2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/log2.h>
28 #include <linux/msi.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
39 #include <linux/irqchip/arm-gic-v4.h>
41 #include <asm/cputype.h>
42 #include <asm/exception.h>
44 #include "irq-gic-common.h"
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
50 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
52 static u32 lpi_id_bits
;
55 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
56 * deal with (one configuration byte per interrupt). PENDBASE has to
57 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
59 #define LPI_NRBITS lpi_id_bits
60 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
61 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
63 #define LPI_PROP_DEFAULT_PRIO 0xa0
66 * Collection structure - just an ID, and a redistributor address to
67 * ping. We use one per CPU as a bag of interrupts assigned to this
70 struct its_collection
{
76 * The ITS_BASER structure - contains memory information, cached
77 * value of BASER register configuration and ITS page size.
89 * The ITS structure - contains most of the infrastructure, with the
90 * top-level MSI domain, the command queue, the collections, and the
91 * list of devices writing to it.
95 struct list_head entry
;
97 phys_addr_t phys_base
;
98 struct its_cmd_block
*cmd_base
;
99 struct its_cmd_block
*cmd_write
;
100 struct its_baser tables
[GITS_BASER_NR_REGS
];
101 struct its_collection
*collections
;
102 struct fwnode_handle
*fwnode_handle
;
103 u64 (*get_msi_base
)(struct its_device
*its_dev
);
104 struct list_head its_device_list
;
106 unsigned long list_nr
;
110 unsigned int msi_domain_flags
;
111 u32 pre_its_base
; /* for Socionext Synquacer */
113 int vlpi_redist_offset
;
116 #define ITS_ITT_ALIGN SZ_256
118 /* The maximum number of VPEID bits supported by VLPI commands */
119 #define ITS_MAX_VPEID_BITS (16)
120 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
122 /* Convert page order to size in bytes */
123 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
125 struct event_lpi_map
{
126 unsigned long *lpi_map
;
128 irq_hw_number_t lpi_base
;
130 struct mutex vlpi_lock
;
132 struct its_vlpi_map
*vlpi_maps
;
137 * The ITS view of a device - belongs to an ITS, owns an interrupt
138 * translation table, and a list of interrupts. If it some of its
139 * LPIs are injected into a guest (GICv4), the event_map.vm field
140 * indicates which one.
143 struct list_head entry
;
144 struct its_node
*its
;
145 struct event_lpi_map event_map
;
153 struct its_device
*dev
;
154 struct its_vpe
**vpes
;
158 static LIST_HEAD(its_nodes
);
159 static DEFINE_SPINLOCK(its_lock
);
160 static struct rdists
*gic_rdists
;
161 static struct irq_domain
*its_parent
;
163 static unsigned long its_list_map
;
164 static u16 vmovp_seq_num
;
165 static DEFINE_RAW_SPINLOCK(vmovp_lock
);
167 static DEFINE_IDA(its_vpeid_ida
);
169 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
170 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
171 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
173 static struct its_collection
*dev_event_to_col(struct its_device
*its_dev
,
176 struct its_node
*its
= its_dev
->its
;
178 return its
->collections
+ its_dev
->event_map
.col_map
[event
];
182 * ITS command descriptors - parameters to be encoded in a command
185 struct its_cmd_desc
{
188 struct its_device
*dev
;
193 struct its_device
*dev
;
198 struct its_device
*dev
;
203 struct its_device
*dev
;
208 struct its_collection
*col
;
213 struct its_device
*dev
;
219 struct its_device
*dev
;
220 struct its_collection
*col
;
225 struct its_device
*dev
;
230 struct its_collection
*col
;
239 struct its_collection
*col
;
245 struct its_device
*dev
;
253 struct its_device
*dev
;
260 struct its_collection
*col
;
268 * The ITS command block, which is what the ITS actually parses.
270 struct its_cmd_block
{
274 #define ITS_CMD_QUEUE_SZ SZ_64K
275 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
277 typedef struct its_collection
*(*its_cmd_builder_t
)(struct its_node
*,
278 struct its_cmd_block
*,
279 struct its_cmd_desc
*);
281 typedef struct its_vpe
*(*its_cmd_vbuilder_t
)(struct its_node
*,
282 struct its_cmd_block
*,
283 struct its_cmd_desc
*);
285 static void its_mask_encode(u64
*raw_cmd
, u64 val
, int h
, int l
)
287 u64 mask
= GENMASK_ULL(h
, l
);
289 *raw_cmd
|= (val
<< l
) & mask
;
292 static void its_encode_cmd(struct its_cmd_block
*cmd
, u8 cmd_nr
)
294 its_mask_encode(&cmd
->raw_cmd
[0], cmd_nr
, 7, 0);
297 static void its_encode_devid(struct its_cmd_block
*cmd
, u32 devid
)
299 its_mask_encode(&cmd
->raw_cmd
[0], devid
, 63, 32);
302 static void its_encode_event_id(struct its_cmd_block
*cmd
, u32 id
)
304 its_mask_encode(&cmd
->raw_cmd
[1], id
, 31, 0);
307 static void its_encode_phys_id(struct its_cmd_block
*cmd
, u32 phys_id
)
309 its_mask_encode(&cmd
->raw_cmd
[1], phys_id
, 63, 32);
312 static void its_encode_size(struct its_cmd_block
*cmd
, u8 size
)
314 its_mask_encode(&cmd
->raw_cmd
[1], size
, 4, 0);
317 static void its_encode_itt(struct its_cmd_block
*cmd
, u64 itt_addr
)
319 its_mask_encode(&cmd
->raw_cmd
[2], itt_addr
>> 8, 51, 8);
322 static void its_encode_valid(struct its_cmd_block
*cmd
, int valid
)
324 its_mask_encode(&cmd
->raw_cmd
[2], !!valid
, 63, 63);
327 static void its_encode_target(struct its_cmd_block
*cmd
, u64 target_addr
)
329 its_mask_encode(&cmd
->raw_cmd
[2], target_addr
>> 16, 51, 16);
332 static void its_encode_collection(struct its_cmd_block
*cmd
, u16 col
)
334 its_mask_encode(&cmd
->raw_cmd
[2], col
, 15, 0);
337 static void its_encode_vpeid(struct its_cmd_block
*cmd
, u16 vpeid
)
339 its_mask_encode(&cmd
->raw_cmd
[1], vpeid
, 47, 32);
342 static void its_encode_virt_id(struct its_cmd_block
*cmd
, u32 virt_id
)
344 its_mask_encode(&cmd
->raw_cmd
[2], virt_id
, 31, 0);
347 static void its_encode_db_phys_id(struct its_cmd_block
*cmd
, u32 db_phys_id
)
349 its_mask_encode(&cmd
->raw_cmd
[2], db_phys_id
, 63, 32);
352 static void its_encode_db_valid(struct its_cmd_block
*cmd
, bool db_valid
)
354 its_mask_encode(&cmd
->raw_cmd
[2], db_valid
, 0, 0);
357 static void its_encode_seq_num(struct its_cmd_block
*cmd
, u16 seq_num
)
359 its_mask_encode(&cmd
->raw_cmd
[0], seq_num
, 47, 32);
362 static void its_encode_its_list(struct its_cmd_block
*cmd
, u16 its_list
)
364 its_mask_encode(&cmd
->raw_cmd
[1], its_list
, 15, 0);
367 static void its_encode_vpt_addr(struct its_cmd_block
*cmd
, u64 vpt_pa
)
369 its_mask_encode(&cmd
->raw_cmd
[3], vpt_pa
>> 16, 51, 16);
372 static void its_encode_vpt_size(struct its_cmd_block
*cmd
, u8 vpt_size
)
374 its_mask_encode(&cmd
->raw_cmd
[3], vpt_size
, 4, 0);
377 static inline void its_fixup_cmd(struct its_cmd_block
*cmd
)
379 /* Let's fixup BE commands */
380 cmd
->raw_cmd
[0] = cpu_to_le64(cmd
->raw_cmd
[0]);
381 cmd
->raw_cmd
[1] = cpu_to_le64(cmd
->raw_cmd
[1]);
382 cmd
->raw_cmd
[2] = cpu_to_le64(cmd
->raw_cmd
[2]);
383 cmd
->raw_cmd
[3] = cpu_to_le64(cmd
->raw_cmd
[3]);
386 static struct its_collection
*its_build_mapd_cmd(struct its_node
*its
,
387 struct its_cmd_block
*cmd
,
388 struct its_cmd_desc
*desc
)
390 unsigned long itt_addr
;
391 u8 size
= ilog2(desc
->its_mapd_cmd
.dev
->nr_ites
);
393 itt_addr
= virt_to_phys(desc
->its_mapd_cmd
.dev
->itt
);
394 itt_addr
= ALIGN(itt_addr
, ITS_ITT_ALIGN
);
396 its_encode_cmd(cmd
, GITS_CMD_MAPD
);
397 its_encode_devid(cmd
, desc
->its_mapd_cmd
.dev
->device_id
);
398 its_encode_size(cmd
, size
- 1);
399 its_encode_itt(cmd
, itt_addr
);
400 its_encode_valid(cmd
, desc
->its_mapd_cmd
.valid
);
407 static struct its_collection
*its_build_mapc_cmd(struct its_node
*its
,
408 struct its_cmd_block
*cmd
,
409 struct its_cmd_desc
*desc
)
411 its_encode_cmd(cmd
, GITS_CMD_MAPC
);
412 its_encode_collection(cmd
, desc
->its_mapc_cmd
.col
->col_id
);
413 its_encode_target(cmd
, desc
->its_mapc_cmd
.col
->target_address
);
414 its_encode_valid(cmd
, desc
->its_mapc_cmd
.valid
);
418 return desc
->its_mapc_cmd
.col
;
421 static struct its_collection
*its_build_mapti_cmd(struct its_node
*its
,
422 struct its_cmd_block
*cmd
,
423 struct its_cmd_desc
*desc
)
425 struct its_collection
*col
;
427 col
= dev_event_to_col(desc
->its_mapti_cmd
.dev
,
428 desc
->its_mapti_cmd
.event_id
);
430 its_encode_cmd(cmd
, GITS_CMD_MAPTI
);
431 its_encode_devid(cmd
, desc
->its_mapti_cmd
.dev
->device_id
);
432 its_encode_event_id(cmd
, desc
->its_mapti_cmd
.event_id
);
433 its_encode_phys_id(cmd
, desc
->its_mapti_cmd
.phys_id
);
434 its_encode_collection(cmd
, col
->col_id
);
441 static struct its_collection
*its_build_movi_cmd(struct its_node
*its
,
442 struct its_cmd_block
*cmd
,
443 struct its_cmd_desc
*desc
)
445 struct its_collection
*col
;
447 col
= dev_event_to_col(desc
->its_movi_cmd
.dev
,
448 desc
->its_movi_cmd
.event_id
);
450 its_encode_cmd(cmd
, GITS_CMD_MOVI
);
451 its_encode_devid(cmd
, desc
->its_movi_cmd
.dev
->device_id
);
452 its_encode_event_id(cmd
, desc
->its_movi_cmd
.event_id
);
453 its_encode_collection(cmd
, desc
->its_movi_cmd
.col
->col_id
);
460 static struct its_collection
*its_build_discard_cmd(struct its_node
*its
,
461 struct its_cmd_block
*cmd
,
462 struct its_cmd_desc
*desc
)
464 struct its_collection
*col
;
466 col
= dev_event_to_col(desc
->its_discard_cmd
.dev
,
467 desc
->its_discard_cmd
.event_id
);
469 its_encode_cmd(cmd
, GITS_CMD_DISCARD
);
470 its_encode_devid(cmd
, desc
->its_discard_cmd
.dev
->device_id
);
471 its_encode_event_id(cmd
, desc
->its_discard_cmd
.event_id
);
478 static struct its_collection
*its_build_inv_cmd(struct its_node
*its
,
479 struct its_cmd_block
*cmd
,
480 struct its_cmd_desc
*desc
)
482 struct its_collection
*col
;
484 col
= dev_event_to_col(desc
->its_inv_cmd
.dev
,
485 desc
->its_inv_cmd
.event_id
);
487 its_encode_cmd(cmd
, GITS_CMD_INV
);
488 its_encode_devid(cmd
, desc
->its_inv_cmd
.dev
->device_id
);
489 its_encode_event_id(cmd
, desc
->its_inv_cmd
.event_id
);
496 static struct its_collection
*its_build_int_cmd(struct its_node
*its
,
497 struct its_cmd_block
*cmd
,
498 struct its_cmd_desc
*desc
)
500 struct its_collection
*col
;
502 col
= dev_event_to_col(desc
->its_int_cmd
.dev
,
503 desc
->its_int_cmd
.event_id
);
505 its_encode_cmd(cmd
, GITS_CMD_INT
);
506 its_encode_devid(cmd
, desc
->its_int_cmd
.dev
->device_id
);
507 its_encode_event_id(cmd
, desc
->its_int_cmd
.event_id
);
514 static struct its_collection
*its_build_clear_cmd(struct its_node
*its
,
515 struct its_cmd_block
*cmd
,
516 struct its_cmd_desc
*desc
)
518 struct its_collection
*col
;
520 col
= dev_event_to_col(desc
->its_clear_cmd
.dev
,
521 desc
->its_clear_cmd
.event_id
);
523 its_encode_cmd(cmd
, GITS_CMD_CLEAR
);
524 its_encode_devid(cmd
, desc
->its_clear_cmd
.dev
->device_id
);
525 its_encode_event_id(cmd
, desc
->its_clear_cmd
.event_id
);
532 static struct its_collection
*its_build_invall_cmd(struct its_node
*its
,
533 struct its_cmd_block
*cmd
,
534 struct its_cmd_desc
*desc
)
536 its_encode_cmd(cmd
, GITS_CMD_INVALL
);
537 its_encode_collection(cmd
, desc
->its_mapc_cmd
.col
->col_id
);
544 static struct its_vpe
*its_build_vinvall_cmd(struct its_node
*its
,
545 struct its_cmd_block
*cmd
,
546 struct its_cmd_desc
*desc
)
548 its_encode_cmd(cmd
, GITS_CMD_VINVALL
);
549 its_encode_vpeid(cmd
, desc
->its_vinvall_cmd
.vpe
->vpe_id
);
553 return desc
->its_vinvall_cmd
.vpe
;
556 static struct its_vpe
*its_build_vmapp_cmd(struct its_node
*its
,
557 struct its_cmd_block
*cmd
,
558 struct its_cmd_desc
*desc
)
560 unsigned long vpt_addr
;
563 vpt_addr
= virt_to_phys(page_address(desc
->its_vmapp_cmd
.vpe
->vpt_page
));
564 target
= desc
->its_vmapp_cmd
.col
->target_address
+ its
->vlpi_redist_offset
;
566 its_encode_cmd(cmd
, GITS_CMD_VMAPP
);
567 its_encode_vpeid(cmd
, desc
->its_vmapp_cmd
.vpe
->vpe_id
);
568 its_encode_valid(cmd
, desc
->its_vmapp_cmd
.valid
);
569 its_encode_target(cmd
, target
);
570 its_encode_vpt_addr(cmd
, vpt_addr
);
571 its_encode_vpt_size(cmd
, LPI_NRBITS
- 1);
575 return desc
->its_vmapp_cmd
.vpe
;
578 static struct its_vpe
*its_build_vmapti_cmd(struct its_node
*its
,
579 struct its_cmd_block
*cmd
,
580 struct its_cmd_desc
*desc
)
584 if (desc
->its_vmapti_cmd
.db_enabled
)
585 db
= desc
->its_vmapti_cmd
.vpe
->vpe_db_lpi
;
589 its_encode_cmd(cmd
, GITS_CMD_VMAPTI
);
590 its_encode_devid(cmd
, desc
->its_vmapti_cmd
.dev
->device_id
);
591 its_encode_vpeid(cmd
, desc
->its_vmapti_cmd
.vpe
->vpe_id
);
592 its_encode_event_id(cmd
, desc
->its_vmapti_cmd
.event_id
);
593 its_encode_db_phys_id(cmd
, db
);
594 its_encode_virt_id(cmd
, desc
->its_vmapti_cmd
.virt_id
);
598 return desc
->its_vmapti_cmd
.vpe
;
601 static struct its_vpe
*its_build_vmovi_cmd(struct its_node
*its
,
602 struct its_cmd_block
*cmd
,
603 struct its_cmd_desc
*desc
)
607 if (desc
->its_vmovi_cmd
.db_enabled
)
608 db
= desc
->its_vmovi_cmd
.vpe
->vpe_db_lpi
;
612 its_encode_cmd(cmd
, GITS_CMD_VMOVI
);
613 its_encode_devid(cmd
, desc
->its_vmovi_cmd
.dev
->device_id
);
614 its_encode_vpeid(cmd
, desc
->its_vmovi_cmd
.vpe
->vpe_id
);
615 its_encode_event_id(cmd
, desc
->its_vmovi_cmd
.event_id
);
616 its_encode_db_phys_id(cmd
, db
);
617 its_encode_db_valid(cmd
, true);
621 return desc
->its_vmovi_cmd
.vpe
;
624 static struct its_vpe
*its_build_vmovp_cmd(struct its_node
*its
,
625 struct its_cmd_block
*cmd
,
626 struct its_cmd_desc
*desc
)
630 target
= desc
->its_vmovp_cmd
.col
->target_address
+ its
->vlpi_redist_offset
;
631 its_encode_cmd(cmd
, GITS_CMD_VMOVP
);
632 its_encode_seq_num(cmd
, desc
->its_vmovp_cmd
.seq_num
);
633 its_encode_its_list(cmd
, desc
->its_vmovp_cmd
.its_list
);
634 its_encode_vpeid(cmd
, desc
->its_vmovp_cmd
.vpe
->vpe_id
);
635 its_encode_target(cmd
, target
);
639 return desc
->its_vmovp_cmd
.vpe
;
642 static u64
its_cmd_ptr_to_offset(struct its_node
*its
,
643 struct its_cmd_block
*ptr
)
645 return (ptr
- its
->cmd_base
) * sizeof(*ptr
);
648 static int its_queue_full(struct its_node
*its
)
653 widx
= its
->cmd_write
- its
->cmd_base
;
654 ridx
= readl_relaxed(its
->base
+ GITS_CREADR
) / sizeof(struct its_cmd_block
);
656 /* This is incredibly unlikely to happen, unless the ITS locks up. */
657 if (((widx
+ 1) % ITS_CMD_QUEUE_NR_ENTRIES
) == ridx
)
663 static struct its_cmd_block
*its_allocate_entry(struct its_node
*its
)
665 struct its_cmd_block
*cmd
;
666 u32 count
= 1000000; /* 1s! */
668 while (its_queue_full(its
)) {
671 pr_err_ratelimited("ITS queue not draining\n");
678 cmd
= its
->cmd_write
++;
680 /* Handle queue wrapping */
681 if (its
->cmd_write
== (its
->cmd_base
+ ITS_CMD_QUEUE_NR_ENTRIES
))
682 its
->cmd_write
= its
->cmd_base
;
693 static struct its_cmd_block
*its_post_commands(struct its_node
*its
)
695 u64 wr
= its_cmd_ptr_to_offset(its
, its
->cmd_write
);
697 writel_relaxed(wr
, its
->base
+ GITS_CWRITER
);
699 return its
->cmd_write
;
702 static void its_flush_cmd(struct its_node
*its
, struct its_cmd_block
*cmd
)
705 * Make sure the commands written to memory are observable by
708 if (its
->flags
& ITS_FLAGS_CMDQ_NEEDS_FLUSHING
)
709 gic_flush_dcache_to_poc(cmd
, sizeof(*cmd
));
714 static int its_wait_for_range_completion(struct its_node
*its
,
715 struct its_cmd_block
*from
,
716 struct its_cmd_block
*to
)
718 u64 rd_idx
, from_idx
, to_idx
;
719 u32 count
= 1000000; /* 1s! */
721 from_idx
= its_cmd_ptr_to_offset(its
, from
);
722 to_idx
= its_cmd_ptr_to_offset(its
, to
);
725 rd_idx
= readl_relaxed(its
->base
+ GITS_CREADR
);
728 if (from_idx
< to_idx
&& rd_idx
>= to_idx
)
732 if (from_idx
>= to_idx
&& rd_idx
>= to_idx
&& rd_idx
< from_idx
)
737 pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
738 from_idx
, to_idx
, rd_idx
);
748 /* Warning, macro hell follows */
749 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
750 void name(struct its_node *its, \
752 struct its_cmd_desc *desc) \
754 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
755 synctype *sync_obj; \
756 unsigned long flags; \
758 raw_spin_lock_irqsave(&its->lock, flags); \
760 cmd = its_allocate_entry(its); \
761 if (!cmd) { /* We're soooooo screewed... */ \
762 raw_spin_unlock_irqrestore(&its->lock, flags); \
765 sync_obj = builder(its, cmd, desc); \
766 its_flush_cmd(its, cmd); \
769 sync_cmd = its_allocate_entry(its); \
773 buildfn(its, sync_cmd, sync_obj); \
774 its_flush_cmd(its, sync_cmd); \
778 next_cmd = its_post_commands(its); \
779 raw_spin_unlock_irqrestore(&its->lock, flags); \
781 if (its_wait_for_range_completion(its, cmd, next_cmd)) \
782 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
785 static void its_build_sync_cmd(struct its_node
*its
,
786 struct its_cmd_block
*sync_cmd
,
787 struct its_collection
*sync_col
)
789 its_encode_cmd(sync_cmd
, GITS_CMD_SYNC
);
790 its_encode_target(sync_cmd
, sync_col
->target_address
);
792 its_fixup_cmd(sync_cmd
);
795 static BUILD_SINGLE_CMD_FUNC(its_send_single_command
, its_cmd_builder_t
,
796 struct its_collection
, its_build_sync_cmd
)
798 static void its_build_vsync_cmd(struct its_node
*its
,
799 struct its_cmd_block
*sync_cmd
,
800 struct its_vpe
*sync_vpe
)
802 its_encode_cmd(sync_cmd
, GITS_CMD_VSYNC
);
803 its_encode_vpeid(sync_cmd
, sync_vpe
->vpe_id
);
805 its_fixup_cmd(sync_cmd
);
808 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand
, its_cmd_vbuilder_t
,
809 struct its_vpe
, its_build_vsync_cmd
)
811 static void its_send_int(struct its_device
*dev
, u32 event_id
)
813 struct its_cmd_desc desc
;
815 desc
.its_int_cmd
.dev
= dev
;
816 desc
.its_int_cmd
.event_id
= event_id
;
818 its_send_single_command(dev
->its
, its_build_int_cmd
, &desc
);
821 static void its_send_clear(struct its_device
*dev
, u32 event_id
)
823 struct its_cmd_desc desc
;
825 desc
.its_clear_cmd
.dev
= dev
;
826 desc
.its_clear_cmd
.event_id
= event_id
;
828 its_send_single_command(dev
->its
, its_build_clear_cmd
, &desc
);
831 static void its_send_inv(struct its_device
*dev
, u32 event_id
)
833 struct its_cmd_desc desc
;
835 desc
.its_inv_cmd
.dev
= dev
;
836 desc
.its_inv_cmd
.event_id
= event_id
;
838 its_send_single_command(dev
->its
, its_build_inv_cmd
, &desc
);
841 static void its_send_mapd(struct its_device
*dev
, int valid
)
843 struct its_cmd_desc desc
;
845 desc
.its_mapd_cmd
.dev
= dev
;
846 desc
.its_mapd_cmd
.valid
= !!valid
;
848 its_send_single_command(dev
->its
, its_build_mapd_cmd
, &desc
);
851 static void its_send_mapc(struct its_node
*its
, struct its_collection
*col
,
854 struct its_cmd_desc desc
;
856 desc
.its_mapc_cmd
.col
= col
;
857 desc
.its_mapc_cmd
.valid
= !!valid
;
859 its_send_single_command(its
, its_build_mapc_cmd
, &desc
);
862 static void its_send_mapti(struct its_device
*dev
, u32 irq_id
, u32 id
)
864 struct its_cmd_desc desc
;
866 desc
.its_mapti_cmd
.dev
= dev
;
867 desc
.its_mapti_cmd
.phys_id
= irq_id
;
868 desc
.its_mapti_cmd
.event_id
= id
;
870 its_send_single_command(dev
->its
, its_build_mapti_cmd
, &desc
);
873 static void its_send_movi(struct its_device
*dev
,
874 struct its_collection
*col
, u32 id
)
876 struct its_cmd_desc desc
;
878 desc
.its_movi_cmd
.dev
= dev
;
879 desc
.its_movi_cmd
.col
= col
;
880 desc
.its_movi_cmd
.event_id
= id
;
882 its_send_single_command(dev
->its
, its_build_movi_cmd
, &desc
);
885 static void its_send_discard(struct its_device
*dev
, u32 id
)
887 struct its_cmd_desc desc
;
889 desc
.its_discard_cmd
.dev
= dev
;
890 desc
.its_discard_cmd
.event_id
= id
;
892 its_send_single_command(dev
->its
, its_build_discard_cmd
, &desc
);
895 static void its_send_invall(struct its_node
*its
, struct its_collection
*col
)
897 struct its_cmd_desc desc
;
899 desc
.its_invall_cmd
.col
= col
;
901 its_send_single_command(its
, its_build_invall_cmd
, &desc
);
904 static void its_send_vmapti(struct its_device
*dev
, u32 id
)
906 struct its_vlpi_map
*map
= &dev
->event_map
.vlpi_maps
[id
];
907 struct its_cmd_desc desc
;
909 desc
.its_vmapti_cmd
.vpe
= map
->vpe
;
910 desc
.its_vmapti_cmd
.dev
= dev
;
911 desc
.its_vmapti_cmd
.virt_id
= map
->vintid
;
912 desc
.its_vmapti_cmd
.event_id
= id
;
913 desc
.its_vmapti_cmd
.db_enabled
= map
->db_enabled
;
915 its_send_single_vcommand(dev
->its
, its_build_vmapti_cmd
, &desc
);
918 static void its_send_vmovi(struct its_device
*dev
, u32 id
)
920 struct its_vlpi_map
*map
= &dev
->event_map
.vlpi_maps
[id
];
921 struct its_cmd_desc desc
;
923 desc
.its_vmovi_cmd
.vpe
= map
->vpe
;
924 desc
.its_vmovi_cmd
.dev
= dev
;
925 desc
.its_vmovi_cmd
.event_id
= id
;
926 desc
.its_vmovi_cmd
.db_enabled
= map
->db_enabled
;
928 its_send_single_vcommand(dev
->its
, its_build_vmovi_cmd
, &desc
);
931 static void its_send_vmapp(struct its_node
*its
,
932 struct its_vpe
*vpe
, bool valid
)
934 struct its_cmd_desc desc
;
936 desc
.its_vmapp_cmd
.vpe
= vpe
;
937 desc
.its_vmapp_cmd
.valid
= valid
;
938 desc
.its_vmapp_cmd
.col
= &its
->collections
[vpe
->col_idx
];
940 its_send_single_vcommand(its
, its_build_vmapp_cmd
, &desc
);
943 static void its_send_vmovp(struct its_vpe
*vpe
)
945 struct its_cmd_desc desc
;
946 struct its_node
*its
;
948 int col_id
= vpe
->col_idx
;
950 desc
.its_vmovp_cmd
.vpe
= vpe
;
951 desc
.its_vmovp_cmd
.its_list
= (u16
)its_list_map
;
954 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
955 desc
.its_vmovp_cmd
.seq_num
= 0;
956 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
957 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
962 * Yet another marvel of the architecture. If using the
963 * its_list "feature", we need to make sure that all ITSs
964 * receive all VMOVP commands in the same order. The only way
965 * to guarantee this is to make vmovp a serialization point.
969 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
971 desc
.its_vmovp_cmd
.seq_num
= vmovp_seq_num
++;
974 list_for_each_entry(its
, &its_nodes
, entry
) {
978 if (!vpe
->its_vm
->vlpi_count
[its
->list_nr
])
981 desc
.its_vmovp_cmd
.col
= &its
->collections
[col_id
];
982 its_send_single_vcommand(its
, its_build_vmovp_cmd
, &desc
);
985 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
988 static void its_send_vinvall(struct its_node
*its
, struct its_vpe
*vpe
)
990 struct its_cmd_desc desc
;
992 desc
.its_vinvall_cmd
.vpe
= vpe
;
993 its_send_single_vcommand(its
, its_build_vinvall_cmd
, &desc
);
997 * irqchip functions - assumes MSI, mostly.
1000 static inline u32
its_get_event_id(struct irq_data
*d
)
1002 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1003 return d
->hwirq
- its_dev
->event_map
.lpi_base
;
1006 static void lpi_write_config(struct irq_data
*d
, u8 clr
, u8 set
)
1008 irq_hw_number_t hwirq
;
1009 struct page
*prop_page
;
1012 if (irqd_is_forwarded_to_vcpu(d
)) {
1013 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1014 u32 event
= its_get_event_id(d
);
1015 struct its_vlpi_map
*map
;
1017 prop_page
= its_dev
->event_map
.vm
->vprop_page
;
1018 map
= &its_dev
->event_map
.vlpi_maps
[event
];
1019 hwirq
= map
->vintid
;
1021 /* Remember the updated property */
1022 map
->properties
&= ~clr
;
1023 map
->properties
|= set
| LPI_PROP_GROUP1
;
1025 prop_page
= gic_rdists
->prop_page
;
1029 cfg
= page_address(prop_page
) + hwirq
- 8192;
1031 *cfg
|= set
| LPI_PROP_GROUP1
;
1034 * Make the above write visible to the redistributors.
1035 * And yes, we're flushing exactly: One. Single. Byte.
1038 if (gic_rdists
->flags
& RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
)
1039 gic_flush_dcache_to_poc(cfg
, sizeof(*cfg
));
1044 static void lpi_update_config(struct irq_data
*d
, u8 clr
, u8 set
)
1046 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1048 lpi_write_config(d
, clr
, set
);
1049 its_send_inv(its_dev
, its_get_event_id(d
));
1052 static void its_vlpi_set_doorbell(struct irq_data
*d
, bool enable
)
1054 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1055 u32 event
= its_get_event_id(d
);
1057 if (its_dev
->event_map
.vlpi_maps
[event
].db_enabled
== enable
)
1060 its_dev
->event_map
.vlpi_maps
[event
].db_enabled
= enable
;
1063 * More fun with the architecture:
1065 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1066 * value or to 1023, depending on the enable bit. But that
1067 * would be issueing a mapping for an /existing/ DevID+EventID
1068 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1069 * to the /same/ vPE, using this opportunity to adjust the
1070 * doorbell. Mouahahahaha. We loves it, Precious.
1072 its_send_vmovi(its_dev
, event
);
1075 static void its_mask_irq(struct irq_data
*d
)
1077 if (irqd_is_forwarded_to_vcpu(d
))
1078 its_vlpi_set_doorbell(d
, false);
1080 lpi_update_config(d
, LPI_PROP_ENABLED
, 0);
1083 static void its_unmask_irq(struct irq_data
*d
)
1085 if (irqd_is_forwarded_to_vcpu(d
))
1086 its_vlpi_set_doorbell(d
, true);
1088 lpi_update_config(d
, 0, LPI_PROP_ENABLED
);
1091 static int its_set_affinity(struct irq_data
*d
, const struct cpumask
*mask_val
,
1095 const struct cpumask
*cpu_mask
= cpu_online_mask
;
1096 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1097 struct its_collection
*target_col
;
1098 u32 id
= its_get_event_id(d
);
1100 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1101 if (irqd_is_forwarded_to_vcpu(d
))
1104 /* lpi cannot be routed to a redistributor that is on a foreign node */
1105 if (its_dev
->its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) {
1106 if (its_dev
->its
->numa_node
>= 0) {
1107 cpu_mask
= cpumask_of_node(its_dev
->its
->numa_node
);
1108 if (!cpumask_intersects(mask_val
, cpu_mask
))
1113 cpu
= cpumask_any_and(mask_val
, cpu_mask
);
1115 if (cpu
>= nr_cpu_ids
)
1118 /* don't set the affinity when the target cpu is same as current one */
1119 if (cpu
!= its_dev
->event_map
.col_map
[id
]) {
1120 target_col
= &its_dev
->its
->collections
[cpu
];
1121 its_send_movi(its_dev
, target_col
, id
);
1122 its_dev
->event_map
.col_map
[id
] = cpu
;
1123 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
1126 return IRQ_SET_MASK_OK_DONE
;
1129 static u64
its_irq_get_msi_base(struct its_device
*its_dev
)
1131 struct its_node
*its
= its_dev
->its
;
1133 return its
->phys_base
+ GITS_TRANSLATER
;
1136 static void its_irq_compose_msi_msg(struct irq_data
*d
, struct msi_msg
*msg
)
1138 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1139 struct its_node
*its
;
1143 addr
= its
->get_msi_base(its_dev
);
1145 msg
->address_lo
= lower_32_bits(addr
);
1146 msg
->address_hi
= upper_32_bits(addr
);
1147 msg
->data
= its_get_event_id(d
);
1149 iommu_dma_map_msi_msg(d
->irq
, msg
);
1152 static int its_irq_set_irqchip_state(struct irq_data
*d
,
1153 enum irqchip_irq_state which
,
1156 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1157 u32 event
= its_get_event_id(d
);
1159 if (which
!= IRQCHIP_STATE_PENDING
)
1163 its_send_int(its_dev
, event
);
1165 its_send_clear(its_dev
, event
);
1170 static void its_map_vm(struct its_node
*its
, struct its_vm
*vm
)
1172 unsigned long flags
;
1174 /* Not using the ITS list? Everything is always mapped. */
1178 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1181 * If the VM wasn't mapped yet, iterate over the vpes and get
1184 vm
->vlpi_count
[its
->list_nr
]++;
1186 if (vm
->vlpi_count
[its
->list_nr
] == 1) {
1189 for (i
= 0; i
< vm
->nr_vpes
; i
++) {
1190 struct its_vpe
*vpe
= vm
->vpes
[i
];
1191 struct irq_data
*d
= irq_get_irq_data(vpe
->irq
);
1193 /* Map the VPE to the first possible CPU */
1194 vpe
->col_idx
= cpumask_first(cpu_online_mask
);
1195 its_send_vmapp(its
, vpe
, true);
1196 its_send_vinvall(its
, vpe
);
1197 irq_data_update_effective_affinity(d
, cpumask_of(vpe
->col_idx
));
1201 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1204 static void its_unmap_vm(struct its_node
*its
, struct its_vm
*vm
)
1206 unsigned long flags
;
1208 /* Not using the ITS list? Everything is always mapped. */
1212 raw_spin_lock_irqsave(&vmovp_lock
, flags
);
1214 if (!--vm
->vlpi_count
[its
->list_nr
]) {
1217 for (i
= 0; i
< vm
->nr_vpes
; i
++)
1218 its_send_vmapp(its
, vm
->vpes
[i
], false);
1221 raw_spin_unlock_irqrestore(&vmovp_lock
, flags
);
1224 static int its_vlpi_map(struct irq_data
*d
, struct its_cmd_info
*info
)
1226 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1227 u32 event
= its_get_event_id(d
);
1233 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1235 if (!its_dev
->event_map
.vm
) {
1236 struct its_vlpi_map
*maps
;
1238 maps
= kzalloc(sizeof(*maps
) * its_dev
->event_map
.nr_lpis
,
1245 its_dev
->event_map
.vm
= info
->map
->vm
;
1246 its_dev
->event_map
.vlpi_maps
= maps
;
1247 } else if (its_dev
->event_map
.vm
!= info
->map
->vm
) {
1252 /* Get our private copy of the mapping information */
1253 its_dev
->event_map
.vlpi_maps
[event
] = *info
->map
;
1255 if (irqd_is_forwarded_to_vcpu(d
)) {
1256 /* Already mapped, move it around */
1257 its_send_vmovi(its_dev
, event
);
1259 /* Ensure all the VPEs are mapped on this ITS */
1260 its_map_vm(its_dev
->its
, info
->map
->vm
);
1263 * Flag the interrupt as forwarded so that we can
1264 * start poking the virtual property table.
1266 irqd_set_forwarded_to_vcpu(d
);
1268 /* Write out the property to the prop table */
1269 lpi_write_config(d
, 0xff, info
->map
->properties
);
1271 /* Drop the physical mapping */
1272 its_send_discard(its_dev
, event
);
1274 /* and install the virtual one */
1275 its_send_vmapti(its_dev
, event
);
1277 /* Increment the number of VLPIs */
1278 its_dev
->event_map
.nr_vlpis
++;
1282 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1286 static int its_vlpi_get(struct irq_data
*d
, struct its_cmd_info
*info
)
1288 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1289 u32 event
= its_get_event_id(d
);
1292 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1294 if (!its_dev
->event_map
.vm
||
1295 !its_dev
->event_map
.vlpi_maps
[event
].vm
) {
1300 /* Copy our mapping information to the incoming request */
1301 *info
->map
= its_dev
->event_map
.vlpi_maps
[event
];
1304 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1308 static int its_vlpi_unmap(struct irq_data
*d
)
1310 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1311 u32 event
= its_get_event_id(d
);
1314 mutex_lock(&its_dev
->event_map
.vlpi_lock
);
1316 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
)) {
1321 /* Drop the virtual mapping */
1322 its_send_discard(its_dev
, event
);
1324 /* and restore the physical one */
1325 irqd_clr_forwarded_to_vcpu(d
);
1326 its_send_mapti(its_dev
, d
->hwirq
, event
);
1327 lpi_update_config(d
, 0xff, (LPI_PROP_DEFAULT_PRIO
|
1331 /* Potentially unmap the VM from this ITS */
1332 its_unmap_vm(its_dev
->its
, its_dev
->event_map
.vm
);
1335 * Drop the refcount and make the device available again if
1336 * this was the last VLPI.
1338 if (!--its_dev
->event_map
.nr_vlpis
) {
1339 its_dev
->event_map
.vm
= NULL
;
1340 kfree(its_dev
->event_map
.vlpi_maps
);
1344 mutex_unlock(&its_dev
->event_map
.vlpi_lock
);
1348 static int its_vlpi_prop_update(struct irq_data
*d
, struct its_cmd_info
*info
)
1350 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1352 if (!its_dev
->event_map
.vm
|| !irqd_is_forwarded_to_vcpu(d
))
1355 if (info
->cmd_type
== PROP_UPDATE_AND_INV_VLPI
)
1356 lpi_update_config(d
, 0xff, info
->config
);
1358 lpi_write_config(d
, 0xff, info
->config
);
1359 its_vlpi_set_doorbell(d
, !!(info
->config
& LPI_PROP_ENABLED
));
1364 static int its_irq_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
1366 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
1367 struct its_cmd_info
*info
= vcpu_info
;
1370 if (!its_dev
->its
->is_v4
)
1373 /* Unmap request? */
1375 return its_vlpi_unmap(d
);
1377 switch (info
->cmd_type
) {
1379 return its_vlpi_map(d
, info
);
1382 return its_vlpi_get(d
, info
);
1384 case PROP_UPDATE_VLPI
:
1385 case PROP_UPDATE_AND_INV_VLPI
:
1386 return its_vlpi_prop_update(d
, info
);
1393 static struct irq_chip its_irq_chip
= {
1395 .irq_mask
= its_mask_irq
,
1396 .irq_unmask
= its_unmask_irq
,
1397 .irq_eoi
= irq_chip_eoi_parent
,
1398 .irq_set_affinity
= its_set_affinity
,
1399 .irq_compose_msi_msg
= its_irq_compose_msi_msg
,
1400 .irq_set_irqchip_state
= its_irq_set_irqchip_state
,
1401 .irq_set_vcpu_affinity
= its_irq_set_vcpu_affinity
,
1405 * How we allocate LPIs:
1407 * The GIC has id_bits bits for interrupt identifiers. From there, we
1408 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1409 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1410 * bits to the right.
1412 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1414 #define IRQS_PER_CHUNK_SHIFT 5
1415 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
1416 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1418 static unsigned long *lpi_bitmap
;
1419 static u32 lpi_chunks
;
1420 static DEFINE_SPINLOCK(lpi_lock
);
1422 static int its_lpi_to_chunk(int lpi
)
1424 return (lpi
- 8192) >> IRQS_PER_CHUNK_SHIFT
;
1427 static int its_chunk_to_lpi(int chunk
)
1429 return (chunk
<< IRQS_PER_CHUNK_SHIFT
) + 8192;
1432 static int __init
its_lpi_init(u32 id_bits
)
1434 lpi_chunks
= its_lpi_to_chunk(1UL << id_bits
);
1436 lpi_bitmap
= kzalloc(BITS_TO_LONGS(lpi_chunks
) * sizeof(long),
1443 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks
);
1447 static unsigned long *its_lpi_alloc_chunks(int nr_irqs
, int *base
, int *nr_ids
)
1449 unsigned long *bitmap
= NULL
;
1454 nr_chunks
= DIV_ROUND_UP(nr_irqs
, IRQS_PER_CHUNK
);
1456 spin_lock(&lpi_lock
);
1459 chunk_id
= bitmap_find_next_zero_area(lpi_bitmap
, lpi_chunks
,
1461 if (chunk_id
< lpi_chunks
)
1465 } while (nr_chunks
> 0);
1470 bitmap
= kzalloc(BITS_TO_LONGS(nr_chunks
* IRQS_PER_CHUNK
) * sizeof (long),
1475 for (i
= 0; i
< nr_chunks
; i
++)
1476 set_bit(chunk_id
+ i
, lpi_bitmap
);
1478 *base
= its_chunk_to_lpi(chunk_id
);
1479 *nr_ids
= nr_chunks
* IRQS_PER_CHUNK
;
1482 spin_unlock(&lpi_lock
);
1485 *base
= *nr_ids
= 0;
1490 static void its_lpi_free_chunks(unsigned long *bitmap
, int base
, int nr_ids
)
1494 spin_lock(&lpi_lock
);
1496 for (lpi
= base
; lpi
< (base
+ nr_ids
); lpi
+= IRQS_PER_CHUNK
) {
1497 int chunk
= its_lpi_to_chunk(lpi
);
1499 BUG_ON(chunk
> lpi_chunks
);
1500 if (test_bit(chunk
, lpi_bitmap
)) {
1501 clear_bit(chunk
, lpi_bitmap
);
1503 pr_err("Bad LPI chunk %d\n", chunk
);
1507 spin_unlock(&lpi_lock
);
1512 static struct page
*its_allocate_prop_table(gfp_t gfp_flags
)
1514 struct page
*prop_page
;
1516 prop_page
= alloc_pages(gfp_flags
, get_order(LPI_PROPBASE_SZ
));
1520 /* Priority 0xa0, Group-1, disabled */
1521 memset(page_address(prop_page
),
1522 LPI_PROP_DEFAULT_PRIO
| LPI_PROP_GROUP1
,
1525 /* Make sure the GIC will observe the written configuration */
1526 gic_flush_dcache_to_poc(page_address(prop_page
), LPI_PROPBASE_SZ
);
1531 static void its_free_prop_table(struct page
*prop_page
)
1533 free_pages((unsigned long)page_address(prop_page
),
1534 get_order(LPI_PROPBASE_SZ
));
1537 static int __init
its_alloc_lpi_tables(void)
1541 lpi_id_bits
= min_t(u32
, gic_rdists
->id_bits
, ITS_MAX_LPI_NRBITS
);
1542 gic_rdists
->prop_page
= its_allocate_prop_table(GFP_NOWAIT
);
1543 if (!gic_rdists
->prop_page
) {
1544 pr_err("Failed to allocate PROPBASE\n");
1548 paddr
= page_to_phys(gic_rdists
->prop_page
);
1549 pr_info("GIC: using LPI property table @%pa\n", &paddr
);
1551 return its_lpi_init(lpi_id_bits
);
1554 static const char *its_base_type_string
[] = {
1555 [GITS_BASER_TYPE_DEVICE
] = "Devices",
1556 [GITS_BASER_TYPE_VCPU
] = "Virtual CPUs",
1557 [GITS_BASER_TYPE_RESERVED3
] = "Reserved (3)",
1558 [GITS_BASER_TYPE_COLLECTION
] = "Interrupt Collections",
1559 [GITS_BASER_TYPE_RESERVED5
] = "Reserved (5)",
1560 [GITS_BASER_TYPE_RESERVED6
] = "Reserved (6)",
1561 [GITS_BASER_TYPE_RESERVED7
] = "Reserved (7)",
1564 static u64
its_read_baser(struct its_node
*its
, struct its_baser
*baser
)
1566 u32 idx
= baser
- its
->tables
;
1568 return gits_read_baser(its
->base
+ GITS_BASER
+ (idx
<< 3));
1571 static void its_write_baser(struct its_node
*its
, struct its_baser
*baser
,
1574 u32 idx
= baser
- its
->tables
;
1576 gits_write_baser(val
, its
->base
+ GITS_BASER
+ (idx
<< 3));
1577 baser
->val
= its_read_baser(its
, baser
);
1580 static int its_setup_baser(struct its_node
*its
, struct its_baser
*baser
,
1581 u64 cache
, u64 shr
, u32 psz
, u32 order
,
1584 u64 val
= its_read_baser(its
, baser
);
1585 u64 esz
= GITS_BASER_ENTRY_SIZE(val
);
1586 u64 type
= GITS_BASER_TYPE(val
);
1587 u64 baser_phys
, tmp
;
1592 alloc_pages
= (PAGE_ORDER_TO_SIZE(order
) / psz
);
1593 if (alloc_pages
> GITS_BASER_PAGES_MAX
) {
1594 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1595 &its
->phys_base
, its_base_type_string
[type
],
1596 alloc_pages
, GITS_BASER_PAGES_MAX
);
1597 alloc_pages
= GITS_BASER_PAGES_MAX
;
1598 order
= get_order(GITS_BASER_PAGES_MAX
* psz
);
1601 base
= (void *)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
, order
);
1605 baser_phys
= virt_to_phys(base
);
1607 /* Check if the physical address of the memory is above 48bits */
1608 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES
) && (baser_phys
>> 48)) {
1610 /* 52bit PA is supported only when PageSize=64K */
1611 if (psz
!= SZ_64K
) {
1612 pr_err("ITS: no 52bit PA support when psz=%d\n", psz
);
1613 free_pages((unsigned long)base
, order
);
1617 /* Convert 52bit PA to 48bit field */
1618 baser_phys
= GITS_BASER_PHYS_52_to_48(baser_phys
);
1623 (type
<< GITS_BASER_TYPE_SHIFT
) |
1624 ((esz
- 1) << GITS_BASER_ENTRY_SIZE_SHIFT
) |
1625 ((alloc_pages
- 1) << GITS_BASER_PAGES_SHIFT
) |
1630 val
|= indirect
? GITS_BASER_INDIRECT
: 0x0;
1634 val
|= GITS_BASER_PAGE_SIZE_4K
;
1637 val
|= GITS_BASER_PAGE_SIZE_16K
;
1640 val
|= GITS_BASER_PAGE_SIZE_64K
;
1644 its_write_baser(its
, baser
, val
);
1647 if ((val
^ tmp
) & GITS_BASER_SHAREABILITY_MASK
) {
1649 * Shareability didn't stick. Just use
1650 * whatever the read reported, which is likely
1651 * to be the only thing this redistributor
1652 * supports. If that's zero, make it
1653 * non-cacheable as well.
1655 shr
= tmp
& GITS_BASER_SHAREABILITY_MASK
;
1657 cache
= GITS_BASER_nC
;
1658 gic_flush_dcache_to_poc(base
, PAGE_ORDER_TO_SIZE(order
));
1663 if ((val
^ tmp
) & GITS_BASER_PAGE_SIZE_MASK
) {
1665 * Page size didn't stick. Let's try a smaller
1666 * size and retry. If we reach 4K, then
1667 * something is horribly wrong...
1669 free_pages((unsigned long)base
, order
);
1675 goto retry_alloc_baser
;
1678 goto retry_alloc_baser
;
1683 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1684 &its
->phys_base
, its_base_type_string
[type
],
1686 free_pages((unsigned long)base
, order
);
1690 baser
->order
= order
;
1693 tmp
= indirect
? GITS_LVL1_ENTRY_SIZE
: esz
;
1695 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1696 &its
->phys_base
, (int)(PAGE_ORDER_TO_SIZE(order
) / (int)tmp
),
1697 its_base_type_string
[type
],
1698 (unsigned long)virt_to_phys(base
),
1699 indirect
? "indirect" : "flat", (int)esz
,
1700 psz
/ SZ_1K
, (int)shr
>> GITS_BASER_SHAREABILITY_SHIFT
);
1705 static bool its_parse_indirect_baser(struct its_node
*its
,
1706 struct its_baser
*baser
,
1707 u32 psz
, u32
*order
, u32 ids
)
1709 u64 tmp
= its_read_baser(its
, baser
);
1710 u64 type
= GITS_BASER_TYPE(tmp
);
1711 u64 esz
= GITS_BASER_ENTRY_SIZE(tmp
);
1712 u64 val
= GITS_BASER_InnerShareable
| GITS_BASER_RaWaWb
;
1713 u32 new_order
= *order
;
1714 bool indirect
= false;
1716 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
1717 if ((esz
<< ids
) > (psz
* 2)) {
1719 * Find out whether hw supports a single or two-level table by
1720 * table by reading bit at offset '62' after writing '1' to it.
1722 its_write_baser(its
, baser
, val
| GITS_BASER_INDIRECT
);
1723 indirect
= !!(baser
->val
& GITS_BASER_INDIRECT
);
1727 * The size of the lvl2 table is equal to ITS page size
1728 * which is 'psz'. For computing lvl1 table size,
1729 * subtract ID bits that sparse lvl2 table from 'ids'
1730 * which is reported by ITS hardware times lvl1 table
1733 ids
-= ilog2(psz
/ (int)esz
);
1734 esz
= GITS_LVL1_ENTRY_SIZE
;
1739 * Allocate as many entries as required to fit the
1740 * range of device IDs that the ITS can grok... The ID
1741 * space being incredibly sparse, this results in a
1742 * massive waste of memory if two-level device table
1743 * feature is not supported by hardware.
1745 new_order
= max_t(u32
, get_order(esz
<< ids
), new_order
);
1746 if (new_order
>= MAX_ORDER
) {
1747 new_order
= MAX_ORDER
- 1;
1748 ids
= ilog2(PAGE_ORDER_TO_SIZE(new_order
) / (int)esz
);
1749 pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1750 &its
->phys_base
, its_base_type_string
[type
],
1751 its
->device_ids
, ids
);
1759 static void its_free_tables(struct its_node
*its
)
1763 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
1764 if (its
->tables
[i
].base
) {
1765 free_pages((unsigned long)its
->tables
[i
].base
,
1766 its
->tables
[i
].order
);
1767 its
->tables
[i
].base
= NULL
;
1772 static int its_alloc_tables(struct its_node
*its
)
1774 u64 shr
= GITS_BASER_InnerShareable
;
1775 u64 cache
= GITS_BASER_RaWaWb
;
1779 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_22375
)
1780 /* erratum 24313: ignore memory access type */
1781 cache
= GITS_BASER_nCnB
;
1783 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
1784 struct its_baser
*baser
= its
->tables
+ i
;
1785 u64 val
= its_read_baser(its
, baser
);
1786 u64 type
= GITS_BASER_TYPE(val
);
1787 u32 order
= get_order(psz
);
1788 bool indirect
= false;
1791 case GITS_BASER_TYPE_NONE
:
1794 case GITS_BASER_TYPE_DEVICE
:
1795 indirect
= its_parse_indirect_baser(its
, baser
,
1798 case GITS_BASER_TYPE_VCPU
:
1799 indirect
= its_parse_indirect_baser(its
, baser
,
1801 ITS_MAX_VPEID_BITS
);
1805 err
= its_setup_baser(its
, baser
, cache
, shr
, psz
, order
, indirect
);
1807 its_free_tables(its
);
1811 /* Update settings which will be used for next BASERn */
1813 cache
= baser
->val
& GITS_BASER_CACHEABILITY_MASK
;
1814 shr
= baser
->val
& GITS_BASER_SHAREABILITY_MASK
;
1820 static int its_alloc_collections(struct its_node
*its
)
1822 its
->collections
= kzalloc(nr_cpu_ids
* sizeof(*its
->collections
),
1824 if (!its
->collections
)
1830 static struct page
*its_allocate_pending_table(gfp_t gfp_flags
)
1832 struct page
*pend_page
;
1834 * The pending pages have to be at least 64kB aligned,
1835 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1837 pend_page
= alloc_pages(gfp_flags
| __GFP_ZERO
,
1838 get_order(max_t(u32
, LPI_PENDBASE_SZ
, SZ_64K
)));
1842 /* Make sure the GIC will observe the zero-ed page */
1843 gic_flush_dcache_to_poc(page_address(pend_page
), LPI_PENDBASE_SZ
);
1848 static void its_free_pending_table(struct page
*pt
)
1850 free_pages((unsigned long)page_address(pt
),
1851 get_order(max_t(u32
, LPI_PENDBASE_SZ
, SZ_64K
)));
1854 static void its_cpu_init_lpis(void)
1856 void __iomem
*rbase
= gic_data_rdist_rd_base();
1857 struct page
*pend_page
;
1860 /* If we didn't allocate the pending table yet, do it now */
1861 pend_page
= gic_data_rdist()->pend_page
;
1865 pend_page
= its_allocate_pending_table(GFP_NOWAIT
);
1867 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1868 smp_processor_id());
1872 paddr
= page_to_phys(pend_page
);
1873 pr_info("CPU%d: using LPI pending table @%pa\n",
1874 smp_processor_id(), &paddr
);
1875 gic_data_rdist()->pend_page
= pend_page
;
1879 val
= readl_relaxed(rbase
+ GICR_CTLR
);
1880 val
&= ~GICR_CTLR_ENABLE_LPIS
;
1881 writel_relaxed(val
, rbase
+ GICR_CTLR
);
1884 * Make sure any change to the table is observable by the GIC.
1889 val
= (page_to_phys(gic_rdists
->prop_page
) |
1890 GICR_PROPBASER_InnerShareable
|
1891 GICR_PROPBASER_RaWaWb
|
1892 ((LPI_NRBITS
- 1) & GICR_PROPBASER_IDBITS_MASK
));
1894 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
1895 tmp
= gicr_read_propbaser(rbase
+ GICR_PROPBASER
);
1897 if ((tmp
^ val
) & GICR_PROPBASER_SHAREABILITY_MASK
) {
1898 if (!(tmp
& GICR_PROPBASER_SHAREABILITY_MASK
)) {
1900 * The HW reports non-shareable, we must
1901 * remove the cacheability attributes as
1904 val
&= ~(GICR_PROPBASER_SHAREABILITY_MASK
|
1905 GICR_PROPBASER_CACHEABILITY_MASK
);
1906 val
|= GICR_PROPBASER_nC
;
1907 gicr_write_propbaser(val
, rbase
+ GICR_PROPBASER
);
1909 pr_info_once("GIC: using cache flushing for LPI property table\n");
1910 gic_rdists
->flags
|= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING
;
1914 val
= (page_to_phys(pend_page
) |
1915 GICR_PENDBASER_InnerShareable
|
1916 GICR_PENDBASER_RaWaWb
);
1918 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
1919 tmp
= gicr_read_pendbaser(rbase
+ GICR_PENDBASER
);
1921 if (!(tmp
& GICR_PENDBASER_SHAREABILITY_MASK
)) {
1923 * The HW reports non-shareable, we must remove the
1924 * cacheability attributes as well.
1926 val
&= ~(GICR_PENDBASER_SHAREABILITY_MASK
|
1927 GICR_PENDBASER_CACHEABILITY_MASK
);
1928 val
|= GICR_PENDBASER_nC
;
1929 gicr_write_pendbaser(val
, rbase
+ GICR_PENDBASER
);
1933 val
= readl_relaxed(rbase
+ GICR_CTLR
);
1934 val
|= GICR_CTLR_ENABLE_LPIS
;
1935 writel_relaxed(val
, rbase
+ GICR_CTLR
);
1937 /* Make sure the GIC has seen the above */
1941 static void its_cpu_init_collection(void)
1943 struct its_node
*its
;
1946 spin_lock(&its_lock
);
1947 cpu
= smp_processor_id();
1949 list_for_each_entry(its
, &its_nodes
, entry
) {
1952 /* avoid cross node collections and its mapping */
1953 if (its
->flags
& ITS_FLAGS_WORKAROUND_CAVIUM_23144
) {
1954 struct device_node
*cpu_node
;
1956 cpu_node
= of_get_cpu_node(cpu
, NULL
);
1957 if (its
->numa_node
!= NUMA_NO_NODE
&&
1958 its
->numa_node
!= of_node_to_nid(cpu_node
))
1963 * We now have to bind each collection to its target
1966 if (gic_read_typer(its
->base
+ GITS_TYPER
) & GITS_TYPER_PTA
) {
1968 * This ITS wants the physical address of the
1971 target
= gic_data_rdist()->phys_base
;
1974 * This ITS wants a linear CPU number.
1976 target
= gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
);
1977 target
= GICR_TYPER_CPU_NUMBER(target
) << 16;
1980 /* Perform collection mapping */
1981 its
->collections
[cpu
].target_address
= target
;
1982 its
->collections
[cpu
].col_id
= cpu
;
1984 its_send_mapc(its
, &its
->collections
[cpu
], 1);
1985 its_send_invall(its
, &its
->collections
[cpu
]);
1988 spin_unlock(&its_lock
);
1991 static struct its_device
*its_find_device(struct its_node
*its
, u32 dev_id
)
1993 struct its_device
*its_dev
= NULL
, *tmp
;
1994 unsigned long flags
;
1996 raw_spin_lock_irqsave(&its
->lock
, flags
);
1998 list_for_each_entry(tmp
, &its
->its_device_list
, entry
) {
1999 if (tmp
->device_id
== dev_id
) {
2005 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
2010 static struct its_baser
*its_get_baser(struct its_node
*its
, u32 type
)
2014 for (i
= 0; i
< GITS_BASER_NR_REGS
; i
++) {
2015 if (GITS_BASER_TYPE(its
->tables
[i
].val
) == type
)
2016 return &its
->tables
[i
];
2022 static bool its_alloc_table_entry(struct its_baser
*baser
, u32 id
)
2028 /* Don't allow device id that exceeds single, flat table limit */
2029 esz
= GITS_BASER_ENTRY_SIZE(baser
->val
);
2030 if (!(baser
->val
& GITS_BASER_INDIRECT
))
2031 return (id
< (PAGE_ORDER_TO_SIZE(baser
->order
) / esz
));
2033 /* Compute 1st level table index & check if that exceeds table limit */
2034 idx
= id
>> ilog2(baser
->psz
/ esz
);
2035 if (idx
>= (PAGE_ORDER_TO_SIZE(baser
->order
) / GITS_LVL1_ENTRY_SIZE
))
2038 table
= baser
->base
;
2040 /* Allocate memory for 2nd level table */
2042 page
= alloc_pages(GFP_KERNEL
| __GFP_ZERO
, get_order(baser
->psz
));
2046 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2047 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
2048 gic_flush_dcache_to_poc(page_address(page
), baser
->psz
);
2050 table
[idx
] = cpu_to_le64(page_to_phys(page
) | GITS_BASER_VALID
);
2052 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2053 if (!(baser
->val
& GITS_BASER_SHAREABILITY_MASK
))
2054 gic_flush_dcache_to_poc(table
+ idx
, GITS_LVL1_ENTRY_SIZE
);
2056 /* Ensure updated table contents are visible to ITS hardware */
2063 static bool its_alloc_device_table(struct its_node
*its
, u32 dev_id
)
2065 struct its_baser
*baser
;
2067 baser
= its_get_baser(its
, GITS_BASER_TYPE_DEVICE
);
2069 /* Don't allow device id that exceeds ITS hardware limit */
2071 return (ilog2(dev_id
) < its
->device_ids
);
2073 return its_alloc_table_entry(baser
, dev_id
);
2076 static bool its_alloc_vpe_table(u32 vpe_id
)
2078 struct its_node
*its
;
2081 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2082 * could try and only do it on ITSs corresponding to devices
2083 * that have interrupts targeted at this VPE, but the
2084 * complexity becomes crazy (and you have tons of memory
2087 list_for_each_entry(its
, &its_nodes
, entry
) {
2088 struct its_baser
*baser
;
2093 baser
= its_get_baser(its
, GITS_BASER_TYPE_VCPU
);
2097 if (!its_alloc_table_entry(baser
, vpe_id
))
2104 static struct its_device
*its_create_device(struct its_node
*its
, u32 dev_id
,
2105 int nvecs
, bool alloc_lpis
)
2107 struct its_device
*dev
;
2108 unsigned long *lpi_map
= NULL
;
2109 unsigned long flags
;
2110 u16
*col_map
= NULL
;
2117 if (!its_alloc_device_table(its
, dev_id
))
2120 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2122 * At least one bit of EventID is being used, hence a minimum
2123 * of two entries. No, the architecture doesn't let you
2124 * express an ITT with a single entry.
2126 nr_ites
= max(2UL, roundup_pow_of_two(nvecs
));
2127 sz
= nr_ites
* its
->ite_size
;
2128 sz
= max(sz
, ITS_ITT_ALIGN
) + ITS_ITT_ALIGN
- 1;
2129 itt
= kzalloc(sz
, GFP_KERNEL
);
2131 lpi_map
= its_lpi_alloc_chunks(nvecs
, &lpi_base
, &nr_lpis
);
2133 col_map
= kzalloc(sizeof(*col_map
) * nr_lpis
,
2136 col_map
= kzalloc(sizeof(*col_map
) * nr_ites
, GFP_KERNEL
);
2141 if (!dev
|| !itt
|| !col_map
|| (!lpi_map
&& alloc_lpis
)) {
2149 gic_flush_dcache_to_poc(itt
, sz
);
2153 dev
->nr_ites
= nr_ites
;
2154 dev
->event_map
.lpi_map
= lpi_map
;
2155 dev
->event_map
.col_map
= col_map
;
2156 dev
->event_map
.lpi_base
= lpi_base
;
2157 dev
->event_map
.nr_lpis
= nr_lpis
;
2158 mutex_init(&dev
->event_map
.vlpi_lock
);
2159 dev
->device_id
= dev_id
;
2160 INIT_LIST_HEAD(&dev
->entry
);
2162 raw_spin_lock_irqsave(&its
->lock
, flags
);
2163 list_add(&dev
->entry
, &its
->its_device_list
);
2164 raw_spin_unlock_irqrestore(&its
->lock
, flags
);
2166 /* Map device to its ITT */
2167 its_send_mapd(dev
, 1);
2172 static void its_free_device(struct its_device
*its_dev
)
2174 unsigned long flags
;
2176 raw_spin_lock_irqsave(&its_dev
->its
->lock
, flags
);
2177 list_del(&its_dev
->entry
);
2178 raw_spin_unlock_irqrestore(&its_dev
->its
->lock
, flags
);
2179 kfree(its_dev
->itt
);
2183 static int its_alloc_device_irq(struct its_device
*dev
, irq_hw_number_t
*hwirq
)
2187 idx
= find_first_zero_bit(dev
->event_map
.lpi_map
,
2188 dev
->event_map
.nr_lpis
);
2189 if (idx
== dev
->event_map
.nr_lpis
)
2192 *hwirq
= dev
->event_map
.lpi_base
+ idx
;
2193 set_bit(idx
, dev
->event_map
.lpi_map
);
2198 static int its_msi_prepare(struct irq_domain
*domain
, struct device
*dev
,
2199 int nvec
, msi_alloc_info_t
*info
)
2201 struct its_node
*its
;
2202 struct its_device
*its_dev
;
2203 struct msi_domain_info
*msi_info
;
2207 * We ignore "dev" entierely, and rely on the dev_id that has
2208 * been passed via the scratchpad. This limits this domain's
2209 * usefulness to upper layers that definitely know that they
2210 * are built on top of the ITS.
2212 dev_id
= info
->scratchpad
[0].ul
;
2214 msi_info
= msi_get_domain_info(domain
);
2215 its
= msi_info
->data
;
2217 if (!gic_rdists
->has_direct_lpi
&&
2219 vpe_proxy
.dev
->its
== its
&&
2220 dev_id
== vpe_proxy
.dev
->device_id
) {
2221 /* Bad luck. Get yourself a better implementation */
2222 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2227 its_dev
= its_find_device(its
, dev_id
);
2230 * We already have seen this ID, probably through
2231 * another alias (PCI bridge of some sort). No need to
2232 * create the device.
2234 pr_debug("Reusing ITT for devID %x\n", dev_id
);
2238 its_dev
= its_create_device(its
, dev_id
, nvec
, true);
2242 pr_debug("ITT %d entries, %d bits\n", nvec
, ilog2(nvec
));
2244 info
->scratchpad
[0].ptr
= its_dev
;
2248 static struct msi_domain_ops its_msi_domain_ops
= {
2249 .msi_prepare
= its_msi_prepare
,
2252 static int its_irq_gic_domain_alloc(struct irq_domain
*domain
,
2254 irq_hw_number_t hwirq
)
2256 struct irq_fwspec fwspec
;
2258 if (irq_domain_get_of_node(domain
->parent
)) {
2259 fwspec
.fwnode
= domain
->parent
->fwnode
;
2260 fwspec
.param_count
= 3;
2261 fwspec
.param
[0] = GIC_IRQ_TYPE_LPI
;
2262 fwspec
.param
[1] = hwirq
;
2263 fwspec
.param
[2] = IRQ_TYPE_EDGE_RISING
;
2264 } else if (is_fwnode_irqchip(domain
->parent
->fwnode
)) {
2265 fwspec
.fwnode
= domain
->parent
->fwnode
;
2266 fwspec
.param_count
= 2;
2267 fwspec
.param
[0] = hwirq
;
2268 fwspec
.param
[1] = IRQ_TYPE_EDGE_RISING
;
2273 return irq_domain_alloc_irqs_parent(domain
, virq
, 1, &fwspec
);
2276 static int its_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
2277 unsigned int nr_irqs
, void *args
)
2279 msi_alloc_info_t
*info
= args
;
2280 struct its_device
*its_dev
= info
->scratchpad
[0].ptr
;
2281 irq_hw_number_t hwirq
;
2285 for (i
= 0; i
< nr_irqs
; i
++) {
2286 err
= its_alloc_device_irq(its_dev
, &hwirq
);
2290 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
, hwirq
);
2294 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
,
2295 hwirq
, &its_irq_chip
, its_dev
);
2296 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq
+ i
)));
2297 pr_debug("ID:%d pID:%d vID:%d\n",
2298 (int)(hwirq
- its_dev
->event_map
.lpi_base
),
2299 (int) hwirq
, virq
+ i
);
2305 static int its_irq_domain_activate(struct irq_domain
*domain
,
2306 struct irq_data
*d
, bool reserve
)
2308 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2309 u32 event
= its_get_event_id(d
);
2310 const struct cpumask
*cpu_mask
= cpu_online_mask
;
2313 /* get the cpu_mask of local node */
2314 if (its_dev
->its
->numa_node
>= 0)
2315 cpu_mask
= cpumask_of_node(its_dev
->its
->numa_node
);
2317 /* Bind the LPI to the first possible CPU */
2318 cpu
= cpumask_first(cpu_mask
);
2319 its_dev
->event_map
.col_map
[event
] = cpu
;
2320 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
2322 /* Map the GIC IRQ and event to the device */
2323 its_send_mapti(its_dev
, d
->hwirq
, event
);
2327 static void its_irq_domain_deactivate(struct irq_domain
*domain
,
2330 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2331 u32 event
= its_get_event_id(d
);
2333 /* Stop the delivery of interrupts */
2334 its_send_discard(its_dev
, event
);
2337 static void its_irq_domain_free(struct irq_domain
*domain
, unsigned int virq
,
2338 unsigned int nr_irqs
)
2340 struct irq_data
*d
= irq_domain_get_irq_data(domain
, virq
);
2341 struct its_device
*its_dev
= irq_data_get_irq_chip_data(d
);
2344 for (i
= 0; i
< nr_irqs
; i
++) {
2345 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
2347 u32 event
= its_get_event_id(data
);
2349 /* Mark interrupt index as unused */
2350 clear_bit(event
, its_dev
->event_map
.lpi_map
);
2352 /* Nuke the entry in the domain */
2353 irq_domain_reset_irq_data(data
);
2356 /* If all interrupts have been freed, start mopping the floor */
2357 if (bitmap_empty(its_dev
->event_map
.lpi_map
,
2358 its_dev
->event_map
.nr_lpis
)) {
2359 its_lpi_free_chunks(its_dev
->event_map
.lpi_map
,
2360 its_dev
->event_map
.lpi_base
,
2361 its_dev
->event_map
.nr_lpis
);
2362 kfree(its_dev
->event_map
.col_map
);
2364 /* Unmap device/itt */
2365 its_send_mapd(its_dev
, 0);
2366 its_free_device(its_dev
);
2369 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
2372 static const struct irq_domain_ops its_domain_ops
= {
2373 .alloc
= its_irq_domain_alloc
,
2374 .free
= its_irq_domain_free
,
2375 .activate
= its_irq_domain_activate
,
2376 .deactivate
= its_irq_domain_deactivate
,
2382 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2383 * likely), the only way to perform an invalidate is to use a fake
2384 * device to issue an INV command, implying that the LPI has first
2385 * been mapped to some event on that device. Since this is not exactly
2386 * cheap, we try to keep that mapping around as long as possible, and
2387 * only issue an UNMAP if we're short on available slots.
2389 * Broken by design(tm).
2391 static void its_vpe_db_proxy_unmap_locked(struct its_vpe
*vpe
)
2393 /* Already unmapped? */
2394 if (vpe
->vpe_proxy_event
== -1)
2397 its_send_discard(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
2398 vpe_proxy
.vpes
[vpe
->vpe_proxy_event
] = NULL
;
2401 * We don't track empty slots at all, so let's move the
2402 * next_victim pointer if we can quickly reuse that slot
2403 * instead of nuking an existing entry. Not clear that this is
2404 * always a win though, and this might just generate a ripple
2405 * effect... Let's just hope VPEs don't migrate too often.
2407 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
2408 vpe_proxy
.next_victim
= vpe
->vpe_proxy_event
;
2410 vpe
->vpe_proxy_event
= -1;
2413 static void its_vpe_db_proxy_unmap(struct its_vpe
*vpe
)
2415 if (!gic_rdists
->has_direct_lpi
) {
2416 unsigned long flags
;
2418 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2419 its_vpe_db_proxy_unmap_locked(vpe
);
2420 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2424 static void its_vpe_db_proxy_map_locked(struct its_vpe
*vpe
)
2426 /* Already mapped? */
2427 if (vpe
->vpe_proxy_event
!= -1)
2430 /* This slot was already allocated. Kick the other VPE out. */
2431 if (vpe_proxy
.vpes
[vpe_proxy
.next_victim
])
2432 its_vpe_db_proxy_unmap_locked(vpe_proxy
.vpes
[vpe_proxy
.next_victim
]);
2434 /* Map the new VPE instead */
2435 vpe_proxy
.vpes
[vpe_proxy
.next_victim
] = vpe
;
2436 vpe
->vpe_proxy_event
= vpe_proxy
.next_victim
;
2437 vpe_proxy
.next_victim
= (vpe_proxy
.next_victim
+ 1) % vpe_proxy
.dev
->nr_ites
;
2439 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = vpe
->col_idx
;
2440 its_send_mapti(vpe_proxy
.dev
, vpe
->vpe_db_lpi
, vpe
->vpe_proxy_event
);
2443 static void its_vpe_db_proxy_move(struct its_vpe
*vpe
, int from
, int to
)
2445 unsigned long flags
;
2446 struct its_collection
*target_col
;
2448 if (gic_rdists
->has_direct_lpi
) {
2449 void __iomem
*rdbase
;
2451 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, from
)->rd_base
;
2452 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
2453 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2459 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2461 its_vpe_db_proxy_map_locked(vpe
);
2463 target_col
= &vpe_proxy
.dev
->its
->collections
[to
];
2464 its_send_movi(vpe_proxy
.dev
, target_col
, vpe
->vpe_proxy_event
);
2465 vpe_proxy
.dev
->event_map
.col_map
[vpe
->vpe_proxy_event
] = to
;
2467 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2470 static int its_vpe_set_affinity(struct irq_data
*d
,
2471 const struct cpumask
*mask_val
,
2474 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2475 int cpu
= cpumask_first(mask_val
);
2478 * Changing affinity is mega expensive, so let's be as lazy as
2479 * we can and only do it if we really have to. Also, if mapped
2480 * into the proxy device, we need to move the doorbell
2481 * interrupt to its new location.
2483 if (vpe
->col_idx
!= cpu
) {
2484 int from
= vpe
->col_idx
;
2487 its_send_vmovp(vpe
);
2488 its_vpe_db_proxy_move(vpe
, from
, cpu
);
2491 irq_data_update_effective_affinity(d
, cpumask_of(cpu
));
2493 return IRQ_SET_MASK_OK_DONE
;
2496 static void its_vpe_schedule(struct its_vpe
*vpe
)
2498 void * __iomem vlpi_base
= gic_data_rdist_vlpi_base();
2501 /* Schedule the VPE */
2502 val
= virt_to_phys(page_address(vpe
->its_vm
->vprop_page
)) &
2503 GENMASK_ULL(51, 12);
2504 val
|= (LPI_NRBITS
- 1) & GICR_VPROPBASER_IDBITS_MASK
;
2505 val
|= GICR_VPROPBASER_RaWb
;
2506 val
|= GICR_VPROPBASER_InnerShareable
;
2507 gits_write_vpropbaser(val
, vlpi_base
+ GICR_VPROPBASER
);
2509 val
= virt_to_phys(page_address(vpe
->vpt_page
)) &
2510 GENMASK_ULL(51, 16);
2511 val
|= GICR_VPENDBASER_RaWaWb
;
2512 val
|= GICR_VPENDBASER_NonShareable
;
2514 * There is no good way of finding out if the pending table is
2515 * empty as we can race against the doorbell interrupt very
2516 * easily. So in the end, vpe->pending_last is only an
2517 * indication that the vcpu has something pending, not one
2518 * that the pending table is empty. A good implementation
2519 * would be able to read its coarse map pretty quickly anyway,
2520 * making this a tolerable issue.
2522 val
|= GICR_VPENDBASER_PendingLast
;
2523 val
|= vpe
->idai
? GICR_VPENDBASER_IDAI
: 0;
2524 val
|= GICR_VPENDBASER_Valid
;
2525 gits_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
2528 static void its_vpe_deschedule(struct its_vpe
*vpe
)
2530 void * __iomem vlpi_base
= gic_data_rdist_vlpi_base();
2531 u32 count
= 1000000; /* 1s! */
2535 /* We're being scheduled out */
2536 val
= gits_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
2537 val
&= ~GICR_VPENDBASER_Valid
;
2538 gits_write_vpendbaser(val
, vlpi_base
+ GICR_VPENDBASER
);
2541 val
= gits_read_vpendbaser(vlpi_base
+ GICR_VPENDBASER
);
2542 clean
= !(val
& GICR_VPENDBASER_Dirty
);
2548 } while (!clean
&& count
);
2550 if (unlikely(!clean
&& !count
)) {
2551 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2553 vpe
->pending_last
= true;
2555 vpe
->idai
= !!(val
& GICR_VPENDBASER_IDAI
);
2556 vpe
->pending_last
= !!(val
& GICR_VPENDBASER_PendingLast
);
2560 static void its_vpe_invall(struct its_vpe
*vpe
)
2562 struct its_node
*its
;
2564 list_for_each_entry(its
, &its_nodes
, entry
) {
2568 if (its_list_map
&& !vpe
->its_vm
->vlpi_count
[its
->list_nr
])
2572 * Sending a VINVALL to a single ITS is enough, as all
2573 * we need is to reach the redistributors.
2575 its_send_vinvall(its
, vpe
);
2580 static int its_vpe_set_vcpu_affinity(struct irq_data
*d
, void *vcpu_info
)
2582 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2583 struct its_cmd_info
*info
= vcpu_info
;
2585 switch (info
->cmd_type
) {
2587 its_vpe_schedule(vpe
);
2590 case DESCHEDULE_VPE
:
2591 its_vpe_deschedule(vpe
);
2595 its_vpe_invall(vpe
);
2603 static void its_vpe_send_cmd(struct its_vpe
*vpe
,
2604 void (*cmd
)(struct its_device
*, u32
))
2606 unsigned long flags
;
2608 raw_spin_lock_irqsave(&vpe_proxy
.lock
, flags
);
2610 its_vpe_db_proxy_map_locked(vpe
);
2611 cmd(vpe_proxy
.dev
, vpe
->vpe_proxy_event
);
2613 raw_spin_unlock_irqrestore(&vpe_proxy
.lock
, flags
);
2616 static void its_vpe_send_inv(struct irq_data
*d
)
2618 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2620 if (gic_rdists
->has_direct_lpi
) {
2621 void __iomem
*rdbase
;
2623 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
2624 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_INVLPIR
);
2625 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2628 its_vpe_send_cmd(vpe
, its_send_inv
);
2632 static void its_vpe_mask_irq(struct irq_data
*d
)
2635 * We need to unmask the LPI, which is described by the parent
2636 * irq_data. Instead of calling into the parent (which won't
2637 * exactly do the right thing, let's simply use the
2638 * parent_data pointer. Yes, I'm naughty.
2640 lpi_write_config(d
->parent_data
, LPI_PROP_ENABLED
, 0);
2641 its_vpe_send_inv(d
);
2644 static void its_vpe_unmask_irq(struct irq_data
*d
)
2646 /* Same hack as above... */
2647 lpi_write_config(d
->parent_data
, 0, LPI_PROP_ENABLED
);
2648 its_vpe_send_inv(d
);
2651 static int its_vpe_set_irqchip_state(struct irq_data
*d
,
2652 enum irqchip_irq_state which
,
2655 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2657 if (which
!= IRQCHIP_STATE_PENDING
)
2660 if (gic_rdists
->has_direct_lpi
) {
2661 void __iomem
*rdbase
;
2663 rdbase
= per_cpu_ptr(gic_rdists
->rdist
, vpe
->col_idx
)->rd_base
;
2665 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_SETLPIR
);
2667 gic_write_lpir(vpe
->vpe_db_lpi
, rdbase
+ GICR_CLRLPIR
);
2668 while (gic_read_lpir(rdbase
+ GICR_SYNCR
) & 1)
2673 its_vpe_send_cmd(vpe
, its_send_int
);
2675 its_vpe_send_cmd(vpe
, its_send_clear
);
2681 static struct irq_chip its_vpe_irq_chip
= {
2682 .name
= "GICv4-vpe",
2683 .irq_mask
= its_vpe_mask_irq
,
2684 .irq_unmask
= its_vpe_unmask_irq
,
2685 .irq_eoi
= irq_chip_eoi_parent
,
2686 .irq_set_affinity
= its_vpe_set_affinity
,
2687 .irq_set_irqchip_state
= its_vpe_set_irqchip_state
,
2688 .irq_set_vcpu_affinity
= its_vpe_set_vcpu_affinity
,
2691 static int its_vpe_id_alloc(void)
2693 return ida_simple_get(&its_vpeid_ida
, 0, ITS_MAX_VPEID
, GFP_KERNEL
);
2696 static void its_vpe_id_free(u16 id
)
2698 ida_simple_remove(&its_vpeid_ida
, id
);
2701 static int its_vpe_init(struct its_vpe
*vpe
)
2703 struct page
*vpt_page
;
2706 /* Allocate vpe_id */
2707 vpe_id
= its_vpe_id_alloc();
2712 vpt_page
= its_allocate_pending_table(GFP_KERNEL
);
2714 its_vpe_id_free(vpe_id
);
2718 if (!its_alloc_vpe_table(vpe_id
)) {
2719 its_vpe_id_free(vpe_id
);
2720 its_free_pending_table(vpe
->vpt_page
);
2724 vpe
->vpe_id
= vpe_id
;
2725 vpe
->vpt_page
= vpt_page
;
2726 vpe
->vpe_proxy_event
= -1;
2731 static void its_vpe_teardown(struct its_vpe
*vpe
)
2733 its_vpe_db_proxy_unmap(vpe
);
2734 its_vpe_id_free(vpe
->vpe_id
);
2735 its_free_pending_table(vpe
->vpt_page
);
2738 static void its_vpe_irq_domain_free(struct irq_domain
*domain
,
2740 unsigned int nr_irqs
)
2742 struct its_vm
*vm
= domain
->host_data
;
2745 irq_domain_free_irqs_parent(domain
, virq
, nr_irqs
);
2747 for (i
= 0; i
< nr_irqs
; i
++) {
2748 struct irq_data
*data
= irq_domain_get_irq_data(domain
,
2750 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(data
);
2752 BUG_ON(vm
!= vpe
->its_vm
);
2754 clear_bit(data
->hwirq
, vm
->db_bitmap
);
2755 its_vpe_teardown(vpe
);
2756 irq_domain_reset_irq_data(data
);
2759 if (bitmap_empty(vm
->db_bitmap
, vm
->nr_db_lpis
)) {
2760 its_lpi_free_chunks(vm
->db_bitmap
, vm
->db_lpi_base
, vm
->nr_db_lpis
);
2761 its_free_prop_table(vm
->vprop_page
);
2765 static int its_vpe_irq_domain_alloc(struct irq_domain
*domain
, unsigned int virq
,
2766 unsigned int nr_irqs
, void *args
)
2768 struct its_vm
*vm
= args
;
2769 unsigned long *bitmap
;
2770 struct page
*vprop_page
;
2771 int base
, nr_ids
, i
, err
= 0;
2775 bitmap
= its_lpi_alloc_chunks(nr_irqs
, &base
, &nr_ids
);
2779 if (nr_ids
< nr_irqs
) {
2780 its_lpi_free_chunks(bitmap
, base
, nr_ids
);
2784 vprop_page
= its_allocate_prop_table(GFP_KERNEL
);
2786 its_lpi_free_chunks(bitmap
, base
, nr_ids
);
2790 vm
->db_bitmap
= bitmap
;
2791 vm
->db_lpi_base
= base
;
2792 vm
->nr_db_lpis
= nr_ids
;
2793 vm
->vprop_page
= vprop_page
;
2795 for (i
= 0; i
< nr_irqs
; i
++) {
2796 vm
->vpes
[i
]->vpe_db_lpi
= base
+ i
;
2797 err
= its_vpe_init(vm
->vpes
[i
]);
2800 err
= its_irq_gic_domain_alloc(domain
, virq
+ i
,
2801 vm
->vpes
[i
]->vpe_db_lpi
);
2804 irq_domain_set_hwirq_and_chip(domain
, virq
+ i
, i
,
2805 &its_vpe_irq_chip
, vm
->vpes
[i
]);
2811 its_vpe_irq_domain_free(domain
, virq
, i
- 1);
2813 its_lpi_free_chunks(bitmap
, base
, nr_ids
);
2814 its_free_prop_table(vprop_page
);
2820 static int its_vpe_irq_domain_activate(struct irq_domain
*domain
,
2821 struct irq_data
*d
, bool reserve
)
2823 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2824 struct its_node
*its
;
2826 /* If we use the list map, we issue VMAPP on demand... */
2830 /* Map the VPE to the first possible CPU */
2831 vpe
->col_idx
= cpumask_first(cpu_online_mask
);
2833 list_for_each_entry(its
, &its_nodes
, entry
) {
2837 its_send_vmapp(its
, vpe
, true);
2838 its_send_vinvall(its
, vpe
);
2841 irq_data_update_effective_affinity(d
, cpumask_of(vpe
->col_idx
));
2846 static void its_vpe_irq_domain_deactivate(struct irq_domain
*domain
,
2849 struct its_vpe
*vpe
= irq_data_get_irq_chip_data(d
);
2850 struct its_node
*its
;
2853 * If we use the list map, we unmap the VPE once no VLPIs are
2854 * associated with the VM.
2859 list_for_each_entry(its
, &its_nodes
, entry
) {
2863 its_send_vmapp(its
, vpe
, false);
2867 static const struct irq_domain_ops its_vpe_domain_ops
= {
2868 .alloc
= its_vpe_irq_domain_alloc
,
2869 .free
= its_vpe_irq_domain_free
,
2870 .activate
= its_vpe_irq_domain_activate
,
2871 .deactivate
= its_vpe_irq_domain_deactivate
,
2874 static int its_force_quiescent(void __iomem
*base
)
2876 u32 count
= 1000000; /* 1s */
2879 val
= readl_relaxed(base
+ GITS_CTLR
);
2881 * GIC architecture specification requires the ITS to be both
2882 * disabled and quiescent for writes to GITS_BASER<n> or
2883 * GITS_CBASER to not have UNPREDICTABLE results.
2885 if ((val
& GITS_CTLR_QUIESCENT
) && !(val
& GITS_CTLR_ENABLE
))
2888 /* Disable the generation of all interrupts to this ITS */
2889 val
&= ~(GITS_CTLR_ENABLE
| GITS_CTLR_ImDe
);
2890 writel_relaxed(val
, base
+ GITS_CTLR
);
2892 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
2894 val
= readl_relaxed(base
+ GITS_CTLR
);
2895 if (val
& GITS_CTLR_QUIESCENT
)
2907 static bool __maybe_unused
its_enable_quirk_cavium_22375(void *data
)
2909 struct its_node
*its
= data
;
2911 /* erratum 22375: only alloc 8MB table size */
2912 its
->device_ids
= 0x14; /* 20 bits, 8MB */
2913 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_22375
;
2918 static bool __maybe_unused
its_enable_quirk_cavium_23144(void *data
)
2920 struct its_node
*its
= data
;
2922 its
->flags
|= ITS_FLAGS_WORKAROUND_CAVIUM_23144
;
2927 static bool __maybe_unused
its_enable_quirk_qdf2400_e0065(void *data
)
2929 struct its_node
*its
= data
;
2931 /* On QDF2400, the size of the ITE is 16Bytes */
2937 static u64
its_irq_get_msi_base_pre_its(struct its_device
*its_dev
)
2939 struct its_node
*its
= its_dev
->its
;
2942 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
2943 * which maps 32-bit writes targeted at a separate window of
2944 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
2945 * with device ID taken from bits [device_id_bits + 1:2] of
2946 * the window offset.
2948 return its
->pre_its_base
+ (its_dev
->device_id
<< 2);
2951 static bool __maybe_unused
its_enable_quirk_socionext_synquacer(void *data
)
2953 struct its_node
*its
= data
;
2954 u32 pre_its_window
[2];
2957 if (!fwnode_property_read_u32_array(its
->fwnode_handle
,
2958 "socionext,synquacer-pre-its",
2960 ARRAY_SIZE(pre_its_window
))) {
2962 its
->pre_its_base
= pre_its_window
[0];
2963 its
->get_msi_base
= its_irq_get_msi_base_pre_its
;
2965 ids
= ilog2(pre_its_window
[1]) - 2;
2966 if (its
->device_ids
> ids
)
2967 its
->device_ids
= ids
;
2969 /* the pre-ITS breaks isolation, so disable MSI remapping */
2970 its
->msi_domain_flags
&= ~IRQ_DOMAIN_FLAG_MSI_REMAP
;
2976 static bool __maybe_unused
its_enable_quirk_hip07_161600802(void *data
)
2978 struct its_node
*its
= data
;
2981 * Hip07 insists on using the wrong address for the VLPI
2982 * page. Trick it into doing the right thing...
2984 its
->vlpi_redist_offset
= SZ_128K
;
2988 static const struct gic_quirk its_quirks
[] = {
2989 #ifdef CONFIG_CAVIUM_ERRATUM_22375
2991 .desc
= "ITS: Cavium errata 22375, 24313",
2992 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
2994 .init
= its_enable_quirk_cavium_22375
,
2997 #ifdef CONFIG_CAVIUM_ERRATUM_23144
2999 .desc
= "ITS: Cavium erratum 23144",
3000 .iidr
= 0xa100034c, /* ThunderX pass 1.x */
3002 .init
= its_enable_quirk_cavium_23144
,
3005 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3007 .desc
= "ITS: QDF2400 erratum 0065",
3008 .iidr
= 0x00001070, /* QDF2400 ITS rev 1.x */
3010 .init
= its_enable_quirk_qdf2400_e0065
,
3013 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3016 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3017 * implementation, but with a 'pre-ITS' added that requires
3018 * special handling in software.
3020 .desc
= "ITS: Socionext Synquacer pre-ITS",
3023 .init
= its_enable_quirk_socionext_synquacer
,
3026 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3028 .desc
= "ITS: Hip07 erratum 161600802",
3031 .init
= its_enable_quirk_hip07_161600802
,
3038 static void its_enable_quirks(struct its_node
*its
)
3040 u32 iidr
= readl_relaxed(its
->base
+ GITS_IIDR
);
3042 gic_enable_quirks(iidr
, its_quirks
, its
);
3045 static int its_init_domain(struct fwnode_handle
*handle
, struct its_node
*its
)
3047 struct irq_domain
*inner_domain
;
3048 struct msi_domain_info
*info
;
3050 info
= kzalloc(sizeof(*info
), GFP_KERNEL
);
3054 inner_domain
= irq_domain_create_tree(handle
, &its_domain_ops
, its
);
3055 if (!inner_domain
) {
3060 inner_domain
->parent
= its_parent
;
3061 irq_domain_update_bus_token(inner_domain
, DOMAIN_BUS_NEXUS
);
3062 inner_domain
->flags
|= its
->msi_domain_flags
;
3063 info
->ops
= &its_msi_domain_ops
;
3065 inner_domain
->host_data
= info
;
3070 static int its_init_vpe_domain(void)
3072 struct its_node
*its
;
3076 if (gic_rdists
->has_direct_lpi
) {
3077 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3081 /* Any ITS will do, even if not v4 */
3082 its
= list_first_entry(&its_nodes
, struct its_node
, entry
);
3084 entries
= roundup_pow_of_two(nr_cpu_ids
);
3085 vpe_proxy
.vpes
= kzalloc(sizeof(*vpe_proxy
.vpes
) * entries
,
3087 if (!vpe_proxy
.vpes
) {
3088 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3092 /* Use the last possible DevID */
3093 devid
= GENMASK(its
->device_ids
- 1, 0);
3094 vpe_proxy
.dev
= its_create_device(its
, devid
, entries
, false);
3095 if (!vpe_proxy
.dev
) {
3096 kfree(vpe_proxy
.vpes
);
3097 pr_err("ITS: Can't allocate GICv4 proxy device\n");
3101 BUG_ON(entries
> vpe_proxy
.dev
->nr_ites
);
3103 raw_spin_lock_init(&vpe_proxy
.lock
);
3104 vpe_proxy
.next_victim
= 0;
3105 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3106 devid
, vpe_proxy
.dev
->nr_ites
);
3111 static int __init
its_compute_its_list_map(struct resource
*res
,
3112 void __iomem
*its_base
)
3118 * This is assumed to be done early enough that we're
3119 * guaranteed to be single-threaded, hence no
3120 * locking. Should this change, we should address
3123 its_number
= find_first_zero_bit(&its_list_map
, GICv4_ITS_LIST_MAX
);
3124 if (its_number
>= GICv4_ITS_LIST_MAX
) {
3125 pr_err("ITS@%pa: No ITSList entry available!\n",
3130 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
3131 ctlr
&= ~GITS_CTLR_ITS_NUMBER
;
3132 ctlr
|= its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
;
3133 writel_relaxed(ctlr
, its_base
+ GITS_CTLR
);
3134 ctlr
= readl_relaxed(its_base
+ GITS_CTLR
);
3135 if ((ctlr
& GITS_CTLR_ITS_NUMBER
) != (its_number
<< GITS_CTLR_ITS_NUMBER_SHIFT
)) {
3136 its_number
= ctlr
& GITS_CTLR_ITS_NUMBER
;
3137 its_number
>>= GITS_CTLR_ITS_NUMBER_SHIFT
;
3140 if (test_and_set_bit(its_number
, &its_list_map
)) {
3141 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3142 &res
->start
, its_number
);
3149 static int __init
its_probe_one(struct resource
*res
,
3150 struct fwnode_handle
*handle
, int numa_node
)
3152 struct its_node
*its
;
3153 void __iomem
*its_base
;
3155 u64 baser
, tmp
, typer
;
3158 its_base
= ioremap(res
->start
, resource_size(res
));
3160 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res
->start
);
3164 val
= readl_relaxed(its_base
+ GITS_PIDR2
) & GIC_PIDR2_ARCH_MASK
;
3165 if (val
!= 0x30 && val
!= 0x40) {
3166 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res
->start
);
3171 err
= its_force_quiescent(its_base
);
3173 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res
->start
);
3177 pr_info("ITS %pR\n", res
);
3179 its
= kzalloc(sizeof(*its
), GFP_KERNEL
);
3185 raw_spin_lock_init(&its
->lock
);
3186 INIT_LIST_HEAD(&its
->entry
);
3187 INIT_LIST_HEAD(&its
->its_device_list
);
3188 typer
= gic_read_typer(its_base
+ GITS_TYPER
);
3189 its
->base
= its_base
;
3190 its
->phys_base
= res
->start
;
3191 its
->ite_size
= GITS_TYPER_ITT_ENTRY_SIZE(typer
);
3192 its
->device_ids
= GITS_TYPER_DEVBITS(typer
);
3193 its
->is_v4
= !!(typer
& GITS_TYPER_VLPIS
);
3195 if (!(typer
& GITS_TYPER_VMOVP
)) {
3196 err
= its_compute_its_list_map(res
, its_base
);
3202 pr_info("ITS@%pa: Using ITS number %d\n",
3205 pr_info("ITS@%pa: Single VMOVP capable\n", &res
->start
);
3209 its
->numa_node
= numa_node
;
3211 its
->cmd_base
= (void *)__get_free_pages(GFP_KERNEL
| __GFP_ZERO
,
3212 get_order(ITS_CMD_QUEUE_SZ
));
3213 if (!its
->cmd_base
) {
3217 its
->cmd_write
= its
->cmd_base
;
3218 its
->fwnode_handle
= handle
;
3219 its
->get_msi_base
= its_irq_get_msi_base
;
3220 its
->msi_domain_flags
= IRQ_DOMAIN_FLAG_MSI_REMAP
;
3222 its_enable_quirks(its
);
3224 err
= its_alloc_tables(its
);
3228 err
= its_alloc_collections(its
);
3230 goto out_free_tables
;
3232 baser
= (virt_to_phys(its
->cmd_base
) |
3233 GITS_CBASER_RaWaWb
|
3234 GITS_CBASER_InnerShareable
|
3235 (ITS_CMD_QUEUE_SZ
/ SZ_4K
- 1) |
3238 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
3239 tmp
= gits_read_cbaser(its
->base
+ GITS_CBASER
);
3241 if ((tmp
^ baser
) & GITS_CBASER_SHAREABILITY_MASK
) {
3242 if (!(tmp
& GITS_CBASER_SHAREABILITY_MASK
)) {
3244 * The HW reports non-shareable, we must
3245 * remove the cacheability attributes as
3248 baser
&= ~(GITS_CBASER_SHAREABILITY_MASK
|
3249 GITS_CBASER_CACHEABILITY_MASK
);
3250 baser
|= GITS_CBASER_nC
;
3251 gits_write_cbaser(baser
, its
->base
+ GITS_CBASER
);
3253 pr_info("ITS: using cache flushing for cmd queue\n");
3254 its
->flags
|= ITS_FLAGS_CMDQ_NEEDS_FLUSHING
;
3257 gits_write_cwriter(0, its
->base
+ GITS_CWRITER
);
3258 ctlr
= readl_relaxed(its
->base
+ GITS_CTLR
);
3259 ctlr
|= GITS_CTLR_ENABLE
;
3261 ctlr
|= GITS_CTLR_ImDe
;
3262 writel_relaxed(ctlr
, its
->base
+ GITS_CTLR
);
3264 err
= its_init_domain(handle
, its
);
3266 goto out_free_tables
;
3268 spin_lock(&its_lock
);
3269 list_add(&its
->entry
, &its_nodes
);
3270 spin_unlock(&its_lock
);
3275 its_free_tables(its
);
3277 free_pages((unsigned long)its
->cmd_base
, get_order(ITS_CMD_QUEUE_SZ
));
3282 pr_err("ITS@%pa: failed probing (%d)\n", &res
->start
, err
);
3286 static bool gic_rdists_supports_plpis(void)
3288 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER
) & GICR_TYPER_PLPIS
);
3291 int its_cpu_init(void)
3293 if (!list_empty(&its_nodes
)) {
3294 if (!gic_rdists_supports_plpis()) {
3295 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3298 its_cpu_init_lpis();
3299 its_cpu_init_collection();
3305 static const struct of_device_id its_device_id
[] = {
3306 { .compatible
= "arm,gic-v3-its", },
3310 static int __init
its_of_probe(struct device_node
*node
)
3312 struct device_node
*np
;
3313 struct resource res
;
3315 for (np
= of_find_matching_node(node
, its_device_id
); np
;
3316 np
= of_find_matching_node(np
, its_device_id
)) {
3317 if (!of_property_read_bool(np
, "msi-controller")) {
3318 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3323 if (of_address_to_resource(np
, 0, &res
)) {
3324 pr_warn("%pOF: no regs?\n", np
);
3328 its_probe_one(&res
, &np
->fwnode
, of_node_to_nid(np
));
3335 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3337 #ifdef CONFIG_ACPI_NUMA
3338 struct its_srat_map
{
3345 static struct its_srat_map
*its_srat_maps __initdata
;
3346 static int its_in_srat __initdata
;
3348 static int __init
acpi_get_its_numa_node(u32 its_id
)
3352 for (i
= 0; i
< its_in_srat
; i
++) {
3353 if (its_id
== its_srat_maps
[i
].its_id
)
3354 return its_srat_maps
[i
].numa_node
;
3356 return NUMA_NO_NODE
;
3359 static int __init
gic_acpi_match_srat_its(struct acpi_subtable_header
*header
,
3360 const unsigned long end
)
3365 static int __init
gic_acpi_parse_srat_its(struct acpi_subtable_header
*header
,
3366 const unsigned long end
)
3369 struct acpi_srat_gic_its_affinity
*its_affinity
;
3371 its_affinity
= (struct acpi_srat_gic_its_affinity
*)header
;
3375 if (its_affinity
->header
.length
< sizeof(*its_affinity
)) {
3376 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3377 its_affinity
->header
.length
);
3381 node
= acpi_map_pxm_to_node(its_affinity
->proximity_domain
);
3383 if (node
== NUMA_NO_NODE
|| node
>= MAX_NUMNODES
) {
3384 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node
);
3388 its_srat_maps
[its_in_srat
].numa_node
= node
;
3389 its_srat_maps
[its_in_srat
].its_id
= its_affinity
->its_id
;
3391 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3392 its_affinity
->proximity_domain
, its_affinity
->its_id
, node
);
3397 static void __init
acpi_table_parse_srat_its(void)
3401 count
= acpi_table_parse_entries(ACPI_SIG_SRAT
,
3402 sizeof(struct acpi_table_srat
),
3403 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
3404 gic_acpi_match_srat_its
, 0);
3408 its_srat_maps
= kmalloc(count
* sizeof(struct its_srat_map
),
3410 if (!its_srat_maps
) {
3411 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3415 acpi_table_parse_entries(ACPI_SIG_SRAT
,
3416 sizeof(struct acpi_table_srat
),
3417 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY
,
3418 gic_acpi_parse_srat_its
, 0);
3421 /* free the its_srat_maps after ITS probing */
3422 static void __init
acpi_its_srat_maps_free(void)
3424 kfree(its_srat_maps
);
3427 static void __init
acpi_table_parse_srat_its(void) { }
3428 static int __init
acpi_get_its_numa_node(u32 its_id
) { return NUMA_NO_NODE
; }
3429 static void __init
acpi_its_srat_maps_free(void) { }
3432 static int __init
gic_acpi_parse_madt_its(struct acpi_subtable_header
*header
,
3433 const unsigned long end
)
3435 struct acpi_madt_generic_translator
*its_entry
;
3436 struct fwnode_handle
*dom_handle
;
3437 struct resource res
;
3440 its_entry
= (struct acpi_madt_generic_translator
*)header
;
3441 memset(&res
, 0, sizeof(res
));
3442 res
.start
= its_entry
->base_address
;
3443 res
.end
= its_entry
->base_address
+ ACPI_GICV3_ITS_MEM_SIZE
- 1;
3444 res
.flags
= IORESOURCE_MEM
;
3446 dom_handle
= irq_domain_alloc_fwnode((void *)its_entry
->base_address
);
3448 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3453 err
= iort_register_domain_token(its_entry
->translation_id
, dom_handle
);
3455 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3456 &res
.start
, its_entry
->translation_id
);
3460 err
= its_probe_one(&res
, dom_handle
,
3461 acpi_get_its_numa_node(its_entry
->translation_id
));
3465 iort_deregister_domain_token(its_entry
->translation_id
);
3467 irq_domain_free_fwnode(dom_handle
);
3471 static void __init
its_acpi_probe(void)
3473 acpi_table_parse_srat_its();
3474 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR
,
3475 gic_acpi_parse_madt_its
, 0);
3476 acpi_its_srat_maps_free();
3479 static void __init
its_acpi_probe(void) { }
3482 int __init
its_init(struct fwnode_handle
*handle
, struct rdists
*rdists
,
3483 struct irq_domain
*parent_domain
)
3485 struct device_node
*of_node
;
3486 struct its_node
*its
;
3487 bool has_v4
= false;
3490 its_parent
= parent_domain
;
3491 of_node
= to_of_node(handle
);
3493 its_of_probe(of_node
);
3497 if (list_empty(&its_nodes
)) {
3498 pr_warn("ITS: No ITS available, not enabling LPIs\n");
3502 gic_rdists
= rdists
;
3503 err
= its_alloc_lpi_tables();
3507 list_for_each_entry(its
, &its_nodes
, entry
)
3508 has_v4
|= its
->is_v4
;
3510 if (has_v4
& rdists
->has_vlpis
) {
3511 if (its_init_vpe_domain() ||
3512 its_init_v4(parent_domain
, &its_vpe_domain_ops
)) {
3513 rdists
->has_vlpis
= false;
3514 pr_err("ITS: Disabling GICv4 support\n");