4 * Support for Samsung S5PV210 and Exynos HW acceleration.
6 * Copyright (C) 2011 NetUP Inc. All rights reserved.
7 * Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
13 * Hash part based on omap-sham.c driver.
16 #include <linux/clk.h>
17 #include <linux/crypto.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
27 #include <linux/platform_device.h>
28 #include <linux/scatterlist.h>
30 #include <crypto/ctr.h>
31 #include <crypto/aes.h>
32 #include <crypto/algapi.h>
33 #include <crypto/scatterwalk.h>
35 #include <crypto/hash.h>
36 #include <crypto/md5.h>
37 #include <crypto/sha.h>
38 #include <crypto/internal/hash.h>
40 #define _SBF(s, v) ((v) << (s))
42 /* Feed control registers */
43 #define SSS_REG_FCINTSTAT 0x0000
44 #define SSS_FCINTSTAT_HPARTINT BIT(7)
45 #define SSS_FCINTSTAT_HDONEINT BIT(5)
46 #define SSS_FCINTSTAT_BRDMAINT BIT(3)
47 #define SSS_FCINTSTAT_BTDMAINT BIT(2)
48 #define SSS_FCINTSTAT_HRDMAINT BIT(1)
49 #define SSS_FCINTSTAT_PKDMAINT BIT(0)
51 #define SSS_REG_FCINTENSET 0x0004
52 #define SSS_FCINTENSET_HPARTINTENSET BIT(7)
53 #define SSS_FCINTENSET_HDONEINTENSET BIT(5)
54 #define SSS_FCINTENSET_BRDMAINTENSET BIT(3)
55 #define SSS_FCINTENSET_BTDMAINTENSET BIT(2)
56 #define SSS_FCINTENSET_HRDMAINTENSET BIT(1)
57 #define SSS_FCINTENSET_PKDMAINTENSET BIT(0)
59 #define SSS_REG_FCINTENCLR 0x0008
60 #define SSS_FCINTENCLR_HPARTINTENCLR BIT(7)
61 #define SSS_FCINTENCLR_HDONEINTENCLR BIT(5)
62 #define SSS_FCINTENCLR_BRDMAINTENCLR BIT(3)
63 #define SSS_FCINTENCLR_BTDMAINTENCLR BIT(2)
64 #define SSS_FCINTENCLR_HRDMAINTENCLR BIT(1)
65 #define SSS_FCINTENCLR_PKDMAINTENCLR BIT(0)
67 #define SSS_REG_FCINTPEND 0x000C
68 #define SSS_FCINTPEND_HPARTINTP BIT(7)
69 #define SSS_FCINTPEND_HDONEINTP BIT(5)
70 #define SSS_FCINTPEND_BRDMAINTP BIT(3)
71 #define SSS_FCINTPEND_BTDMAINTP BIT(2)
72 #define SSS_FCINTPEND_HRDMAINTP BIT(1)
73 #define SSS_FCINTPEND_PKDMAINTP BIT(0)
75 #define SSS_REG_FCFIFOSTAT 0x0010
76 #define SSS_FCFIFOSTAT_BRFIFOFUL BIT(7)
77 #define SSS_FCFIFOSTAT_BRFIFOEMP BIT(6)
78 #define SSS_FCFIFOSTAT_BTFIFOFUL BIT(5)
79 #define SSS_FCFIFOSTAT_BTFIFOEMP BIT(4)
80 #define SSS_FCFIFOSTAT_HRFIFOFUL BIT(3)
81 #define SSS_FCFIFOSTAT_HRFIFOEMP BIT(2)
82 #define SSS_FCFIFOSTAT_PKFIFOFUL BIT(1)
83 #define SSS_FCFIFOSTAT_PKFIFOEMP BIT(0)
85 #define SSS_REG_FCFIFOCTRL 0x0014
86 #define SSS_FCFIFOCTRL_DESSEL BIT(2)
87 #define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
88 #define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
89 #define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
90 #define SSS_HASHIN_MASK _SBF(0, 0x03)
92 #define SSS_REG_FCBRDMAS 0x0020
93 #define SSS_REG_FCBRDMAL 0x0024
94 #define SSS_REG_FCBRDMAC 0x0028
95 #define SSS_FCBRDMAC_BYTESWAP BIT(1)
96 #define SSS_FCBRDMAC_FLUSH BIT(0)
98 #define SSS_REG_FCBTDMAS 0x0030
99 #define SSS_REG_FCBTDMAL 0x0034
100 #define SSS_REG_FCBTDMAC 0x0038
101 #define SSS_FCBTDMAC_BYTESWAP BIT(1)
102 #define SSS_FCBTDMAC_FLUSH BIT(0)
104 #define SSS_REG_FCHRDMAS 0x0040
105 #define SSS_REG_FCHRDMAL 0x0044
106 #define SSS_REG_FCHRDMAC 0x0048
107 #define SSS_FCHRDMAC_BYTESWAP BIT(1)
108 #define SSS_FCHRDMAC_FLUSH BIT(0)
110 #define SSS_REG_FCPKDMAS 0x0050
111 #define SSS_REG_FCPKDMAL 0x0054
112 #define SSS_REG_FCPKDMAC 0x0058
113 #define SSS_FCPKDMAC_BYTESWAP BIT(3)
114 #define SSS_FCPKDMAC_DESCEND BIT(2)
115 #define SSS_FCPKDMAC_TRANSMIT BIT(1)
116 #define SSS_FCPKDMAC_FLUSH BIT(0)
118 #define SSS_REG_FCPKDMAO 0x005C
121 #define SSS_REG_AES_CONTROL 0x00
122 #define SSS_AES_BYTESWAP_DI BIT(11)
123 #define SSS_AES_BYTESWAP_DO BIT(10)
124 #define SSS_AES_BYTESWAP_IV BIT(9)
125 #define SSS_AES_BYTESWAP_CNT BIT(8)
126 #define SSS_AES_BYTESWAP_KEY BIT(7)
127 #define SSS_AES_KEY_CHANGE_MODE BIT(6)
128 #define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
129 #define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
130 #define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
131 #define SSS_AES_FIFO_MODE BIT(3)
132 #define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
133 #define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
134 #define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
135 #define SSS_AES_MODE_DECRYPT BIT(0)
137 #define SSS_REG_AES_STATUS 0x04
138 #define SSS_AES_BUSY BIT(2)
139 #define SSS_AES_INPUT_READY BIT(1)
140 #define SSS_AES_OUTPUT_READY BIT(0)
142 #define SSS_REG_AES_IN_DATA(s) (0x10 + (s << 2))
143 #define SSS_REG_AES_OUT_DATA(s) (0x20 + (s << 2))
144 #define SSS_REG_AES_IV_DATA(s) (0x30 + (s << 2))
145 #define SSS_REG_AES_CNT_DATA(s) (0x40 + (s << 2))
146 #define SSS_REG_AES_KEY_DATA(s) (0x80 + (s << 2))
148 #define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
149 #define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
150 #define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
152 #define SSS_AES_REG(dev, reg) ((dev)->aes_ioaddr + SSS_REG_##reg)
153 #define SSS_AES_WRITE(dev, reg, val) __raw_writel((val), \
154 SSS_AES_REG(dev, reg))
156 /* HW engine modes */
157 #define FLAGS_AES_DECRYPT BIT(0)
158 #define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
159 #define FLAGS_AES_CBC _SBF(1, 0x01)
160 #define FLAGS_AES_CTR _SBF(1, 0x02)
162 #define AES_KEY_LEN 16
163 #define CRYPTO_QUEUE_LEN 1
166 #define SSS_REG_HASH_CTRL 0x00
168 #define SSS_HASH_USER_IV_EN BIT(5)
169 #define SSS_HASH_INIT_BIT BIT(4)
170 #define SSS_HASH_ENGINE_SHA1 _SBF(1, 0x00)
171 #define SSS_HASH_ENGINE_MD5 _SBF(1, 0x01)
172 #define SSS_HASH_ENGINE_SHA256 _SBF(1, 0x02)
174 #define SSS_HASH_ENGINE_MASK _SBF(1, 0x03)
176 #define SSS_REG_HASH_CTRL_PAUSE 0x04
178 #define SSS_HASH_PAUSE BIT(0)
180 #define SSS_REG_HASH_CTRL_FIFO 0x08
182 #define SSS_HASH_FIFO_MODE_DMA BIT(0)
183 #define SSS_HASH_FIFO_MODE_CPU 0
185 #define SSS_REG_HASH_CTRL_SWAP 0x0C
187 #define SSS_HASH_BYTESWAP_DI BIT(3)
188 #define SSS_HASH_BYTESWAP_DO BIT(2)
189 #define SSS_HASH_BYTESWAP_IV BIT(1)
190 #define SSS_HASH_BYTESWAP_KEY BIT(0)
192 #define SSS_REG_HASH_STATUS 0x10
194 #define SSS_HASH_STATUS_MSG_DONE BIT(6)
195 #define SSS_HASH_STATUS_PARTIAL_DONE BIT(4)
196 #define SSS_HASH_STATUS_BUFFER_READY BIT(0)
198 #define SSS_REG_HASH_MSG_SIZE_LOW 0x20
199 #define SSS_REG_HASH_MSG_SIZE_HIGH 0x24
201 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW 0x28
202 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH 0x2C
204 #define SSS_REG_HASH_IV(s) (0xB0 + ((s) << 2))
205 #define SSS_REG_HASH_OUT(s) (0x100 + ((s) << 2))
207 #define HASH_BLOCK_SIZE 64
208 #define HASH_REG_SIZEOF 4
209 #define HASH_MD5_MAX_REG (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
210 #define HASH_SHA1_MAX_REG (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
211 #define HASH_SHA256_MAX_REG (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
214 * HASH bit numbers, used by device, setting in dev->hash_flags with
215 * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
216 * to keep HASH state BUSY or FREE, or to signal state from irq_handler
217 * to hash_tasklet. SGS keep track of allocated memory for scatterlist
219 #define HASH_FLAGS_BUSY 0
220 #define HASH_FLAGS_FINAL 1
221 #define HASH_FLAGS_DMA_ACTIVE 2
222 #define HASH_FLAGS_OUTPUT_READY 3
223 #define HASH_FLAGS_DMA_READY 4
224 #define HASH_FLAGS_SGS_COPIED 5
225 #define HASH_FLAGS_SGS_ALLOCED 6
227 /* HASH HW constants */
228 #define BUFLEN HASH_BLOCK_SIZE
230 #define SSS_HASH_DMA_LEN_ALIGN 8
231 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
233 #define SSS_HASH_QUEUE_LENGTH 10
236 * struct samsung_aes_variant - platform specific SSS driver data
237 * @aes_offset: AES register offset from SSS module's base.
238 * @hash_offset: HASH register offset from SSS module's base.
240 * Specifies platform specific configuration of SSS module.
241 * Note: A structure for driver specific platform data is used for future
242 * expansion of its usage.
244 struct samsung_aes_variant
{
245 unsigned int aes_offset
;
246 unsigned int hash_offset
;
249 struct s5p_aes_reqctx
{
254 struct s5p_aes_dev
*dev
;
256 uint8_t aes_key
[AES_MAX_KEY_SIZE
];
257 uint8_t nonce
[CTR_RFC3686_NONCE_SIZE
];
262 * struct s5p_aes_dev - Crypto device state container
263 * @dev: Associated device
264 * @clk: Clock for accessing hardware
265 * @ioaddr: Mapped IO memory region
266 * @aes_ioaddr: Per-varian offset for AES block IO memory
267 * @irq_fc: Feed control interrupt line
268 * @req: Crypto request currently handled by the device
269 * @ctx: Configuration for currently handled crypto request
270 * @sg_src: Scatter list with source data for currently handled block
271 * in device. This is DMA-mapped into device.
272 * @sg_dst: Scatter list with destination data for currently handled block
273 * in device. This is DMA-mapped into device.
274 * @sg_src_cpy: In case of unaligned access, copied scatter list
276 * @sg_dst_cpy: In case of unaligned access, copied scatter list
277 * with destination data.
278 * @tasklet: New request scheduling jib
279 * @queue: Crypto queue
280 * @busy: Indicates whether the device is currently handling some request
281 * thus it uses some of the fields from this state, like:
282 * req, ctx, sg_src/dst (and copies). This essentially
283 * protects against concurrent access to these fields.
284 * @lock: Lock for protecting both access to device hardware registers
285 * and fields related to current request (including the busy field).
286 * @res: Resources for hash.
287 * @io_hash_base: Per-variant offset for HASH block IO memory.
288 * @hash_lock: Lock for protecting hash_req, hash_queue and hash_flags
290 * @hash_flags: Flags for current HASH op.
291 * @hash_queue: Async hash queue.
292 * @hash_tasklet: New HASH request scheduling job.
293 * @xmit_buf: Buffer for current HASH request transfer into SSS block.
294 * @hash_req: Current request sending to SSS HASH block.
295 * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
296 * @hash_sg_cnt: Counter for hash_sg_iter.
298 * @use_hash: true if HASH algs enabled
303 void __iomem
*ioaddr
;
304 void __iomem
*aes_ioaddr
;
307 struct ablkcipher_request
*req
;
308 struct s5p_aes_ctx
*ctx
;
309 struct scatterlist
*sg_src
;
310 struct scatterlist
*sg_dst
;
312 struct scatterlist
*sg_src_cpy
;
313 struct scatterlist
*sg_dst_cpy
;
315 struct tasklet_struct tasklet
;
316 struct crypto_queue queue
;
320 struct resource
*res
;
321 void __iomem
*io_hash_base
;
323 spinlock_t hash_lock
; /* protect hash_ vars */
324 unsigned long hash_flags
;
325 struct crypto_queue hash_queue
;
326 struct tasklet_struct hash_tasklet
;
329 struct ahash_request
*hash_req
;
330 struct scatterlist
*hash_sg_iter
;
331 unsigned int hash_sg_cnt
;
337 * struct s5p_hash_reqctx - HASH request context
338 * @dd: Associated device
339 * @op_update: Current request operation (OP_UPDATE or OP_FINAL)
340 * @digcnt: Number of bytes processed by HW (without buffer[] ones)
341 * @digest: Digest message or IV for partial result
342 * @nregs: Number of HW registers for digest or IV read/write
343 * @engine: Bits for selecting type of HASH in SSS block
344 * @sg: sg for DMA transfer
345 * @sg_len: Length of sg for DMA transfer
346 * @sgl[]: sg for joining buffer and req->src scatterlist
347 * @skip: Skip offset in req->src for current op
348 * @total: Total number of bytes for current request
349 * @finup: Keep state for finup or final.
350 * @error: Keep track of error.
351 * @bufcnt: Number of bytes holded in buffer[]
352 * @buffer[]: For byte(s) from end of req->src in UPDATE op
354 struct s5p_hash_reqctx
{
355 struct s5p_aes_dev
*dd
;
359 u8 digest
[SHA256_DIGEST_SIZE
];
361 unsigned int nregs
; /* digest_size / sizeof(reg) */
364 struct scatterlist
*sg
;
366 struct scatterlist sgl
[2];
377 * struct s5p_hash_ctx - HASH transformation context
378 * @dd: Associated device
379 * @flags: Bits for algorithm HASH.
380 * @fallback: Software transformation for zero message or size < BUFLEN.
382 struct s5p_hash_ctx
{
383 struct s5p_aes_dev
*dd
;
385 struct crypto_shash
*fallback
;
388 static const struct samsung_aes_variant s5p_aes_data
= {
389 .aes_offset
= 0x4000,
390 .hash_offset
= 0x6000,
393 static const struct samsung_aes_variant exynos_aes_data
= {
395 .hash_offset
= 0x400,
398 static const struct of_device_id s5p_sss_dt_match
[] = {
400 .compatible
= "samsung,s5pv210-secss",
401 .data
= &s5p_aes_data
,
404 .compatible
= "samsung,exynos4210-secss",
405 .data
= &exynos_aes_data
,
409 MODULE_DEVICE_TABLE(of
, s5p_sss_dt_match
);
411 static inline struct samsung_aes_variant
*find_s5p_sss_version
412 (struct platform_device
*pdev
)
414 if (IS_ENABLED(CONFIG_OF
) && (pdev
->dev
.of_node
)) {
415 const struct of_device_id
*match
;
417 match
= of_match_node(s5p_sss_dt_match
,
419 return (struct samsung_aes_variant
*)match
->data
;
421 return (struct samsung_aes_variant
*)
422 platform_get_device_id(pdev
)->driver_data
;
425 static struct s5p_aes_dev
*s5p_dev
;
427 static void s5p_set_dma_indata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
429 SSS_WRITE(dev
, FCBRDMAS
, sg_dma_address(sg
));
430 SSS_WRITE(dev
, FCBRDMAL
, sg_dma_len(sg
));
433 static void s5p_set_dma_outdata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
435 SSS_WRITE(dev
, FCBTDMAS
, sg_dma_address(sg
));
436 SSS_WRITE(dev
, FCBTDMAL
, sg_dma_len(sg
));
439 static void s5p_free_sg_cpy(struct s5p_aes_dev
*dev
, struct scatterlist
**sg
)
446 len
= ALIGN(dev
->req
->nbytes
, AES_BLOCK_SIZE
);
447 free_pages((unsigned long)sg_virt(*sg
), get_order(len
));
453 static void s5p_sg_copy_buf(void *buf
, struct scatterlist
*sg
,
454 unsigned int nbytes
, int out
)
456 struct scatter_walk walk
;
461 scatterwalk_start(&walk
, sg
);
462 scatterwalk_copychunks(buf
, &walk
, nbytes
, out
);
463 scatterwalk_done(&walk
, out
, 0);
466 static void s5p_sg_done(struct s5p_aes_dev
*dev
)
468 if (dev
->sg_dst_cpy
) {
470 "Copying %d bytes of output data back to original place\n",
472 s5p_sg_copy_buf(sg_virt(dev
->sg_dst_cpy
), dev
->req
->dst
,
473 dev
->req
->nbytes
, 1);
475 s5p_free_sg_cpy(dev
, &dev
->sg_src_cpy
);
476 s5p_free_sg_cpy(dev
, &dev
->sg_dst_cpy
);
479 /* Calls the completion. Cannot be called with dev->lock hold. */
480 static void s5p_aes_complete(struct s5p_aes_dev
*dev
, int err
)
482 dev
->req
->base
.complete(&dev
->req
->base
, err
);
485 static void s5p_unset_outdata(struct s5p_aes_dev
*dev
)
487 dma_unmap_sg(dev
->dev
, dev
->sg_dst
, 1, DMA_FROM_DEVICE
);
490 static void s5p_unset_indata(struct s5p_aes_dev
*dev
)
492 dma_unmap_sg(dev
->dev
, dev
->sg_src
, 1, DMA_TO_DEVICE
);
495 static int s5p_make_sg_cpy(struct s5p_aes_dev
*dev
, struct scatterlist
*src
,
496 struct scatterlist
**dst
)
501 *dst
= kmalloc(sizeof(**dst
), GFP_ATOMIC
);
505 len
= ALIGN(dev
->req
->nbytes
, AES_BLOCK_SIZE
);
506 pages
= (void *)__get_free_pages(GFP_ATOMIC
, get_order(len
));
513 s5p_sg_copy_buf(pages
, src
, dev
->req
->nbytes
, 0);
515 sg_init_table(*dst
, 1);
516 sg_set_buf(*dst
, pages
, len
);
521 static int s5p_set_outdata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
530 err
= dma_map_sg(dev
->dev
, sg
, 1, DMA_FROM_DEVICE
);
543 static int s5p_set_indata(struct s5p_aes_dev
*dev
, struct scatterlist
*sg
)
552 err
= dma_map_sg(dev
->dev
, sg
, 1, DMA_TO_DEVICE
);
566 * Returns -ERRNO on error (mapping of new data failed).
567 * On success returns:
568 * - 0 if there is no more data,
569 * - 1 if new transmitting (output) data is ready and its address+length
570 * have to be written to device (by calling s5p_set_dma_outdata()).
572 static int s5p_aes_tx(struct s5p_aes_dev
*dev
)
576 s5p_unset_outdata(dev
);
578 if (!sg_is_last(dev
->sg_dst
)) {
579 ret
= s5p_set_outdata(dev
, sg_next(dev
->sg_dst
));
588 * Returns -ERRNO on error (mapping of new data failed).
589 * On success returns:
590 * - 0 if there is no more data,
591 * - 1 if new receiving (input) data is ready and its address+length
592 * have to be written to device (by calling s5p_set_dma_indata()).
594 static int s5p_aes_rx(struct s5p_aes_dev
*dev
/*, bool *set_dma*/)
598 s5p_unset_indata(dev
);
600 if (!sg_is_last(dev
->sg_src
)) {
601 ret
= s5p_set_indata(dev
, sg_next(dev
->sg_src
));
609 static inline u32
s5p_hash_read(struct s5p_aes_dev
*dd
, u32 offset
)
611 return __raw_readl(dd
->io_hash_base
+ offset
);
614 static inline void s5p_hash_write(struct s5p_aes_dev
*dd
,
615 u32 offset
, u32 value
)
617 __raw_writel(value
, dd
->io_hash_base
+ offset
);
621 * s5p_set_dma_hashdata() - start DMA with sg
623 * @sg: scatterlist ready to DMA transmit
625 static void s5p_set_dma_hashdata(struct s5p_aes_dev
*dev
,
626 struct scatterlist
*sg
)
629 SSS_WRITE(dev
, FCHRDMAS
, sg_dma_address(sg
));
630 SSS_WRITE(dev
, FCHRDMAL
, sg_dma_len(sg
)); /* DMA starts */
634 * s5p_hash_rx() - get next hash_sg_iter
638 * 2 if there is no more data and it is UPDATE op
639 * 1 if new receiving (input) data is ready and can be written to device
640 * 0 if there is no more data and it is FINAL op
642 static int s5p_hash_rx(struct s5p_aes_dev
*dev
)
644 if (dev
->hash_sg_cnt
> 0) {
645 dev
->hash_sg_iter
= sg_next(dev
->hash_sg_iter
);
649 set_bit(HASH_FLAGS_DMA_READY
, &dev
->hash_flags
);
650 if (test_bit(HASH_FLAGS_FINAL
, &dev
->hash_flags
))
656 static irqreturn_t
s5p_aes_interrupt(int irq
, void *dev_id
)
658 struct platform_device
*pdev
= dev_id
;
659 struct s5p_aes_dev
*dev
= platform_get_drvdata(pdev
);
670 spin_lock_irqsave(&dev
->lock
, flags
);
673 * Handle rx or tx interrupt. If there is still data (scatterlist did not
674 * reach end), then map next scatterlist entry.
675 * In case of such mapping error, s5p_aes_complete() should be called.
677 * If there is no more data in tx scatter list, call s5p_aes_complete()
678 * and schedule new tasklet.
680 * Handle hx interrupt. If there is still data map next entry.
682 status
= SSS_READ(dev
, FCINTSTAT
);
683 if (status
& SSS_FCINTSTAT_BRDMAINT
)
684 err_dma_rx
= s5p_aes_rx(dev
);
686 if (status
& SSS_FCINTSTAT_BTDMAINT
) {
687 if (sg_is_last(dev
->sg_dst
))
689 err_dma_tx
= s5p_aes_tx(dev
);
692 if (status
& SSS_FCINTSTAT_HRDMAINT
)
693 err_dma_hx
= s5p_hash_rx(dev
);
695 st_bits
= status
& (SSS_FCINTSTAT_BRDMAINT
| SSS_FCINTSTAT_BTDMAINT
|
696 SSS_FCINTSTAT_HRDMAINT
);
698 SSS_WRITE(dev
, FCINTPEND
, st_bits
);
700 /* clear HASH irq bits */
701 if (status
& (SSS_FCINTSTAT_HDONEINT
| SSS_FCINTSTAT_HPARTINT
)) {
702 /* cannot have both HPART and HDONE */
703 if (status
& SSS_FCINTSTAT_HPARTINT
)
704 st_bits
= SSS_HASH_STATUS_PARTIAL_DONE
;
706 if (status
& SSS_FCINTSTAT_HDONEINT
)
707 st_bits
= SSS_HASH_STATUS_MSG_DONE
;
709 set_bit(HASH_FLAGS_OUTPUT_READY
, &dev
->hash_flags
);
710 s5p_hash_write(dev
, SSS_REG_HASH_STATUS
, st_bits
);
712 /* when DONE or PART, do not handle HASH DMA */
716 if (err_dma_rx
< 0) {
720 if (err_dma_tx
< 0) {
728 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
730 spin_unlock_irqrestore(&dev
->lock
, flags
);
732 s5p_aes_complete(dev
, 0);
733 /* Device is still busy */
734 tasklet_schedule(&dev
->tasklet
);
737 * Writing length of DMA block (either receiving or
738 * transmitting) will start the operation immediately, so this
739 * should be done at the end (even after clearing pending
740 * interrupts to not miss the interrupt).
743 s5p_set_dma_outdata(dev
, dev
->sg_dst
);
745 s5p_set_dma_indata(dev
, dev
->sg_src
);
747 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
749 spin_unlock_irqrestore(&dev
->lock
, flags
);
758 s5p_set_dma_hashdata(dev
, dev
->hash_sg_iter
);
760 spin_unlock_irqrestore(&dev
->lock
, flags
);
761 s5p_aes_complete(dev
, err
);
765 * Note about else if:
766 * when hash_sg_iter reaches end and its UPDATE op,
767 * issue SSS_HASH_PAUSE and wait for HPART irq
770 tasklet_schedule(&dev
->hash_tasklet
);
771 else if (err_dma_hx
== 2)
772 s5p_hash_write(dev
, SSS_REG_HASH_CTRL_PAUSE
,
779 * s5p_hash_read_msg() - read message or IV from HW
780 * @req: AHASH request
782 static void s5p_hash_read_msg(struct ahash_request
*req
)
784 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
785 struct s5p_aes_dev
*dd
= ctx
->dd
;
786 u32
*hash
= (u32
*)ctx
->digest
;
789 for (i
= 0; i
< ctx
->nregs
; i
++)
790 hash
[i
] = s5p_hash_read(dd
, SSS_REG_HASH_OUT(i
));
794 * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
796 * @ctx: request context
798 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev
*dd
,
799 struct s5p_hash_reqctx
*ctx
)
801 u32
*hash
= (u32
*)ctx
->digest
;
804 for (i
= 0; i
< ctx
->nregs
; i
++)
805 s5p_hash_write(dd
, SSS_REG_HASH_IV(i
), hash
[i
]);
809 * s5p_hash_write_iv() - write IV for next partial/finup op.
810 * @req: AHASH request
812 static void s5p_hash_write_iv(struct ahash_request
*req
)
814 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
816 s5p_hash_write_ctx_iv(ctx
->dd
, ctx
);
820 * s5p_hash_copy_result() - copy digest into req->result
821 * @req: AHASH request
823 static void s5p_hash_copy_result(struct ahash_request
*req
)
825 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
830 memcpy(req
->result
, ctx
->digest
, ctx
->nregs
* HASH_REG_SIZEOF
);
834 * s5p_hash_dma_flush() - flush HASH DMA
837 static void s5p_hash_dma_flush(struct s5p_aes_dev
*dev
)
839 SSS_WRITE(dev
, FCHRDMAC
, SSS_FCHRDMAC_FLUSH
);
843 * s5p_hash_dma_enable() - enable DMA mode for HASH
846 * enable DMA mode for HASH
848 static void s5p_hash_dma_enable(struct s5p_aes_dev
*dev
)
850 s5p_hash_write(dev
, SSS_REG_HASH_CTRL_FIFO
, SSS_HASH_FIFO_MODE_DMA
);
854 * s5p_hash_irq_disable() - disable irq HASH signals
856 * @flags: bitfield with irq's to be disabled
858 static void s5p_hash_irq_disable(struct s5p_aes_dev
*dev
, u32 flags
)
860 SSS_WRITE(dev
, FCINTENCLR
, flags
);
864 * s5p_hash_irq_enable() - enable irq signals
866 * @flags: bitfield with irq's to be enabled
868 static void s5p_hash_irq_enable(struct s5p_aes_dev
*dev
, int flags
)
870 SSS_WRITE(dev
, FCINTENSET
, flags
);
874 * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
876 * @hashflow: HASH stream flow with/without crypto AES/DES
878 static void s5p_hash_set_flow(struct s5p_aes_dev
*dev
, u32 hashflow
)
883 spin_lock_irqsave(&dev
->lock
, flags
);
885 flow
= SSS_READ(dev
, FCFIFOCTRL
);
886 flow
&= ~SSS_HASHIN_MASK
;
888 SSS_WRITE(dev
, FCFIFOCTRL
, flow
);
890 spin_unlock_irqrestore(&dev
->lock
, flags
);
894 * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
896 * @hashflow: HASH stream flow with/without AES/DES
898 * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
899 * enable HASH irq's HRDMA, HDONE, HPART
901 static void s5p_ahash_dma_init(struct s5p_aes_dev
*dev
, u32 hashflow
)
903 s5p_hash_irq_disable(dev
, SSS_FCINTENCLR_HRDMAINTENCLR
|
904 SSS_FCINTENCLR_HDONEINTENCLR
|
905 SSS_FCINTENCLR_HPARTINTENCLR
);
906 s5p_hash_dma_flush(dev
);
908 s5p_hash_dma_enable(dev
);
909 s5p_hash_set_flow(dev
, hashflow
& SSS_HASHIN_MASK
);
910 s5p_hash_irq_enable(dev
, SSS_FCINTENSET_HRDMAINTENSET
|
911 SSS_FCINTENSET_HDONEINTENSET
|
912 SSS_FCINTENSET_HPARTINTENSET
);
916 * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
918 * @length: length for request
919 * @final: true if final op
921 * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
922 * after previous updates, fill up IV words. For final, calculate and set
923 * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
924 * length as 2^63 so it will be never reached and set to zero prelow and
927 * This function does not start DMA transfer.
929 static void s5p_hash_write_ctrl(struct s5p_aes_dev
*dd
, size_t length
,
932 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
933 u32 prelow
, prehigh
, low
, high
;
934 u32 configflags
, swapflags
;
937 configflags
= ctx
->engine
| SSS_HASH_INIT_BIT
;
939 if (likely(ctx
->digcnt
)) {
940 s5p_hash_write_ctx_iv(dd
, ctx
);
941 configflags
|= SSS_HASH_USER_IV_EN
;
945 /* number of bytes for last part */
948 /* total number of bits prev hashed */
949 tmplen
= ctx
->digcnt
* 8;
950 prelow
= (u32
)tmplen
;
951 prehigh
= (u32
)(tmplen
>> 32);
959 swapflags
= SSS_HASH_BYTESWAP_DI
| SSS_HASH_BYTESWAP_DO
|
960 SSS_HASH_BYTESWAP_IV
| SSS_HASH_BYTESWAP_KEY
;
962 s5p_hash_write(dd
, SSS_REG_HASH_MSG_SIZE_LOW
, low
);
963 s5p_hash_write(dd
, SSS_REG_HASH_MSG_SIZE_HIGH
, high
);
964 s5p_hash_write(dd
, SSS_REG_HASH_PRE_MSG_SIZE_LOW
, prelow
);
965 s5p_hash_write(dd
, SSS_REG_HASH_PRE_MSG_SIZE_HIGH
, prehigh
);
967 s5p_hash_write(dd
, SSS_REG_HASH_CTRL_SWAP
, swapflags
);
968 s5p_hash_write(dd
, SSS_REG_HASH_CTRL
, configflags
);
972 * s5p_hash_xmit_dma() - start DMA hash processing
974 * @length: length for request
975 * @final: true if final op
977 * Update digcnt here, as it is needed for finup/final op.
979 static int s5p_hash_xmit_dma(struct s5p_aes_dev
*dd
, size_t length
,
982 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
985 cnt
= dma_map_sg(dd
->dev
, ctx
->sg
, ctx
->sg_len
, DMA_TO_DEVICE
);
987 dev_err(dd
->dev
, "dma_map_sg error\n");
992 set_bit(HASH_FLAGS_DMA_ACTIVE
, &dd
->hash_flags
);
993 dd
->hash_sg_iter
= ctx
->sg
;
994 dd
->hash_sg_cnt
= cnt
;
995 s5p_hash_write_ctrl(dd
, length
, final
);
996 ctx
->digcnt
+= length
;
997 ctx
->total
-= length
;
999 /* catch last interrupt */
1001 set_bit(HASH_FLAGS_FINAL
, &dd
->hash_flags
);
1003 s5p_set_dma_hashdata(dd
, dd
->hash_sg_iter
); /* DMA starts */
1005 return -EINPROGRESS
;
1009 * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1010 * @ctx: request context
1011 * @sg: source scatterlist request
1012 * @new_len: number of bytes to process from sg
1014 * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1015 * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1016 * with allocated buffer.
1018 * Set bit in dd->hash_flag so we can free it after irq ends processing.
1020 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx
*ctx
,
1021 struct scatterlist
*sg
, unsigned int new_len
)
1023 unsigned int pages
, len
;
1026 len
= new_len
+ ctx
->bufcnt
;
1027 pages
= get_order(len
);
1029 buf
= (void *)__get_free_pages(GFP_ATOMIC
, pages
);
1031 dev_err(ctx
->dd
->dev
, "alloc pages for unaligned case.\n");
1037 memcpy(buf
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1039 scatterwalk_map_and_copy(buf
+ ctx
->bufcnt
, sg
, ctx
->skip
,
1041 sg_init_table(ctx
->sgl
, 1);
1042 sg_set_buf(ctx
->sgl
, buf
, len
);
1047 set_bit(HASH_FLAGS_SGS_COPIED
, &ctx
->dd
->hash_flags
);
1053 * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1054 * @ctx: request context
1055 * @sg: source scatterlist request
1056 * @new_len: number of bytes to process from sg
1058 * Allocate new scatterlist table, copy data for HASH into it. If there was
1059 * xmit_buf filled, prepare it first, then copy page, length and offset from
1060 * source sg into it, adjusting begin and/or end for skip offset and
1063 * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1064 * it after irq ends processing.
1066 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx
*ctx
,
1067 struct scatterlist
*sg
, unsigned int new_len
)
1069 unsigned int skip
= ctx
->skip
, n
= sg_nents(sg
);
1070 struct scatterlist
*tmp
;
1076 ctx
->sg
= kmalloc_array(n
, sizeof(*sg
), GFP_KERNEL
);
1082 sg_init_table(ctx
->sg
, n
);
1089 sg_set_buf(tmp
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1094 while (sg
&& skip
>= sg
->length
) {
1099 while (sg
&& new_len
) {
1100 len
= sg
->length
- skip
;
1105 sg_set_page(tmp
, sg_page(sg
), len
, sg
->offset
+ skip
);
1115 set_bit(HASH_FLAGS_SGS_ALLOCED
, &ctx
->dd
->hash_flags
);
1121 * s5p_hash_prepare_sgs() - prepare sg for processing
1122 * @ctx: request context
1123 * @sg: source scatterlist request
1124 * @nbytes: number of bytes to process from sg
1125 * @final: final flag
1127 * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1128 * sg table have good aligned elements (list_ok). If one of this checks fails,
1129 * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1130 * data into this buffer and prepare request in sgl, or (2) allocates new sg
1131 * table and prepare sg elements.
1133 * For digest or finup all conditions can be good, and we may not need any
1136 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx
*ctx
,
1137 struct scatterlist
*sg
,
1138 unsigned int new_len
, bool final
)
1140 unsigned int skip
= ctx
->skip
, nbytes
= new_len
, n
= 0;
1141 bool aligned
= true, list_ok
= true;
1142 struct scatterlist
*sg_tmp
= sg
;
1144 if (!sg
|| !sg
->length
|| !new_len
)
1150 while (nbytes
> 0 && sg_tmp
) {
1152 if (skip
>= sg_tmp
->length
) {
1153 skip
-= sg_tmp
->length
;
1154 if (!sg_tmp
->length
) {
1159 if (!IS_ALIGNED(sg_tmp
->length
- skip
, BUFLEN
)) {
1164 if (nbytes
< sg_tmp
->length
- skip
) {
1169 nbytes
-= sg_tmp
->length
- skip
;
1173 sg_tmp
= sg_next(sg_tmp
);
1177 return s5p_hash_copy_sgs(ctx
, sg
, new_len
);
1179 return s5p_hash_copy_sg_lists(ctx
, sg
, new_len
);
1182 * Have aligned data from previous operation and/or current
1183 * Note: will enter here only if (digest or finup) and aligned
1187 sg_init_table(ctx
->sgl
, 2);
1188 sg_set_buf(ctx
->sgl
, ctx
->dd
->xmit_buf
, ctx
->bufcnt
);
1189 sg_chain(ctx
->sgl
, 2, sg
);
1201 * s5p_hash_prepare_request() - prepare request for processing
1202 * @req: AHASH request
1203 * @update: true if UPDATE op
1205 * Note 1: we can have update flag _and_ final flag at the same time.
1206 * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1207 * either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1210 static int s5p_hash_prepare_request(struct ahash_request
*req
, bool update
)
1212 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1213 bool final
= ctx
->finup
;
1214 int xmit_len
, hash_later
, nbytes
;
1221 nbytes
= req
->nbytes
;
1225 ctx
->total
= nbytes
+ ctx
->bufcnt
;
1229 if (nbytes
&& (!IS_ALIGNED(ctx
->bufcnt
, BUFLEN
))) {
1230 /* bytes left from previous request, so fill up to BUFLEN */
1231 int len
= BUFLEN
- ctx
->bufcnt
% BUFLEN
;
1236 scatterwalk_map_and_copy(ctx
->buffer
+ ctx
->bufcnt
, req
->src
,
1246 memcpy(ctx
->dd
->xmit_buf
, ctx
->buffer
, ctx
->bufcnt
);
1248 xmit_len
= ctx
->total
;
1252 if (IS_ALIGNED(xmit_len
, BUFLEN
))
1255 xmit_len
-= xmit_len
& (BUFLEN
- 1);
1257 hash_later
= ctx
->total
- xmit_len
;
1258 /* copy hash_later bytes from end of req->src */
1259 /* previous bytes are in xmit_buf, so no overwrite */
1260 scatterwalk_map_and_copy(ctx
->buffer
, req
->src
,
1261 req
->nbytes
- hash_later
,
1265 if (xmit_len
> BUFLEN
) {
1266 ret
= s5p_hash_prepare_sgs(ctx
, req
->src
, nbytes
- hash_later
,
1271 /* have buffered data only */
1272 if (unlikely(!ctx
->bufcnt
)) {
1273 /* first update didn't fill up buffer */
1274 scatterwalk_map_and_copy(ctx
->dd
->xmit_buf
, req
->src
,
1278 sg_init_table(ctx
->sgl
, 1);
1279 sg_set_buf(ctx
->sgl
, ctx
->dd
->xmit_buf
, xmit_len
);
1285 ctx
->bufcnt
= hash_later
;
1287 ctx
->total
= xmit_len
;
1293 * s5p_hash_update_dma_stop() - unmap DMA
1296 * Unmap scatterlist ctx->sg.
1298 static void s5p_hash_update_dma_stop(struct s5p_aes_dev
*dd
)
1300 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(dd
->hash_req
);
1302 dma_unmap_sg(dd
->dev
, ctx
->sg
, ctx
->sg_len
, DMA_TO_DEVICE
);
1303 clear_bit(HASH_FLAGS_DMA_ACTIVE
, &dd
->hash_flags
);
1307 * s5p_hash_finish() - copy calculated digest to crypto layer
1308 * @req: AHASH request
1310 static void s5p_hash_finish(struct ahash_request
*req
)
1312 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1313 struct s5p_aes_dev
*dd
= ctx
->dd
;
1316 s5p_hash_copy_result(req
);
1318 dev_dbg(dd
->dev
, "hash_finish digcnt: %lld\n", ctx
->digcnt
);
1322 * s5p_hash_finish_req() - finish request
1323 * @req: AHASH request
1326 static void s5p_hash_finish_req(struct ahash_request
*req
, int err
)
1328 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1329 struct s5p_aes_dev
*dd
= ctx
->dd
;
1330 unsigned long flags
;
1332 if (test_bit(HASH_FLAGS_SGS_COPIED
, &dd
->hash_flags
))
1333 free_pages((unsigned long)sg_virt(ctx
->sg
),
1334 get_order(ctx
->sg
->length
));
1336 if (test_bit(HASH_FLAGS_SGS_ALLOCED
, &dd
->hash_flags
))
1340 dd
->hash_flags
&= ~(BIT(HASH_FLAGS_SGS_ALLOCED
) |
1341 BIT(HASH_FLAGS_SGS_COPIED
));
1343 if (!err
&& !ctx
->error
) {
1344 s5p_hash_read_msg(req
);
1345 if (test_bit(HASH_FLAGS_FINAL
, &dd
->hash_flags
))
1346 s5p_hash_finish(req
);
1351 spin_lock_irqsave(&dd
->hash_lock
, flags
);
1352 dd
->hash_flags
&= ~(BIT(HASH_FLAGS_BUSY
) | BIT(HASH_FLAGS_FINAL
) |
1353 BIT(HASH_FLAGS_DMA_READY
) |
1354 BIT(HASH_FLAGS_OUTPUT_READY
));
1355 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1357 if (req
->base
.complete
)
1358 req
->base
.complete(&req
->base
, err
);
1362 * s5p_hash_handle_queue() - handle hash queue
1363 * @dd: device s5p_aes_dev
1364 * @req: AHASH request
1366 * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1367 * device then processes the first request from the dd->queue
1369 * Returns: see s5p_hash_final below.
1371 static int s5p_hash_handle_queue(struct s5p_aes_dev
*dd
,
1372 struct ahash_request
*req
)
1374 struct crypto_async_request
*async_req
, *backlog
;
1375 struct s5p_hash_reqctx
*ctx
;
1376 unsigned long flags
;
1377 int err
= 0, ret
= 0;
1380 spin_lock_irqsave(&dd
->hash_lock
, flags
);
1382 ret
= ahash_enqueue_request(&dd
->hash_queue
, req
);
1384 if (test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
)) {
1385 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1389 backlog
= crypto_get_backlog(&dd
->hash_queue
);
1390 async_req
= crypto_dequeue_request(&dd
->hash_queue
);
1392 set_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
);
1394 spin_unlock_irqrestore(&dd
->hash_lock
, flags
);
1400 backlog
->complete(backlog
, -EINPROGRESS
);
1402 req
= ahash_request_cast(async_req
);
1404 ctx
= ahash_request_ctx(req
);
1406 err
= s5p_hash_prepare_request(req
, ctx
->op_update
);
1407 if (err
|| !ctx
->total
)
1410 dev_dbg(dd
->dev
, "handling new req, op_update: %u, nbytes: %d\n",
1411 ctx
->op_update
, req
->nbytes
);
1413 s5p_ahash_dma_init(dd
, SSS_HASHIN_INDEPENDENT
);
1415 s5p_hash_write_iv(req
); /* restore hash IV */
1417 if (ctx
->op_update
) { /* HASH_OP_UPDATE */
1418 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, ctx
->finup
);
1419 if (err
!= -EINPROGRESS
&& ctx
->finup
&& !ctx
->error
)
1420 /* no final() after finup() */
1421 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, true);
1422 } else { /* HASH_OP_FINAL */
1423 err
= s5p_hash_xmit_dma(dd
, ctx
->total
, true);
1426 if (err
!= -EINPROGRESS
) {
1427 /* hash_tasklet_cb will not finish it, so do it here */
1428 s5p_hash_finish_req(req
, err
);
1432 * Execute next request immediately if there is anything
1442 * s5p_hash_tasklet_cb() - hash tasklet
1443 * @data: ptr to s5p_aes_dev
1445 static void s5p_hash_tasklet_cb(unsigned long data
)
1447 struct s5p_aes_dev
*dd
= (struct s5p_aes_dev
*)data
;
1449 if (!test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
)) {
1450 s5p_hash_handle_queue(dd
, NULL
);
1454 if (test_bit(HASH_FLAGS_DMA_READY
, &dd
->hash_flags
)) {
1455 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE
,
1457 s5p_hash_update_dma_stop(dd
);
1460 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY
,
1462 /* hash or semi-hash ready */
1463 clear_bit(HASH_FLAGS_DMA_READY
, &dd
->hash_flags
);
1471 /* finish curent request */
1472 s5p_hash_finish_req(dd
->hash_req
, 0);
1474 /* If we are not busy, process next req */
1475 if (!test_bit(HASH_FLAGS_BUSY
, &dd
->hash_flags
))
1476 s5p_hash_handle_queue(dd
, NULL
);
1480 * s5p_hash_enqueue() - enqueue request
1481 * @req: AHASH request
1482 * @op: operation UPDATE (true) or FINAL (false)
1484 * Returns: see s5p_hash_final below.
1486 static int s5p_hash_enqueue(struct ahash_request
*req
, bool op
)
1488 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1489 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(req
->base
.tfm
);
1491 ctx
->op_update
= op
;
1493 return s5p_hash_handle_queue(tctx
->dd
, req
);
1497 * s5p_hash_update() - process the hash input data
1498 * @req: AHASH request
1500 * If request will fit in buffer, copy it and return immediately
1501 * else enqueue it with OP_UPDATE.
1503 * Returns: see s5p_hash_final below.
1505 static int s5p_hash_update(struct ahash_request
*req
)
1507 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1512 if (ctx
->bufcnt
+ req
->nbytes
<= BUFLEN
) {
1513 scatterwalk_map_and_copy(ctx
->buffer
+ ctx
->bufcnt
, req
->src
,
1515 ctx
->bufcnt
+= req
->nbytes
;
1519 return s5p_hash_enqueue(req
, true); /* HASH_OP_UPDATE */
1523 * s5p_hash_shash_digest() - calculate shash digest
1524 * @tfm: crypto transformation
1527 * @len: length of data
1528 * @out: output buffer
1530 static int s5p_hash_shash_digest(struct crypto_shash
*tfm
, u32 flags
,
1531 const u8
*data
, unsigned int len
, u8
*out
)
1533 SHASH_DESC_ON_STACK(shash
, tfm
);
1536 shash
->flags
= flags
& ~CRYPTO_TFM_REQ_MAY_SLEEP
;
1538 return crypto_shash_digest(shash
, data
, len
, out
);
1542 * s5p_hash_final_shash() - calculate shash digest
1543 * @req: AHASH request
1545 static int s5p_hash_final_shash(struct ahash_request
*req
)
1547 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(req
->base
.tfm
);
1548 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1550 return s5p_hash_shash_digest(tctx
->fallback
, req
->base
.flags
,
1551 ctx
->buffer
, ctx
->bufcnt
, req
->result
);
1555 * s5p_hash_final() - close up hash and calculate digest
1556 * @req: AHASH request
1558 * Note: in final req->src do not have any data, and req->nbytes can be
1561 * If there were no input data processed yet and the buffered hash data is
1562 * less than BUFLEN (64) then calculate the final hash immediately by using
1563 * SW algorithm fallback.
1565 * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1566 * and finalize hash message in HW. Note that if digcnt!=0 then there were
1567 * previous update op, so there are always some buffered bytes in ctx->buffer,
1568 * which means that ctx->bufcnt!=0
1571 * 0 if the request has been processed immediately,
1572 * -EINPROGRESS if the operation has been queued for later execution or is set
1573 * to processing by HW,
1574 * -EBUSY if queue is full and request should be resubmitted later,
1575 * other negative values denotes an error.
1577 static int s5p_hash_final(struct ahash_request
*req
)
1579 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1583 return -EINVAL
; /* uncompleted hash is not needed */
1585 if (!ctx
->digcnt
&& ctx
->bufcnt
< BUFLEN
)
1586 return s5p_hash_final_shash(req
);
1588 return s5p_hash_enqueue(req
, false); /* HASH_OP_FINAL */
1592 * s5p_hash_finup() - process last req->src and calculate digest
1593 * @req: AHASH request containing the last update data
1595 * Return values: see s5p_hash_final above.
1597 static int s5p_hash_finup(struct ahash_request
*req
)
1599 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1604 err1
= s5p_hash_update(req
);
1605 if (err1
== -EINPROGRESS
|| err1
== -EBUSY
)
1609 * final() has to be always called to cleanup resources even if
1610 * update() failed, except EINPROGRESS or calculate digest for small
1613 err2
= s5p_hash_final(req
);
1615 return err1
?: err2
;
1619 * s5p_hash_init() - initialize AHASH request contex
1620 * @req: AHASH request
1622 * Init async hash request context.
1624 static int s5p_hash_init(struct ahash_request
*req
)
1626 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1627 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1628 struct s5p_hash_ctx
*tctx
= crypto_ahash_ctx(tfm
);
1638 dev_dbg(tctx
->dd
->dev
, "init: digest size: %d\n",
1639 crypto_ahash_digestsize(tfm
));
1641 switch (crypto_ahash_digestsize(tfm
)) {
1642 case MD5_DIGEST_SIZE
:
1643 ctx
->engine
= SSS_HASH_ENGINE_MD5
;
1644 ctx
->nregs
= HASH_MD5_MAX_REG
;
1646 case SHA1_DIGEST_SIZE
:
1647 ctx
->engine
= SSS_HASH_ENGINE_SHA1
;
1648 ctx
->nregs
= HASH_SHA1_MAX_REG
;
1650 case SHA256_DIGEST_SIZE
:
1651 ctx
->engine
= SSS_HASH_ENGINE_SHA256
;
1652 ctx
->nregs
= HASH_SHA256_MAX_REG
;
1663 * s5p_hash_digest - calculate digest from req->src
1664 * @req: AHASH request
1666 * Return values: see s5p_hash_final above.
1668 static int s5p_hash_digest(struct ahash_request
*req
)
1670 return s5p_hash_init(req
) ?: s5p_hash_finup(req
);
1674 * s5p_hash_cra_init_alg - init crypto alg transformation
1675 * @tfm: crypto transformation
1677 static int s5p_hash_cra_init_alg(struct crypto_tfm
*tfm
)
1679 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(tfm
);
1680 const char *alg_name
= crypto_tfm_alg_name(tfm
);
1683 /* Allocate a fallback and abort if it failed. */
1684 tctx
->fallback
= crypto_alloc_shash(alg_name
, 0,
1685 CRYPTO_ALG_NEED_FALLBACK
);
1686 if (IS_ERR(tctx
->fallback
)) {
1687 pr_err("fallback alloc fails for '%s'\n", alg_name
);
1688 return PTR_ERR(tctx
->fallback
);
1691 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
1692 sizeof(struct s5p_hash_reqctx
) + BUFLEN
);
1698 * s5p_hash_cra_init - init crypto tfm
1699 * @tfm: crypto transformation
1701 static int s5p_hash_cra_init(struct crypto_tfm
*tfm
)
1703 return s5p_hash_cra_init_alg(tfm
);
1707 * s5p_hash_cra_exit - exit crypto tfm
1708 * @tfm: crypto transformation
1710 * free allocated fallback
1712 static void s5p_hash_cra_exit(struct crypto_tfm
*tfm
)
1714 struct s5p_hash_ctx
*tctx
= crypto_tfm_ctx(tfm
);
1716 crypto_free_shash(tctx
->fallback
);
1717 tctx
->fallback
= NULL
;
1721 * s5p_hash_export - export hash state
1722 * @req: AHASH request
1723 * @out: buffer for exported state
1725 static int s5p_hash_export(struct ahash_request
*req
, void *out
)
1727 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1729 memcpy(out
, ctx
, sizeof(*ctx
) + ctx
->bufcnt
);
1735 * s5p_hash_import - import hash state
1736 * @req: AHASH request
1737 * @in: buffer with state to be imported from
1739 static int s5p_hash_import(struct ahash_request
*req
, const void *in
)
1741 struct s5p_hash_reqctx
*ctx
= ahash_request_ctx(req
);
1742 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1743 struct s5p_hash_ctx
*tctx
= crypto_ahash_ctx(tfm
);
1744 const struct s5p_hash_reqctx
*ctx_in
= in
;
1746 memcpy(ctx
, in
, sizeof(*ctx
) + BUFLEN
);
1747 if (ctx_in
->bufcnt
> BUFLEN
) {
1758 static struct ahash_alg algs_sha1_md5_sha256
[] = {
1760 .init
= s5p_hash_init
,
1761 .update
= s5p_hash_update
,
1762 .final
= s5p_hash_final
,
1763 .finup
= s5p_hash_finup
,
1764 .digest
= s5p_hash_digest
,
1765 .export
= s5p_hash_export
,
1766 .import
= s5p_hash_import
,
1767 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1768 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
1771 .cra_driver_name
= "exynos-sha1",
1772 .cra_priority
= 100,
1773 .cra_flags
= CRYPTO_ALG_TYPE_AHASH
|
1774 CRYPTO_ALG_KERN_DRIVER_ONLY
|
1776 CRYPTO_ALG_NEED_FALLBACK
,
1777 .cra_blocksize
= HASH_BLOCK_SIZE
,
1778 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1779 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1780 .cra_module
= THIS_MODULE
,
1781 .cra_init
= s5p_hash_cra_init
,
1782 .cra_exit
= s5p_hash_cra_exit
,
1786 .init
= s5p_hash_init
,
1787 .update
= s5p_hash_update
,
1788 .final
= s5p_hash_final
,
1789 .finup
= s5p_hash_finup
,
1790 .digest
= s5p_hash_digest
,
1791 .export
= s5p_hash_export
,
1792 .import
= s5p_hash_import
,
1793 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1794 .halg
.digestsize
= MD5_DIGEST_SIZE
,
1797 .cra_driver_name
= "exynos-md5",
1798 .cra_priority
= 100,
1799 .cra_flags
= CRYPTO_ALG_TYPE_AHASH
|
1800 CRYPTO_ALG_KERN_DRIVER_ONLY
|
1802 CRYPTO_ALG_NEED_FALLBACK
,
1803 .cra_blocksize
= HASH_BLOCK_SIZE
,
1804 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1805 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1806 .cra_module
= THIS_MODULE
,
1807 .cra_init
= s5p_hash_cra_init
,
1808 .cra_exit
= s5p_hash_cra_exit
,
1812 .init
= s5p_hash_init
,
1813 .update
= s5p_hash_update
,
1814 .final
= s5p_hash_final
,
1815 .finup
= s5p_hash_finup
,
1816 .digest
= s5p_hash_digest
,
1817 .export
= s5p_hash_export
,
1818 .import
= s5p_hash_import
,
1819 .halg
.statesize
= sizeof(struct s5p_hash_reqctx
) + BUFLEN
,
1820 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
1822 .cra_name
= "sha256",
1823 .cra_driver_name
= "exynos-sha256",
1824 .cra_priority
= 100,
1825 .cra_flags
= CRYPTO_ALG_TYPE_AHASH
|
1826 CRYPTO_ALG_KERN_DRIVER_ONLY
|
1828 CRYPTO_ALG_NEED_FALLBACK
,
1829 .cra_blocksize
= HASH_BLOCK_SIZE
,
1830 .cra_ctxsize
= sizeof(struct s5p_hash_ctx
),
1831 .cra_alignmask
= SSS_HASH_DMA_ALIGN_MASK
,
1832 .cra_module
= THIS_MODULE
,
1833 .cra_init
= s5p_hash_cra_init
,
1834 .cra_exit
= s5p_hash_cra_exit
,
1840 static void s5p_set_aes(struct s5p_aes_dev
*dev
,
1841 uint8_t *key
, uint8_t *iv
, unsigned int keylen
)
1843 void __iomem
*keystart
;
1846 memcpy_toio(dev
->aes_ioaddr
+ SSS_REG_AES_IV_DATA(0), iv
, 0x10);
1848 if (keylen
== AES_KEYSIZE_256
)
1849 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(0);
1850 else if (keylen
== AES_KEYSIZE_192
)
1851 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(2);
1853 keystart
= dev
->aes_ioaddr
+ SSS_REG_AES_KEY_DATA(4);
1855 memcpy_toio(keystart
, key
, keylen
);
1858 static bool s5p_is_sg_aligned(struct scatterlist
*sg
)
1861 if (!IS_ALIGNED(sg
->length
, AES_BLOCK_SIZE
))
1869 static int s5p_set_indata_start(struct s5p_aes_dev
*dev
,
1870 struct ablkcipher_request
*req
)
1872 struct scatterlist
*sg
;
1875 dev
->sg_src_cpy
= NULL
;
1877 if (!s5p_is_sg_aligned(sg
)) {
1879 "At least one unaligned source scatter list, making a copy\n");
1880 err
= s5p_make_sg_cpy(dev
, sg
, &dev
->sg_src_cpy
);
1884 sg
= dev
->sg_src_cpy
;
1887 err
= s5p_set_indata(dev
, sg
);
1889 s5p_free_sg_cpy(dev
, &dev
->sg_src_cpy
);
1896 static int s5p_set_outdata_start(struct s5p_aes_dev
*dev
,
1897 struct ablkcipher_request
*req
)
1899 struct scatterlist
*sg
;
1902 dev
->sg_dst_cpy
= NULL
;
1904 if (!s5p_is_sg_aligned(sg
)) {
1906 "At least one unaligned dest scatter list, making a copy\n");
1907 err
= s5p_make_sg_cpy(dev
, sg
, &dev
->sg_dst_cpy
);
1911 sg
= dev
->sg_dst_cpy
;
1914 err
= s5p_set_outdata(dev
, sg
);
1916 s5p_free_sg_cpy(dev
, &dev
->sg_dst_cpy
);
1923 static void s5p_aes_crypt_start(struct s5p_aes_dev
*dev
, unsigned long mode
)
1925 struct ablkcipher_request
*req
= dev
->req
;
1926 uint32_t aes_control
;
1927 unsigned long flags
;
1931 aes_control
= SSS_AES_KEY_CHANGE_MODE
;
1932 if (mode
& FLAGS_AES_DECRYPT
)
1933 aes_control
|= SSS_AES_MODE_DECRYPT
;
1935 if ((mode
& FLAGS_AES_MODE_MASK
) == FLAGS_AES_CBC
) {
1936 aes_control
|= SSS_AES_CHAIN_MODE_CBC
;
1938 } else if ((mode
& FLAGS_AES_MODE_MASK
) == FLAGS_AES_CTR
) {
1939 aes_control
|= SSS_AES_CHAIN_MODE_CTR
;
1942 iv
= NULL
; /* AES_ECB */
1945 if (dev
->ctx
->keylen
== AES_KEYSIZE_192
)
1946 aes_control
|= SSS_AES_KEY_SIZE_192
;
1947 else if (dev
->ctx
->keylen
== AES_KEYSIZE_256
)
1948 aes_control
|= SSS_AES_KEY_SIZE_256
;
1950 aes_control
|= SSS_AES_FIFO_MODE
;
1952 /* as a variant it is possible to use byte swapping on DMA side */
1953 aes_control
|= SSS_AES_BYTESWAP_DI
1954 | SSS_AES_BYTESWAP_DO
1955 | SSS_AES_BYTESWAP_IV
1956 | SSS_AES_BYTESWAP_KEY
1957 | SSS_AES_BYTESWAP_CNT
;
1959 spin_lock_irqsave(&dev
->lock
, flags
);
1961 SSS_WRITE(dev
, FCINTENCLR
,
1962 SSS_FCINTENCLR_BTDMAINTENCLR
| SSS_FCINTENCLR_BRDMAINTENCLR
);
1963 SSS_WRITE(dev
, FCFIFOCTRL
, 0x00);
1965 err
= s5p_set_indata_start(dev
, req
);
1969 err
= s5p_set_outdata_start(dev
, req
);
1973 SSS_AES_WRITE(dev
, AES_CONTROL
, aes_control
);
1974 s5p_set_aes(dev
, dev
->ctx
->aes_key
, iv
, dev
->ctx
->keylen
);
1976 s5p_set_dma_indata(dev
, dev
->sg_src
);
1977 s5p_set_dma_outdata(dev
, dev
->sg_dst
);
1979 SSS_WRITE(dev
, FCINTENSET
,
1980 SSS_FCINTENSET_BTDMAINTENSET
| SSS_FCINTENSET_BRDMAINTENSET
);
1982 spin_unlock_irqrestore(&dev
->lock
, flags
);
1987 s5p_unset_indata(dev
);
1992 spin_unlock_irqrestore(&dev
->lock
, flags
);
1993 s5p_aes_complete(dev
, err
);
1996 static void s5p_tasklet_cb(unsigned long data
)
1998 struct s5p_aes_dev
*dev
= (struct s5p_aes_dev
*)data
;
1999 struct crypto_async_request
*async_req
, *backlog
;
2000 struct s5p_aes_reqctx
*reqctx
;
2001 unsigned long flags
;
2003 spin_lock_irqsave(&dev
->lock
, flags
);
2004 backlog
= crypto_get_backlog(&dev
->queue
);
2005 async_req
= crypto_dequeue_request(&dev
->queue
);
2009 spin_unlock_irqrestore(&dev
->lock
, flags
);
2012 spin_unlock_irqrestore(&dev
->lock
, flags
);
2015 backlog
->complete(backlog
, -EINPROGRESS
);
2017 dev
->req
= ablkcipher_request_cast(async_req
);
2018 dev
->ctx
= crypto_tfm_ctx(dev
->req
->base
.tfm
);
2019 reqctx
= ablkcipher_request_ctx(dev
->req
);
2021 s5p_aes_crypt_start(dev
, reqctx
->mode
);
2024 static int s5p_aes_handle_req(struct s5p_aes_dev
*dev
,
2025 struct ablkcipher_request
*req
)
2027 unsigned long flags
;
2030 spin_lock_irqsave(&dev
->lock
, flags
);
2031 err
= ablkcipher_enqueue_request(&dev
->queue
, req
);
2033 spin_unlock_irqrestore(&dev
->lock
, flags
);
2038 spin_unlock_irqrestore(&dev
->lock
, flags
);
2040 tasklet_schedule(&dev
->tasklet
);
2046 static int s5p_aes_crypt(struct ablkcipher_request
*req
, unsigned long mode
)
2048 struct crypto_ablkcipher
*tfm
= crypto_ablkcipher_reqtfm(req
);
2049 struct s5p_aes_reqctx
*reqctx
= ablkcipher_request_ctx(req
);
2050 struct s5p_aes_ctx
*ctx
= crypto_ablkcipher_ctx(tfm
);
2051 struct s5p_aes_dev
*dev
= ctx
->dev
;
2053 if (!IS_ALIGNED(req
->nbytes
, AES_BLOCK_SIZE
)) {
2054 dev_err(dev
->dev
, "request size is not exact amount of AES blocks\n");
2058 reqctx
->mode
= mode
;
2060 return s5p_aes_handle_req(dev
, req
);
2063 static int s5p_aes_setkey(struct crypto_ablkcipher
*cipher
,
2064 const uint8_t *key
, unsigned int keylen
)
2066 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
2067 struct s5p_aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
2069 if (keylen
!= AES_KEYSIZE_128
&&
2070 keylen
!= AES_KEYSIZE_192
&&
2071 keylen
!= AES_KEYSIZE_256
)
2074 memcpy(ctx
->aes_key
, key
, keylen
);
2075 ctx
->keylen
= keylen
;
2080 static int s5p_aes_ecb_encrypt(struct ablkcipher_request
*req
)
2082 return s5p_aes_crypt(req
, 0);
2085 static int s5p_aes_ecb_decrypt(struct ablkcipher_request
*req
)
2087 return s5p_aes_crypt(req
, FLAGS_AES_DECRYPT
);
2090 static int s5p_aes_cbc_encrypt(struct ablkcipher_request
*req
)
2092 return s5p_aes_crypt(req
, FLAGS_AES_CBC
);
2095 static int s5p_aes_cbc_decrypt(struct ablkcipher_request
*req
)
2097 return s5p_aes_crypt(req
, FLAGS_AES_DECRYPT
| FLAGS_AES_CBC
);
2100 static int s5p_aes_cra_init(struct crypto_tfm
*tfm
)
2102 struct s5p_aes_ctx
*ctx
= crypto_tfm_ctx(tfm
);
2105 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct s5p_aes_reqctx
);
2110 static struct crypto_alg algs
[] = {
2112 .cra_name
= "ecb(aes)",
2113 .cra_driver_name
= "ecb-aes-s5p",
2114 .cra_priority
= 100,
2115 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
2117 CRYPTO_ALG_KERN_DRIVER_ONLY
,
2118 .cra_blocksize
= AES_BLOCK_SIZE
,
2119 .cra_ctxsize
= sizeof(struct s5p_aes_ctx
),
2120 .cra_alignmask
= 0x0f,
2121 .cra_type
= &crypto_ablkcipher_type
,
2122 .cra_module
= THIS_MODULE
,
2123 .cra_init
= s5p_aes_cra_init
,
2124 .cra_u
.ablkcipher
= {
2125 .min_keysize
= AES_MIN_KEY_SIZE
,
2126 .max_keysize
= AES_MAX_KEY_SIZE
,
2127 .setkey
= s5p_aes_setkey
,
2128 .encrypt
= s5p_aes_ecb_encrypt
,
2129 .decrypt
= s5p_aes_ecb_decrypt
,
2133 .cra_name
= "cbc(aes)",
2134 .cra_driver_name
= "cbc-aes-s5p",
2135 .cra_priority
= 100,
2136 .cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
2138 CRYPTO_ALG_KERN_DRIVER_ONLY
,
2139 .cra_blocksize
= AES_BLOCK_SIZE
,
2140 .cra_ctxsize
= sizeof(struct s5p_aes_ctx
),
2141 .cra_alignmask
= 0x0f,
2142 .cra_type
= &crypto_ablkcipher_type
,
2143 .cra_module
= THIS_MODULE
,
2144 .cra_init
= s5p_aes_cra_init
,
2145 .cra_u
.ablkcipher
= {
2146 .min_keysize
= AES_MIN_KEY_SIZE
,
2147 .max_keysize
= AES_MAX_KEY_SIZE
,
2148 .ivsize
= AES_BLOCK_SIZE
,
2149 .setkey
= s5p_aes_setkey
,
2150 .encrypt
= s5p_aes_cbc_encrypt
,
2151 .decrypt
= s5p_aes_cbc_decrypt
,
2156 static int s5p_aes_probe(struct platform_device
*pdev
)
2158 struct device
*dev
= &pdev
->dev
;
2159 int i
, j
, err
= -ENODEV
;
2160 struct samsung_aes_variant
*variant
;
2161 struct s5p_aes_dev
*pdata
;
2162 struct resource
*res
;
2163 unsigned int hash_i
;
2168 pdata
= devm_kzalloc(dev
, sizeof(*pdata
), GFP_KERNEL
);
2172 variant
= find_s5p_sss_version(pdev
);
2173 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2176 * Note: HASH and PRNG uses the same registers in secss, avoid
2177 * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2178 * is enabled in config. We need larger size for HASH registers in
2179 * secss, current describe only AES/DES
2181 if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH
)) {
2182 if (variant
== &exynos_aes_data
) {
2184 pdata
->use_hash
= true;
2189 pdata
->ioaddr
= devm_ioremap_resource(&pdev
->dev
, res
);
2190 if (IS_ERR(pdata
->ioaddr
)) {
2191 if (!pdata
->use_hash
)
2192 return PTR_ERR(pdata
->ioaddr
);
2193 /* try AES without HASH */
2195 pdata
->use_hash
= false;
2196 pdata
->ioaddr
= devm_ioremap_resource(&pdev
->dev
, res
);
2197 if (IS_ERR(pdata
->ioaddr
))
2198 return PTR_ERR(pdata
->ioaddr
);
2201 pdata
->clk
= devm_clk_get(dev
, "secss");
2202 if (IS_ERR(pdata
->clk
)) {
2203 dev_err(dev
, "failed to find secss clock source\n");
2207 err
= clk_prepare_enable(pdata
->clk
);
2209 dev_err(dev
, "Enabling SSS clk failed, err %d\n", err
);
2213 spin_lock_init(&pdata
->lock
);
2214 spin_lock_init(&pdata
->hash_lock
);
2216 pdata
->aes_ioaddr
= pdata
->ioaddr
+ variant
->aes_offset
;
2217 pdata
->io_hash_base
= pdata
->ioaddr
+ variant
->hash_offset
;
2219 pdata
->irq_fc
= platform_get_irq(pdev
, 0);
2220 if (pdata
->irq_fc
< 0) {
2221 err
= pdata
->irq_fc
;
2222 dev_warn(dev
, "feed control interrupt is not available.\n");
2225 err
= devm_request_threaded_irq(dev
, pdata
->irq_fc
, NULL
,
2226 s5p_aes_interrupt
, IRQF_ONESHOT
,
2229 dev_warn(dev
, "feed control interrupt is not available.\n");
2233 pdata
->busy
= false;
2235 platform_set_drvdata(pdev
, pdata
);
2238 tasklet_init(&pdata
->tasklet
, s5p_tasklet_cb
, (unsigned long)pdata
);
2239 crypto_init_queue(&pdata
->queue
, CRYPTO_QUEUE_LEN
);
2241 for (i
= 0; i
< ARRAY_SIZE(algs
); i
++) {
2242 err
= crypto_register_alg(&algs
[i
]);
2247 if (pdata
->use_hash
) {
2248 tasklet_init(&pdata
->hash_tasklet
, s5p_hash_tasklet_cb
,
2249 (unsigned long)pdata
);
2250 crypto_init_queue(&pdata
->hash_queue
, SSS_HASH_QUEUE_LENGTH
);
2252 for (hash_i
= 0; hash_i
< ARRAY_SIZE(algs_sha1_md5_sha256
);
2254 struct ahash_alg
*alg
;
2256 alg
= &algs_sha1_md5_sha256
[hash_i
];
2257 err
= crypto_register_ahash(alg
);
2259 dev_err(dev
, "can't register '%s': %d\n",
2260 alg
->halg
.base
.cra_driver_name
, err
);
2266 dev_info(dev
, "s5p-sss driver registered\n");
2271 for (j
= hash_i
- 1; j
>= 0; j
--)
2272 crypto_unregister_ahash(&algs_sha1_md5_sha256
[j
]);
2274 tasklet_kill(&pdata
->hash_tasklet
);
2278 if (i
< ARRAY_SIZE(algs
))
2279 dev_err(dev
, "can't register '%s': %d\n", algs
[i
].cra_name
,
2282 for (j
= 0; j
< i
; j
++)
2283 crypto_unregister_alg(&algs
[j
]);
2285 tasklet_kill(&pdata
->tasklet
);
2288 clk_disable_unprepare(pdata
->clk
);
2295 static int s5p_aes_remove(struct platform_device
*pdev
)
2297 struct s5p_aes_dev
*pdata
= platform_get_drvdata(pdev
);
2303 for (i
= 0; i
< ARRAY_SIZE(algs
); i
++)
2304 crypto_unregister_alg(&algs
[i
]);
2306 tasklet_kill(&pdata
->tasklet
);
2307 if (pdata
->use_hash
) {
2308 for (i
= ARRAY_SIZE(algs_sha1_md5_sha256
) - 1; i
>= 0; i
--)
2309 crypto_unregister_ahash(&algs_sha1_md5_sha256
[i
]);
2311 pdata
->res
->end
-= 0x300;
2312 tasklet_kill(&pdata
->hash_tasklet
);
2313 pdata
->use_hash
= false;
2316 clk_disable_unprepare(pdata
->clk
);
2322 static struct platform_driver s5p_aes_crypto
= {
2323 .probe
= s5p_aes_probe
,
2324 .remove
= s5p_aes_remove
,
2326 .name
= "s5p-secss",
2327 .of_match_table
= s5p_sss_dt_match
,
2331 module_platform_driver(s5p_aes_crypto
);
2333 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2334 MODULE_LICENSE("GPL v2");
2335 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2336 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");