2308 BUG_ON(wq->flush_color != this_flusher.flush_color);
2310 wq->first_flusher = &this_flusher;
2312 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2313 wq->work_color)) {
2314 /* nothing to flush, done */
2315 wq->flush_color = next_color;
2316 wq->first_flusher = NULL;
2317 goto out_unlock;
2319 } else {
2320 /* wait in queue */
2321 BUG_ON(wq->flush_color == this_flusher.flush_color);
2322 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2323 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2325 } else {
2327 * Oops, color space is full, wait on overflow queue.
2328 * The next flush completion will assign us
2329 * flush_color and transfer to flusher_queue.
2331 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2334 mutex_unlock(&wq->flush_mutex);
2336 wait_for_completion(&this_flusher.done);
2339 * Wake-up-and-cascade phase
2341 * First flushers are responsible for cascading flushes and
2342 * handling overflow. Non-first flushers can simply return.
2344 if (wq->first_flusher != &this_flusher)
2345 return;
2347 mutex_lock(&wq->flush_mutex);
2349 /* we might have raced, check again with mutex held */
2350 if (wq->first_flusher != &this_flusher)
2351 goto out_unlock;
2353 wq->first_flusher = NULL;
2355 BUG_ON(!list_empty(&this_flusher.list));
2356 BUG_ON(wq->flush_color != this_flusher.flush_color);
2358 while (true) {
2359 struct wq_flusher *next, *tmp;
2361 /* complete all the flushers sharing the current flush color */
2362 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2363 if (next->flush_color != wq->flush_color)
2364 break;
2365 list_del_init(&next->list);
2366 complete(&next->done);
2369 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2370 wq->flush_color != work_next_color(wq->work_color));
2372 /* this flush_color is finished, advance by one */
2373 wq->flush_color = work_next_color(wq->flush_color);
2375 /* one color has been freed, handle overflow queue */
2376 if (!list_empty(&wq->flusher_overflow)) {
2378 * Assign the same color to all overflowed
2379 * flushers, advance work_color and append to
2380 * flusher_queue. This is the start-to-wait
2381 * phase for these overflowed flushers.
2383 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2384 tmp->flush_color = wq->work_color;
2386 wq->work_color = work_next_color(wq->work_color);
2388 list_splice_tail_init(&wq->flusher_overflow,
2389 &wq->flusher_queue);
2390 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2393 if (list_empty(&wq->flusher_queue)) {
2394 BUG_ON(wq->flush_color != wq->work_color);
2395 break;
2399 * Need to flush more colors. Make the next flusher
2400 * the new first flusher and arm cwqs.
2402 BUG_ON(wq->flush_color == wq->work_color);
2403 BUG_ON(wq->flush_color != next->flush_color);
2405 list_del_init(&next->list);
2406 wq->first_flusher = next;
2408 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2409 break;
2412 * Meh... this color is already done, clear first
2413 * flusher and repeat cascading.
2415 wq->first_flusher = NULL;
2418 out_unlock:
2419 mutex_unlock(&wq->flush_mutex);
2421 EXPORT_SYMBOL_GPL(flush_workqueue);
2424 * drain_workqueue - drain a workqueue
2425 * @wq: workqueue to drain
2427 * Wait until the workqueue becomes empty. While draining is in progress,
2428 * only chain queueing is allowed. IOW, only currently pending or running
2429 * work items on @wq can queue further work items on it. @wq is flushed
2430 * repeatedly until it becomes empty. The number of flushing is detemined
2431 * by the depth of chaining and should be relatively short. Whine if it
2432 * takes too long.
2434 void drain_workqueue(struct workqueue_struct *wq)
2436 unsigned int flush_cnt = 0;
2437 unsigned int cpu;
2440 * __queue_work() needs to test whether there are drainers, is much
2441 * hotter than drain_workqueue() and already looks at @wq->flags.
2442 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2444 spin_lock(&workqueue_lock);
2445 if (!wq->nr_drainers++)
2446 wq->flags |= WQ_DRAINING;
2447 spin_unlock(&workqueue_lock);
2448 reflush:
2449 flush_workqueue(wq);
2451 for_each_cwq_cpu(cpu, wq) {
2452 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2453 bool drained;
2455 spin_lock_irq(&cwq->gcwq->lock);
2456 drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2457 spin_unlock_irq(&cwq->gcwq->lock);
2459 if (drained)
2460 continue;
2462 if (++flush_cnt == 10 ||
2463 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2464 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2465 wq->name, flush_cnt);
2466 goto reflush;
2469 spin_lock(&workqueue_lock);
2470 if (!--wq->nr_drainers)
2471 wq->flags &= ~WQ_DRAINING;
2472 spin_unlock(&workqueue_lock);
2474 EXPORT_SYMBOL_GPL(drain_workqueue);
2476 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2477 bool wait_executing)
2479 struct worker *worker = NULL;
2480 struct global_cwq *gcwq;
2481 struct cpu_workqueue_struct *cwq;
2483 might_sleep();
2484 gcwq = get_work_gcwq(work);
2485 if (!gcwq)
2486 return false;
2488 spin_lock_irq(&gcwq->lock);
2489 if (!list_empty(&work->entry)) {
2491 * See the comment near try_to_grab_pending()->smp_rmb().
2492 * If it was re-queued to a different gcwq under us, we
2493 * are not going to wait.
2495 smp_rmb();
2496 cwq = get_work_cwq(work);
2497 if (unlikely(!cwq || gcwq != cwq->gcwq))
2498 goto already_gone;
2499 } else if (wait_executing) {
2500 worker = find_worker_executing_work(gcwq, work);
2501 if (!worker)
2502 goto already_gone;
2503 cwq = worker->current_cwq;
2504 } else
2505 goto already_gone;
2507 insert_wq_barrier(cwq, barr, work, worker);
2508 spin_unlock_irq(&gcwq->lock);
2511 * If @max_active is 1 or rescuer is in use, flushing another work
2512 * item on the same workqueue may lead to deadlock. Make sure the
2513 * flusher is not running on the same workqueue by verifying write
2514 * access.
2516 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2517 lock_map_acquire(&cwq->wq->lockdep_map);
2518 else
2519 lock_map_acquire_read(&cwq->wq->lockdep_map);
2520 lock_map_release(&cwq->wq->lockdep_map);
2522 return true;
2523 already_gone:
2524 spin_unlock_irq(&gcwq->lock);
2525 return false;
2529 * flush_work - wait for a work to finish executing the last queueing instance
2530 * @work: the work to flush
2532 * Wait until @work has finished execution. This function considers
2533 * only the last queueing instance of @work. If @work has been
2534 * enqueued across different CPUs on a non-reentrant workqueue or on
2535 * multiple workqueues, @work might still be executing on return on
2536 * some of the CPUs from earlier queueing.
2538 * If @work was queued only on a non-reentrant, ordered or unbound
2539 * workqueue, @work is guaranteed to be idle on return if it hasn't
2540 * been requeued since flush started.
2542 * RETURNS:
2543 * %true if flush_work() waited for the work to finish execution,
2544 * %false if it was already idle.
2546 bool flush_work(struct work_struct *work)
2548 struct wq_barrier barr;
2550 if (start_flush_work(work, &barr, true)) {
2551 wait_for_completion(&barr.done);
2552 destroy_work_on_stack(&barr.work);
2553 return true;
2554 } else
2555 return false;
2557 EXPORT_SYMBOL_GPL(flush_work);
2559 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2561 struct wq_barrier barr;
2562 struct worker *worker;
2564 spin_lock_irq(&gcwq->lock);
2566 worker = find_worker_executing_work(gcwq, work);
2567 if (unlikely(worker))
2568 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2570 spin_unlock_irq(&gcwq->lock);
2572 if (unlikely(worker)) {
2573 wait_for_completion(&barr.done);
2574 destroy_work_on_stack(&barr.work);
2575 return true;
2576 } else
2577 return false;
2580 static bool wait_on_work(struct work_struct *work)
2582 bool ret = false;
2583 int cpu;
2585 might_sleep();
2587 lock_map_acquire(&work->lockdep_map);
2588 lock_map_release(&work->lockdep_map);
2590 for_each_gcwq_cpu(cpu)
2591 ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2592 return ret;
2596 * flush_work_sync - wait until a work has finished execution
2597 * @work: the work to flush
2599 * Wait until @work has finished execution. On return, it's
2600 * guaranteed that all queueing instances of @work which happened
2601 * before this function is called are finished. In other words, if
2602 * @work hasn't been requeued since this function was called, @work is
2603 * guaranteed to be idle on return.
2605 * RETURNS:
2606 * %true if flush_work_sync() waited for the work to finish execution,
2607 * %false if it was already idle.
2609 bool flush_work_sync(struct work_struct *work)
2611 struct wq_barrier barr;
2612 bool pending, waited;
2614 /* we'll wait for executions separately, queue barr only if pending */
2615 pending = start_flush_work(work, &barr, false);
2617 /* wait for executions to finish */
2618 waited = wait_on_work(work);
2620 /* wait for the pending one */
2621 if (pending) {
2622 wait_for_completion(&barr.done);
2623 destroy_work_on_stack(&barr.work);
2626 return pending || waited;
2628 EXPORT_SYMBOL_GPL(flush_work_sync);
2631 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2632 * so this work can't be re-armed in any way.
2634 static int try_to_grab_pending(struct work_struct *work)
2636 struct global_cwq *gcwq;
2637 int ret = -1;
2639 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2640 return 0;
2643 * The queueing is in progress, or it is already queued. Try to
2644 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2646 gcwq = get_work_gcwq(work);
2647 if (!gcwq)
2648 return ret;
2650 spin_lock_irq(&gcwq->lock);
2651 if (!list_empty(&work->entry)) {
2653 * This work is queued, but perhaps we locked the wrong gcwq.
2654 * In that case we must see the new value after rmb(), see
2655 * insert_work()->wmb().
2657 smp_rmb();
2658 if (gcwq == get_work_gcwq(work)) {
2659 debug_work_deactivate(work);
2662 * A delayed work item cannot be grabbed directly
2663 * because it might have linked NO_COLOR work items
2664 * which, if left on the delayed_list, will confuse
2665 * cwq->nr_active management later on and cause
2666 * stall. Make sure the work item is activated
2667 * before grabbing.
2669 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
2670 cwq_activate_delayed_work(work);
2672 list_del_init(&work->entry);
2673 cwq_dec_nr_in_flight(get_work_cwq(work),
2674 get_work_color(work),
2675 *work_data_bits(work) & WORK_STRUCT_DELAYED);
2676 ret = 1;
2679 spin_unlock_irq(&gcwq->lock);
2681 return ret;
2684 static bool __cancel_work_timer(struct work_struct *work,
2685 struct timer_list* timer)
2687 int ret;
2689 do {
2690 ret = (timer && likely(del_timer(timer)));
2691 if (!ret)
2692 ret = try_to_grab_pending(work);
2693 wait_on_work(work);
2694 } while (unlikely(ret < 0));
2696 clear_work_data(work);
2697 return ret;
2701 * cancel_work_sync - cancel a work and wait for it to finish
2702 * @work: the work to cancel
2704 * Cancel @work and wait for its execution to finish. This function
2705 * can be used even if the work re-queues itself or migrates to
2706 * another workqueue. On return from this function, @work is
2707 * guaranteed to be not pending or executing on any CPU.
2709 * cancel_work_sync(&delayed_work->work) must not be used for
2710 * delayed_work's. Use cancel_delayed_work_sync() instead.
2712 * The caller must ensure that the workqueue on which @work was last
2713 * queued can't be destroyed before this function returns.
2715 * RETURNS:
2716 * %true if @work was pending, %false otherwise.
2718 bool cancel_work_sync(struct work_struct *work)
2720 return __cancel_work_timer(work, NULL);
2722 EXPORT_SYMBOL_GPL(cancel_work_sync);
2725 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2726 * @dwork: the delayed work to flush
2728 * Delayed timer is cancelled and the pending work is queued for
2729 * immediate execution. Like flush_work(), this function only
2730 * considers the last queueing instance of @dwork.
2732 * RETURNS:
2733 * %true if flush_work() waited for the work to finish execution,
2734 * %false if it was already idle.
2736 bool flush_delayed_work(struct delayed_work *dwork)
2738 if (del_timer_sync(&dwork->timer))
2739 __queue_work(raw_smp_processor_id(),
2740 get_work_cwq(&dwork->work)->wq, &dwork->work);
2741 return flush_work(&dwork->work);
2743 EXPORT_SYMBOL(flush_delayed_work);
2746 * flush_delayed_work_sync - wait for a dwork to finish
2747 * @dwork: the delayed work to flush
2749 * Delayed timer is cancelled and the pending work is queued for
2750 * execution immediately. Other than timer handling, its behavior
2751 * is identical to flush_work_sync().
2753 * RETURNS:
2754 * %true if flush_work_sync() waited for the work to finish execution,
2755 * %false if it was already idle.
2757 bool flush_delayed_work_sync(struct delayed_work *dwork)
2759 if (del_timer_sync(&dwork->timer))
2760 __queue_work(raw_smp_processor_id(),
2761 get_work_cwq(&dwork->work)->wq, &dwork->work);
2762 return flush_work_sync(&dwork->work);
2764 EXPORT_SYMBOL(flush_delayed_work_sync);
2767 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2768 * @dwork: the delayed work cancel
2770 * This is cancel_work_sync() for delayed works.
2772 * RETURNS:
2773 * %true if @dwork was pending, %false otherwise.
2775 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2777 return __cancel_work_timer(&dwork->work, &dwork->timer);
2779 EXPORT_SYMBOL(cancel_delayed_work_sync);
2782 * schedule_work - put work task in global workqueue
2783 * @work: job to be done
2785 * Returns zero if @work was already on the kernel-global workqueue and
2786 * non-zero otherwise.
2788 * This puts a job in the kernel-global workqueue if it was not already
2789 * queued and leaves it in the same position on the kernel-global
2790 * workqueue otherwise.
2792 int schedule_work(struct work_struct *work)
2794 return queue_work(system_wq, work);
2796 EXPORT_SYMBOL(schedule_work);
2799 * schedule_work_on - put work task on a specific cpu
2800 * @cpu: cpu to put the work task on
2801 * @work: job to be done
2803 * This puts a job on a specific cpu
2805 int schedule_work_on(int cpu, struct work_struct *work)
2807 return queue_work_on(cpu, system_wq, work);
2809 EXPORT_SYMBOL(schedule_work_on);
2812 * schedule_delayed_work - put work task in global workqueue after delay
2813 * @dwork: job to be done
2814 * @delay: number of jiffies to wait or 0 for immediate execution
2816 * After waiting for a given time this puts a job in the kernel-global
2817 * workqueue.
2819 int schedule_delayed_work(struct delayed_work *dwork,
2820 unsigned long delay)
2822 return queue_delayed_work(system_wq, dwork, delay);
2824 EXPORT_SYMBOL(schedule_delayed_work);
2827 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2828 * @cpu: cpu to use
2829 * @dwork: job to be done
2830 * @delay: number of jiffies to wait
2832 * After waiting for a given time this puts a job in the kernel-global
2833 * workqueue on the specified CPU.
2835 int schedule_delayed_work_on(int cpu,
2836 struct delayed_work *dwork, unsigned long delay)
2838 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2840 EXPORT_SYMBOL(schedule_delayed_work_on);
2843 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2844 * @func: the function to call
2846 * schedule_on_each_cpu() executes @func on each online CPU using the
2847 * system workqueue and blocks until all CPUs have completed.
2848 * schedule_on_each_cpu() is very slow.
2850 * RETURNS:
2851 * 0 on success, -errno on failure.
2853 int schedule_on_each_cpu(work_func_t func)
2855 int cpu;
2856 struct work_struct __percpu *works;
2858 works = alloc_percpu(struct work_struct);
2859 if (!works)
2860 return -ENOMEM;
2862 get_online_cpus();
2864 for_each_online_cpu(cpu) {
2865 struct work_struct *work = per_cpu_ptr(works, cpu);
2867 INIT_WORK(work, func);
2868 schedule_work_on(cpu, work);
2871 for_each_online_cpu(cpu)
2872 flush_work(per_cpu_ptr(works, cpu));
2874 put_online_cpus();
2875 free_percpu(works);
2876 return 0;
2880 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2882 * Forces execution of the kernel-global workqueue and blocks until its
2883 * completion.
2885 * Think twice before calling this function! It's very easy to get into
2886 * trouble if you don't take great care. Either of the following situations
2887 * will lead to deadlock:
2889 * One of the work items currently on the workqueue needs to acquire
2890 * a lock held by your code or its caller.
2892 * Your code is running in the context of a work routine.
2894 * They will be detected by lockdep when they occur, but the first might not
2895 * occur very often. It depends on what work items are on the workqueue and
2896 * what locks they need, which you have no control over.
2898 * In most situations flushing the entire workqueue is overkill; you merely
2899 * need to know that a particular work item isn't queued and isn't running.
2900 * In such cases you should use cancel_delayed_work_sync() or
2901 * cancel_work_sync() instead.
2903 void flush_scheduled_work(void)
2905 flush_workqueue(system_wq);
2907 EXPORT_SYMBOL(flush_scheduled_work);
2910 * execute_in_process_context - reliably execute the routine with user context
2911 * @fn: the function to execute
2912 * @ew: guaranteed storage for the execute work structure (must
2913 * be available when the work executes)
2915 * Executes the function immediately if process context is available,
2916 * otherwise schedules the function for delayed execution.
2918 * Returns: 0 - function was executed
2919 * 1 - function was scheduled for execution
2921 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2923 if (!in_interrupt()) {
2924 fn(&ew->work);
2925 return 0;
2928 INIT_WORK(&ew->work, fn);
2929 schedule_work(&ew->work);
2931 return 1;
2933 EXPORT_SYMBOL_GPL(execute_in_process_context);
2935 int keventd_up(void)
2937 return system_wq != NULL;
2940 static int alloc_cwqs(struct workqueue_struct *wq)
2943 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2944 * Make sure that the alignment isn't lower than that of
2945 * unsigned long long.
2947 const size_t size = sizeof(struct cpu_workqueue_struct);
2948 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2949 __alignof__(unsigned long long));
2950 #ifdef CONFIG_SMP
2951 bool percpu = !(wq->flags & WQ_UNBOUND);
2952 #else
2953 bool percpu = false;
2954 #endif
2956 if (percpu)
2957 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2958 else {
2959 void *ptr;
2962 * Allocate enough room to align cwq and put an extra
2963 * pointer at the end pointing back to the originally
2964 * allocated pointer which will be used for free.
2966 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2967 if (ptr) {
2968 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2969 *(void **)(wq->cpu_wq.single + 1) = ptr;
2973 /* just in case, make sure it's actually aligned */
2974 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2975 return wq->cpu_wq.v ? 0 : -ENOMEM;
2978 static void free_cwqs(struct workqueue_struct *wq)
2980 #ifdef CONFIG_SMP
2981 bool percpu = !(wq->flags & WQ_UNBOUND);
2982 #else
2983 bool percpu = false;
2984 #endif
2986 if (percpu)
2987 free_percpu(wq->cpu_wq.pcpu);
2988 else if (wq->cpu_wq.single) {
2989 /* the pointer to free is stored right after the cwq */
2990 kfree(*(void **)(wq->cpu_wq.single + 1));
2994 static int wq_clamp_max_active(int max_active, unsigned int flags,
2995 const char *name)
2997 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2999 if (max_active < 1 || max_active > lim)
3000 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3001 "is out of range, clamping between %d and %d\n",
3002 max_active, name, 1, lim);
3004 return clamp_val(max_active, 1, lim);
3007 struct workqueue_struct *__alloc_workqueue_key(const char *name,
3008 unsigned int flags,
3009 int max_active,
3010 struct lock_class_key *key,
3011 const char *lock_name)
3013 struct workqueue_struct *wq;
3014 unsigned int cpu;
3017 * Workqueues which may be used during memory reclaim should
3018 * have a rescuer to guarantee forward progress.
3020 if (flags & WQ_MEM_RECLAIM)
3021 flags |= WQ_RESCUER;
3024 * Unbound workqueues aren't concurrency managed and should be
3025 * dispatched to workers immediately.
3027 if (flags & WQ_UNBOUND)
3028 flags |= WQ_HIGHPRI;
3030 max_active = max_active ?: WQ_DFL_ACTIVE;
3031 max_active = wq_clamp_max_active(max_active, flags, name);
3033 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
3034 if (!wq)
3035 goto err;
3037 wq->flags = flags;
3038 wq->saved_max_active = max_active;
3039 mutex_init(&wq->flush_mutex);
3040 atomic_set(&wq->nr_cwqs_to_flush, 0);
3041 INIT_LIST_HEAD(&wq->flusher_queue);
3042 INIT_LIST_HEAD(&wq->flusher_overflow);
3044 wq->name = name;
3045 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3046 INIT_LIST_HEAD(&wq->list);
3048 if (alloc_cwqs(wq) < 0)
3049 goto err;
3051 for_each_cwq_cpu(cpu, wq) {
3052 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3053 struct global_cwq *gcwq = get_gcwq(cpu);
3055 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3056 cwq->gcwq = gcwq;
3057 cwq->wq = wq;
3058 cwq->flush_color = -1;
3059 cwq->max_active = max_active;
3060 INIT_LIST_HEAD(&cwq->delayed_works);
3063 if (flags & WQ_RESCUER) {
3064 struct worker *rescuer;
3066 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3067 goto err;
3069 wq->rescuer = rescuer = alloc_worker();
3070 if (!rescuer)
3071 goto err;
3073 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
3074 if (IS_ERR(rescuer->task))
3075 goto err;
3077 rescuer->task->flags |= PF_THREAD_BOUND;
3078 wake_up_process(rescuer->task);
3082 * workqueue_lock protects global freeze state and workqueues
3083 * list. Grab it, set max_active accordingly and add the new
3084 * workqueue to workqueues list.
3086 spin_lock(&workqueue_lock);
3088 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3089 for_each_cwq_cpu(cpu, wq)
3090 get_cwq(cpu, wq)->max_active = 0;
3092 list_add(&wq->list, &workqueues);
3094 spin_unlock(&workqueue_lock);
3096 return wq;
3097 err:
3098 if (wq) {
3099 free_cwqs(wq);
3100 free_mayday_mask(wq->mayday_mask);
3101 kfree(wq->rescuer);
3102 kfree(wq);
3104 return NULL;
3106 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3109 * destroy_workqueue - safely terminate a workqueue
3110 * @wq: target workqueue
3112 * Safely destroy a workqueue. All work currently pending will be done first.
3114 void destroy_workqueue(struct workqueue_struct *wq)
3116 unsigned int cpu;
3118 /* drain it before proceeding with destruction */
3119 drain_workqueue(wq);
3122 * wq list is used to freeze wq, remove from list after
3123 * flushing is complete in case freeze races us.
3125 spin_lock(&workqueue_lock);
3126 list_del(&wq->list);
3127 spin_unlock(&workqueue_lock);
3129 /* sanity check */
3130 for_each_cwq_cpu(cpu, wq) {
3131 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3132 int i;
3134 for (i = 0; i < WORK_NR_COLORS; i++)
3135 BUG_ON(cwq->nr_in_flight[i]);
3136 BUG_ON(cwq->nr_active);
3137 BUG_ON(!list_empty(&cwq->delayed_works));
3140 if (wq->flags & WQ_RESCUER) {
3141 kthread_stop(wq->rescuer->task);
3142 free_mayday_mask(wq->mayday_mask);
3143 kfree(wq->rescuer);
3146 free_cwqs(wq);
3147 kfree(wq);
3149 EXPORT_SYMBOL_GPL(destroy_workqueue);
3152 * workqueue_set_max_active - adjust max_active of a workqueue
3153 * @wq: target workqueue
3154 * @max_active: new max_active value.
3156 * Set max_active of @wq to @max_active.
3158 * CONTEXT:
3159 * Don't call from IRQ context.
3161 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3163 unsigned int cpu;
3165 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3167 spin_lock(&workqueue_lock);
3169 wq->saved_max_active = max_active;
3171 for_each_cwq_cpu(cpu, wq) {
3172 struct global_cwq *gcwq = get_gcwq(cpu);
3174 spin_lock_irq(&gcwq->lock);
3176 if (!(wq->flags & WQ_FREEZABLE) ||
3177 !(gcwq->flags & GCWQ_FREEZING))
3178 get_cwq(gcwq->cpu, wq)->max_active = max_active;
3180 spin_unlock_irq(&gcwq->lock);
3183 spin_unlock(&workqueue_lock);
3185 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3188 * workqueue_congested - test whether a workqueue is congested
3189 * @cpu: CPU in question
3190 * @wq: target workqueue
3192 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3193 * no synchronization around this function and the test result is
3194 * unreliable and only useful as advisory hints or for debugging.
3196 * RETURNS:
3197 * %true if congested, %false otherwise.
3199 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3201 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3203 return !list_empty(&cwq->delayed_works);
3205 EXPORT_SYMBOL_GPL(workqueue_congested);
3208 * work_cpu - return the last known associated cpu for @work
3209 * @work: the work of interest
3211 * RETURNS:
3212 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
3214 unsigned int work_cpu(struct work_struct *work)
3216 struct global_cwq *gcwq = get_work_gcwq(work);
3218 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3220 EXPORT_SYMBOL_GPL(work_cpu);
3223 * work_busy - test whether a work is currently pending or running
3224 * @work: the work to be tested
3226 * Test whether @work is currently pending or running. There is no
3227 * synchronization around this function and the test result is
3228 * unreliable and only useful as advisory hints or for debugging.
3229 * Especially for reentrant wqs, the pending state might hide the
3230 * running state.
3232 * RETURNS:
3233 * OR'd bitmask of WORK_BUSY_* bits.
3235 unsigned int work_busy(struct work_struct *work)
3237 struct global_cwq *gcwq = get_work_gcwq(work);
3238 unsigned long flags;
3239 unsigned int ret = 0;
3241 if (!gcwq)
3242 return false;
3244 spin_lock_irqsave(&gcwq->lock, flags);
3246 if (work_pending(work))
3247 ret |= WORK_BUSY_PENDING;
3248 if (find_worker_executing_work(gcwq, work))
3249 ret |= WORK_BUSY_RUNNING;
3251 spin_unlock_irqrestore(&gcwq->lock, flags);
3253 return ret;
3255 EXPORT_SYMBOL_GPL(work_busy);
3258 * CPU hotplug.
3260 * There are two challenges in supporting CPU hotplug. Firstly, there
3261 * are a lot of assumptions on strong associations among work, cwq and
3262 * gcwq which make migrating pending and scheduled works very
3263 * difficult to implement without impacting hot paths. Secondly,
3264 * gcwqs serve mix of short, long and very long running works making
3265 * blocked draining impractical.
3267 * This is solved by allowing a gcwq to be detached from CPU, running
3268 * it with unbound (rogue) workers and allowing it to be reattached
3269 * later if the cpu comes back online. A separate thread is created
3270 * to govern a gcwq in such state and is called the trustee of the
3271 * gcwq.
3273 * Trustee states and their descriptions.
3275 * START Command state used on startup. On CPU_DOWN_PREPARE, a
3276 * new trustee is started with this state.
3278 * IN_CHARGE Once started, trustee will enter this state after
3279 * assuming the manager role and making all existing
3280 * workers rogue. DOWN_PREPARE waits for trustee to
3281 * enter this state. After reaching IN_CHARGE, trustee
3282 * tries to execute the pending worklist until it's empty
3283 * and the state is set to BUTCHER, or the state is set
3284 * to RELEASE.
3286 * BUTCHER Command state which is set by the cpu callback after
3287 * the cpu has went down. Once this state is set trustee
3288 * knows that there will be no new works on the worklist
3289 * and once the worklist is empty it can proceed to
3290 * killing idle workers.
3292 * RELEASE Command state which is set by the cpu callback if the
3293 * cpu down has been canceled or it has come online
3294 * again. After recognizing this state, trustee stops
3295 * trying to drain or butcher and clears ROGUE, rebinds
3296 * all remaining workers back to the cpu and releases
3297 * manager role.
3299 * DONE Trustee will enter this state after BUTCHER or RELEASE
3300 * is complete.
3302 * trustee CPU draining
3303 * took over down complete
3304 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3305 * | | ^
3306 * | CPU is back online v return workers |
3307 * ----------------> RELEASE --------------
3311 * trustee_wait_event_timeout - timed event wait for trustee
3312 * @cond: condition to wait for
3313 * @timeout: timeout in jiffies
3315 * wait_event_timeout() for trustee to use. Handles locking and
3316 * checks for RELEASE request.
3318 * CONTEXT:
3319 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3320 * multiple times. To be used by trustee.
3322 * RETURNS:
3323 * Positive indicating left time if @cond is satisfied, 0 if timed
3324 * out, -1 if canceled.
3326 #define trustee_wait_event_timeout(cond, timeout) ({ \
3327 long __ret = (timeout); \
3328 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3329 __ret) { \
3330 spin_unlock_irq(&gcwq->lock); \
3331 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3332 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3333 __ret); \
3334 spin_lock_irq(&gcwq->lock); \
3336 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3340 * trustee_wait_event - event wait for trustee
3341 * @cond: condition to wait for
3343 * wait_event() for trustee to use. Automatically handles locking and
3344 * checks for CANCEL request.
3346 * CONTEXT:
3347 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3348 * multiple times. To be used by trustee.
3350 * RETURNS:
3351 * 0 if @cond is satisfied, -1 if canceled.
3353 #define trustee_wait_event(cond) ({ \
3354 long __ret1; \
3355 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3356 __ret1 < 0 ? -1 : 0; \
3359 static int __cpuinit trustee_thread(void *__gcwq)
3361 struct global_cwq *gcwq = __gcwq;
3362 struct worker *worker;
3363 struct work_struct *work;
3364 struct hlist_node *pos;
3365 long rc;
3366 int i;
3368 BUG_ON(gcwq->cpu != smp_processor_id());
3370 spin_lock_irq(&gcwq->lock);
3372 * Claim the manager position and make all workers rogue.
3373 * Trustee must be bound to the target cpu and can't be
3374 * cancelled.
3376 BUG_ON(gcwq->cpu != smp_processor_id());
3377 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3378 BUG_ON(rc < 0);
3380 gcwq->flags |= GCWQ_MANAGING_WORKERS;
3382 list_for_each_entry(worker, &gcwq->idle_list, entry)
3383 worker->flags |= WORKER_ROGUE;
3385 for_each_busy_worker(worker, i, pos, gcwq)
3386 worker->flags |= WORKER_ROGUE;
3389 * Call schedule() so that we cross rq->lock and thus can
3390 * guarantee sched callbacks see the rogue flag. This is
3391 * necessary as scheduler callbacks may be invoked from other
3392 * cpus.
3394 spin_unlock_irq(&gcwq->lock);
3395 schedule();
3396 spin_lock_irq(&gcwq->lock);
3399 * Sched callbacks are disabled now. Zap nr_running. After
3400 * this, nr_running stays zero and need_more_worker() and
3401 * keep_working() are always true as long as the worklist is
3402 * not empty.
3404 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3406 spin_unlock_irq(&gcwq->lock);
3407 del_timer_sync(&gcwq->idle_timer);
3408 spin_lock_irq(&gcwq->lock);
3411 * We're now in charge. Notify and proceed to drain. We need
3412 * to keep the gcwq running during the whole CPU down
3413 * procedure as other cpu hotunplug callbacks may need to
3414 * flush currently running tasks.
3416 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3417 wake_up_all(&gcwq->trustee_wait);
3420 * The original cpu is in the process of dying and may go away
3421 * anytime now. When that happens, we and all workers would
3422 * be migrated to other cpus. Try draining any left work. We
3423 * want to get it over with ASAP - spam rescuers, wake up as
3424 * many idlers as necessary and create new ones till the
3425 * worklist is empty. Note that if the gcwq is frozen, there
3426 * may be frozen works in freezable cwqs. Don't declare
3427 * completion while frozen.
3429 while (gcwq->nr_workers != gcwq->nr_idle ||
3430 gcwq->flags & GCWQ_FREEZING ||
3431 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3432 int nr_works = 0;
3434 list_for_each_entry(work, &gcwq->worklist, entry) {
3435 send_mayday(work);
3436 nr_works++;
3439 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3440 if (!nr_works--)
3441 break;
3442 wake_up_process(worker->task);
3445 if (need_to_create_worker(gcwq)) {
3446 spin_unlock_irq(&gcwq->lock);
3447 worker = create_worker(gcwq, false);
3448 spin_lock_irq(&gcwq->lock);
3449 if (worker) {
3450 worker->flags |= WORKER_ROGUE;
3451 start_worker(worker);
3455 /* give a breather */
3456 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3457 break;
3461 * Either all works have been scheduled and cpu is down, or
3462 * cpu down has already been canceled. Wait for and butcher
3463 * all workers till we're canceled.
3465 do {
3466 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3467 while (!list_empty(&gcwq->idle_list))
3468 destroy_worker(list_first_entry(&gcwq->idle_list,
3469 struct worker, entry));
3470 } while (gcwq->nr_workers && rc >= 0);
3473 * At this point, either draining has completed and no worker
3474 * is left, or cpu down has been canceled or the cpu is being
3475 * brought back up. There shouldn't be any idle one left.
3476 * Tell the remaining busy ones to rebind once it finishes the
3477 * currently scheduled works by scheduling the rebind_work.
3479 WARN_ON(!list_empty(&gcwq->idle_list));
3481 for_each_busy_worker(worker, i, pos, gcwq) {
3482 struct work_struct *rebind_work = &worker->rebind_work;
3483 unsigned long worker_flags = worker->flags;
3486 * Rebind_work may race with future cpu hotplug
3487 * operations. Use a separate flag to mark that
3488 * rebinding is scheduled. The morphing should
3489 * be atomic.
3491 worker_flags |= WORKER_REBIND;
3492 worker_flags &= ~WORKER_ROGUE;
3493 ACCESS_ONCE(worker->flags) = worker_flags;
3495 /* queue rebind_work, wq doesn't matter, use the default one */
3496 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3497 work_data_bits(rebind_work)))
3498 continue;
3500 debug_work_activate(rebind_work);
3501 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3502 worker->scheduled.next,
3503 work_color_to_flags(WORK_NO_COLOR));
3506 /* relinquish manager role */
3507 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3509 /* notify completion */
3510 gcwq->trustee = NULL;
3511 gcwq->trustee_state = TRUSTEE_DONE;
3512 wake_up_all(&gcwq->trustee_wait);
3513 spin_unlock_irq(&gcwq->lock);
3514 return 0;
3518 * wait_trustee_state - wait for trustee to enter the specified state
3519 * @gcwq: gcwq the trustee of interest belongs to
3520 * @state: target state to wait for
3522 * Wait for the trustee to reach @state. DONE is already matched.
3524 * CONTEXT:
3525 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3526 * multiple times. To be used by cpu_callback.
3528 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3529 __releases(&gcwq->lock)
3530 __acquires(&gcwq->lock)
3532 if (!(gcwq->trustee_state == state ||
3533 gcwq->trustee_state == TRUSTEE_DONE)) {
3534 spin_unlock_irq(&gcwq->lock);
3535 __wait_event(gcwq->trustee_wait,
3536 gcwq->trustee_state == state ||
3537 gcwq->trustee_state == TRUSTEE_DONE);
3538 spin_lock_irq(&gcwq->lock);
3542 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3543 unsigned long action,
3544 void *hcpu)
3546 unsigned int cpu = (unsigned long)hcpu;
3547 struct global_cwq *gcwq = get_gcwq(cpu);
3548 struct task_struct *new_trustee = NULL;
3549 struct worker *uninitialized_var(new_worker);
3550 unsigned long flags;
3552 action &= ~CPU_TASKS_FROZEN;
3554 switch (action) {
3555 case CPU_DOWN_PREPARE:
3556 new_trustee = kthread_create(trustee_thread, gcwq,
3557 "workqueue_trustee/%d\n", cpu);
3558 if (IS_ERR(new_trustee))
3559 return notifier_from_errno(PTR_ERR(new_trustee));
3560 kthread_bind(new_trustee, cpu);
3561 /* fall through */
3562 case CPU_UP_PREPARE:
3563 BUG_ON(gcwq->first_idle);
3564 new_worker = create_worker(gcwq, false);
3565 if (!new_worker) {
3566 if (new_trustee)
3567 kthread_stop(new_trustee);
3568 return NOTIFY_BAD;
3572 /* some are called w/ irq disabled, don't disturb irq status */
3573 spin_lock_irqsave(&gcwq->lock, flags);
3575 switch (action) {
3576 case CPU_DOWN_PREPARE:
3577 /* initialize trustee and tell it to acquire the gcwq */
3578 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3579 gcwq->trustee = new_trustee;
3580 gcwq->trustee_state = TRUSTEE_START;
3581 wake_up_process(gcwq->trustee);
3582 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3583 /* fall through */
3584 case CPU_UP_PREPARE:
3585 BUG_ON(gcwq->first_idle);
3586 gcwq->first_idle = new_worker;
3587 break;
3589 case CPU_DYING:
3591 * Before this, the trustee and all workers except for
3592 * the ones which are still executing works from
3593 * before the last CPU down must be on the cpu. After
3594 * this, they'll all be diasporas.
3596 gcwq->flags |= GCWQ_DISASSOCIATED;
3597 break;
3599 case CPU_POST_DEAD:
3600 gcwq->trustee_state = TRUSTEE_BUTCHER;
3601 /* fall through */
3602 case CPU_UP_CANCELED:
3603 destroy_worker(gcwq->first_idle);
3604 gcwq->first_idle = NULL;
3605 break;
3607 case CPU_DOWN_FAILED:
3608 case CPU_ONLINE:
3609 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3610 if (gcwq->trustee_state != TRUSTEE_DONE) {
3611 gcwq->trustee_state = TRUSTEE_RELEASE;
3612 wake_up_process(gcwq->trustee);
3613 wait_trustee_state(gcwq, TRUSTEE_DONE);
3617 * Trustee is done and there might be no worker left.
3618 * Put the first_idle in and request a real manager to
3619 * take a look.
3621 spin_unlock_irq(&gcwq->lock);
3622 kthread_bind(gcwq->first_idle->task, cpu);
3623 spin_lock_irq(&gcwq->lock);
3624 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3625 start_worker(gcwq->first_idle);
3626 gcwq->first_idle = NULL;
3627 break;
3630 spin_unlock_irqrestore(&gcwq->lock, flags);
3632 return notifier_from_errno(0);
3636 * Workqueues should be brought up before normal priority CPU notifiers.
3637 * This will be registered high priority CPU notifier.
3639 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3640 unsigned long action,
3641 void *hcpu)
3643 switch (action & ~CPU_TASKS_FROZEN) {
3644 case CPU_UP_PREPARE:
3645 case CPU_UP_CANCELED:
3646 case CPU_DOWN_FAILED:
3647 case CPU_ONLINE:
3648 return workqueue_cpu_callback(nfb, action, hcpu);
3650 return NOTIFY_OK;
3654 * Workqueues should be brought down after normal priority CPU notifiers.
3655 * This will be registered as low priority CPU notifier.
3657 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3658 unsigned long action,
3659 void *hcpu)
3661 switch (action & ~CPU_TASKS_FROZEN) {
3662 case CPU_DOWN_PREPARE:
3663 case CPU_DYING:
3664 case CPU_POST_DEAD:
3665 return workqueue_cpu_callback(nfb, action, hcpu);
3667 return NOTIFY_OK;
3670 #ifdef CONFIG_SMP
3672 struct work_for_cpu {
3673 struct work_struct work;
3674 long (*fn)(void *);
3675 void *arg;
3676 long ret;
3679 static void work_for_cpu_fn(struct work_struct *work)
3681 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3683 wfc->ret = wfc->fn(wfc->arg);
3687 * work_on_cpu - run a function in user context on a particular cpu
3688 * @cpu: the cpu to run on
3689 * @fn: the function to run
3690 * @arg: the function arg
3692 * This will return the value @fn returns.
3693 * It is up to the caller to ensure that the cpu doesn't go offline.
3694 * The caller must not hold any locks which would prevent @fn from completing.
3696 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3698 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3700 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3701 schedule_work_on(cpu, &wfc.work);
3702 flush_work(&wfc.work);
3703 return wfc.ret;
3705 EXPORT_SYMBOL_GPL(work_on_cpu);
3706 #endif /* CONFIG_SMP */
3708 #ifdef CONFIG_FREEZER
3711 * freeze_workqueues_begin - begin freezing workqueues
3713 * Start freezing workqueues. After this function returns, all freezable
3714 * workqueues will queue new works to their frozen_works list instead of
3715 * gcwq->worklist.
3717 * CONTEXT:
3718 * Grabs and releases workqueue_lock and gcwq->lock's.
3720 void freeze_workqueues_begin(void)
3722 unsigned int cpu;
3724 spin_lock(&workqueue_lock);
3726 BUG_ON(workqueue_freezing);
3727 workqueue_freezing = true;
3729 for_each_gcwq_cpu(cpu) {
3730 struct global_cwq *gcwq = get_gcwq(cpu);
3731 struct workqueue_struct *wq;
3733 spin_lock_irq(&gcwq->lock);
3735 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3736 gcwq->flags |= GCWQ_FREEZING;
3738 list_for_each_entry(wq, &workqueues, list) {
3739 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3741 if (cwq && wq->flags & WQ_FREEZABLE)
3742 cwq->max_active = 0;
3745 spin_unlock_irq(&gcwq->lock);
3748 spin_unlock(&workqueue_lock);
3752 * freeze_workqueues_busy - are freezable workqueues still busy?
3754 * Check whether freezing is complete. This function must be called
3755 * between freeze_workqueues_begin() and thaw_workqueues().
3757 * CONTEXT:
3758 * Grabs and releases workqueue_lock.
3760 * RETURNS:
3761 * %true if some freezable workqueues are still busy. %false if freezing
3762 * is complete.
3764 bool freeze_workqueues_busy(void)
3766 unsigned int cpu;
3767 bool busy = false;
3769 spin_lock(&workqueue_lock);
3771 BUG_ON(!workqueue_freezing);
3773 for_each_gcwq_cpu(cpu) {
3774 struct workqueue_struct *wq;
3776 * nr_active is monotonically decreasing. It's safe
3777 * to peek without lock.
3779 list_for_each_entry(wq, &workqueues, list) {
3780 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3782 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3783 continue;
3785 BUG_ON(cwq->nr_active < 0);
3786 if (cwq->nr_active) {
3787 busy = true;
3788 goto out_unlock;
3792 out_unlock:
3793 spin_unlock(&workqueue_lock);
3794 return busy;
3798 * thaw_workqueues - thaw workqueues
3800 * Thaw workqueues. Normal queueing is restored and all collected
3801 * frozen works are transferred to their respective gcwq worklists.
3803 * CONTEXT:
3804 * Grabs and releases workqueue_lock and gcwq->lock's.
3806 void thaw_workqueues(void)
3808 unsigned int cpu;
3810 spin_lock(&workqueue_lock);
3812 if (!workqueue_freezing)
3813 goto out_unlock;
3815 for_each_gcwq_cpu(cpu) {
3816 struct global_cwq *gcwq = get_gcwq(cpu);
3817 struct workqueue_struct *wq;
3819 spin_lock_irq(&gcwq->lock);
3821 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3822 gcwq->flags &= ~GCWQ_FREEZING;
3824 list_for_each_entry(wq, &workqueues, list) {
3825 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3827 if (!cwq || !(wq->flags & WQ_FREEZABLE))
3828 continue;
3830 /* restore max_active and repopulate worklist */
3831 cwq->max_active = wq->saved_max_active;
3833 while (!list_empty(&cwq->delayed_works) &&
3834 cwq->nr_active < cwq->max_active)
3835 cwq_activate_first_delayed(cwq);
3838 wake_up_worker(gcwq);
3840 spin_unlock_irq(&gcwq->lock);
3843 workqueue_freezing = false;
3844 out_unlock:
3845 spin_unlock(&workqueue_lock);
3847 #endif /* CONFIG_FREEZER */
3849 static int __init init_workqueues(void)
3851 unsigned int cpu;
3852 int i;
3854 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3855 cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3857 /* initialize gcwqs */
3858 for_each_gcwq_cpu(cpu) {
3859 struct global_cwq *gcwq = get_gcwq(cpu);
3861 spin_lock_init(&gcwq->lock);
3862 INIT_LIST_HEAD(&gcwq->worklist);
3863 gcwq->cpu = cpu;
3864 gcwq->flags |= GCWQ_DISASSOCIATED;
3866 INIT_LIST_HEAD(&gcwq->idle_list);
3867 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3868 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3870 init_timer_deferrable(&gcwq->idle_timer);
3871 gcwq->idle_timer.function = idle_worker_timeout;
3872 gcwq->idle_timer.data = (unsigned long)gcwq;
3874 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3875 (unsigned long)gcwq);
3877 ida_init(&gcwq->worker_ida);
3879 gcwq->trustee_state = TRUSTEE_DONE;
3880 init_waitqueue_head(&gcwq->trustee_wait);
3883 /* create the initial worker */
3884 for_each_online_gcwq_cpu(cpu) {
3885 struct global_cwq *gcwq = get_gcwq(cpu);
3886 struct worker *worker;
3888 if (cpu != WORK_CPU_UNBOUND)
3889 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3890 worker = create_worker(gcwq, true);
3891 BUG_ON(!worker);
3892 spin_lock_irq(&gcwq->lock);
3893 start_worker(worker);
3894 spin_unlock_irq(&gcwq->lock);
3897 system_wq = alloc_workqueue("events", 0, 0);
3898 system_long_wq = alloc_workqueue("events_long", 0, 0);
3899 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3900 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3901 WQ_UNBOUND_MAX_ACTIVE);
3902 system_freezable_wq = alloc_workqueue("events_freezable",
3903 WQ_FREEZABLE, 0);
3904 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3905 WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3906 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3907 !system_unbound_wq || !system_freezable_wq ||
3908 !system_nrt_freezable_wq);
3909 return 0;
3911 early_initcall(init_workqueues);