tracing: Simplify the iteration logic in f_start/f_next
[linux/fpc-iii.git] / kernel / futex.c
blobc3a1a55a52141851630b91f2bff2aa789b508ace
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
67 #include <asm/futex.h>
69 #include "rtmutex_common.h"
71 int __read_mostly futex_cmpxchg_enabled;
73 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
76 * Futex flags used to encode options to functions and preserve them across
77 * restarts.
79 #define FLAGS_SHARED 0x01
80 #define FLAGS_CLOCKRT 0x02
81 #define FLAGS_HAS_TIMEOUT 0x04
84 * Priority Inheritance state:
86 struct futex_pi_state {
88 * list of 'owned' pi_state instances - these have to be
89 * cleaned up in do_exit() if the task exits prematurely:
91 struct list_head list;
94 * The PI object:
96 struct rt_mutex pi_mutex;
98 struct task_struct *owner;
99 atomic_t refcount;
101 union futex_key key;
105 * struct futex_q - The hashed futex queue entry, one per waiting task
106 * @list: priority-sorted list of tasks waiting on this futex
107 * @task: the task waiting on the futex
108 * @lock_ptr: the hash bucket lock
109 * @key: the key the futex is hashed on
110 * @pi_state: optional priority inheritance state
111 * @rt_waiter: rt_waiter storage for use with requeue_pi
112 * @requeue_pi_key: the requeue_pi target futex key
113 * @bitset: bitset for the optional bitmasked wakeup
115 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
116 * we can wake only the relevant ones (hashed queues may be shared).
118 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
119 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
120 * The order of wakeup is always to make the first condition true, then
121 * the second.
123 * PI futexes are typically woken before they are removed from the hash list via
124 * the rt_mutex code. See unqueue_me_pi().
126 struct futex_q {
127 struct plist_node list;
129 struct task_struct *task;
130 spinlock_t *lock_ptr;
131 union futex_key key;
132 struct futex_pi_state *pi_state;
133 struct rt_mutex_waiter *rt_waiter;
134 union futex_key *requeue_pi_key;
135 u32 bitset;
138 static const struct futex_q futex_q_init = {
139 /* list gets initialized in queue_me()*/
140 .key = FUTEX_KEY_INIT,
141 .bitset = FUTEX_BITSET_MATCH_ANY
145 * Hash buckets are shared by all the futex_keys that hash to the same
146 * location. Each key may have multiple futex_q structures, one for each task
147 * waiting on a futex.
149 struct futex_hash_bucket {
150 spinlock_t lock;
151 struct plist_head chain;
154 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
157 * We hash on the keys returned from get_futex_key (see below).
159 static struct futex_hash_bucket *hash_futex(union futex_key *key)
161 u32 hash = jhash2((u32*)&key->both.word,
162 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
163 key->both.offset);
164 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
168 * Return 1 if two futex_keys are equal, 0 otherwise.
170 static inline int match_futex(union futex_key *key1, union futex_key *key2)
172 return (key1 && key2
173 && key1->both.word == key2->both.word
174 && key1->both.ptr == key2->both.ptr
175 && key1->both.offset == key2->both.offset);
179 * Take a reference to the resource addressed by a key.
180 * Can be called while holding spinlocks.
183 static void get_futex_key_refs(union futex_key *key)
185 if (!key->both.ptr)
186 return;
188 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
189 case FUT_OFF_INODE:
190 ihold(key->shared.inode);
191 break;
192 case FUT_OFF_MMSHARED:
193 atomic_inc(&key->private.mm->mm_count);
194 break;
199 * Drop a reference to the resource addressed by a key.
200 * The hash bucket spinlock must not be held.
202 static void drop_futex_key_refs(union futex_key *key)
204 if (!key->both.ptr) {
205 /* If we're here then we tried to put a key we failed to get */
206 WARN_ON_ONCE(1);
207 return;
210 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
211 case FUT_OFF_INODE:
212 iput(key->shared.inode);
213 break;
214 case FUT_OFF_MMSHARED:
215 mmdrop(key->private.mm);
216 break;
221 * get_futex_key() - Get parameters which are the keys for a futex
222 * @uaddr: virtual address of the futex
223 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
224 * @key: address where result is stored.
225 * @rw: mapping needs to be read/write (values: VERIFY_READ,
226 * VERIFY_WRITE)
228 * Return: a negative error code or 0
230 * The key words are stored in *key on success.
232 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
233 * offset_within_page). For private mappings, it's (uaddr, current->mm).
234 * We can usually work out the index without swapping in the page.
236 * lock_page() might sleep, the caller should not hold a spinlock.
238 static int
239 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
241 unsigned long address = (unsigned long)uaddr;
242 struct mm_struct *mm = current->mm;
243 struct page *page, *page_head;
244 int err, ro = 0;
247 * The futex address must be "naturally" aligned.
249 key->both.offset = address % PAGE_SIZE;
250 if (unlikely((address % sizeof(u32)) != 0))
251 return -EINVAL;
252 address -= key->both.offset;
255 * PROCESS_PRIVATE futexes are fast.
256 * As the mm cannot disappear under us and the 'key' only needs
257 * virtual address, we dont even have to find the underlying vma.
258 * Note : We do have to check 'uaddr' is a valid user address,
259 * but access_ok() should be faster than find_vma()
261 if (!fshared) {
262 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
263 return -EFAULT;
264 key->private.mm = mm;
265 key->private.address = address;
266 get_futex_key_refs(key);
267 return 0;
270 again:
271 err = get_user_pages_fast(address, 1, 1, &page);
273 * If write access is not required (eg. FUTEX_WAIT), try
274 * and get read-only access.
276 if (err == -EFAULT && rw == VERIFY_READ) {
277 err = get_user_pages_fast(address, 1, 0, &page);
278 ro = 1;
280 if (err < 0)
281 return err;
282 else
283 err = 0;
285 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
286 page_head = page;
287 if (unlikely(PageTail(page))) {
288 put_page(page);
289 /* serialize against __split_huge_page_splitting() */
290 local_irq_disable();
291 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
292 page_head = compound_head(page);
294 * page_head is valid pointer but we must pin
295 * it before taking the PG_lock and/or
296 * PG_compound_lock. The moment we re-enable
297 * irqs __split_huge_page_splitting() can
298 * return and the head page can be freed from
299 * under us. We can't take the PG_lock and/or
300 * PG_compound_lock on a page that could be
301 * freed from under us.
303 if (page != page_head) {
304 get_page(page_head);
305 put_page(page);
307 local_irq_enable();
308 } else {
309 local_irq_enable();
310 goto again;
313 #else
314 page_head = compound_head(page);
315 if (page != page_head) {
316 get_page(page_head);
317 put_page(page);
319 #endif
321 lock_page(page_head);
324 * If page_head->mapping is NULL, then it cannot be a PageAnon
325 * page; but it might be the ZERO_PAGE or in the gate area or
326 * in a special mapping (all cases which we are happy to fail);
327 * or it may have been a good file page when get_user_pages_fast
328 * found it, but truncated or holepunched or subjected to
329 * invalidate_complete_page2 before we got the page lock (also
330 * cases which we are happy to fail). And we hold a reference,
331 * so refcount care in invalidate_complete_page's remove_mapping
332 * prevents drop_caches from setting mapping to NULL beneath us.
334 * The case we do have to guard against is when memory pressure made
335 * shmem_writepage move it from filecache to swapcache beneath us:
336 * an unlikely race, but we do need to retry for page_head->mapping.
338 if (!page_head->mapping) {
339 int shmem_swizzled = PageSwapCache(page_head);
340 unlock_page(page_head);
341 put_page(page_head);
342 if (shmem_swizzled)
343 goto again;
344 return -EFAULT;
348 * Private mappings are handled in a simple way.
350 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
351 * it's a read-only handle, it's expected that futexes attach to
352 * the object not the particular process.
354 if (PageAnon(page_head)) {
356 * A RO anonymous page will never change and thus doesn't make
357 * sense for futex operations.
359 if (ro) {
360 err = -EFAULT;
361 goto out;
364 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
365 key->private.mm = mm;
366 key->private.address = address;
367 } else {
368 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
369 key->shared.inode = page_head->mapping->host;
370 key->shared.pgoff = basepage_index(page);
373 get_futex_key_refs(key);
375 out:
376 unlock_page(page_head);
377 put_page(page_head);
378 return err;
381 static inline void put_futex_key(union futex_key *key)
383 drop_futex_key_refs(key);
387 * fault_in_user_writeable() - Fault in user address and verify RW access
388 * @uaddr: pointer to faulting user space address
390 * Slow path to fixup the fault we just took in the atomic write
391 * access to @uaddr.
393 * We have no generic implementation of a non-destructive write to the
394 * user address. We know that we faulted in the atomic pagefault
395 * disabled section so we can as well avoid the #PF overhead by
396 * calling get_user_pages() right away.
398 static int fault_in_user_writeable(u32 __user *uaddr)
400 struct mm_struct *mm = current->mm;
401 int ret;
403 down_read(&mm->mmap_sem);
404 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
405 FAULT_FLAG_WRITE);
406 up_read(&mm->mmap_sem);
408 return ret < 0 ? ret : 0;
412 * futex_top_waiter() - Return the highest priority waiter on a futex
413 * @hb: the hash bucket the futex_q's reside in
414 * @key: the futex key (to distinguish it from other futex futex_q's)
416 * Must be called with the hb lock held.
418 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
419 union futex_key *key)
421 struct futex_q *this;
423 plist_for_each_entry(this, &hb->chain, list) {
424 if (match_futex(&this->key, key))
425 return this;
427 return NULL;
430 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
431 u32 uval, u32 newval)
433 int ret;
435 pagefault_disable();
436 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
437 pagefault_enable();
439 return ret;
442 static int get_futex_value_locked(u32 *dest, u32 __user *from)
444 int ret;
446 pagefault_disable();
447 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
448 pagefault_enable();
450 return ret ? -EFAULT : 0;
455 * PI code:
457 static int refill_pi_state_cache(void)
459 struct futex_pi_state *pi_state;
461 if (likely(current->pi_state_cache))
462 return 0;
464 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
466 if (!pi_state)
467 return -ENOMEM;
469 INIT_LIST_HEAD(&pi_state->list);
470 /* pi_mutex gets initialized later */
471 pi_state->owner = NULL;
472 atomic_set(&pi_state->refcount, 1);
473 pi_state->key = FUTEX_KEY_INIT;
475 current->pi_state_cache = pi_state;
477 return 0;
480 static struct futex_pi_state * alloc_pi_state(void)
482 struct futex_pi_state *pi_state = current->pi_state_cache;
484 WARN_ON(!pi_state);
485 current->pi_state_cache = NULL;
487 return pi_state;
490 static void free_pi_state(struct futex_pi_state *pi_state)
492 if (!atomic_dec_and_test(&pi_state->refcount))
493 return;
496 * If pi_state->owner is NULL, the owner is most probably dying
497 * and has cleaned up the pi_state already
499 if (pi_state->owner) {
500 raw_spin_lock_irq(&pi_state->owner->pi_lock);
501 list_del_init(&pi_state->list);
502 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
504 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
507 if (current->pi_state_cache)
508 kfree(pi_state);
509 else {
511 * pi_state->list is already empty.
512 * clear pi_state->owner.
513 * refcount is at 0 - put it back to 1.
515 pi_state->owner = NULL;
516 atomic_set(&pi_state->refcount, 1);
517 current->pi_state_cache = pi_state;
522 * Look up the task based on what TID userspace gave us.
523 * We dont trust it.
525 static struct task_struct * futex_find_get_task(pid_t pid)
527 struct task_struct *p;
529 rcu_read_lock();
530 p = find_task_by_vpid(pid);
531 if (p)
532 get_task_struct(p);
534 rcu_read_unlock();
536 return p;
540 * This task is holding PI mutexes at exit time => bad.
541 * Kernel cleans up PI-state, but userspace is likely hosed.
542 * (Robust-futex cleanup is separate and might save the day for userspace.)
544 void exit_pi_state_list(struct task_struct *curr)
546 struct list_head *next, *head = &curr->pi_state_list;
547 struct futex_pi_state *pi_state;
548 struct futex_hash_bucket *hb;
549 union futex_key key = FUTEX_KEY_INIT;
551 if (!futex_cmpxchg_enabled)
552 return;
554 * We are a ZOMBIE and nobody can enqueue itself on
555 * pi_state_list anymore, but we have to be careful
556 * versus waiters unqueueing themselves:
558 raw_spin_lock_irq(&curr->pi_lock);
559 while (!list_empty(head)) {
561 next = head->next;
562 pi_state = list_entry(next, struct futex_pi_state, list);
563 key = pi_state->key;
564 hb = hash_futex(&key);
565 raw_spin_unlock_irq(&curr->pi_lock);
567 spin_lock(&hb->lock);
569 raw_spin_lock_irq(&curr->pi_lock);
571 * We dropped the pi-lock, so re-check whether this
572 * task still owns the PI-state:
574 if (head->next != next) {
575 spin_unlock(&hb->lock);
576 continue;
579 WARN_ON(pi_state->owner != curr);
580 WARN_ON(list_empty(&pi_state->list));
581 list_del_init(&pi_state->list);
582 pi_state->owner = NULL;
583 raw_spin_unlock_irq(&curr->pi_lock);
585 rt_mutex_unlock(&pi_state->pi_mutex);
587 spin_unlock(&hb->lock);
589 raw_spin_lock_irq(&curr->pi_lock);
591 raw_spin_unlock_irq(&curr->pi_lock);
594 static int
595 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
596 union futex_key *key, struct futex_pi_state **ps)
598 struct futex_pi_state *pi_state = NULL;
599 struct futex_q *this, *next;
600 struct plist_head *head;
601 struct task_struct *p;
602 pid_t pid = uval & FUTEX_TID_MASK;
604 head = &hb->chain;
606 plist_for_each_entry_safe(this, next, head, list) {
607 if (match_futex(&this->key, key)) {
609 * Another waiter already exists - bump up
610 * the refcount and return its pi_state:
612 pi_state = this->pi_state;
614 * Userspace might have messed up non-PI and PI futexes
616 if (unlikely(!pi_state))
617 return -EINVAL;
619 WARN_ON(!atomic_read(&pi_state->refcount));
622 * When pi_state->owner is NULL then the owner died
623 * and another waiter is on the fly. pi_state->owner
624 * is fixed up by the task which acquires
625 * pi_state->rt_mutex.
627 * We do not check for pid == 0 which can happen when
628 * the owner died and robust_list_exit() cleared the
629 * TID.
631 if (pid && pi_state->owner) {
633 * Bail out if user space manipulated the
634 * futex value.
636 if (pid != task_pid_vnr(pi_state->owner))
637 return -EINVAL;
640 atomic_inc(&pi_state->refcount);
641 *ps = pi_state;
643 return 0;
648 * We are the first waiter - try to look up the real owner and attach
649 * the new pi_state to it, but bail out when TID = 0
651 if (!pid)
652 return -ESRCH;
653 p = futex_find_get_task(pid);
654 if (!p)
655 return -ESRCH;
658 * We need to look at the task state flags to figure out,
659 * whether the task is exiting. To protect against the do_exit
660 * change of the task flags, we do this protected by
661 * p->pi_lock:
663 raw_spin_lock_irq(&p->pi_lock);
664 if (unlikely(p->flags & PF_EXITING)) {
666 * The task is on the way out. When PF_EXITPIDONE is
667 * set, we know that the task has finished the
668 * cleanup:
670 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
672 raw_spin_unlock_irq(&p->pi_lock);
673 put_task_struct(p);
674 return ret;
677 pi_state = alloc_pi_state();
680 * Initialize the pi_mutex in locked state and make 'p'
681 * the owner of it:
683 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
685 /* Store the key for possible exit cleanups: */
686 pi_state->key = *key;
688 WARN_ON(!list_empty(&pi_state->list));
689 list_add(&pi_state->list, &p->pi_state_list);
690 pi_state->owner = p;
691 raw_spin_unlock_irq(&p->pi_lock);
693 put_task_struct(p);
695 *ps = pi_state;
697 return 0;
701 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
702 * @uaddr: the pi futex user address
703 * @hb: the pi futex hash bucket
704 * @key: the futex key associated with uaddr and hb
705 * @ps: the pi_state pointer where we store the result of the
706 * lookup
707 * @task: the task to perform the atomic lock work for. This will
708 * be "current" except in the case of requeue pi.
709 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
711 * Return:
712 * 0 - ready to wait;
713 * 1 - acquired the lock;
714 * <0 - error
716 * The hb->lock and futex_key refs shall be held by the caller.
718 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
719 union futex_key *key,
720 struct futex_pi_state **ps,
721 struct task_struct *task, int set_waiters)
723 int lock_taken, ret, force_take = 0;
724 u32 uval, newval, curval, vpid = task_pid_vnr(task);
726 retry:
727 ret = lock_taken = 0;
730 * To avoid races, we attempt to take the lock here again
731 * (by doing a 0 -> TID atomic cmpxchg), while holding all
732 * the locks. It will most likely not succeed.
734 newval = vpid;
735 if (set_waiters)
736 newval |= FUTEX_WAITERS;
738 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
739 return -EFAULT;
742 * Detect deadlocks.
744 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
745 return -EDEADLK;
748 * Surprise - we got the lock. Just return to userspace:
750 if (unlikely(!curval))
751 return 1;
753 uval = curval;
756 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
757 * to wake at the next unlock.
759 newval = curval | FUTEX_WAITERS;
762 * Should we force take the futex? See below.
764 if (unlikely(force_take)) {
766 * Keep the OWNER_DIED and the WAITERS bit and set the
767 * new TID value.
769 newval = (curval & ~FUTEX_TID_MASK) | vpid;
770 force_take = 0;
771 lock_taken = 1;
774 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
775 return -EFAULT;
776 if (unlikely(curval != uval))
777 goto retry;
780 * We took the lock due to forced take over.
782 if (unlikely(lock_taken))
783 return 1;
786 * We dont have the lock. Look up the PI state (or create it if
787 * we are the first waiter):
789 ret = lookup_pi_state(uval, hb, key, ps);
791 if (unlikely(ret)) {
792 switch (ret) {
793 case -ESRCH:
795 * We failed to find an owner for this
796 * futex. So we have no pi_state to block
797 * on. This can happen in two cases:
799 * 1) The owner died
800 * 2) A stale FUTEX_WAITERS bit
802 * Re-read the futex value.
804 if (get_futex_value_locked(&curval, uaddr))
805 return -EFAULT;
808 * If the owner died or we have a stale
809 * WAITERS bit the owner TID in the user space
810 * futex is 0.
812 if (!(curval & FUTEX_TID_MASK)) {
813 force_take = 1;
814 goto retry;
816 default:
817 break;
821 return ret;
825 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
826 * @q: The futex_q to unqueue
828 * The q->lock_ptr must not be NULL and must be held by the caller.
830 static void __unqueue_futex(struct futex_q *q)
832 struct futex_hash_bucket *hb;
834 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
835 || WARN_ON(plist_node_empty(&q->list)))
836 return;
838 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
839 plist_del(&q->list, &hb->chain);
843 * The hash bucket lock must be held when this is called.
844 * Afterwards, the futex_q must not be accessed.
846 static void wake_futex(struct futex_q *q)
848 struct task_struct *p = q->task;
850 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
851 return;
854 * We set q->lock_ptr = NULL _before_ we wake up the task. If
855 * a non-futex wake up happens on another CPU then the task
856 * might exit and p would dereference a non-existing task
857 * struct. Prevent this by holding a reference on p across the
858 * wake up.
860 get_task_struct(p);
862 __unqueue_futex(q);
864 * The waiting task can free the futex_q as soon as
865 * q->lock_ptr = NULL is written, without taking any locks. A
866 * memory barrier is required here to prevent the following
867 * store to lock_ptr from getting ahead of the plist_del.
869 smp_wmb();
870 q->lock_ptr = NULL;
872 wake_up_state(p, TASK_NORMAL);
873 put_task_struct(p);
876 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
878 struct task_struct *new_owner;
879 struct futex_pi_state *pi_state = this->pi_state;
880 u32 uninitialized_var(curval), newval;
882 if (!pi_state)
883 return -EINVAL;
886 * If current does not own the pi_state then the futex is
887 * inconsistent and user space fiddled with the futex value.
889 if (pi_state->owner != current)
890 return -EINVAL;
892 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
893 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
896 * It is possible that the next waiter (the one that brought
897 * this owner to the kernel) timed out and is no longer
898 * waiting on the lock.
900 if (!new_owner)
901 new_owner = this->task;
904 * We pass it to the next owner. (The WAITERS bit is always
905 * kept enabled while there is PI state around. We must also
906 * preserve the owner died bit.)
908 if (!(uval & FUTEX_OWNER_DIED)) {
909 int ret = 0;
911 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
913 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
914 ret = -EFAULT;
915 else if (curval != uval)
916 ret = -EINVAL;
917 if (ret) {
918 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
919 return ret;
923 raw_spin_lock_irq(&pi_state->owner->pi_lock);
924 WARN_ON(list_empty(&pi_state->list));
925 list_del_init(&pi_state->list);
926 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
928 raw_spin_lock_irq(&new_owner->pi_lock);
929 WARN_ON(!list_empty(&pi_state->list));
930 list_add(&pi_state->list, &new_owner->pi_state_list);
931 pi_state->owner = new_owner;
932 raw_spin_unlock_irq(&new_owner->pi_lock);
934 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
935 rt_mutex_unlock(&pi_state->pi_mutex);
937 return 0;
940 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
942 u32 uninitialized_var(oldval);
945 * There is no waiter, so we unlock the futex. The owner died
946 * bit has not to be preserved here. We are the owner:
948 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
949 return -EFAULT;
950 if (oldval != uval)
951 return -EAGAIN;
953 return 0;
957 * Express the locking dependencies for lockdep:
959 static inline void
960 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
962 if (hb1 <= hb2) {
963 spin_lock(&hb1->lock);
964 if (hb1 < hb2)
965 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
966 } else { /* hb1 > hb2 */
967 spin_lock(&hb2->lock);
968 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
972 static inline void
973 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
975 spin_unlock(&hb1->lock);
976 if (hb1 != hb2)
977 spin_unlock(&hb2->lock);
981 * Wake up waiters matching bitset queued on this futex (uaddr).
983 static int
984 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
986 struct futex_hash_bucket *hb;
987 struct futex_q *this, *next;
988 struct plist_head *head;
989 union futex_key key = FUTEX_KEY_INIT;
990 int ret;
992 if (!bitset)
993 return -EINVAL;
995 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
996 if (unlikely(ret != 0))
997 goto out;
999 hb = hash_futex(&key);
1000 spin_lock(&hb->lock);
1001 head = &hb->chain;
1003 plist_for_each_entry_safe(this, next, head, list) {
1004 if (match_futex (&this->key, &key)) {
1005 if (this->pi_state || this->rt_waiter) {
1006 ret = -EINVAL;
1007 break;
1010 /* Check if one of the bits is set in both bitsets */
1011 if (!(this->bitset & bitset))
1012 continue;
1014 wake_futex(this);
1015 if (++ret >= nr_wake)
1016 break;
1020 spin_unlock(&hb->lock);
1021 put_futex_key(&key);
1022 out:
1023 return ret;
1027 * Wake up all waiters hashed on the physical page that is mapped
1028 * to this virtual address:
1030 static int
1031 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1032 int nr_wake, int nr_wake2, int op)
1034 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1035 struct futex_hash_bucket *hb1, *hb2;
1036 struct plist_head *head;
1037 struct futex_q *this, *next;
1038 int ret, op_ret;
1040 retry:
1041 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1042 if (unlikely(ret != 0))
1043 goto out;
1044 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1045 if (unlikely(ret != 0))
1046 goto out_put_key1;
1048 hb1 = hash_futex(&key1);
1049 hb2 = hash_futex(&key2);
1051 retry_private:
1052 double_lock_hb(hb1, hb2);
1053 op_ret = futex_atomic_op_inuser(op, uaddr2);
1054 if (unlikely(op_ret < 0)) {
1056 double_unlock_hb(hb1, hb2);
1058 #ifndef CONFIG_MMU
1060 * we don't get EFAULT from MMU faults if we don't have an MMU,
1061 * but we might get them from range checking
1063 ret = op_ret;
1064 goto out_put_keys;
1065 #endif
1067 if (unlikely(op_ret != -EFAULT)) {
1068 ret = op_ret;
1069 goto out_put_keys;
1072 ret = fault_in_user_writeable(uaddr2);
1073 if (ret)
1074 goto out_put_keys;
1076 if (!(flags & FLAGS_SHARED))
1077 goto retry_private;
1079 put_futex_key(&key2);
1080 put_futex_key(&key1);
1081 goto retry;
1084 head = &hb1->chain;
1086 plist_for_each_entry_safe(this, next, head, list) {
1087 if (match_futex (&this->key, &key1)) {
1088 if (this->pi_state || this->rt_waiter) {
1089 ret = -EINVAL;
1090 goto out_unlock;
1092 wake_futex(this);
1093 if (++ret >= nr_wake)
1094 break;
1098 if (op_ret > 0) {
1099 head = &hb2->chain;
1101 op_ret = 0;
1102 plist_for_each_entry_safe(this, next, head, list) {
1103 if (match_futex (&this->key, &key2)) {
1104 if (this->pi_state || this->rt_waiter) {
1105 ret = -EINVAL;
1106 goto out_unlock;
1108 wake_futex(this);
1109 if (++op_ret >= nr_wake2)
1110 break;
1113 ret += op_ret;
1116 out_unlock:
1117 double_unlock_hb(hb1, hb2);
1118 out_put_keys:
1119 put_futex_key(&key2);
1120 out_put_key1:
1121 put_futex_key(&key1);
1122 out:
1123 return ret;
1127 * requeue_futex() - Requeue a futex_q from one hb to another
1128 * @q: the futex_q to requeue
1129 * @hb1: the source hash_bucket
1130 * @hb2: the target hash_bucket
1131 * @key2: the new key for the requeued futex_q
1133 static inline
1134 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1135 struct futex_hash_bucket *hb2, union futex_key *key2)
1139 * If key1 and key2 hash to the same bucket, no need to
1140 * requeue.
1142 if (likely(&hb1->chain != &hb2->chain)) {
1143 plist_del(&q->list, &hb1->chain);
1144 plist_add(&q->list, &hb2->chain);
1145 q->lock_ptr = &hb2->lock;
1147 get_futex_key_refs(key2);
1148 q->key = *key2;
1152 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1153 * @q: the futex_q
1154 * @key: the key of the requeue target futex
1155 * @hb: the hash_bucket of the requeue target futex
1157 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1158 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1159 * to the requeue target futex so the waiter can detect the wakeup on the right
1160 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1161 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1162 * to protect access to the pi_state to fixup the owner later. Must be called
1163 * with both q->lock_ptr and hb->lock held.
1165 static inline
1166 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1167 struct futex_hash_bucket *hb)
1169 get_futex_key_refs(key);
1170 q->key = *key;
1172 __unqueue_futex(q);
1174 WARN_ON(!q->rt_waiter);
1175 q->rt_waiter = NULL;
1177 q->lock_ptr = &hb->lock;
1179 wake_up_state(q->task, TASK_NORMAL);
1183 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1184 * @pifutex: the user address of the to futex
1185 * @hb1: the from futex hash bucket, must be locked by the caller
1186 * @hb2: the to futex hash bucket, must be locked by the caller
1187 * @key1: the from futex key
1188 * @key2: the to futex key
1189 * @ps: address to store the pi_state pointer
1190 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1192 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1193 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1194 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1195 * hb1 and hb2 must be held by the caller.
1197 * Return:
1198 * 0 - failed to acquire the lock atomically;
1199 * 1 - acquired the lock;
1200 * <0 - error
1202 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1203 struct futex_hash_bucket *hb1,
1204 struct futex_hash_bucket *hb2,
1205 union futex_key *key1, union futex_key *key2,
1206 struct futex_pi_state **ps, int set_waiters)
1208 struct futex_q *top_waiter = NULL;
1209 u32 curval;
1210 int ret;
1212 if (get_futex_value_locked(&curval, pifutex))
1213 return -EFAULT;
1216 * Find the top_waiter and determine if there are additional waiters.
1217 * If the caller intends to requeue more than 1 waiter to pifutex,
1218 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1219 * as we have means to handle the possible fault. If not, don't set
1220 * the bit unecessarily as it will force the subsequent unlock to enter
1221 * the kernel.
1223 top_waiter = futex_top_waiter(hb1, key1);
1225 /* There are no waiters, nothing for us to do. */
1226 if (!top_waiter)
1227 return 0;
1229 /* Ensure we requeue to the expected futex. */
1230 if (!match_futex(top_waiter->requeue_pi_key, key2))
1231 return -EINVAL;
1234 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1235 * the contended case or if set_waiters is 1. The pi_state is returned
1236 * in ps in contended cases.
1238 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1239 set_waiters);
1240 if (ret == 1)
1241 requeue_pi_wake_futex(top_waiter, key2, hb2);
1243 return ret;
1247 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1248 * @uaddr1: source futex user address
1249 * @flags: futex flags (FLAGS_SHARED, etc.)
1250 * @uaddr2: target futex user address
1251 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1252 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1253 * @cmpval: @uaddr1 expected value (or %NULL)
1254 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1255 * pi futex (pi to pi requeue is not supported)
1257 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1258 * uaddr2 atomically on behalf of the top waiter.
1260 * Return:
1261 * >=0 - on success, the number of tasks requeued or woken;
1262 * <0 - on error
1264 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1265 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1266 u32 *cmpval, int requeue_pi)
1268 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1269 int drop_count = 0, task_count = 0, ret;
1270 struct futex_pi_state *pi_state = NULL;
1271 struct futex_hash_bucket *hb1, *hb2;
1272 struct plist_head *head1;
1273 struct futex_q *this, *next;
1274 u32 curval2;
1276 if (requeue_pi) {
1278 * requeue_pi requires a pi_state, try to allocate it now
1279 * without any locks in case it fails.
1281 if (refill_pi_state_cache())
1282 return -ENOMEM;
1284 * requeue_pi must wake as many tasks as it can, up to nr_wake
1285 * + nr_requeue, since it acquires the rt_mutex prior to
1286 * returning to userspace, so as to not leave the rt_mutex with
1287 * waiters and no owner. However, second and third wake-ups
1288 * cannot be predicted as they involve race conditions with the
1289 * first wake and a fault while looking up the pi_state. Both
1290 * pthread_cond_signal() and pthread_cond_broadcast() should
1291 * use nr_wake=1.
1293 if (nr_wake != 1)
1294 return -EINVAL;
1297 retry:
1298 if (pi_state != NULL) {
1300 * We will have to lookup the pi_state again, so free this one
1301 * to keep the accounting correct.
1303 free_pi_state(pi_state);
1304 pi_state = NULL;
1307 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1308 if (unlikely(ret != 0))
1309 goto out;
1310 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1311 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1312 if (unlikely(ret != 0))
1313 goto out_put_key1;
1315 hb1 = hash_futex(&key1);
1316 hb2 = hash_futex(&key2);
1318 retry_private:
1319 double_lock_hb(hb1, hb2);
1321 if (likely(cmpval != NULL)) {
1322 u32 curval;
1324 ret = get_futex_value_locked(&curval, uaddr1);
1326 if (unlikely(ret)) {
1327 double_unlock_hb(hb1, hb2);
1329 ret = get_user(curval, uaddr1);
1330 if (ret)
1331 goto out_put_keys;
1333 if (!(flags & FLAGS_SHARED))
1334 goto retry_private;
1336 put_futex_key(&key2);
1337 put_futex_key(&key1);
1338 goto retry;
1340 if (curval != *cmpval) {
1341 ret = -EAGAIN;
1342 goto out_unlock;
1346 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1348 * Attempt to acquire uaddr2 and wake the top waiter. If we
1349 * intend to requeue waiters, force setting the FUTEX_WAITERS
1350 * bit. We force this here where we are able to easily handle
1351 * faults rather in the requeue loop below.
1353 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1354 &key2, &pi_state, nr_requeue);
1357 * At this point the top_waiter has either taken uaddr2 or is
1358 * waiting on it. If the former, then the pi_state will not
1359 * exist yet, look it up one more time to ensure we have a
1360 * reference to it.
1362 if (ret == 1) {
1363 WARN_ON(pi_state);
1364 drop_count++;
1365 task_count++;
1366 ret = get_futex_value_locked(&curval2, uaddr2);
1367 if (!ret)
1368 ret = lookup_pi_state(curval2, hb2, &key2,
1369 &pi_state);
1372 switch (ret) {
1373 case 0:
1374 break;
1375 case -EFAULT:
1376 double_unlock_hb(hb1, hb2);
1377 put_futex_key(&key2);
1378 put_futex_key(&key1);
1379 ret = fault_in_user_writeable(uaddr2);
1380 if (!ret)
1381 goto retry;
1382 goto out;
1383 case -EAGAIN:
1384 /* The owner was exiting, try again. */
1385 double_unlock_hb(hb1, hb2);
1386 put_futex_key(&key2);
1387 put_futex_key(&key1);
1388 cond_resched();
1389 goto retry;
1390 default:
1391 goto out_unlock;
1395 head1 = &hb1->chain;
1396 plist_for_each_entry_safe(this, next, head1, list) {
1397 if (task_count - nr_wake >= nr_requeue)
1398 break;
1400 if (!match_futex(&this->key, &key1))
1401 continue;
1404 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1405 * be paired with each other and no other futex ops.
1407 * We should never be requeueing a futex_q with a pi_state,
1408 * which is awaiting a futex_unlock_pi().
1410 if ((requeue_pi && !this->rt_waiter) ||
1411 (!requeue_pi && this->rt_waiter) ||
1412 this->pi_state) {
1413 ret = -EINVAL;
1414 break;
1418 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1419 * lock, we already woke the top_waiter. If not, it will be
1420 * woken by futex_unlock_pi().
1422 if (++task_count <= nr_wake && !requeue_pi) {
1423 wake_futex(this);
1424 continue;
1427 /* Ensure we requeue to the expected futex for requeue_pi. */
1428 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1429 ret = -EINVAL;
1430 break;
1434 * Requeue nr_requeue waiters and possibly one more in the case
1435 * of requeue_pi if we couldn't acquire the lock atomically.
1437 if (requeue_pi) {
1438 /* Prepare the waiter to take the rt_mutex. */
1439 atomic_inc(&pi_state->refcount);
1440 this->pi_state = pi_state;
1441 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1442 this->rt_waiter,
1443 this->task, 1);
1444 if (ret == 1) {
1445 /* We got the lock. */
1446 requeue_pi_wake_futex(this, &key2, hb2);
1447 drop_count++;
1448 continue;
1449 } else if (ret) {
1450 /* -EDEADLK */
1451 this->pi_state = NULL;
1452 free_pi_state(pi_state);
1453 goto out_unlock;
1456 requeue_futex(this, hb1, hb2, &key2);
1457 drop_count++;
1460 out_unlock:
1461 double_unlock_hb(hb1, hb2);
1464 * drop_futex_key_refs() must be called outside the spinlocks. During
1465 * the requeue we moved futex_q's from the hash bucket at key1 to the
1466 * one at key2 and updated their key pointer. We no longer need to
1467 * hold the references to key1.
1469 while (--drop_count >= 0)
1470 drop_futex_key_refs(&key1);
1472 out_put_keys:
1473 put_futex_key(&key2);
1474 out_put_key1:
1475 put_futex_key(&key1);
1476 out:
1477 if (pi_state != NULL)
1478 free_pi_state(pi_state);
1479 return ret ? ret : task_count;
1482 /* The key must be already stored in q->key. */
1483 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1484 __acquires(&hb->lock)
1486 struct futex_hash_bucket *hb;
1488 hb = hash_futex(&q->key);
1489 q->lock_ptr = &hb->lock;
1491 spin_lock(&hb->lock);
1492 return hb;
1495 static inline void
1496 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1497 __releases(&hb->lock)
1499 spin_unlock(&hb->lock);
1503 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1504 * @q: The futex_q to enqueue
1505 * @hb: The destination hash bucket
1507 * The hb->lock must be held by the caller, and is released here. A call to
1508 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1509 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1510 * or nothing if the unqueue is done as part of the wake process and the unqueue
1511 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1512 * an example).
1514 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1515 __releases(&hb->lock)
1517 int prio;
1520 * The priority used to register this element is
1521 * - either the real thread-priority for the real-time threads
1522 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1523 * - or MAX_RT_PRIO for non-RT threads.
1524 * Thus, all RT-threads are woken first in priority order, and
1525 * the others are woken last, in FIFO order.
1527 prio = min(current->normal_prio, MAX_RT_PRIO);
1529 plist_node_init(&q->list, prio);
1530 plist_add(&q->list, &hb->chain);
1531 q->task = current;
1532 spin_unlock(&hb->lock);
1536 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1537 * @q: The futex_q to unqueue
1539 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1540 * be paired with exactly one earlier call to queue_me().
1542 * Return:
1543 * 1 - if the futex_q was still queued (and we removed unqueued it);
1544 * 0 - if the futex_q was already removed by the waking thread
1546 static int unqueue_me(struct futex_q *q)
1548 spinlock_t *lock_ptr;
1549 int ret = 0;
1551 /* In the common case we don't take the spinlock, which is nice. */
1552 retry:
1553 lock_ptr = q->lock_ptr;
1554 barrier();
1555 if (lock_ptr != NULL) {
1556 spin_lock(lock_ptr);
1558 * q->lock_ptr can change between reading it and
1559 * spin_lock(), causing us to take the wrong lock. This
1560 * corrects the race condition.
1562 * Reasoning goes like this: if we have the wrong lock,
1563 * q->lock_ptr must have changed (maybe several times)
1564 * between reading it and the spin_lock(). It can
1565 * change again after the spin_lock() but only if it was
1566 * already changed before the spin_lock(). It cannot,
1567 * however, change back to the original value. Therefore
1568 * we can detect whether we acquired the correct lock.
1570 if (unlikely(lock_ptr != q->lock_ptr)) {
1571 spin_unlock(lock_ptr);
1572 goto retry;
1574 __unqueue_futex(q);
1576 BUG_ON(q->pi_state);
1578 spin_unlock(lock_ptr);
1579 ret = 1;
1582 drop_futex_key_refs(&q->key);
1583 return ret;
1587 * PI futexes can not be requeued and must remove themself from the
1588 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1589 * and dropped here.
1591 static void unqueue_me_pi(struct futex_q *q)
1592 __releases(q->lock_ptr)
1594 __unqueue_futex(q);
1596 BUG_ON(!q->pi_state);
1597 free_pi_state(q->pi_state);
1598 q->pi_state = NULL;
1600 spin_unlock(q->lock_ptr);
1604 * Fixup the pi_state owner with the new owner.
1606 * Must be called with hash bucket lock held and mm->sem held for non
1607 * private futexes.
1609 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1610 struct task_struct *newowner)
1612 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1613 struct futex_pi_state *pi_state = q->pi_state;
1614 struct task_struct *oldowner = pi_state->owner;
1615 u32 uval, uninitialized_var(curval), newval;
1616 int ret;
1618 /* Owner died? */
1619 if (!pi_state->owner)
1620 newtid |= FUTEX_OWNER_DIED;
1623 * We are here either because we stole the rtmutex from the
1624 * previous highest priority waiter or we are the highest priority
1625 * waiter but failed to get the rtmutex the first time.
1626 * We have to replace the newowner TID in the user space variable.
1627 * This must be atomic as we have to preserve the owner died bit here.
1629 * Note: We write the user space value _before_ changing the pi_state
1630 * because we can fault here. Imagine swapped out pages or a fork
1631 * that marked all the anonymous memory readonly for cow.
1633 * Modifying pi_state _before_ the user space value would
1634 * leave the pi_state in an inconsistent state when we fault
1635 * here, because we need to drop the hash bucket lock to
1636 * handle the fault. This might be observed in the PID check
1637 * in lookup_pi_state.
1639 retry:
1640 if (get_futex_value_locked(&uval, uaddr))
1641 goto handle_fault;
1643 while (1) {
1644 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1646 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1647 goto handle_fault;
1648 if (curval == uval)
1649 break;
1650 uval = curval;
1654 * We fixed up user space. Now we need to fix the pi_state
1655 * itself.
1657 if (pi_state->owner != NULL) {
1658 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1659 WARN_ON(list_empty(&pi_state->list));
1660 list_del_init(&pi_state->list);
1661 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1664 pi_state->owner = newowner;
1666 raw_spin_lock_irq(&newowner->pi_lock);
1667 WARN_ON(!list_empty(&pi_state->list));
1668 list_add(&pi_state->list, &newowner->pi_state_list);
1669 raw_spin_unlock_irq(&newowner->pi_lock);
1670 return 0;
1673 * To handle the page fault we need to drop the hash bucket
1674 * lock here. That gives the other task (either the highest priority
1675 * waiter itself or the task which stole the rtmutex) the
1676 * chance to try the fixup of the pi_state. So once we are
1677 * back from handling the fault we need to check the pi_state
1678 * after reacquiring the hash bucket lock and before trying to
1679 * do another fixup. When the fixup has been done already we
1680 * simply return.
1682 handle_fault:
1683 spin_unlock(q->lock_ptr);
1685 ret = fault_in_user_writeable(uaddr);
1687 spin_lock(q->lock_ptr);
1690 * Check if someone else fixed it for us:
1692 if (pi_state->owner != oldowner)
1693 return 0;
1695 if (ret)
1696 return ret;
1698 goto retry;
1701 static long futex_wait_restart(struct restart_block *restart);
1704 * fixup_owner() - Post lock pi_state and corner case management
1705 * @uaddr: user address of the futex
1706 * @q: futex_q (contains pi_state and access to the rt_mutex)
1707 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1709 * After attempting to lock an rt_mutex, this function is called to cleanup
1710 * the pi_state owner as well as handle race conditions that may allow us to
1711 * acquire the lock. Must be called with the hb lock held.
1713 * Return:
1714 * 1 - success, lock taken;
1715 * 0 - success, lock not taken;
1716 * <0 - on error (-EFAULT)
1718 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1720 struct task_struct *owner;
1721 int ret = 0;
1723 if (locked) {
1725 * Got the lock. We might not be the anticipated owner if we
1726 * did a lock-steal - fix up the PI-state in that case:
1728 if (q->pi_state->owner != current)
1729 ret = fixup_pi_state_owner(uaddr, q, current);
1730 goto out;
1734 * Catch the rare case, where the lock was released when we were on the
1735 * way back before we locked the hash bucket.
1737 if (q->pi_state->owner == current) {
1739 * Try to get the rt_mutex now. This might fail as some other
1740 * task acquired the rt_mutex after we removed ourself from the
1741 * rt_mutex waiters list.
1743 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1744 locked = 1;
1745 goto out;
1749 * pi_state is incorrect, some other task did a lock steal and
1750 * we returned due to timeout or signal without taking the
1751 * rt_mutex. Too late.
1753 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1754 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1755 if (!owner)
1756 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1757 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1758 ret = fixup_pi_state_owner(uaddr, q, owner);
1759 goto out;
1763 * Paranoia check. If we did not take the lock, then we should not be
1764 * the owner of the rt_mutex.
1766 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1767 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1768 "pi-state %p\n", ret,
1769 q->pi_state->pi_mutex.owner,
1770 q->pi_state->owner);
1772 out:
1773 return ret ? ret : locked;
1777 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1778 * @hb: the futex hash bucket, must be locked by the caller
1779 * @q: the futex_q to queue up on
1780 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1782 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1783 struct hrtimer_sleeper *timeout)
1786 * The task state is guaranteed to be set before another task can
1787 * wake it. set_current_state() is implemented using set_mb() and
1788 * queue_me() calls spin_unlock() upon completion, both serializing
1789 * access to the hash list and forcing another memory barrier.
1791 set_current_state(TASK_INTERRUPTIBLE);
1792 queue_me(q, hb);
1794 /* Arm the timer */
1795 if (timeout) {
1796 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1797 if (!hrtimer_active(&timeout->timer))
1798 timeout->task = NULL;
1802 * If we have been removed from the hash list, then another task
1803 * has tried to wake us, and we can skip the call to schedule().
1805 if (likely(!plist_node_empty(&q->list))) {
1807 * If the timer has already expired, current will already be
1808 * flagged for rescheduling. Only call schedule if there
1809 * is no timeout, or if it has yet to expire.
1811 if (!timeout || timeout->task)
1812 freezable_schedule();
1814 __set_current_state(TASK_RUNNING);
1818 * futex_wait_setup() - Prepare to wait on a futex
1819 * @uaddr: the futex userspace address
1820 * @val: the expected value
1821 * @flags: futex flags (FLAGS_SHARED, etc.)
1822 * @q: the associated futex_q
1823 * @hb: storage for hash_bucket pointer to be returned to caller
1825 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1826 * compare it with the expected value. Handle atomic faults internally.
1827 * Return with the hb lock held and a q.key reference on success, and unlocked
1828 * with no q.key reference on failure.
1830 * Return:
1831 * 0 - uaddr contains val and hb has been locked;
1832 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1834 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1835 struct futex_q *q, struct futex_hash_bucket **hb)
1837 u32 uval;
1838 int ret;
1841 * Access the page AFTER the hash-bucket is locked.
1842 * Order is important:
1844 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1845 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1847 * The basic logical guarantee of a futex is that it blocks ONLY
1848 * if cond(var) is known to be true at the time of blocking, for
1849 * any cond. If we locked the hash-bucket after testing *uaddr, that
1850 * would open a race condition where we could block indefinitely with
1851 * cond(var) false, which would violate the guarantee.
1853 * On the other hand, we insert q and release the hash-bucket only
1854 * after testing *uaddr. This guarantees that futex_wait() will NOT
1855 * absorb a wakeup if *uaddr does not match the desired values
1856 * while the syscall executes.
1858 retry:
1859 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1860 if (unlikely(ret != 0))
1861 return ret;
1863 retry_private:
1864 *hb = queue_lock(q);
1866 ret = get_futex_value_locked(&uval, uaddr);
1868 if (ret) {
1869 queue_unlock(q, *hb);
1871 ret = get_user(uval, uaddr);
1872 if (ret)
1873 goto out;
1875 if (!(flags & FLAGS_SHARED))
1876 goto retry_private;
1878 put_futex_key(&q->key);
1879 goto retry;
1882 if (uval != val) {
1883 queue_unlock(q, *hb);
1884 ret = -EWOULDBLOCK;
1887 out:
1888 if (ret)
1889 put_futex_key(&q->key);
1890 return ret;
1893 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1894 ktime_t *abs_time, u32 bitset)
1896 struct hrtimer_sleeper timeout, *to = NULL;
1897 struct restart_block *restart;
1898 struct futex_hash_bucket *hb;
1899 struct futex_q q = futex_q_init;
1900 int ret;
1902 if (!bitset)
1903 return -EINVAL;
1904 q.bitset = bitset;
1906 if (abs_time) {
1907 to = &timeout;
1909 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1910 CLOCK_REALTIME : CLOCK_MONOTONIC,
1911 HRTIMER_MODE_ABS);
1912 hrtimer_init_sleeper(to, current);
1913 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1914 current->timer_slack_ns);
1917 retry:
1919 * Prepare to wait on uaddr. On success, holds hb lock and increments
1920 * q.key refs.
1922 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1923 if (ret)
1924 goto out;
1926 /* queue_me and wait for wakeup, timeout, or a signal. */
1927 futex_wait_queue_me(hb, &q, to);
1929 /* If we were woken (and unqueued), we succeeded, whatever. */
1930 ret = 0;
1931 /* unqueue_me() drops q.key ref */
1932 if (!unqueue_me(&q))
1933 goto out;
1934 ret = -ETIMEDOUT;
1935 if (to && !to->task)
1936 goto out;
1939 * We expect signal_pending(current), but we might be the
1940 * victim of a spurious wakeup as well.
1942 if (!signal_pending(current))
1943 goto retry;
1945 ret = -ERESTARTSYS;
1946 if (!abs_time)
1947 goto out;
1949 restart = &current_thread_info()->restart_block;
1950 restart->fn = futex_wait_restart;
1951 restart->futex.uaddr = uaddr;
1952 restart->futex.val = val;
1953 restart->futex.time = abs_time->tv64;
1954 restart->futex.bitset = bitset;
1955 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1957 ret = -ERESTART_RESTARTBLOCK;
1959 out:
1960 if (to) {
1961 hrtimer_cancel(&to->timer);
1962 destroy_hrtimer_on_stack(&to->timer);
1964 return ret;
1968 static long futex_wait_restart(struct restart_block *restart)
1970 u32 __user *uaddr = restart->futex.uaddr;
1971 ktime_t t, *tp = NULL;
1973 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1974 t.tv64 = restart->futex.time;
1975 tp = &t;
1977 restart->fn = do_no_restart_syscall;
1979 return (long)futex_wait(uaddr, restart->futex.flags,
1980 restart->futex.val, tp, restart->futex.bitset);
1985 * Userspace tried a 0 -> TID atomic transition of the futex value
1986 * and failed. The kernel side here does the whole locking operation:
1987 * if there are waiters then it will block, it does PI, etc. (Due to
1988 * races the kernel might see a 0 value of the futex too.)
1990 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1991 ktime_t *time, int trylock)
1993 struct hrtimer_sleeper timeout, *to = NULL;
1994 struct futex_hash_bucket *hb;
1995 struct futex_q q = futex_q_init;
1996 int res, ret;
1998 if (refill_pi_state_cache())
1999 return -ENOMEM;
2001 if (time) {
2002 to = &timeout;
2003 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2004 HRTIMER_MODE_ABS);
2005 hrtimer_init_sleeper(to, current);
2006 hrtimer_set_expires(&to->timer, *time);
2009 retry:
2010 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2011 if (unlikely(ret != 0))
2012 goto out;
2014 retry_private:
2015 hb = queue_lock(&q);
2017 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2018 if (unlikely(ret)) {
2019 switch (ret) {
2020 case 1:
2021 /* We got the lock. */
2022 ret = 0;
2023 goto out_unlock_put_key;
2024 case -EFAULT:
2025 goto uaddr_faulted;
2026 case -EAGAIN:
2028 * Task is exiting and we just wait for the
2029 * exit to complete.
2031 queue_unlock(&q, hb);
2032 put_futex_key(&q.key);
2033 cond_resched();
2034 goto retry;
2035 default:
2036 goto out_unlock_put_key;
2041 * Only actually queue now that the atomic ops are done:
2043 queue_me(&q, hb);
2045 WARN_ON(!q.pi_state);
2047 * Block on the PI mutex:
2049 if (!trylock)
2050 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2051 else {
2052 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2053 /* Fixup the trylock return value: */
2054 ret = ret ? 0 : -EWOULDBLOCK;
2057 spin_lock(q.lock_ptr);
2059 * Fixup the pi_state owner and possibly acquire the lock if we
2060 * haven't already.
2062 res = fixup_owner(uaddr, &q, !ret);
2064 * If fixup_owner() returned an error, proprogate that. If it acquired
2065 * the lock, clear our -ETIMEDOUT or -EINTR.
2067 if (res)
2068 ret = (res < 0) ? res : 0;
2071 * If fixup_owner() faulted and was unable to handle the fault, unlock
2072 * it and return the fault to userspace.
2074 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2075 rt_mutex_unlock(&q.pi_state->pi_mutex);
2077 /* Unqueue and drop the lock */
2078 unqueue_me_pi(&q);
2080 goto out_put_key;
2082 out_unlock_put_key:
2083 queue_unlock(&q, hb);
2085 out_put_key:
2086 put_futex_key(&q.key);
2087 out:
2088 if (to)
2089 destroy_hrtimer_on_stack(&to->timer);
2090 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2092 uaddr_faulted:
2093 queue_unlock(&q, hb);
2095 ret = fault_in_user_writeable(uaddr);
2096 if (ret)
2097 goto out_put_key;
2099 if (!(flags & FLAGS_SHARED))
2100 goto retry_private;
2102 put_futex_key(&q.key);
2103 goto retry;
2107 * Userspace attempted a TID -> 0 atomic transition, and failed.
2108 * This is the in-kernel slowpath: we look up the PI state (if any),
2109 * and do the rt-mutex unlock.
2111 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2113 struct futex_hash_bucket *hb;
2114 struct futex_q *this, *next;
2115 struct plist_head *head;
2116 union futex_key key = FUTEX_KEY_INIT;
2117 u32 uval, vpid = task_pid_vnr(current);
2118 int ret;
2120 retry:
2121 if (get_user(uval, uaddr))
2122 return -EFAULT;
2124 * We release only a lock we actually own:
2126 if ((uval & FUTEX_TID_MASK) != vpid)
2127 return -EPERM;
2129 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2130 if (unlikely(ret != 0))
2131 goto out;
2133 hb = hash_futex(&key);
2134 spin_lock(&hb->lock);
2137 * To avoid races, try to do the TID -> 0 atomic transition
2138 * again. If it succeeds then we can return without waking
2139 * anyone else up:
2141 if (!(uval & FUTEX_OWNER_DIED) &&
2142 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2143 goto pi_faulted;
2145 * Rare case: we managed to release the lock atomically,
2146 * no need to wake anyone else up:
2148 if (unlikely(uval == vpid))
2149 goto out_unlock;
2152 * Ok, other tasks may need to be woken up - check waiters
2153 * and do the wakeup if necessary:
2155 head = &hb->chain;
2157 plist_for_each_entry_safe(this, next, head, list) {
2158 if (!match_futex (&this->key, &key))
2159 continue;
2160 ret = wake_futex_pi(uaddr, uval, this);
2162 * The atomic access to the futex value
2163 * generated a pagefault, so retry the
2164 * user-access and the wakeup:
2166 if (ret == -EFAULT)
2167 goto pi_faulted;
2168 goto out_unlock;
2171 * No waiters - kernel unlocks the futex:
2173 if (!(uval & FUTEX_OWNER_DIED)) {
2174 ret = unlock_futex_pi(uaddr, uval);
2175 if (ret == -EFAULT)
2176 goto pi_faulted;
2179 out_unlock:
2180 spin_unlock(&hb->lock);
2181 put_futex_key(&key);
2183 out:
2184 return ret;
2186 pi_faulted:
2187 spin_unlock(&hb->lock);
2188 put_futex_key(&key);
2190 ret = fault_in_user_writeable(uaddr);
2191 if (!ret)
2192 goto retry;
2194 return ret;
2198 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2199 * @hb: the hash_bucket futex_q was original enqueued on
2200 * @q: the futex_q woken while waiting to be requeued
2201 * @key2: the futex_key of the requeue target futex
2202 * @timeout: the timeout associated with the wait (NULL if none)
2204 * Detect if the task was woken on the initial futex as opposed to the requeue
2205 * target futex. If so, determine if it was a timeout or a signal that caused
2206 * the wakeup and return the appropriate error code to the caller. Must be
2207 * called with the hb lock held.
2209 * Return:
2210 * 0 = no early wakeup detected;
2211 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2213 static inline
2214 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2215 struct futex_q *q, union futex_key *key2,
2216 struct hrtimer_sleeper *timeout)
2218 int ret = 0;
2221 * With the hb lock held, we avoid races while we process the wakeup.
2222 * We only need to hold hb (and not hb2) to ensure atomicity as the
2223 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2224 * It can't be requeued from uaddr2 to something else since we don't
2225 * support a PI aware source futex for requeue.
2227 if (!match_futex(&q->key, key2)) {
2228 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2230 * We were woken prior to requeue by a timeout or a signal.
2231 * Unqueue the futex_q and determine which it was.
2233 plist_del(&q->list, &hb->chain);
2235 /* Handle spurious wakeups gracefully */
2236 ret = -EWOULDBLOCK;
2237 if (timeout && !timeout->task)
2238 ret = -ETIMEDOUT;
2239 else if (signal_pending(current))
2240 ret = -ERESTARTNOINTR;
2242 return ret;
2246 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2247 * @uaddr: the futex we initially wait on (non-pi)
2248 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2249 * the same type, no requeueing from private to shared, etc.
2250 * @val: the expected value of uaddr
2251 * @abs_time: absolute timeout
2252 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2253 * @uaddr2: the pi futex we will take prior to returning to user-space
2255 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2256 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2257 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2258 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2259 * without one, the pi logic would not know which task to boost/deboost, if
2260 * there was a need to.
2262 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2263 * via the following--
2264 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2265 * 2) wakeup on uaddr2 after a requeue
2266 * 3) signal
2267 * 4) timeout
2269 * If 3, cleanup and return -ERESTARTNOINTR.
2271 * If 2, we may then block on trying to take the rt_mutex and return via:
2272 * 5) successful lock
2273 * 6) signal
2274 * 7) timeout
2275 * 8) other lock acquisition failure
2277 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2279 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2281 * Return:
2282 * 0 - On success;
2283 * <0 - On error
2285 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2286 u32 val, ktime_t *abs_time, u32 bitset,
2287 u32 __user *uaddr2)
2289 struct hrtimer_sleeper timeout, *to = NULL;
2290 struct rt_mutex_waiter rt_waiter;
2291 struct rt_mutex *pi_mutex = NULL;
2292 struct futex_hash_bucket *hb;
2293 union futex_key key2 = FUTEX_KEY_INIT;
2294 struct futex_q q = futex_q_init;
2295 int res, ret;
2297 if (uaddr == uaddr2)
2298 return -EINVAL;
2300 if (!bitset)
2301 return -EINVAL;
2303 if (abs_time) {
2304 to = &timeout;
2305 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2306 CLOCK_REALTIME : CLOCK_MONOTONIC,
2307 HRTIMER_MODE_ABS);
2308 hrtimer_init_sleeper(to, current);
2309 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2310 current->timer_slack_ns);
2314 * The waiter is allocated on our stack, manipulated by the requeue
2315 * code while we sleep on uaddr.
2317 debug_rt_mutex_init_waiter(&rt_waiter);
2318 rt_waiter.task = NULL;
2320 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2321 if (unlikely(ret != 0))
2322 goto out;
2324 q.bitset = bitset;
2325 q.rt_waiter = &rt_waiter;
2326 q.requeue_pi_key = &key2;
2329 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2330 * count.
2332 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2333 if (ret)
2334 goto out_key2;
2336 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2337 futex_wait_queue_me(hb, &q, to);
2339 spin_lock(&hb->lock);
2340 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2341 spin_unlock(&hb->lock);
2342 if (ret)
2343 goto out_put_keys;
2346 * In order for us to be here, we know our q.key == key2, and since
2347 * we took the hb->lock above, we also know that futex_requeue() has
2348 * completed and we no longer have to concern ourselves with a wakeup
2349 * race with the atomic proxy lock acquisition by the requeue code. The
2350 * futex_requeue dropped our key1 reference and incremented our key2
2351 * reference count.
2354 /* Check if the requeue code acquired the second futex for us. */
2355 if (!q.rt_waiter) {
2357 * Got the lock. We might not be the anticipated owner if we
2358 * did a lock-steal - fix up the PI-state in that case.
2360 if (q.pi_state && (q.pi_state->owner != current)) {
2361 spin_lock(q.lock_ptr);
2362 ret = fixup_pi_state_owner(uaddr2, &q, current);
2363 spin_unlock(q.lock_ptr);
2365 } else {
2367 * We have been woken up by futex_unlock_pi(), a timeout, or a
2368 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2369 * the pi_state.
2371 WARN_ON(!q.pi_state);
2372 pi_mutex = &q.pi_state->pi_mutex;
2373 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2374 debug_rt_mutex_free_waiter(&rt_waiter);
2376 spin_lock(q.lock_ptr);
2378 * Fixup the pi_state owner and possibly acquire the lock if we
2379 * haven't already.
2381 res = fixup_owner(uaddr2, &q, !ret);
2383 * If fixup_owner() returned an error, proprogate that. If it
2384 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2386 if (res)
2387 ret = (res < 0) ? res : 0;
2389 /* Unqueue and drop the lock. */
2390 unqueue_me_pi(&q);
2394 * If fixup_pi_state_owner() faulted and was unable to handle the
2395 * fault, unlock the rt_mutex and return the fault to userspace.
2397 if (ret == -EFAULT) {
2398 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2399 rt_mutex_unlock(pi_mutex);
2400 } else if (ret == -EINTR) {
2402 * We've already been requeued, but cannot restart by calling
2403 * futex_lock_pi() directly. We could restart this syscall, but
2404 * it would detect that the user space "val" changed and return
2405 * -EWOULDBLOCK. Save the overhead of the restart and return
2406 * -EWOULDBLOCK directly.
2408 ret = -EWOULDBLOCK;
2411 out_put_keys:
2412 put_futex_key(&q.key);
2413 out_key2:
2414 put_futex_key(&key2);
2416 out:
2417 if (to) {
2418 hrtimer_cancel(&to->timer);
2419 destroy_hrtimer_on_stack(&to->timer);
2421 return ret;
2425 * Support for robust futexes: the kernel cleans up held futexes at
2426 * thread exit time.
2428 * Implementation: user-space maintains a per-thread list of locks it
2429 * is holding. Upon do_exit(), the kernel carefully walks this list,
2430 * and marks all locks that are owned by this thread with the
2431 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2432 * always manipulated with the lock held, so the list is private and
2433 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2434 * field, to allow the kernel to clean up if the thread dies after
2435 * acquiring the lock, but just before it could have added itself to
2436 * the list. There can only be one such pending lock.
2440 * sys_set_robust_list() - Set the robust-futex list head of a task
2441 * @head: pointer to the list-head
2442 * @len: length of the list-head, as userspace expects
2444 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2445 size_t, len)
2447 if (!futex_cmpxchg_enabled)
2448 return -ENOSYS;
2450 * The kernel knows only one size for now:
2452 if (unlikely(len != sizeof(*head)))
2453 return -EINVAL;
2455 current->robust_list = head;
2457 return 0;
2461 * sys_get_robust_list() - Get the robust-futex list head of a task
2462 * @pid: pid of the process [zero for current task]
2463 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2464 * @len_ptr: pointer to a length field, the kernel fills in the header size
2466 SYSCALL_DEFINE3(get_robust_list, int, pid,
2467 struct robust_list_head __user * __user *, head_ptr,
2468 size_t __user *, len_ptr)
2470 struct robust_list_head __user *head;
2471 unsigned long ret;
2472 struct task_struct *p;
2474 if (!futex_cmpxchg_enabled)
2475 return -ENOSYS;
2477 rcu_read_lock();
2479 ret = -ESRCH;
2480 if (!pid)
2481 p = current;
2482 else {
2483 p = find_task_by_vpid(pid);
2484 if (!p)
2485 goto err_unlock;
2488 ret = -EPERM;
2489 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2490 goto err_unlock;
2492 head = p->robust_list;
2493 rcu_read_unlock();
2495 if (put_user(sizeof(*head), len_ptr))
2496 return -EFAULT;
2497 return put_user(head, head_ptr);
2499 err_unlock:
2500 rcu_read_unlock();
2502 return ret;
2506 * Process a futex-list entry, check whether it's owned by the
2507 * dying task, and do notification if so:
2509 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2511 u32 uval, uninitialized_var(nval), mval;
2513 retry:
2514 if (get_user(uval, uaddr))
2515 return -1;
2517 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2519 * Ok, this dying thread is truly holding a futex
2520 * of interest. Set the OWNER_DIED bit atomically
2521 * via cmpxchg, and if the value had FUTEX_WAITERS
2522 * set, wake up a waiter (if any). (We have to do a
2523 * futex_wake() even if OWNER_DIED is already set -
2524 * to handle the rare but possible case of recursive
2525 * thread-death.) The rest of the cleanup is done in
2526 * userspace.
2528 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2530 * We are not holding a lock here, but we want to have
2531 * the pagefault_disable/enable() protection because
2532 * we want to handle the fault gracefully. If the
2533 * access fails we try to fault in the futex with R/W
2534 * verification via get_user_pages. get_user() above
2535 * does not guarantee R/W access. If that fails we
2536 * give up and leave the futex locked.
2538 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2539 if (fault_in_user_writeable(uaddr))
2540 return -1;
2541 goto retry;
2543 if (nval != uval)
2544 goto retry;
2547 * Wake robust non-PI futexes here. The wakeup of
2548 * PI futexes happens in exit_pi_state():
2550 if (!pi && (uval & FUTEX_WAITERS))
2551 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2553 return 0;
2557 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2559 static inline int fetch_robust_entry(struct robust_list __user **entry,
2560 struct robust_list __user * __user *head,
2561 unsigned int *pi)
2563 unsigned long uentry;
2565 if (get_user(uentry, (unsigned long __user *)head))
2566 return -EFAULT;
2568 *entry = (void __user *)(uentry & ~1UL);
2569 *pi = uentry & 1;
2571 return 0;
2575 * Walk curr->robust_list (very carefully, it's a userspace list!)
2576 * and mark any locks found there dead, and notify any waiters.
2578 * We silently return on any sign of list-walking problem.
2580 void exit_robust_list(struct task_struct *curr)
2582 struct robust_list_head __user *head = curr->robust_list;
2583 struct robust_list __user *entry, *next_entry, *pending;
2584 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2585 unsigned int uninitialized_var(next_pi);
2586 unsigned long futex_offset;
2587 int rc;
2589 if (!futex_cmpxchg_enabled)
2590 return;
2593 * Fetch the list head (which was registered earlier, via
2594 * sys_set_robust_list()):
2596 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2597 return;
2599 * Fetch the relative futex offset:
2601 if (get_user(futex_offset, &head->futex_offset))
2602 return;
2604 * Fetch any possibly pending lock-add first, and handle it
2605 * if it exists:
2607 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2608 return;
2610 next_entry = NULL; /* avoid warning with gcc */
2611 while (entry != &head->list) {
2613 * Fetch the next entry in the list before calling
2614 * handle_futex_death:
2616 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2618 * A pending lock might already be on the list, so
2619 * don't process it twice:
2621 if (entry != pending)
2622 if (handle_futex_death((void __user *)entry + futex_offset,
2623 curr, pi))
2624 return;
2625 if (rc)
2626 return;
2627 entry = next_entry;
2628 pi = next_pi;
2630 * Avoid excessively long or circular lists:
2632 if (!--limit)
2633 break;
2635 cond_resched();
2638 if (pending)
2639 handle_futex_death((void __user *)pending + futex_offset,
2640 curr, pip);
2643 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2644 u32 __user *uaddr2, u32 val2, u32 val3)
2646 int cmd = op & FUTEX_CMD_MASK;
2647 unsigned int flags = 0;
2649 if (!(op & FUTEX_PRIVATE_FLAG))
2650 flags |= FLAGS_SHARED;
2652 if (op & FUTEX_CLOCK_REALTIME) {
2653 flags |= FLAGS_CLOCKRT;
2654 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2655 return -ENOSYS;
2658 switch (cmd) {
2659 case FUTEX_LOCK_PI:
2660 case FUTEX_UNLOCK_PI:
2661 case FUTEX_TRYLOCK_PI:
2662 case FUTEX_WAIT_REQUEUE_PI:
2663 case FUTEX_CMP_REQUEUE_PI:
2664 if (!futex_cmpxchg_enabled)
2665 return -ENOSYS;
2668 switch (cmd) {
2669 case FUTEX_WAIT:
2670 val3 = FUTEX_BITSET_MATCH_ANY;
2671 case FUTEX_WAIT_BITSET:
2672 return futex_wait(uaddr, flags, val, timeout, val3);
2673 case FUTEX_WAKE:
2674 val3 = FUTEX_BITSET_MATCH_ANY;
2675 case FUTEX_WAKE_BITSET:
2676 return futex_wake(uaddr, flags, val, val3);
2677 case FUTEX_REQUEUE:
2678 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2679 case FUTEX_CMP_REQUEUE:
2680 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2681 case FUTEX_WAKE_OP:
2682 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2683 case FUTEX_LOCK_PI:
2684 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2685 case FUTEX_UNLOCK_PI:
2686 return futex_unlock_pi(uaddr, flags);
2687 case FUTEX_TRYLOCK_PI:
2688 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2689 case FUTEX_WAIT_REQUEUE_PI:
2690 val3 = FUTEX_BITSET_MATCH_ANY;
2691 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2692 uaddr2);
2693 case FUTEX_CMP_REQUEUE_PI:
2694 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2696 return -ENOSYS;
2700 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2701 struct timespec __user *, utime, u32 __user *, uaddr2,
2702 u32, val3)
2704 struct timespec ts;
2705 ktime_t t, *tp = NULL;
2706 u32 val2 = 0;
2707 int cmd = op & FUTEX_CMD_MASK;
2709 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2710 cmd == FUTEX_WAIT_BITSET ||
2711 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2712 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2713 return -EFAULT;
2714 if (!timespec_valid(&ts))
2715 return -EINVAL;
2717 t = timespec_to_ktime(ts);
2718 if (cmd == FUTEX_WAIT)
2719 t = ktime_add_safe(ktime_get(), t);
2720 tp = &t;
2723 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2724 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2726 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2727 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2728 val2 = (u32) (unsigned long) utime;
2730 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2733 static int __init futex_init(void)
2735 u32 curval;
2736 int i;
2739 * This will fail and we want it. Some arch implementations do
2740 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2741 * functionality. We want to know that before we call in any
2742 * of the complex code paths. Also we want to prevent
2743 * registration of robust lists in that case. NULL is
2744 * guaranteed to fault and we get -EFAULT on functional
2745 * implementation, the non-functional ones will return
2746 * -ENOSYS.
2748 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2749 futex_cmpxchg_enabled = 1;
2751 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2752 plist_head_init(&futex_queues[i].chain);
2753 spin_lock_init(&futex_queues[i].lock);
2756 return 0;
2758 __initcall(futex_init);