mei: me: add cannon point device ids
[linux/fpc-iii.git] / drivers / crypto / ccp / ccp-dev-v3.c
blob240bebbcb8ac7c52eb7dfa2b93a00b5b9cb53cc9
1 /*
2 * AMD Cryptographic Coprocessor (CCP) driver
4 * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 * Author: Gary R Hook <gary.hook@amd.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/kthread.h>
18 #include <linux/interrupt.h>
19 #include <linux/ccp.h>
21 #include "ccp-dev.h"
23 static u32 ccp_alloc_ksb(struct ccp_cmd_queue *cmd_q, unsigned int count)
25 int start;
26 struct ccp_device *ccp = cmd_q->ccp;
28 for (;;) {
29 mutex_lock(&ccp->sb_mutex);
31 start = (u32)bitmap_find_next_zero_area(ccp->sb,
32 ccp->sb_count,
33 ccp->sb_start,
34 count, 0);
35 if (start <= ccp->sb_count) {
36 bitmap_set(ccp->sb, start, count);
38 mutex_unlock(&ccp->sb_mutex);
39 break;
42 ccp->sb_avail = 0;
44 mutex_unlock(&ccp->sb_mutex);
46 /* Wait for KSB entries to become available */
47 if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
48 return 0;
51 return KSB_START + start;
54 static void ccp_free_ksb(struct ccp_cmd_queue *cmd_q, unsigned int start,
55 unsigned int count)
57 struct ccp_device *ccp = cmd_q->ccp;
59 if (!start)
60 return;
62 mutex_lock(&ccp->sb_mutex);
64 bitmap_clear(ccp->sb, start - KSB_START, count);
66 ccp->sb_avail = 1;
68 mutex_unlock(&ccp->sb_mutex);
70 wake_up_interruptible_all(&ccp->sb_queue);
73 static unsigned int ccp_get_free_slots(struct ccp_cmd_queue *cmd_q)
75 return CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
78 static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
80 struct ccp_cmd_queue *cmd_q = op->cmd_q;
81 struct ccp_device *ccp = cmd_q->ccp;
82 void __iomem *cr_addr;
83 u32 cr0, cmd;
84 unsigned int i;
85 int ret = 0;
87 /* We could read a status register to see how many free slots
88 * are actually available, but reading that register resets it
89 * and you could lose some error information.
91 cmd_q->free_slots--;
93 cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
94 | (op->jobid << REQ0_JOBID_SHIFT)
95 | REQ0_WAIT_FOR_WRITE;
97 if (op->soc)
98 cr0 |= REQ0_STOP_ON_COMPLETE
99 | REQ0_INT_ON_COMPLETE;
101 if (op->ioc || !cmd_q->free_slots)
102 cr0 |= REQ0_INT_ON_COMPLETE;
104 /* Start at CMD_REQ1 */
105 cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
107 mutex_lock(&ccp->req_mutex);
109 /* Write CMD_REQ1 through CMD_REQx first */
110 for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
111 iowrite32(*(cr + i), cr_addr);
113 /* Tell the CCP to start */
114 wmb();
115 iowrite32(cr0, ccp->io_regs + CMD_REQ0);
117 mutex_unlock(&ccp->req_mutex);
119 if (cr0 & REQ0_INT_ON_COMPLETE) {
120 /* Wait for the job to complete */
121 ret = wait_event_interruptible(cmd_q->int_queue,
122 cmd_q->int_rcvd);
123 if (ret || cmd_q->cmd_error) {
124 /* On error delete all related jobs from the queue */
125 cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
126 | op->jobid;
127 if (cmd_q->cmd_error)
128 ccp_log_error(cmd_q->ccp,
129 cmd_q->cmd_error);
131 iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
133 if (!ret)
134 ret = -EIO;
135 } else if (op->soc) {
136 /* Delete just head job from the queue on SoC */
137 cmd = DEL_Q_ACTIVE
138 | (cmd_q->id << DEL_Q_ID_SHIFT)
139 | op->jobid;
141 iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
144 cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
146 cmd_q->int_rcvd = 0;
149 return ret;
152 static int ccp_perform_aes(struct ccp_op *op)
154 u32 cr[6];
156 /* Fill out the register contents for REQ1 through REQ6 */
157 cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
158 | (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
159 | (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
160 | (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
161 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
162 cr[1] = op->src.u.dma.length - 1;
163 cr[2] = ccp_addr_lo(&op->src.u.dma);
164 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
165 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
166 | ccp_addr_hi(&op->src.u.dma);
167 cr[4] = ccp_addr_lo(&op->dst.u.dma);
168 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
169 | ccp_addr_hi(&op->dst.u.dma);
171 if (op->u.aes.mode == CCP_AES_MODE_CFB)
172 cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
174 if (op->eom)
175 cr[0] |= REQ1_EOM;
177 if (op->init)
178 cr[0] |= REQ1_INIT;
180 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
183 static int ccp_perform_xts_aes(struct ccp_op *op)
185 u32 cr[6];
187 /* Fill out the register contents for REQ1 through REQ6 */
188 cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
189 | (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
190 | (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
191 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
192 cr[1] = op->src.u.dma.length - 1;
193 cr[2] = ccp_addr_lo(&op->src.u.dma);
194 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
195 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
196 | ccp_addr_hi(&op->src.u.dma);
197 cr[4] = ccp_addr_lo(&op->dst.u.dma);
198 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
199 | ccp_addr_hi(&op->dst.u.dma);
201 if (op->eom)
202 cr[0] |= REQ1_EOM;
204 if (op->init)
205 cr[0] |= REQ1_INIT;
207 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
210 static int ccp_perform_sha(struct ccp_op *op)
212 u32 cr[6];
214 /* Fill out the register contents for REQ1 through REQ6 */
215 cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
216 | (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
217 | REQ1_INIT;
218 cr[1] = op->src.u.dma.length - 1;
219 cr[2] = ccp_addr_lo(&op->src.u.dma);
220 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
221 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
222 | ccp_addr_hi(&op->src.u.dma);
224 if (op->eom) {
225 cr[0] |= REQ1_EOM;
226 cr[4] = lower_32_bits(op->u.sha.msg_bits);
227 cr[5] = upper_32_bits(op->u.sha.msg_bits);
228 } else {
229 cr[4] = 0;
230 cr[5] = 0;
233 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
236 static int ccp_perform_rsa(struct ccp_op *op)
238 u32 cr[6];
240 /* Fill out the register contents for REQ1 through REQ6 */
241 cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
242 | (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
243 | (op->sb_key << REQ1_KEY_KSB_SHIFT)
244 | REQ1_EOM;
245 cr[1] = op->u.rsa.input_len - 1;
246 cr[2] = ccp_addr_lo(&op->src.u.dma);
247 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
248 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
249 | ccp_addr_hi(&op->src.u.dma);
250 cr[4] = ccp_addr_lo(&op->dst.u.dma);
251 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
252 | ccp_addr_hi(&op->dst.u.dma);
254 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
257 static int ccp_perform_passthru(struct ccp_op *op)
259 u32 cr[6];
261 /* Fill out the register contents for REQ1 through REQ6 */
262 cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
263 | (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
264 | (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
266 if (op->src.type == CCP_MEMTYPE_SYSTEM)
267 cr[1] = op->src.u.dma.length - 1;
268 else
269 cr[1] = op->dst.u.dma.length - 1;
271 if (op->src.type == CCP_MEMTYPE_SYSTEM) {
272 cr[2] = ccp_addr_lo(&op->src.u.dma);
273 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
274 | ccp_addr_hi(&op->src.u.dma);
276 if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
277 cr[3] |= (op->sb_key << REQ4_KSB_SHIFT);
278 } else {
279 cr[2] = op->src.u.sb * CCP_SB_BYTES;
280 cr[3] = (CCP_MEMTYPE_SB << REQ4_MEMTYPE_SHIFT);
283 if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
284 cr[4] = ccp_addr_lo(&op->dst.u.dma);
285 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
286 | ccp_addr_hi(&op->dst.u.dma);
287 } else {
288 cr[4] = op->dst.u.sb * CCP_SB_BYTES;
289 cr[5] = (CCP_MEMTYPE_SB << REQ6_MEMTYPE_SHIFT);
292 if (op->eom)
293 cr[0] |= REQ1_EOM;
295 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
298 static int ccp_perform_ecc(struct ccp_op *op)
300 u32 cr[6];
302 /* Fill out the register contents for REQ1 through REQ6 */
303 cr[0] = REQ1_ECC_AFFINE_CONVERT
304 | (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
305 | (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
306 | REQ1_EOM;
307 cr[1] = op->src.u.dma.length - 1;
308 cr[2] = ccp_addr_lo(&op->src.u.dma);
309 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
310 | ccp_addr_hi(&op->src.u.dma);
311 cr[4] = ccp_addr_lo(&op->dst.u.dma);
312 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
313 | ccp_addr_hi(&op->dst.u.dma);
315 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
318 static void ccp_disable_queue_interrupts(struct ccp_device *ccp)
320 iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
323 static void ccp_enable_queue_interrupts(struct ccp_device *ccp)
325 iowrite32(ccp->qim, ccp->io_regs + IRQ_MASK_REG);
328 static void ccp_irq_bh(unsigned long data)
330 struct ccp_device *ccp = (struct ccp_device *)data;
331 struct ccp_cmd_queue *cmd_q;
332 u32 q_int, status;
333 unsigned int i;
335 status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
337 for (i = 0; i < ccp->cmd_q_count; i++) {
338 cmd_q = &ccp->cmd_q[i];
340 q_int = status & (cmd_q->int_ok | cmd_q->int_err);
341 if (q_int) {
342 cmd_q->int_status = status;
343 cmd_q->q_status = ioread32(cmd_q->reg_status);
344 cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
346 /* On error, only save the first error value */
347 if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
348 cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
350 cmd_q->int_rcvd = 1;
352 /* Acknowledge the interrupt and wake the kthread */
353 iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
354 wake_up_interruptible(&cmd_q->int_queue);
357 ccp_enable_queue_interrupts(ccp);
360 static irqreturn_t ccp_irq_handler(int irq, void *data)
362 struct ccp_device *ccp = (struct ccp_device *)data;
364 ccp_disable_queue_interrupts(ccp);
365 if (ccp->use_tasklet)
366 tasklet_schedule(&ccp->irq_tasklet);
367 else
368 ccp_irq_bh((unsigned long)ccp);
370 return IRQ_HANDLED;
373 static int ccp_init(struct ccp_device *ccp)
375 struct device *dev = ccp->dev;
376 struct ccp_cmd_queue *cmd_q;
377 struct dma_pool *dma_pool;
378 char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
379 unsigned int qmr, i;
380 int ret;
382 /* Find available queues */
383 ccp->qim = 0;
384 qmr = ioread32(ccp->io_regs + Q_MASK_REG);
385 for (i = 0; i < MAX_HW_QUEUES; i++) {
386 if (!(qmr & (1 << i)))
387 continue;
389 /* Allocate a dma pool for this queue */
390 snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
391 ccp->name, i);
392 dma_pool = dma_pool_create(dma_pool_name, dev,
393 CCP_DMAPOOL_MAX_SIZE,
394 CCP_DMAPOOL_ALIGN, 0);
395 if (!dma_pool) {
396 dev_err(dev, "unable to allocate dma pool\n");
397 ret = -ENOMEM;
398 goto e_pool;
401 cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
402 ccp->cmd_q_count++;
404 cmd_q->ccp = ccp;
405 cmd_q->id = i;
406 cmd_q->dma_pool = dma_pool;
408 /* Reserve 2 KSB regions for the queue */
409 cmd_q->sb_key = KSB_START + ccp->sb_start++;
410 cmd_q->sb_ctx = KSB_START + ccp->sb_start++;
411 ccp->sb_count -= 2;
413 /* Preset some register values and masks that are queue
414 * number dependent
416 cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
417 (CMD_Q_STATUS_INCR * i);
418 cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
419 (CMD_Q_STATUS_INCR * i);
420 cmd_q->int_ok = 1 << (i * 2);
421 cmd_q->int_err = 1 << ((i * 2) + 1);
423 cmd_q->free_slots = ccp_get_free_slots(cmd_q);
425 init_waitqueue_head(&cmd_q->int_queue);
427 /* Build queue interrupt mask (two interrupts per queue) */
428 ccp->qim |= cmd_q->int_ok | cmd_q->int_err;
430 #ifdef CONFIG_ARM64
431 /* For arm64 set the recommended queue cache settings */
432 iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
433 (CMD_Q_CACHE_INC * i));
434 #endif
436 dev_dbg(dev, "queue #%u available\n", i);
438 if (ccp->cmd_q_count == 0) {
439 dev_notice(dev, "no command queues available\n");
440 ret = -EIO;
441 goto e_pool;
443 dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
445 /* Disable and clear interrupts until ready */
446 ccp_disable_queue_interrupts(ccp);
447 for (i = 0; i < ccp->cmd_q_count; i++) {
448 cmd_q = &ccp->cmd_q[i];
450 ioread32(cmd_q->reg_int_status);
451 ioread32(cmd_q->reg_status);
453 iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
455 /* Request an irq */
456 ret = sp_request_ccp_irq(ccp->sp, ccp_irq_handler, ccp->name, ccp);
457 if (ret) {
458 dev_err(dev, "unable to allocate an IRQ\n");
459 goto e_pool;
462 /* Initialize the ISR tasklet? */
463 if (ccp->use_tasklet)
464 tasklet_init(&ccp->irq_tasklet, ccp_irq_bh,
465 (unsigned long)ccp);
467 dev_dbg(dev, "Starting threads...\n");
468 /* Create a kthread for each queue */
469 for (i = 0; i < ccp->cmd_q_count; i++) {
470 struct task_struct *kthread;
472 cmd_q = &ccp->cmd_q[i];
474 kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
475 "%s-q%u", ccp->name, cmd_q->id);
476 if (IS_ERR(kthread)) {
477 dev_err(dev, "error creating queue thread (%ld)\n",
478 PTR_ERR(kthread));
479 ret = PTR_ERR(kthread);
480 goto e_kthread;
483 cmd_q->kthread = kthread;
484 wake_up_process(kthread);
487 dev_dbg(dev, "Enabling interrupts...\n");
488 /* Enable interrupts */
489 ccp_enable_queue_interrupts(ccp);
491 dev_dbg(dev, "Registering device...\n");
492 ccp_add_device(ccp);
494 ret = ccp_register_rng(ccp);
495 if (ret)
496 goto e_kthread;
498 /* Register the DMA engine support */
499 ret = ccp_dmaengine_register(ccp);
500 if (ret)
501 goto e_hwrng;
503 return 0;
505 e_hwrng:
506 ccp_unregister_rng(ccp);
508 e_kthread:
509 for (i = 0; i < ccp->cmd_q_count; i++)
510 if (ccp->cmd_q[i].kthread)
511 kthread_stop(ccp->cmd_q[i].kthread);
513 sp_free_ccp_irq(ccp->sp, ccp);
515 e_pool:
516 for (i = 0; i < ccp->cmd_q_count; i++)
517 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
519 return ret;
522 static void ccp_destroy(struct ccp_device *ccp)
524 struct ccp_cmd_queue *cmd_q;
525 struct ccp_cmd *cmd;
526 unsigned int i;
528 /* Unregister the DMA engine */
529 ccp_dmaengine_unregister(ccp);
531 /* Unregister the RNG */
532 ccp_unregister_rng(ccp);
534 /* Remove this device from the list of available units */
535 ccp_del_device(ccp);
537 /* Disable and clear interrupts */
538 ccp_disable_queue_interrupts(ccp);
539 for (i = 0; i < ccp->cmd_q_count; i++) {
540 cmd_q = &ccp->cmd_q[i];
542 ioread32(cmd_q->reg_int_status);
543 ioread32(cmd_q->reg_status);
545 iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
547 /* Stop the queue kthreads */
548 for (i = 0; i < ccp->cmd_q_count; i++)
549 if (ccp->cmd_q[i].kthread)
550 kthread_stop(ccp->cmd_q[i].kthread);
552 sp_free_ccp_irq(ccp->sp, ccp);
554 for (i = 0; i < ccp->cmd_q_count; i++)
555 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
557 /* Flush the cmd and backlog queue */
558 while (!list_empty(&ccp->cmd)) {
559 /* Invoke the callback directly with an error code */
560 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
561 list_del(&cmd->entry);
562 cmd->callback(cmd->data, -ENODEV);
564 while (!list_empty(&ccp->backlog)) {
565 /* Invoke the callback directly with an error code */
566 cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
567 list_del(&cmd->entry);
568 cmd->callback(cmd->data, -ENODEV);
572 static const struct ccp_actions ccp3_actions = {
573 .aes = ccp_perform_aes,
574 .xts_aes = ccp_perform_xts_aes,
575 .des3 = NULL,
576 .sha = ccp_perform_sha,
577 .rsa = ccp_perform_rsa,
578 .passthru = ccp_perform_passthru,
579 .ecc = ccp_perform_ecc,
580 .sballoc = ccp_alloc_ksb,
581 .sbfree = ccp_free_ksb,
582 .init = ccp_init,
583 .destroy = ccp_destroy,
584 .get_free_slots = ccp_get_free_slots,
585 .irqhandler = ccp_irq_handler,
588 const struct ccp_vdata ccpv3_platform = {
589 .version = CCP_VERSION(3, 0),
590 .setup = NULL,
591 .perform = &ccp3_actions,
592 .offset = 0,
595 const struct ccp_vdata ccpv3 = {
596 .version = CCP_VERSION(3, 0),
597 .setup = NULL,
598 .perform = &ccp3_actions,
599 .offset = 0x20000,
600 .rsamax = CCP_RSA_MAX_WIDTH,