2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex
);
54 static LIST_HEAD(regulator_map_list
);
55 static LIST_HEAD(regulator_ena_gpio_list
);
56 static LIST_HEAD(regulator_supply_alias_list
);
57 static bool has_full_constraints
;
59 static struct dentry
*debugfs_root
;
61 static struct class regulator_class
;
64 * struct regulator_map
66 * Used to provide symbolic supply names to devices.
68 struct regulator_map
{
69 struct list_head list
;
70 const char *dev_name
; /* The dev_name() for the consumer */
72 struct regulator_dev
*regulator
;
76 * struct regulator_enable_gpio
78 * Management for shared enable GPIO pin
80 struct regulator_enable_gpio
{
81 struct list_head list
;
82 struct gpio_desc
*gpiod
;
83 u32 enable_count
; /* a number of enabled shared GPIO */
84 u32 request_count
; /* a number of requested shared GPIO */
85 unsigned int ena_gpio_invert
:1;
89 * struct regulator_supply_alias
91 * Used to map lookups for a supply onto an alternative device.
93 struct regulator_supply_alias
{
94 struct list_head list
;
95 struct device
*src_dev
;
96 const char *src_supply
;
97 struct device
*alias_dev
;
98 const char *alias_supply
;
101 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
102 static int _regulator_disable(struct regulator_dev
*rdev
);
103 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
104 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
105 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
106 static int _notifier_call_chain(struct regulator_dev
*rdev
,
107 unsigned long event
, void *data
);
108 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
109 int min_uV
, int max_uV
);
110 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
112 const char *supply_name
);
113 static void _regulator_put(struct regulator
*regulator
);
115 static struct regulator_dev
*dev_to_rdev(struct device
*dev
)
117 return container_of(dev
, struct regulator_dev
, dev
);
120 static const char *rdev_get_name(struct regulator_dev
*rdev
)
122 if (rdev
->constraints
&& rdev
->constraints
->name
)
123 return rdev
->constraints
->name
;
124 else if (rdev
->desc
->name
)
125 return rdev
->desc
->name
;
130 static bool have_full_constraints(void)
132 return has_full_constraints
|| of_have_populated_dt();
135 static bool regulator_ops_is_valid(struct regulator_dev
*rdev
, int ops
)
137 if (!rdev
->constraints
) {
138 rdev_err(rdev
, "no constraints\n");
142 if (rdev
->constraints
->valid_ops_mask
& ops
)
148 static inline struct regulator_dev
*rdev_get_supply(struct regulator_dev
*rdev
)
150 if (rdev
&& rdev
->supply
)
151 return rdev
->supply
->rdev
;
157 * regulator_lock_supply - lock a regulator and its supplies
158 * @rdev: regulator source
160 static void regulator_lock_supply(struct regulator_dev
*rdev
)
164 for (i
= 0; rdev
; rdev
= rdev_get_supply(rdev
), i
++)
165 mutex_lock_nested(&rdev
->mutex
, i
);
169 * regulator_unlock_supply - unlock a regulator and its supplies
170 * @rdev: regulator source
172 static void regulator_unlock_supply(struct regulator_dev
*rdev
)
174 struct regulator
*supply
;
177 mutex_unlock(&rdev
->mutex
);
178 supply
= rdev
->supply
;
188 * of_get_regulator - get a regulator device node based on supply name
189 * @dev: Device pointer for the consumer (of regulator) device
190 * @supply: regulator supply name
192 * Extract the regulator device node corresponding to the supply name.
193 * returns the device node corresponding to the regulator if found, else
196 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
198 struct device_node
*regnode
= NULL
;
199 char prop_name
[32]; /* 32 is max size of property name */
201 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
203 snprintf(prop_name
, 32, "%s-supply", supply
);
204 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
207 dev_dbg(dev
, "Looking up %s property in node %pOF failed\n",
208 prop_name
, dev
->of_node
);
214 /* Platform voltage constraint check */
215 static int regulator_check_voltage(struct regulator_dev
*rdev
,
216 int *min_uV
, int *max_uV
)
218 BUG_ON(*min_uV
> *max_uV
);
220 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
221 rdev_err(rdev
, "voltage operation not allowed\n");
225 if (*max_uV
> rdev
->constraints
->max_uV
)
226 *max_uV
= rdev
->constraints
->max_uV
;
227 if (*min_uV
< rdev
->constraints
->min_uV
)
228 *min_uV
= rdev
->constraints
->min_uV
;
230 if (*min_uV
> *max_uV
) {
231 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
239 /* Make sure we select a voltage that suits the needs of all
240 * regulator consumers
242 static int regulator_check_consumers(struct regulator_dev
*rdev
,
243 int *min_uV
, int *max_uV
)
245 struct regulator
*regulator
;
247 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
249 * Assume consumers that didn't say anything are OK
250 * with anything in the constraint range.
252 if (!regulator
->min_uV
&& !regulator
->max_uV
)
255 if (*max_uV
> regulator
->max_uV
)
256 *max_uV
= regulator
->max_uV
;
257 if (*min_uV
< regulator
->min_uV
)
258 *min_uV
= regulator
->min_uV
;
261 if (*min_uV
> *max_uV
) {
262 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
270 /* current constraint check */
271 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
272 int *min_uA
, int *max_uA
)
274 BUG_ON(*min_uA
> *max_uA
);
276 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_CURRENT
)) {
277 rdev_err(rdev
, "current operation not allowed\n");
281 if (*max_uA
> rdev
->constraints
->max_uA
)
282 *max_uA
= rdev
->constraints
->max_uA
;
283 if (*min_uA
< rdev
->constraints
->min_uA
)
284 *min_uA
= rdev
->constraints
->min_uA
;
286 if (*min_uA
> *max_uA
) {
287 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
295 /* operating mode constraint check */
296 static int regulator_mode_constrain(struct regulator_dev
*rdev
,
300 case REGULATOR_MODE_FAST
:
301 case REGULATOR_MODE_NORMAL
:
302 case REGULATOR_MODE_IDLE
:
303 case REGULATOR_MODE_STANDBY
:
306 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
310 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_MODE
)) {
311 rdev_err(rdev
, "mode operation not allowed\n");
315 /* The modes are bitmasks, the most power hungry modes having
316 * the lowest values. If the requested mode isn't supported
317 * try higher modes. */
319 if (rdev
->constraints
->valid_modes_mask
& *mode
)
327 static ssize_t
regulator_uV_show(struct device
*dev
,
328 struct device_attribute
*attr
, char *buf
)
330 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
333 mutex_lock(&rdev
->mutex
);
334 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
335 mutex_unlock(&rdev
->mutex
);
339 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
341 static ssize_t
regulator_uA_show(struct device
*dev
,
342 struct device_attribute
*attr
, char *buf
)
344 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
346 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
348 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
350 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
353 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
355 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
357 static DEVICE_ATTR_RO(name
);
359 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
362 case REGULATOR_MODE_FAST
:
363 return sprintf(buf
, "fast\n");
364 case REGULATOR_MODE_NORMAL
:
365 return sprintf(buf
, "normal\n");
366 case REGULATOR_MODE_IDLE
:
367 return sprintf(buf
, "idle\n");
368 case REGULATOR_MODE_STANDBY
:
369 return sprintf(buf
, "standby\n");
371 return sprintf(buf
, "unknown\n");
374 static ssize_t
regulator_opmode_show(struct device
*dev
,
375 struct device_attribute
*attr
, char *buf
)
377 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
379 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
381 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
383 static ssize_t
regulator_print_state(char *buf
, int state
)
386 return sprintf(buf
, "enabled\n");
388 return sprintf(buf
, "disabled\n");
390 return sprintf(buf
, "unknown\n");
393 static ssize_t
regulator_state_show(struct device
*dev
,
394 struct device_attribute
*attr
, char *buf
)
396 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
399 mutex_lock(&rdev
->mutex
);
400 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
401 mutex_unlock(&rdev
->mutex
);
405 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
407 static ssize_t
regulator_status_show(struct device
*dev
,
408 struct device_attribute
*attr
, char *buf
)
410 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
414 status
= rdev
->desc
->ops
->get_status(rdev
);
419 case REGULATOR_STATUS_OFF
:
422 case REGULATOR_STATUS_ON
:
425 case REGULATOR_STATUS_ERROR
:
428 case REGULATOR_STATUS_FAST
:
431 case REGULATOR_STATUS_NORMAL
:
434 case REGULATOR_STATUS_IDLE
:
437 case REGULATOR_STATUS_STANDBY
:
440 case REGULATOR_STATUS_BYPASS
:
443 case REGULATOR_STATUS_UNDEFINED
:
450 return sprintf(buf
, "%s\n", label
);
452 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
454 static ssize_t
regulator_min_uA_show(struct device
*dev
,
455 struct device_attribute
*attr
, char *buf
)
457 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
459 if (!rdev
->constraints
)
460 return sprintf(buf
, "constraint not defined\n");
462 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
464 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
466 static ssize_t
regulator_max_uA_show(struct device
*dev
,
467 struct device_attribute
*attr
, char *buf
)
469 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
471 if (!rdev
->constraints
)
472 return sprintf(buf
, "constraint not defined\n");
474 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
476 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
478 static ssize_t
regulator_min_uV_show(struct device
*dev
,
479 struct device_attribute
*attr
, char *buf
)
481 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
483 if (!rdev
->constraints
)
484 return sprintf(buf
, "constraint not defined\n");
486 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
488 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
490 static ssize_t
regulator_max_uV_show(struct device
*dev
,
491 struct device_attribute
*attr
, char *buf
)
493 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
495 if (!rdev
->constraints
)
496 return sprintf(buf
, "constraint not defined\n");
498 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
500 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
502 static ssize_t
regulator_total_uA_show(struct device
*dev
,
503 struct device_attribute
*attr
, char *buf
)
505 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
506 struct regulator
*regulator
;
509 mutex_lock(&rdev
->mutex
);
510 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
511 uA
+= regulator
->uA_load
;
512 mutex_unlock(&rdev
->mutex
);
513 return sprintf(buf
, "%d\n", uA
);
515 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
517 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
520 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
521 return sprintf(buf
, "%d\n", rdev
->use_count
);
523 static DEVICE_ATTR_RO(num_users
);
525 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
528 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
530 switch (rdev
->desc
->type
) {
531 case REGULATOR_VOLTAGE
:
532 return sprintf(buf
, "voltage\n");
533 case REGULATOR_CURRENT
:
534 return sprintf(buf
, "current\n");
536 return sprintf(buf
, "unknown\n");
538 static DEVICE_ATTR_RO(type
);
540 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
541 struct device_attribute
*attr
, char *buf
)
543 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
545 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
547 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
548 regulator_suspend_mem_uV_show
, NULL
);
550 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
551 struct device_attribute
*attr
, char *buf
)
553 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
555 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
557 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
558 regulator_suspend_disk_uV_show
, NULL
);
560 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
561 struct device_attribute
*attr
, char *buf
)
563 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
565 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
567 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
568 regulator_suspend_standby_uV_show
, NULL
);
570 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
571 struct device_attribute
*attr
, char *buf
)
573 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
575 return regulator_print_opmode(buf
,
576 rdev
->constraints
->state_mem
.mode
);
578 static DEVICE_ATTR(suspend_mem_mode
, 0444,
579 regulator_suspend_mem_mode_show
, NULL
);
581 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
582 struct device_attribute
*attr
, char *buf
)
584 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
586 return regulator_print_opmode(buf
,
587 rdev
->constraints
->state_disk
.mode
);
589 static DEVICE_ATTR(suspend_disk_mode
, 0444,
590 regulator_suspend_disk_mode_show
, NULL
);
592 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
593 struct device_attribute
*attr
, char *buf
)
595 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
597 return regulator_print_opmode(buf
,
598 rdev
->constraints
->state_standby
.mode
);
600 static DEVICE_ATTR(suspend_standby_mode
, 0444,
601 regulator_suspend_standby_mode_show
, NULL
);
603 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
604 struct device_attribute
*attr
, char *buf
)
606 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
608 return regulator_print_state(buf
,
609 rdev
->constraints
->state_mem
.enabled
);
611 static DEVICE_ATTR(suspend_mem_state
, 0444,
612 regulator_suspend_mem_state_show
, NULL
);
614 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
615 struct device_attribute
*attr
, char *buf
)
617 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
619 return regulator_print_state(buf
,
620 rdev
->constraints
->state_disk
.enabled
);
622 static DEVICE_ATTR(suspend_disk_state
, 0444,
623 regulator_suspend_disk_state_show
, NULL
);
625 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
626 struct device_attribute
*attr
, char *buf
)
628 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
630 return regulator_print_state(buf
,
631 rdev
->constraints
->state_standby
.enabled
);
633 static DEVICE_ATTR(suspend_standby_state
, 0444,
634 regulator_suspend_standby_state_show
, NULL
);
636 static ssize_t
regulator_bypass_show(struct device
*dev
,
637 struct device_attribute
*attr
, char *buf
)
639 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
644 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
653 return sprintf(buf
, "%s\n", report
);
655 static DEVICE_ATTR(bypass
, 0444,
656 regulator_bypass_show
, NULL
);
658 /* Calculate the new optimum regulator operating mode based on the new total
659 * consumer load. All locks held by caller */
660 static int drms_uA_update(struct regulator_dev
*rdev
)
662 struct regulator
*sibling
;
663 int current_uA
= 0, output_uV
, input_uV
, err
;
666 lockdep_assert_held_once(&rdev
->mutex
);
669 * first check to see if we can set modes at all, otherwise just
670 * tell the consumer everything is OK.
672 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
675 if (!rdev
->desc
->ops
->get_optimum_mode
&&
676 !rdev
->desc
->ops
->set_load
)
679 if (!rdev
->desc
->ops
->set_mode
&&
680 !rdev
->desc
->ops
->set_load
)
683 /* calc total requested load */
684 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
685 current_uA
+= sibling
->uA_load
;
687 current_uA
+= rdev
->constraints
->system_load
;
689 if (rdev
->desc
->ops
->set_load
) {
690 /* set the optimum mode for our new total regulator load */
691 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
693 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
695 /* get output voltage */
696 output_uV
= _regulator_get_voltage(rdev
);
697 if (output_uV
<= 0) {
698 rdev_err(rdev
, "invalid output voltage found\n");
702 /* get input voltage */
705 input_uV
= regulator_get_voltage(rdev
->supply
);
707 input_uV
= rdev
->constraints
->input_uV
;
709 rdev_err(rdev
, "invalid input voltage found\n");
713 /* now get the optimum mode for our new total regulator load */
714 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
715 output_uV
, current_uA
);
717 /* check the new mode is allowed */
718 err
= regulator_mode_constrain(rdev
, &mode
);
720 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
721 current_uA
, input_uV
, output_uV
);
725 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
727 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
733 static int suspend_set_state(struct regulator_dev
*rdev
,
734 struct regulator_state
*rstate
)
738 /* If we have no suspend mode configration don't set anything;
739 * only warn if the driver implements set_suspend_voltage or
740 * set_suspend_mode callback.
742 if (!rstate
->enabled
&& !rstate
->disabled
) {
743 if (rdev
->desc
->ops
->set_suspend_voltage
||
744 rdev
->desc
->ops
->set_suspend_mode
)
745 rdev_warn(rdev
, "No configuration\n");
749 if (rstate
->enabled
&& rstate
->disabled
) {
750 rdev_err(rdev
, "invalid configuration\n");
754 if (rstate
->enabled
&& rdev
->desc
->ops
->set_suspend_enable
)
755 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
756 else if (rstate
->disabled
&& rdev
->desc
->ops
->set_suspend_disable
)
757 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
758 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
762 rdev_err(rdev
, "failed to enabled/disable\n");
766 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
767 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
769 rdev_err(rdev
, "failed to set voltage\n");
774 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
775 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
777 rdev_err(rdev
, "failed to set mode\n");
784 /* locks held by caller */
785 static int suspend_prepare(struct regulator_dev
*rdev
, suspend_state_t state
)
787 if (!rdev
->constraints
)
791 case PM_SUSPEND_STANDBY
:
792 return suspend_set_state(rdev
,
793 &rdev
->constraints
->state_standby
);
795 return suspend_set_state(rdev
,
796 &rdev
->constraints
->state_mem
);
798 return suspend_set_state(rdev
,
799 &rdev
->constraints
->state_disk
);
805 static void print_constraints(struct regulator_dev
*rdev
)
807 struct regulation_constraints
*constraints
= rdev
->constraints
;
809 size_t len
= sizeof(buf
) - 1;
813 if (constraints
->min_uV
&& constraints
->max_uV
) {
814 if (constraints
->min_uV
== constraints
->max_uV
)
815 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
816 constraints
->min_uV
/ 1000);
818 count
+= scnprintf(buf
+ count
, len
- count
,
820 constraints
->min_uV
/ 1000,
821 constraints
->max_uV
/ 1000);
824 if (!constraints
->min_uV
||
825 constraints
->min_uV
!= constraints
->max_uV
) {
826 ret
= _regulator_get_voltage(rdev
);
828 count
+= scnprintf(buf
+ count
, len
- count
,
829 "at %d mV ", ret
/ 1000);
832 if (constraints
->uV_offset
)
833 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
834 constraints
->uV_offset
/ 1000);
836 if (constraints
->min_uA
&& constraints
->max_uA
) {
837 if (constraints
->min_uA
== constraints
->max_uA
)
838 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
839 constraints
->min_uA
/ 1000);
841 count
+= scnprintf(buf
+ count
, len
- count
,
843 constraints
->min_uA
/ 1000,
844 constraints
->max_uA
/ 1000);
847 if (!constraints
->min_uA
||
848 constraints
->min_uA
!= constraints
->max_uA
) {
849 ret
= _regulator_get_current_limit(rdev
);
851 count
+= scnprintf(buf
+ count
, len
- count
,
852 "at %d mA ", ret
/ 1000);
855 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
856 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
857 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
858 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
859 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
860 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
861 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
862 count
+= scnprintf(buf
+ count
, len
- count
, "standby");
865 scnprintf(buf
, len
, "no parameters");
867 rdev_dbg(rdev
, "%s\n", buf
);
869 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
870 !regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
))
872 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
875 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
876 struct regulation_constraints
*constraints
)
878 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
881 /* do we need to apply the constraint voltage */
882 if (rdev
->constraints
->apply_uV
&&
883 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
) {
884 int target_min
, target_max
;
885 int current_uV
= _regulator_get_voltage(rdev
);
886 if (current_uV
< 0) {
888 "failed to get the current voltage(%d)\n",
894 * If we're below the minimum voltage move up to the
895 * minimum voltage, if we're above the maximum voltage
896 * then move down to the maximum.
898 target_min
= current_uV
;
899 target_max
= current_uV
;
901 if (current_uV
< rdev
->constraints
->min_uV
) {
902 target_min
= rdev
->constraints
->min_uV
;
903 target_max
= rdev
->constraints
->min_uV
;
906 if (current_uV
> rdev
->constraints
->max_uV
) {
907 target_min
= rdev
->constraints
->max_uV
;
908 target_max
= rdev
->constraints
->max_uV
;
911 if (target_min
!= current_uV
|| target_max
!= current_uV
) {
912 rdev_info(rdev
, "Bringing %duV into %d-%duV\n",
913 current_uV
, target_min
, target_max
);
914 ret
= _regulator_do_set_voltage(
915 rdev
, target_min
, target_max
);
918 "failed to apply %d-%duV constraint(%d)\n",
919 target_min
, target_max
, ret
);
925 /* constrain machine-level voltage specs to fit
926 * the actual range supported by this regulator.
928 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
929 int count
= rdev
->desc
->n_voltages
;
931 int min_uV
= INT_MAX
;
932 int max_uV
= INT_MIN
;
933 int cmin
= constraints
->min_uV
;
934 int cmax
= constraints
->max_uV
;
936 /* it's safe to autoconfigure fixed-voltage supplies
937 and the constraints are used by list_voltage. */
938 if (count
== 1 && !cmin
) {
941 constraints
->min_uV
= cmin
;
942 constraints
->max_uV
= cmax
;
945 /* voltage constraints are optional */
946 if ((cmin
== 0) && (cmax
== 0))
949 /* else require explicit machine-level constraints */
950 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
951 rdev_err(rdev
, "invalid voltage constraints\n");
955 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
956 for (i
= 0; i
< count
; i
++) {
959 value
= ops
->list_voltage(rdev
, i
);
963 /* maybe adjust [min_uV..max_uV] */
964 if (value
>= cmin
&& value
< min_uV
)
966 if (value
<= cmax
&& value
> max_uV
)
970 /* final: [min_uV..max_uV] valid iff constraints valid */
971 if (max_uV
< min_uV
) {
973 "unsupportable voltage constraints %u-%uuV\n",
978 /* use regulator's subset of machine constraints */
979 if (constraints
->min_uV
< min_uV
) {
980 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
981 constraints
->min_uV
, min_uV
);
982 constraints
->min_uV
= min_uV
;
984 if (constraints
->max_uV
> max_uV
) {
985 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
986 constraints
->max_uV
, max_uV
);
987 constraints
->max_uV
= max_uV
;
994 static int machine_constraints_current(struct regulator_dev
*rdev
,
995 struct regulation_constraints
*constraints
)
997 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1000 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1003 if (constraints
->min_uA
> constraints
->max_uA
) {
1004 rdev_err(rdev
, "Invalid current constraints\n");
1008 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1009 rdev_warn(rdev
, "Operation of current configuration missing\n");
1013 /* Set regulator current in constraints range */
1014 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1015 constraints
->max_uA
);
1017 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1024 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1027 * set_machine_constraints - sets regulator constraints
1028 * @rdev: regulator source
1029 * @constraints: constraints to apply
1031 * Allows platform initialisation code to define and constrain
1032 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1033 * Constraints *must* be set by platform code in order for some
1034 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1037 static int set_machine_constraints(struct regulator_dev
*rdev
,
1038 const struct regulation_constraints
*constraints
)
1041 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1044 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
1047 rdev
->constraints
= kzalloc(sizeof(*constraints
),
1049 if (!rdev
->constraints
)
1052 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1056 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1060 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1061 ret
= ops
->set_input_current_limit(rdev
,
1062 rdev
->constraints
->ilim_uA
);
1064 rdev_err(rdev
, "failed to set input limit\n");
1069 /* do we need to setup our suspend state */
1070 if (rdev
->constraints
->initial_state
) {
1071 ret
= suspend_prepare(rdev
, rdev
->constraints
->initial_state
);
1073 rdev_err(rdev
, "failed to set suspend state\n");
1078 if (rdev
->constraints
->initial_mode
) {
1079 if (!ops
->set_mode
) {
1080 rdev_err(rdev
, "no set_mode operation\n");
1084 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1086 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1091 /* If the constraints say the regulator should be on at this point
1092 * and we have control then make sure it is enabled.
1094 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1095 ret
= _regulator_do_enable(rdev
);
1096 if (ret
< 0 && ret
!= -EINVAL
) {
1097 rdev_err(rdev
, "failed to enable\n");
1102 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1103 && ops
->set_ramp_delay
) {
1104 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1106 rdev_err(rdev
, "failed to set ramp_delay\n");
1111 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1112 ret
= ops
->set_pull_down(rdev
);
1114 rdev_err(rdev
, "failed to set pull down\n");
1119 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1120 ret
= ops
->set_soft_start(rdev
);
1122 rdev_err(rdev
, "failed to set soft start\n");
1127 if (rdev
->constraints
->over_current_protection
1128 && ops
->set_over_current_protection
) {
1129 ret
= ops
->set_over_current_protection(rdev
);
1131 rdev_err(rdev
, "failed to set over current protection\n");
1136 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1137 bool ad_state
= (rdev
->constraints
->active_discharge
==
1138 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1140 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1142 rdev_err(rdev
, "failed to set active discharge\n");
1147 print_constraints(rdev
);
1152 * set_supply - set regulator supply regulator
1153 * @rdev: regulator name
1154 * @supply_rdev: supply regulator name
1156 * Called by platform initialisation code to set the supply regulator for this
1157 * regulator. This ensures that a regulators supply will also be enabled by the
1158 * core if it's child is enabled.
1160 static int set_supply(struct regulator_dev
*rdev
,
1161 struct regulator_dev
*supply_rdev
)
1165 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1167 if (!try_module_get(supply_rdev
->owner
))
1170 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1171 if (rdev
->supply
== NULL
) {
1175 supply_rdev
->open_count
++;
1181 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1182 * @rdev: regulator source
1183 * @consumer_dev_name: dev_name() string for device supply applies to
1184 * @supply: symbolic name for supply
1186 * Allows platform initialisation code to map physical regulator
1187 * sources to symbolic names for supplies for use by devices. Devices
1188 * should use these symbolic names to request regulators, avoiding the
1189 * need to provide board-specific regulator names as platform data.
1191 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1192 const char *consumer_dev_name
,
1195 struct regulator_map
*node
;
1201 if (consumer_dev_name
!= NULL
)
1206 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1207 if (node
->dev_name
&& consumer_dev_name
) {
1208 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1210 } else if (node
->dev_name
|| consumer_dev_name
) {
1214 if (strcmp(node
->supply
, supply
) != 0)
1217 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1219 dev_name(&node
->regulator
->dev
),
1220 node
->regulator
->desc
->name
,
1222 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1226 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1230 node
->regulator
= rdev
;
1231 node
->supply
= supply
;
1234 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1235 if (node
->dev_name
== NULL
) {
1241 list_add(&node
->list
, ®ulator_map_list
);
1245 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1247 struct regulator_map
*node
, *n
;
1249 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1250 if (rdev
== node
->regulator
) {
1251 list_del(&node
->list
);
1252 kfree(node
->dev_name
);
1258 #ifdef CONFIG_DEBUG_FS
1259 static ssize_t
constraint_flags_read_file(struct file
*file
,
1260 char __user
*user_buf
,
1261 size_t count
, loff_t
*ppos
)
1263 const struct regulator
*regulator
= file
->private_data
;
1264 const struct regulation_constraints
*c
= regulator
->rdev
->constraints
;
1271 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1275 ret
= snprintf(buf
, PAGE_SIZE
,
1279 "ramp_disable: %u\n"
1282 "over_current_protection: %u\n",
1289 c
->over_current_protection
);
1291 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
1299 static const struct file_operations constraint_flags_fops
= {
1300 #ifdef CONFIG_DEBUG_FS
1301 .open
= simple_open
,
1302 .read
= constraint_flags_read_file
,
1303 .llseek
= default_llseek
,
1307 #define REG_STR_SIZE 64
1309 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1311 const char *supply_name
)
1313 struct regulator
*regulator
;
1314 char buf
[REG_STR_SIZE
];
1317 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1318 if (regulator
== NULL
)
1321 mutex_lock(&rdev
->mutex
);
1322 regulator
->rdev
= rdev
;
1323 list_add(®ulator
->list
, &rdev
->consumer_list
);
1326 regulator
->dev
= dev
;
1328 /* Add a link to the device sysfs entry */
1329 size
= snprintf(buf
, REG_STR_SIZE
, "%s-%s",
1330 dev
->kobj
.name
, supply_name
);
1331 if (size
>= REG_STR_SIZE
)
1334 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1335 if (regulator
->supply_name
== NULL
)
1338 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1341 rdev_dbg(rdev
, "could not add device link %s err %d\n",
1342 dev
->kobj
.name
, err
);
1346 regulator
->supply_name
= kstrdup_const(supply_name
, GFP_KERNEL
);
1347 if (regulator
->supply_name
== NULL
)
1351 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1353 if (!regulator
->debugfs
) {
1354 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1356 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1357 ®ulator
->uA_load
);
1358 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1359 ®ulator
->min_uV
);
1360 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1361 ®ulator
->max_uV
);
1362 debugfs_create_file("constraint_flags", 0444,
1363 regulator
->debugfs
, regulator
,
1364 &constraint_flags_fops
);
1368 * Check now if the regulator is an always on regulator - if
1369 * it is then we don't need to do nearly so much work for
1370 * enable/disable calls.
1372 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
) &&
1373 _regulator_is_enabled(rdev
))
1374 regulator
->always_on
= true;
1376 mutex_unlock(&rdev
->mutex
);
1379 list_del(®ulator
->list
);
1381 mutex_unlock(&rdev
->mutex
);
1385 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1387 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1388 return rdev
->constraints
->enable_time
;
1389 if (!rdev
->desc
->ops
->enable_time
)
1390 return rdev
->desc
->enable_time
;
1391 return rdev
->desc
->ops
->enable_time(rdev
);
1394 static struct regulator_supply_alias
*regulator_find_supply_alias(
1395 struct device
*dev
, const char *supply
)
1397 struct regulator_supply_alias
*map
;
1399 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1400 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1406 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1408 struct regulator_supply_alias
*map
;
1410 map
= regulator_find_supply_alias(*dev
, *supply
);
1412 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1413 *supply
, map
->alias_supply
,
1414 dev_name(map
->alias_dev
));
1415 *dev
= map
->alias_dev
;
1416 *supply
= map
->alias_supply
;
1420 static int of_node_match(struct device
*dev
, const void *data
)
1422 return dev
->of_node
== data
;
1425 static struct regulator_dev
*of_find_regulator_by_node(struct device_node
*np
)
1429 dev
= class_find_device(®ulator_class
, NULL
, np
, of_node_match
);
1431 return dev
? dev_to_rdev(dev
) : NULL
;
1434 static int regulator_match(struct device
*dev
, const void *data
)
1436 struct regulator_dev
*r
= dev_to_rdev(dev
);
1438 return strcmp(rdev_get_name(r
), data
) == 0;
1441 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1445 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1447 return dev
? dev_to_rdev(dev
) : NULL
;
1451 * regulator_dev_lookup - lookup a regulator device.
1452 * @dev: device for regulator "consumer".
1453 * @supply: Supply name or regulator ID.
1455 * If successful, returns a struct regulator_dev that corresponds to the name
1456 * @supply and with the embedded struct device refcount incremented by one.
1457 * The refcount must be dropped by calling put_device().
1458 * On failure one of the following ERR-PTR-encoded values is returned:
1459 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1462 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1465 struct regulator_dev
*r
= NULL
;
1466 struct device_node
*node
;
1467 struct regulator_map
*map
;
1468 const char *devname
= NULL
;
1470 regulator_supply_alias(&dev
, &supply
);
1472 /* first do a dt based lookup */
1473 if (dev
&& dev
->of_node
) {
1474 node
= of_get_regulator(dev
, supply
);
1476 r
= of_find_regulator_by_node(node
);
1481 * We have a node, but there is no device.
1482 * assume it has not registered yet.
1484 return ERR_PTR(-EPROBE_DEFER
);
1488 /* if not found, try doing it non-dt way */
1490 devname
= dev_name(dev
);
1492 mutex_lock(®ulator_list_mutex
);
1493 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1494 /* If the mapping has a device set up it must match */
1495 if (map
->dev_name
&&
1496 (!devname
|| strcmp(map
->dev_name
, devname
)))
1499 if (strcmp(map
->supply
, supply
) == 0 &&
1500 get_device(&map
->regulator
->dev
)) {
1505 mutex_unlock(®ulator_list_mutex
);
1510 r
= regulator_lookup_by_name(supply
);
1514 return ERR_PTR(-ENODEV
);
1517 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1519 struct regulator_dev
*r
;
1520 struct device
*dev
= rdev
->dev
.parent
;
1523 /* No supply to resovle? */
1524 if (!rdev
->supply_name
)
1527 /* Supply already resolved? */
1531 r
= regulator_dev_lookup(dev
, rdev
->supply_name
);
1535 /* Did the lookup explicitly defer for us? */
1536 if (ret
== -EPROBE_DEFER
)
1539 if (have_full_constraints()) {
1540 r
= dummy_regulator_rdev
;
1541 get_device(&r
->dev
);
1543 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1544 rdev
->supply_name
, rdev
->desc
->name
);
1545 return -EPROBE_DEFER
;
1550 * If the supply's parent device is not the same as the
1551 * regulator's parent device, then ensure the parent device
1552 * is bound before we resolve the supply, in case the parent
1553 * device get probe deferred and unregisters the supply.
1555 if (r
->dev
.parent
&& r
->dev
.parent
!= rdev
->dev
.parent
) {
1556 if (!device_is_bound(r
->dev
.parent
)) {
1557 put_device(&r
->dev
);
1558 return -EPROBE_DEFER
;
1562 /* Recursively resolve the supply of the supply */
1563 ret
= regulator_resolve_supply(r
);
1565 put_device(&r
->dev
);
1569 ret
= set_supply(rdev
, r
);
1571 put_device(&r
->dev
);
1575 /* Cascade always-on state to supply */
1576 if (_regulator_is_enabled(rdev
)) {
1577 ret
= regulator_enable(rdev
->supply
);
1579 _regulator_put(rdev
->supply
);
1580 rdev
->supply
= NULL
;
1588 /* Internal regulator request function */
1589 struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1590 enum regulator_get_type get_type
)
1592 struct regulator_dev
*rdev
;
1593 struct regulator
*regulator
;
1594 const char *devname
= dev
? dev_name(dev
) : "deviceless";
1597 if (get_type
>= MAX_GET_TYPE
) {
1598 dev_err(dev
, "invalid type %d in %s\n", get_type
, __func__
);
1599 return ERR_PTR(-EINVAL
);
1603 pr_err("get() with no identifier\n");
1604 return ERR_PTR(-EINVAL
);
1607 rdev
= regulator_dev_lookup(dev
, id
);
1609 ret
= PTR_ERR(rdev
);
1612 * If regulator_dev_lookup() fails with error other
1613 * than -ENODEV our job here is done, we simply return it.
1616 return ERR_PTR(ret
);
1618 if (!have_full_constraints()) {
1620 "incomplete constraints, dummy supplies not allowed\n");
1621 return ERR_PTR(-ENODEV
);
1627 * Assume that a regulator is physically present and
1628 * enabled, even if it isn't hooked up, and just
1632 "%s supply %s not found, using dummy regulator\n",
1634 rdev
= dummy_regulator_rdev
;
1635 get_device(&rdev
->dev
);
1640 "dummy supplies not allowed for exclusive requests\n");
1644 return ERR_PTR(-ENODEV
);
1648 if (rdev
->exclusive
) {
1649 regulator
= ERR_PTR(-EPERM
);
1650 put_device(&rdev
->dev
);
1654 if (get_type
== EXCLUSIVE_GET
&& rdev
->open_count
) {
1655 regulator
= ERR_PTR(-EBUSY
);
1656 put_device(&rdev
->dev
);
1660 ret
= regulator_resolve_supply(rdev
);
1662 regulator
= ERR_PTR(ret
);
1663 put_device(&rdev
->dev
);
1667 if (!try_module_get(rdev
->owner
)) {
1668 regulator
= ERR_PTR(-EPROBE_DEFER
);
1669 put_device(&rdev
->dev
);
1673 regulator
= create_regulator(rdev
, dev
, id
);
1674 if (regulator
== NULL
) {
1675 regulator
= ERR_PTR(-ENOMEM
);
1676 put_device(&rdev
->dev
);
1677 module_put(rdev
->owner
);
1682 if (get_type
== EXCLUSIVE_GET
) {
1683 rdev
->exclusive
= 1;
1685 ret
= _regulator_is_enabled(rdev
);
1687 rdev
->use_count
= 1;
1689 rdev
->use_count
= 0;
1696 * regulator_get - lookup and obtain a reference to a regulator.
1697 * @dev: device for regulator "consumer"
1698 * @id: Supply name or regulator ID.
1700 * Returns a struct regulator corresponding to the regulator producer,
1701 * or IS_ERR() condition containing errno.
1703 * Use of supply names configured via regulator_set_device_supply() is
1704 * strongly encouraged. It is recommended that the supply name used
1705 * should match the name used for the supply and/or the relevant
1706 * device pins in the datasheet.
1708 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1710 return _regulator_get(dev
, id
, NORMAL_GET
);
1712 EXPORT_SYMBOL_GPL(regulator_get
);
1715 * regulator_get_exclusive - obtain exclusive access to a regulator.
1716 * @dev: device for regulator "consumer"
1717 * @id: Supply name or regulator ID.
1719 * Returns a struct regulator corresponding to the regulator producer,
1720 * or IS_ERR() condition containing errno. Other consumers will be
1721 * unable to obtain this regulator while this reference is held and the
1722 * use count for the regulator will be initialised to reflect the current
1723 * state of the regulator.
1725 * This is intended for use by consumers which cannot tolerate shared
1726 * use of the regulator such as those which need to force the
1727 * regulator off for correct operation of the hardware they are
1730 * Use of supply names configured via regulator_set_device_supply() is
1731 * strongly encouraged. It is recommended that the supply name used
1732 * should match the name used for the supply and/or the relevant
1733 * device pins in the datasheet.
1735 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1737 return _regulator_get(dev
, id
, EXCLUSIVE_GET
);
1739 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1742 * regulator_get_optional - obtain optional access to a regulator.
1743 * @dev: device for regulator "consumer"
1744 * @id: Supply name or regulator ID.
1746 * Returns a struct regulator corresponding to the regulator producer,
1747 * or IS_ERR() condition containing errno.
1749 * This is intended for use by consumers for devices which can have
1750 * some supplies unconnected in normal use, such as some MMC devices.
1751 * It can allow the regulator core to provide stub supplies for other
1752 * supplies requested using normal regulator_get() calls without
1753 * disrupting the operation of drivers that can handle absent
1756 * Use of supply names configured via regulator_set_device_supply() is
1757 * strongly encouraged. It is recommended that the supply name used
1758 * should match the name used for the supply and/or the relevant
1759 * device pins in the datasheet.
1761 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1763 return _regulator_get(dev
, id
, OPTIONAL_GET
);
1765 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1767 /* regulator_list_mutex lock held by regulator_put() */
1768 static void _regulator_put(struct regulator
*regulator
)
1770 struct regulator_dev
*rdev
;
1772 if (IS_ERR_OR_NULL(regulator
))
1775 lockdep_assert_held_once(®ulator_list_mutex
);
1777 rdev
= regulator
->rdev
;
1779 debugfs_remove_recursive(regulator
->debugfs
);
1781 /* remove any sysfs entries */
1783 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1784 mutex_lock(&rdev
->mutex
);
1785 list_del(®ulator
->list
);
1788 rdev
->exclusive
= 0;
1789 put_device(&rdev
->dev
);
1790 mutex_unlock(&rdev
->mutex
);
1792 kfree_const(regulator
->supply_name
);
1795 module_put(rdev
->owner
);
1799 * regulator_put - "free" the regulator source
1800 * @regulator: regulator source
1802 * Note: drivers must ensure that all regulator_enable calls made on this
1803 * regulator source are balanced by regulator_disable calls prior to calling
1806 void regulator_put(struct regulator
*regulator
)
1808 mutex_lock(®ulator_list_mutex
);
1809 _regulator_put(regulator
);
1810 mutex_unlock(®ulator_list_mutex
);
1812 EXPORT_SYMBOL_GPL(regulator_put
);
1815 * regulator_register_supply_alias - Provide device alias for supply lookup
1817 * @dev: device that will be given as the regulator "consumer"
1818 * @id: Supply name or regulator ID
1819 * @alias_dev: device that should be used to lookup the supply
1820 * @alias_id: Supply name or regulator ID that should be used to lookup the
1823 * All lookups for id on dev will instead be conducted for alias_id on
1826 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
1827 struct device
*alias_dev
,
1828 const char *alias_id
)
1830 struct regulator_supply_alias
*map
;
1832 map
= regulator_find_supply_alias(dev
, id
);
1836 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
1841 map
->src_supply
= id
;
1842 map
->alias_dev
= alias_dev
;
1843 map
->alias_supply
= alias_id
;
1845 list_add(&map
->list
, ®ulator_supply_alias_list
);
1847 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1848 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
1852 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
1855 * regulator_unregister_supply_alias - Remove device alias
1857 * @dev: device that will be given as the regulator "consumer"
1858 * @id: Supply name or regulator ID
1860 * Remove a lookup alias if one exists for id on dev.
1862 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
1864 struct regulator_supply_alias
*map
;
1866 map
= regulator_find_supply_alias(dev
, id
);
1868 list_del(&map
->list
);
1872 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
1875 * regulator_bulk_register_supply_alias - register multiple aliases
1877 * @dev: device that will be given as the regulator "consumer"
1878 * @id: List of supply names or regulator IDs
1879 * @alias_dev: device that should be used to lookup the supply
1880 * @alias_id: List of supply names or regulator IDs that should be used to
1882 * @num_id: Number of aliases to register
1884 * @return 0 on success, an errno on failure.
1886 * This helper function allows drivers to register several supply
1887 * aliases in one operation. If any of the aliases cannot be
1888 * registered any aliases that were registered will be removed
1889 * before returning to the caller.
1891 int regulator_bulk_register_supply_alias(struct device
*dev
,
1892 const char *const *id
,
1893 struct device
*alias_dev
,
1894 const char *const *alias_id
,
1900 for (i
= 0; i
< num_id
; ++i
) {
1901 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
1911 "Failed to create supply alias %s,%s -> %s,%s\n",
1912 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
1915 regulator_unregister_supply_alias(dev
, id
[i
]);
1919 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
1922 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1924 * @dev: device that will be given as the regulator "consumer"
1925 * @id: List of supply names or regulator IDs
1926 * @num_id: Number of aliases to unregister
1928 * This helper function allows drivers to unregister several supply
1929 * aliases in one operation.
1931 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
1932 const char *const *id
,
1937 for (i
= 0; i
< num_id
; ++i
)
1938 regulator_unregister_supply_alias(dev
, id
[i
]);
1940 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
1943 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1944 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1945 const struct regulator_config
*config
)
1947 struct regulator_enable_gpio
*pin
;
1948 struct gpio_desc
*gpiod
;
1951 gpiod
= gpio_to_desc(config
->ena_gpio
);
1953 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
1954 if (pin
->gpiod
== gpiod
) {
1955 rdev_dbg(rdev
, "GPIO %d is already used\n",
1957 goto update_ena_gpio_to_rdev
;
1961 ret
= gpio_request_one(config
->ena_gpio
,
1962 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
1963 rdev_get_name(rdev
));
1967 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
1969 gpio_free(config
->ena_gpio
);
1974 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
1975 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
1977 update_ena_gpio_to_rdev
:
1978 pin
->request_count
++;
1979 rdev
->ena_pin
= pin
;
1983 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
1985 struct regulator_enable_gpio
*pin
, *n
;
1990 /* Free the GPIO only in case of no use */
1991 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
1992 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
1993 if (pin
->request_count
<= 1) {
1994 pin
->request_count
= 0;
1995 gpiod_put(pin
->gpiod
);
1996 list_del(&pin
->list
);
1998 rdev
->ena_pin
= NULL
;
2001 pin
->request_count
--;
2008 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2009 * @rdev: regulator_dev structure
2010 * @enable: enable GPIO at initial use?
2012 * GPIO is enabled in case of initial use. (enable_count is 0)
2013 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2015 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
2017 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
2023 /* Enable GPIO at initial use */
2024 if (pin
->enable_count
== 0)
2025 gpiod_set_value_cansleep(pin
->gpiod
,
2026 !pin
->ena_gpio_invert
);
2028 pin
->enable_count
++;
2030 if (pin
->enable_count
> 1) {
2031 pin
->enable_count
--;
2035 /* Disable GPIO if not used */
2036 if (pin
->enable_count
<= 1) {
2037 gpiod_set_value_cansleep(pin
->gpiod
,
2038 pin
->ena_gpio_invert
);
2039 pin
->enable_count
= 0;
2047 * _regulator_enable_delay - a delay helper function
2048 * @delay: time to delay in microseconds
2050 * Delay for the requested amount of time as per the guidelines in:
2052 * Documentation/timers/timers-howto.txt
2054 * The assumption here is that regulators will never be enabled in
2055 * atomic context and therefore sleeping functions can be used.
2057 static void _regulator_enable_delay(unsigned int delay
)
2059 unsigned int ms
= delay
/ 1000;
2060 unsigned int us
= delay
% 1000;
2064 * For small enough values, handle super-millisecond
2065 * delays in the usleep_range() call below.
2074 * Give the scheduler some room to coalesce with any other
2075 * wakeup sources. For delays shorter than 10 us, don't even
2076 * bother setting up high-resolution timers and just busy-
2080 usleep_range(us
, us
+ 100);
2085 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2089 /* Query before enabling in case configuration dependent. */
2090 ret
= _regulator_get_enable_time(rdev
);
2094 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
2098 trace_regulator_enable(rdev_get_name(rdev
));
2100 if (rdev
->desc
->off_on_delay
) {
2101 /* if needed, keep a distance of off_on_delay from last time
2102 * this regulator was disabled.
2104 unsigned long start_jiffy
= jiffies
;
2105 unsigned long intended
, max_delay
, remaining
;
2107 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
2108 intended
= rdev
->last_off_jiffy
+ max_delay
;
2110 if (time_before(start_jiffy
, intended
)) {
2111 /* calc remaining jiffies to deal with one-time
2113 * in case of multiple timer wrapping, either it can be
2114 * detected by out-of-range remaining, or it cannot be
2115 * detected and we gets a panelty of
2116 * _regulator_enable_delay().
2118 remaining
= intended
- start_jiffy
;
2119 if (remaining
<= max_delay
)
2120 _regulator_enable_delay(
2121 jiffies_to_usecs(remaining
));
2125 if (rdev
->ena_pin
) {
2126 if (!rdev
->ena_gpio_state
) {
2127 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2130 rdev
->ena_gpio_state
= 1;
2132 } else if (rdev
->desc
->ops
->enable
) {
2133 ret
= rdev
->desc
->ops
->enable(rdev
);
2140 /* Allow the regulator to ramp; it would be useful to extend
2141 * this for bulk operations so that the regulators can ramp
2143 trace_regulator_enable_delay(rdev_get_name(rdev
));
2145 _regulator_enable_delay(delay
);
2147 trace_regulator_enable_complete(rdev_get_name(rdev
));
2152 /* locks held by regulator_enable() */
2153 static int _regulator_enable(struct regulator_dev
*rdev
)
2157 lockdep_assert_held_once(&rdev
->mutex
);
2159 /* check voltage and requested load before enabling */
2160 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
2161 drms_uA_update(rdev
);
2163 if (rdev
->use_count
== 0) {
2164 /* The regulator may on if it's not switchable or left on */
2165 ret
= _regulator_is_enabled(rdev
);
2166 if (ret
== -EINVAL
|| ret
== 0) {
2167 if (!regulator_ops_is_valid(rdev
,
2168 REGULATOR_CHANGE_STATUS
))
2171 ret
= _regulator_do_enable(rdev
);
2175 _notifier_call_chain(rdev
, REGULATOR_EVENT_ENABLE
,
2177 } else if (ret
< 0) {
2178 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
2181 /* Fallthrough on positive return values - already enabled */
2190 * regulator_enable - enable regulator output
2191 * @regulator: regulator source
2193 * Request that the regulator be enabled with the regulator output at
2194 * the predefined voltage or current value. Calls to regulator_enable()
2195 * must be balanced with calls to regulator_disable().
2197 * NOTE: the output value can be set by other drivers, boot loader or may be
2198 * hardwired in the regulator.
2200 int regulator_enable(struct regulator
*regulator
)
2202 struct regulator_dev
*rdev
= regulator
->rdev
;
2205 if (regulator
->always_on
)
2209 ret
= regulator_enable(rdev
->supply
);
2214 mutex_lock(&rdev
->mutex
);
2215 ret
= _regulator_enable(rdev
);
2216 mutex_unlock(&rdev
->mutex
);
2218 if (ret
!= 0 && rdev
->supply
)
2219 regulator_disable(rdev
->supply
);
2223 EXPORT_SYMBOL_GPL(regulator_enable
);
2225 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2229 trace_regulator_disable(rdev_get_name(rdev
));
2231 if (rdev
->ena_pin
) {
2232 if (rdev
->ena_gpio_state
) {
2233 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2236 rdev
->ena_gpio_state
= 0;
2239 } else if (rdev
->desc
->ops
->disable
) {
2240 ret
= rdev
->desc
->ops
->disable(rdev
);
2245 /* cares about last_off_jiffy only if off_on_delay is required by
2248 if (rdev
->desc
->off_on_delay
)
2249 rdev
->last_off_jiffy
= jiffies
;
2251 trace_regulator_disable_complete(rdev_get_name(rdev
));
2256 /* locks held by regulator_disable() */
2257 static int _regulator_disable(struct regulator_dev
*rdev
)
2261 lockdep_assert_held_once(&rdev
->mutex
);
2263 if (WARN(rdev
->use_count
<= 0,
2264 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2267 /* are we the last user and permitted to disable ? */
2268 if (rdev
->use_count
== 1 &&
2269 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2271 /* we are last user */
2272 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
)) {
2273 ret
= _notifier_call_chain(rdev
,
2274 REGULATOR_EVENT_PRE_DISABLE
,
2276 if (ret
& NOTIFY_STOP_MASK
)
2279 ret
= _regulator_do_disable(rdev
);
2281 rdev_err(rdev
, "failed to disable\n");
2282 _notifier_call_chain(rdev
,
2283 REGULATOR_EVENT_ABORT_DISABLE
,
2287 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2291 rdev
->use_count
= 0;
2292 } else if (rdev
->use_count
> 1) {
2293 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
2294 drms_uA_update(rdev
);
2303 * regulator_disable - disable regulator output
2304 * @regulator: regulator source
2306 * Disable the regulator output voltage or current. Calls to
2307 * regulator_enable() must be balanced with calls to
2308 * regulator_disable().
2310 * NOTE: this will only disable the regulator output if no other consumer
2311 * devices have it enabled, the regulator device supports disabling and
2312 * machine constraints permit this operation.
2314 int regulator_disable(struct regulator
*regulator
)
2316 struct regulator_dev
*rdev
= regulator
->rdev
;
2319 if (regulator
->always_on
)
2322 mutex_lock(&rdev
->mutex
);
2323 ret
= _regulator_disable(rdev
);
2324 mutex_unlock(&rdev
->mutex
);
2326 if (ret
== 0 && rdev
->supply
)
2327 regulator_disable(rdev
->supply
);
2331 EXPORT_SYMBOL_GPL(regulator_disable
);
2333 /* locks held by regulator_force_disable() */
2334 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2338 lockdep_assert_held_once(&rdev
->mutex
);
2340 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2341 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2342 if (ret
& NOTIFY_STOP_MASK
)
2345 ret
= _regulator_do_disable(rdev
);
2347 rdev_err(rdev
, "failed to force disable\n");
2348 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2349 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2353 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2354 REGULATOR_EVENT_DISABLE
, NULL
);
2360 * regulator_force_disable - force disable regulator output
2361 * @regulator: regulator source
2363 * Forcibly disable the regulator output voltage or current.
2364 * NOTE: this *will* disable the regulator output even if other consumer
2365 * devices have it enabled. This should be used for situations when device
2366 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2368 int regulator_force_disable(struct regulator
*regulator
)
2370 struct regulator_dev
*rdev
= regulator
->rdev
;
2373 mutex_lock(&rdev
->mutex
);
2374 regulator
->uA_load
= 0;
2375 ret
= _regulator_force_disable(regulator
->rdev
);
2376 mutex_unlock(&rdev
->mutex
);
2379 while (rdev
->open_count
--)
2380 regulator_disable(rdev
->supply
);
2384 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2386 static void regulator_disable_work(struct work_struct
*work
)
2388 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2392 mutex_lock(&rdev
->mutex
);
2394 BUG_ON(!rdev
->deferred_disables
);
2396 count
= rdev
->deferred_disables
;
2397 rdev
->deferred_disables
= 0;
2400 * Workqueue functions queue the new work instance while the previous
2401 * work instance is being processed. Cancel the queued work instance
2402 * as the work instance under processing does the job of the queued
2405 cancel_delayed_work(&rdev
->disable_work
);
2407 for (i
= 0; i
< count
; i
++) {
2408 ret
= _regulator_disable(rdev
);
2410 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2413 mutex_unlock(&rdev
->mutex
);
2416 for (i
= 0; i
< count
; i
++) {
2417 ret
= regulator_disable(rdev
->supply
);
2420 "Supply disable failed: %d\n", ret
);
2427 * regulator_disable_deferred - disable regulator output with delay
2428 * @regulator: regulator source
2429 * @ms: miliseconds until the regulator is disabled
2431 * Execute regulator_disable() on the regulator after a delay. This
2432 * is intended for use with devices that require some time to quiesce.
2434 * NOTE: this will only disable the regulator output if no other consumer
2435 * devices have it enabled, the regulator device supports disabling and
2436 * machine constraints permit this operation.
2438 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2440 struct regulator_dev
*rdev
= regulator
->rdev
;
2442 if (regulator
->always_on
)
2446 return regulator_disable(regulator
);
2448 mutex_lock(&rdev
->mutex
);
2449 rdev
->deferred_disables
++;
2450 mod_delayed_work(system_power_efficient_wq
, &rdev
->disable_work
,
2451 msecs_to_jiffies(ms
));
2452 mutex_unlock(&rdev
->mutex
);
2456 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2458 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2460 /* A GPIO control always takes precedence */
2462 return rdev
->ena_gpio_state
;
2464 /* If we don't know then assume that the regulator is always on */
2465 if (!rdev
->desc
->ops
->is_enabled
)
2468 return rdev
->desc
->ops
->is_enabled(rdev
);
2471 static int _regulator_list_voltage(struct regulator
*regulator
,
2472 unsigned selector
, int lock
)
2474 struct regulator_dev
*rdev
= regulator
->rdev
;
2475 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2478 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2479 return rdev
->desc
->fixed_uV
;
2481 if (ops
->list_voltage
) {
2482 if (selector
>= rdev
->desc
->n_voltages
)
2485 mutex_lock(&rdev
->mutex
);
2486 ret
= ops
->list_voltage(rdev
, selector
);
2488 mutex_unlock(&rdev
->mutex
);
2489 } else if (rdev
->is_switch
&& rdev
->supply
) {
2490 ret
= _regulator_list_voltage(rdev
->supply
, selector
, lock
);
2496 if (ret
< rdev
->constraints
->min_uV
)
2498 else if (ret
> rdev
->constraints
->max_uV
)
2506 * regulator_is_enabled - is the regulator output enabled
2507 * @regulator: regulator source
2509 * Returns positive if the regulator driver backing the source/client
2510 * has requested that the device be enabled, zero if it hasn't, else a
2511 * negative errno code.
2513 * Note that the device backing this regulator handle can have multiple
2514 * users, so it might be enabled even if regulator_enable() was never
2515 * called for this particular source.
2517 int regulator_is_enabled(struct regulator
*regulator
)
2521 if (regulator
->always_on
)
2524 mutex_lock(®ulator
->rdev
->mutex
);
2525 ret
= _regulator_is_enabled(regulator
->rdev
);
2526 mutex_unlock(®ulator
->rdev
->mutex
);
2530 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2533 * regulator_count_voltages - count regulator_list_voltage() selectors
2534 * @regulator: regulator source
2536 * Returns number of selectors, or negative errno. Selectors are
2537 * numbered starting at zero, and typically correspond to bitfields
2538 * in hardware registers.
2540 int regulator_count_voltages(struct regulator
*regulator
)
2542 struct regulator_dev
*rdev
= regulator
->rdev
;
2544 if (rdev
->desc
->n_voltages
)
2545 return rdev
->desc
->n_voltages
;
2547 if (!rdev
->is_switch
|| !rdev
->supply
)
2550 return regulator_count_voltages(rdev
->supply
);
2552 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2555 * regulator_list_voltage - enumerate supported voltages
2556 * @regulator: regulator source
2557 * @selector: identify voltage to list
2558 * Context: can sleep
2560 * Returns a voltage that can be passed to @regulator_set_voltage(),
2561 * zero if this selector code can't be used on this system, or a
2564 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2566 return _regulator_list_voltage(regulator
, selector
, 1);
2568 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2571 * regulator_get_regmap - get the regulator's register map
2572 * @regulator: regulator source
2574 * Returns the register map for the given regulator, or an ERR_PTR value
2575 * if the regulator doesn't use regmap.
2577 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2579 struct regmap
*map
= regulator
->rdev
->regmap
;
2581 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2585 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2586 * @regulator: regulator source
2587 * @vsel_reg: voltage selector register, output parameter
2588 * @vsel_mask: mask for voltage selector bitfield, output parameter
2590 * Returns the hardware register offset and bitmask used for setting the
2591 * regulator voltage. This might be useful when configuring voltage-scaling
2592 * hardware or firmware that can make I2C requests behind the kernel's back,
2595 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2596 * and 0 is returned, otherwise a negative errno is returned.
2598 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2600 unsigned *vsel_mask
)
2602 struct regulator_dev
*rdev
= regulator
->rdev
;
2603 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2605 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2608 *vsel_reg
= rdev
->desc
->vsel_reg
;
2609 *vsel_mask
= rdev
->desc
->vsel_mask
;
2613 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2616 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2617 * @regulator: regulator source
2618 * @selector: identify voltage to list
2620 * Converts the selector to a hardware-specific voltage selector that can be
2621 * directly written to the regulator registers. The address of the voltage
2622 * register can be determined by calling @regulator_get_hardware_vsel_register.
2624 * On error a negative errno is returned.
2626 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2629 struct regulator_dev
*rdev
= regulator
->rdev
;
2630 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2632 if (selector
>= rdev
->desc
->n_voltages
)
2634 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2639 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2642 * regulator_get_linear_step - return the voltage step size between VSEL values
2643 * @regulator: regulator source
2645 * Returns the voltage step size between VSEL values for linear
2646 * regulators, or return 0 if the regulator isn't a linear regulator.
2648 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2650 struct regulator_dev
*rdev
= regulator
->rdev
;
2652 return rdev
->desc
->uV_step
;
2654 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2657 * regulator_is_supported_voltage - check if a voltage range can be supported
2659 * @regulator: Regulator to check.
2660 * @min_uV: Minimum required voltage in uV.
2661 * @max_uV: Maximum required voltage in uV.
2663 * Returns a boolean or a negative error code.
2665 int regulator_is_supported_voltage(struct regulator
*regulator
,
2666 int min_uV
, int max_uV
)
2668 struct regulator_dev
*rdev
= regulator
->rdev
;
2669 int i
, voltages
, ret
;
2671 /* If we can't change voltage check the current voltage */
2672 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
2673 ret
= regulator_get_voltage(regulator
);
2675 return min_uV
<= ret
&& ret
<= max_uV
;
2680 /* Any voltage within constrains range is fine? */
2681 if (rdev
->desc
->continuous_voltage_range
)
2682 return min_uV
>= rdev
->constraints
->min_uV
&&
2683 max_uV
<= rdev
->constraints
->max_uV
;
2685 ret
= regulator_count_voltages(regulator
);
2690 for (i
= 0; i
< voltages
; i
++) {
2691 ret
= regulator_list_voltage(regulator
, i
);
2693 if (ret
>= min_uV
&& ret
<= max_uV
)
2699 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2701 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
2704 const struct regulator_desc
*desc
= rdev
->desc
;
2706 if (desc
->ops
->map_voltage
)
2707 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
2709 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
2710 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
2712 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
2713 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
2715 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
2718 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
2719 int min_uV
, int max_uV
,
2722 struct pre_voltage_change_data data
;
2725 data
.old_uV
= _regulator_get_voltage(rdev
);
2726 data
.min_uV
= min_uV
;
2727 data
.max_uV
= max_uV
;
2728 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2730 if (ret
& NOTIFY_STOP_MASK
)
2733 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
2737 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2738 (void *)data
.old_uV
);
2743 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
2744 int uV
, unsigned selector
)
2746 struct pre_voltage_change_data data
;
2749 data
.old_uV
= _regulator_get_voltage(rdev
);
2752 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2754 if (ret
& NOTIFY_STOP_MASK
)
2757 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
2761 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2762 (void *)data
.old_uV
);
2767 static int _regulator_set_voltage_time(struct regulator_dev
*rdev
,
2768 int old_uV
, int new_uV
)
2770 unsigned int ramp_delay
= 0;
2772 if (rdev
->constraints
->ramp_delay
)
2773 ramp_delay
= rdev
->constraints
->ramp_delay
;
2774 else if (rdev
->desc
->ramp_delay
)
2775 ramp_delay
= rdev
->desc
->ramp_delay
;
2776 else if (rdev
->constraints
->settling_time
)
2777 return rdev
->constraints
->settling_time
;
2778 else if (rdev
->constraints
->settling_time_up
&&
2780 return rdev
->constraints
->settling_time_up
;
2781 else if (rdev
->constraints
->settling_time_down
&&
2783 return rdev
->constraints
->settling_time_down
;
2785 if (ramp_delay
== 0) {
2786 rdev_dbg(rdev
, "ramp_delay not set\n");
2790 return DIV_ROUND_UP(abs(new_uV
- old_uV
), ramp_delay
);
2793 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2794 int min_uV
, int max_uV
)
2799 unsigned int selector
;
2800 int old_selector
= -1;
2801 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2802 int old_uV
= _regulator_get_voltage(rdev
);
2804 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2806 min_uV
+= rdev
->constraints
->uV_offset
;
2807 max_uV
+= rdev
->constraints
->uV_offset
;
2810 * If we can't obtain the old selector there is not enough
2811 * info to call set_voltage_time_sel().
2813 if (_regulator_is_enabled(rdev
) &&
2814 ops
->set_voltage_time_sel
&& ops
->get_voltage_sel
) {
2815 old_selector
= ops
->get_voltage_sel(rdev
);
2816 if (old_selector
< 0)
2817 return old_selector
;
2820 if (ops
->set_voltage
) {
2821 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
2825 if (ops
->list_voltage
)
2826 best_val
= ops
->list_voltage(rdev
,
2829 best_val
= _regulator_get_voltage(rdev
);
2832 } else if (ops
->set_voltage_sel
) {
2833 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2835 best_val
= ops
->list_voltage(rdev
, ret
);
2836 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2838 if (old_selector
== selector
)
2841 ret
= _regulator_call_set_voltage_sel(
2842 rdev
, best_val
, selector
);
2854 if (ops
->set_voltage_time_sel
) {
2856 * Call set_voltage_time_sel if successfully obtained
2859 if (old_selector
>= 0 && old_selector
!= selector
)
2860 delay
= ops
->set_voltage_time_sel(rdev
, old_selector
,
2863 if (old_uV
!= best_val
) {
2864 if (ops
->set_voltage_time
)
2865 delay
= ops
->set_voltage_time(rdev
, old_uV
,
2868 delay
= _regulator_set_voltage_time(rdev
,
2875 rdev_warn(rdev
, "failed to get delay: %d\n", delay
);
2879 /* Insert any necessary delays */
2880 if (delay
>= 1000) {
2881 mdelay(delay
/ 1000);
2882 udelay(delay
% 1000);
2887 if (best_val
>= 0) {
2888 unsigned long data
= best_val
;
2890 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2895 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2900 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
2901 int min_uV
, int max_uV
)
2903 struct regulator_dev
*rdev
= regulator
->rdev
;
2905 int old_min_uV
, old_max_uV
;
2907 int best_supply_uV
= 0;
2908 int supply_change_uV
= 0;
2910 /* If we're setting the same range as last time the change
2911 * should be a noop (some cpufreq implementations use the same
2912 * voltage for multiple frequencies, for example).
2914 if (regulator
->min_uV
== min_uV
&& regulator
->max_uV
== max_uV
)
2917 /* If we're trying to set a range that overlaps the current voltage,
2918 * return successfully even though the regulator does not support
2919 * changing the voltage.
2921 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
2922 current_uV
= _regulator_get_voltage(rdev
);
2923 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
2924 regulator
->min_uV
= min_uV
;
2925 regulator
->max_uV
= max_uV
;
2931 if (!rdev
->desc
->ops
->set_voltage
&&
2932 !rdev
->desc
->ops
->set_voltage_sel
) {
2937 /* constraints check */
2938 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
2942 /* restore original values in case of error */
2943 old_min_uV
= regulator
->min_uV
;
2944 old_max_uV
= regulator
->max_uV
;
2945 regulator
->min_uV
= min_uV
;
2946 regulator
->max_uV
= max_uV
;
2948 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
2953 regulator_ops_is_valid(rdev
->supply
->rdev
,
2954 REGULATOR_CHANGE_VOLTAGE
) &&
2955 (rdev
->desc
->min_dropout_uV
|| !(rdev
->desc
->ops
->get_voltage
||
2956 rdev
->desc
->ops
->get_voltage_sel
))) {
2957 int current_supply_uV
;
2960 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2966 best_supply_uV
= _regulator_list_voltage(regulator
, selector
, 0);
2967 if (best_supply_uV
< 0) {
2968 ret
= best_supply_uV
;
2972 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
2974 current_supply_uV
= _regulator_get_voltage(rdev
->supply
->rdev
);
2975 if (current_supply_uV
< 0) {
2976 ret
= current_supply_uV
;
2980 supply_change_uV
= best_supply_uV
- current_supply_uV
;
2983 if (supply_change_uV
> 0) {
2984 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
2985 best_supply_uV
, INT_MAX
);
2987 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %d\n",
2993 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
2997 if (supply_change_uV
< 0) {
2998 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
2999 best_supply_uV
, INT_MAX
);
3001 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %d\n",
3003 /* No need to fail here */
3010 regulator
->min_uV
= old_min_uV
;
3011 regulator
->max_uV
= old_max_uV
;
3017 * regulator_set_voltage - set regulator output voltage
3018 * @regulator: regulator source
3019 * @min_uV: Minimum required voltage in uV
3020 * @max_uV: Maximum acceptable voltage in uV
3022 * Sets a voltage regulator to the desired output voltage. This can be set
3023 * during any regulator state. IOW, regulator can be disabled or enabled.
3025 * If the regulator is enabled then the voltage will change to the new value
3026 * immediately otherwise if the regulator is disabled the regulator will
3027 * output at the new voltage when enabled.
3029 * NOTE: If the regulator is shared between several devices then the lowest
3030 * request voltage that meets the system constraints will be used.
3031 * Regulator system constraints must be set for this regulator before
3032 * calling this function otherwise this call will fail.
3034 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
3038 regulator_lock_supply(regulator
->rdev
);
3040 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
);
3042 regulator_unlock_supply(regulator
->rdev
);
3046 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
3049 * regulator_set_voltage_time - get raise/fall time
3050 * @regulator: regulator source
3051 * @old_uV: starting voltage in microvolts
3052 * @new_uV: target voltage in microvolts
3054 * Provided with the starting and ending voltage, this function attempts to
3055 * calculate the time in microseconds required to rise or fall to this new
3058 int regulator_set_voltage_time(struct regulator
*regulator
,
3059 int old_uV
, int new_uV
)
3061 struct regulator_dev
*rdev
= regulator
->rdev
;
3062 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3068 if (ops
->set_voltage_time
)
3069 return ops
->set_voltage_time(rdev
, old_uV
, new_uV
);
3070 else if (!ops
->set_voltage_time_sel
)
3071 return _regulator_set_voltage_time(rdev
, old_uV
, new_uV
);
3073 /* Currently requires operations to do this */
3074 if (!ops
->list_voltage
|| !rdev
->desc
->n_voltages
)
3077 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
3078 /* We only look for exact voltage matches here */
3079 voltage
= regulator_list_voltage(regulator
, i
);
3084 if (voltage
== old_uV
)
3086 if (voltage
== new_uV
)
3090 if (old_sel
< 0 || new_sel
< 0)
3093 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
3095 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
3098 * regulator_set_voltage_time_sel - get raise/fall time
3099 * @rdev: regulator source device
3100 * @old_selector: selector for starting voltage
3101 * @new_selector: selector for target voltage
3103 * Provided with the starting and target voltage selectors, this function
3104 * returns time in microseconds required to rise or fall to this new voltage
3106 * Drivers providing ramp_delay in regulation_constraints can use this as their
3107 * set_voltage_time_sel() operation.
3109 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
3110 unsigned int old_selector
,
3111 unsigned int new_selector
)
3113 int old_volt
, new_volt
;
3116 if (!rdev
->desc
->ops
->list_voltage
)
3119 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
3120 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
3122 if (rdev
->desc
->ops
->set_voltage_time
)
3123 return rdev
->desc
->ops
->set_voltage_time(rdev
, old_volt
,
3126 return _regulator_set_voltage_time(rdev
, old_volt
, new_volt
);
3128 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
3131 * regulator_sync_voltage - re-apply last regulator output voltage
3132 * @regulator: regulator source
3134 * Re-apply the last configured voltage. This is intended to be used
3135 * where some external control source the consumer is cooperating with
3136 * has caused the configured voltage to change.
3138 int regulator_sync_voltage(struct regulator
*regulator
)
3140 struct regulator_dev
*rdev
= regulator
->rdev
;
3141 int ret
, min_uV
, max_uV
;
3143 mutex_lock(&rdev
->mutex
);
3145 if (!rdev
->desc
->ops
->set_voltage
&&
3146 !rdev
->desc
->ops
->set_voltage_sel
) {
3151 /* This is only going to work if we've had a voltage configured. */
3152 if (!regulator
->min_uV
&& !regulator
->max_uV
) {
3157 min_uV
= regulator
->min_uV
;
3158 max_uV
= regulator
->max_uV
;
3160 /* This should be a paranoia check... */
3161 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3165 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
);
3169 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3172 mutex_unlock(&rdev
->mutex
);
3175 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
3177 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
3182 if (rdev
->desc
->ops
->get_bypass
) {
3183 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypassed
);
3187 /* if bypassed the regulator must have a supply */
3188 if (!rdev
->supply
) {
3190 "bypassed regulator has no supply!\n");
3191 return -EPROBE_DEFER
;
3194 return _regulator_get_voltage(rdev
->supply
->rdev
);
3198 if (rdev
->desc
->ops
->get_voltage_sel
) {
3199 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
3202 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3203 } else if (rdev
->desc
->ops
->get_voltage
) {
3204 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
3205 } else if (rdev
->desc
->ops
->list_voltage
) {
3206 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
3207 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
3208 ret
= rdev
->desc
->fixed_uV
;
3209 } else if (rdev
->supply
) {
3210 ret
= _regulator_get_voltage(rdev
->supply
->rdev
);
3217 return ret
- rdev
->constraints
->uV_offset
;
3221 * regulator_get_voltage - get regulator output voltage
3222 * @regulator: regulator source
3224 * This returns the current regulator voltage in uV.
3226 * NOTE: If the regulator is disabled it will return the voltage value. This
3227 * function should not be used to determine regulator state.
3229 int regulator_get_voltage(struct regulator
*regulator
)
3233 regulator_lock_supply(regulator
->rdev
);
3235 ret
= _regulator_get_voltage(regulator
->rdev
);
3237 regulator_unlock_supply(regulator
->rdev
);
3241 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
3244 * regulator_set_current_limit - set regulator output current limit
3245 * @regulator: regulator source
3246 * @min_uA: Minimum supported current in uA
3247 * @max_uA: Maximum supported current in uA
3249 * Sets current sink to the desired output current. This can be set during
3250 * any regulator state. IOW, regulator can be disabled or enabled.
3252 * If the regulator is enabled then the current will change to the new value
3253 * immediately otherwise if the regulator is disabled the regulator will
3254 * output at the new current when enabled.
3256 * NOTE: Regulator system constraints must be set for this regulator before
3257 * calling this function otherwise this call will fail.
3259 int regulator_set_current_limit(struct regulator
*regulator
,
3260 int min_uA
, int max_uA
)
3262 struct regulator_dev
*rdev
= regulator
->rdev
;
3265 mutex_lock(&rdev
->mutex
);
3268 if (!rdev
->desc
->ops
->set_current_limit
) {
3273 /* constraints check */
3274 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
3278 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
3280 mutex_unlock(&rdev
->mutex
);
3283 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
3285 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
3289 mutex_lock(&rdev
->mutex
);
3292 if (!rdev
->desc
->ops
->get_current_limit
) {
3297 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
3299 mutex_unlock(&rdev
->mutex
);
3304 * regulator_get_current_limit - get regulator output current
3305 * @regulator: regulator source
3307 * This returns the current supplied by the specified current sink in uA.
3309 * NOTE: If the regulator is disabled it will return the current value. This
3310 * function should not be used to determine regulator state.
3312 int regulator_get_current_limit(struct regulator
*regulator
)
3314 return _regulator_get_current_limit(regulator
->rdev
);
3316 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
3319 * regulator_set_mode - set regulator operating mode
3320 * @regulator: regulator source
3321 * @mode: operating mode - one of the REGULATOR_MODE constants
3323 * Set regulator operating mode to increase regulator efficiency or improve
3324 * regulation performance.
3326 * NOTE: Regulator system constraints must be set for this regulator before
3327 * calling this function otherwise this call will fail.
3329 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
3331 struct regulator_dev
*rdev
= regulator
->rdev
;
3333 int regulator_curr_mode
;
3335 mutex_lock(&rdev
->mutex
);
3338 if (!rdev
->desc
->ops
->set_mode
) {
3343 /* return if the same mode is requested */
3344 if (rdev
->desc
->ops
->get_mode
) {
3345 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
3346 if (regulator_curr_mode
== mode
) {
3352 /* constraints check */
3353 ret
= regulator_mode_constrain(rdev
, &mode
);
3357 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
3359 mutex_unlock(&rdev
->mutex
);
3362 EXPORT_SYMBOL_GPL(regulator_set_mode
);
3364 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
3368 mutex_lock(&rdev
->mutex
);
3371 if (!rdev
->desc
->ops
->get_mode
) {
3376 ret
= rdev
->desc
->ops
->get_mode(rdev
);
3378 mutex_unlock(&rdev
->mutex
);
3383 * regulator_get_mode - get regulator operating mode
3384 * @regulator: regulator source
3386 * Get the current regulator operating mode.
3388 unsigned int regulator_get_mode(struct regulator
*regulator
)
3390 return _regulator_get_mode(regulator
->rdev
);
3392 EXPORT_SYMBOL_GPL(regulator_get_mode
);
3394 static int _regulator_get_error_flags(struct regulator_dev
*rdev
,
3395 unsigned int *flags
)
3399 mutex_lock(&rdev
->mutex
);
3402 if (!rdev
->desc
->ops
->get_error_flags
) {
3407 ret
= rdev
->desc
->ops
->get_error_flags(rdev
, flags
);
3409 mutex_unlock(&rdev
->mutex
);
3414 * regulator_get_error_flags - get regulator error information
3415 * @regulator: regulator source
3416 * @flags: pointer to store error flags
3418 * Get the current regulator error information.
3420 int regulator_get_error_flags(struct regulator
*regulator
,
3421 unsigned int *flags
)
3423 return _regulator_get_error_flags(regulator
->rdev
, flags
);
3425 EXPORT_SYMBOL_GPL(regulator_get_error_flags
);
3428 * regulator_set_load - set regulator load
3429 * @regulator: regulator source
3430 * @uA_load: load current
3432 * Notifies the regulator core of a new device load. This is then used by
3433 * DRMS (if enabled by constraints) to set the most efficient regulator
3434 * operating mode for the new regulator loading.
3436 * Consumer devices notify their supply regulator of the maximum power
3437 * they will require (can be taken from device datasheet in the power
3438 * consumption tables) when they change operational status and hence power
3439 * state. Examples of operational state changes that can affect power
3440 * consumption are :-
3442 * o Device is opened / closed.
3443 * o Device I/O is about to begin or has just finished.
3444 * o Device is idling in between work.
3446 * This information is also exported via sysfs to userspace.
3448 * DRMS will sum the total requested load on the regulator and change
3449 * to the most efficient operating mode if platform constraints allow.
3451 * On error a negative errno is returned.
3453 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
3455 struct regulator_dev
*rdev
= regulator
->rdev
;
3458 mutex_lock(&rdev
->mutex
);
3459 regulator
->uA_load
= uA_load
;
3460 ret
= drms_uA_update(rdev
);
3461 mutex_unlock(&rdev
->mutex
);
3465 EXPORT_SYMBOL_GPL(regulator_set_load
);
3468 * regulator_allow_bypass - allow the regulator to go into bypass mode
3470 * @regulator: Regulator to configure
3471 * @enable: enable or disable bypass mode
3473 * Allow the regulator to go into bypass mode if all other consumers
3474 * for the regulator also enable bypass mode and the machine
3475 * constraints allow this. Bypass mode means that the regulator is
3476 * simply passing the input directly to the output with no regulation.
3478 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
3480 struct regulator_dev
*rdev
= regulator
->rdev
;
3483 if (!rdev
->desc
->ops
->set_bypass
)
3486 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_BYPASS
))
3489 mutex_lock(&rdev
->mutex
);
3491 if (enable
&& !regulator
->bypass
) {
3492 rdev
->bypass_count
++;
3494 if (rdev
->bypass_count
== rdev
->open_count
) {
3495 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3497 rdev
->bypass_count
--;
3500 } else if (!enable
&& regulator
->bypass
) {
3501 rdev
->bypass_count
--;
3503 if (rdev
->bypass_count
!= rdev
->open_count
) {
3504 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3506 rdev
->bypass_count
++;
3511 regulator
->bypass
= enable
;
3513 mutex_unlock(&rdev
->mutex
);
3517 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
3520 * regulator_register_notifier - register regulator event notifier
3521 * @regulator: regulator source
3522 * @nb: notifier block
3524 * Register notifier block to receive regulator events.
3526 int regulator_register_notifier(struct regulator
*regulator
,
3527 struct notifier_block
*nb
)
3529 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
3532 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
3535 * regulator_unregister_notifier - unregister regulator event notifier
3536 * @regulator: regulator source
3537 * @nb: notifier block
3539 * Unregister regulator event notifier block.
3541 int regulator_unregister_notifier(struct regulator
*regulator
,
3542 struct notifier_block
*nb
)
3544 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
3547 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
3549 /* notify regulator consumers and downstream regulator consumers.
3550 * Note mutex must be held by caller.
3552 static int _notifier_call_chain(struct regulator_dev
*rdev
,
3553 unsigned long event
, void *data
)
3555 /* call rdev chain first */
3556 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
3560 * regulator_bulk_get - get multiple regulator consumers
3562 * @dev: Device to supply
3563 * @num_consumers: Number of consumers to register
3564 * @consumers: Configuration of consumers; clients are stored here.
3566 * @return 0 on success, an errno on failure.
3568 * This helper function allows drivers to get several regulator
3569 * consumers in one operation. If any of the regulators cannot be
3570 * acquired then any regulators that were allocated will be freed
3571 * before returning to the caller.
3573 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
3574 struct regulator_bulk_data
*consumers
)
3579 for (i
= 0; i
< num_consumers
; i
++)
3580 consumers
[i
].consumer
= NULL
;
3582 for (i
= 0; i
< num_consumers
; i
++) {
3583 consumers
[i
].consumer
= regulator_get(dev
,
3584 consumers
[i
].supply
);
3585 if (IS_ERR(consumers
[i
].consumer
)) {
3586 ret
= PTR_ERR(consumers
[i
].consumer
);
3587 dev_err(dev
, "Failed to get supply '%s': %d\n",
3588 consumers
[i
].supply
, ret
);
3589 consumers
[i
].consumer
= NULL
;
3598 regulator_put(consumers
[i
].consumer
);
3602 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
3604 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
3606 struct regulator_bulk_data
*bulk
= data
;
3608 bulk
->ret
= regulator_enable(bulk
->consumer
);
3612 * regulator_bulk_enable - enable multiple regulator consumers
3614 * @num_consumers: Number of consumers
3615 * @consumers: Consumer data; clients are stored here.
3616 * @return 0 on success, an errno on failure
3618 * This convenience API allows consumers to enable multiple regulator
3619 * clients in a single API call. If any consumers cannot be enabled
3620 * then any others that were enabled will be disabled again prior to
3623 int regulator_bulk_enable(int num_consumers
,
3624 struct regulator_bulk_data
*consumers
)
3626 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
3630 for (i
= 0; i
< num_consumers
; i
++) {
3631 if (consumers
[i
].consumer
->always_on
)
3632 consumers
[i
].ret
= 0;
3634 async_schedule_domain(regulator_bulk_enable_async
,
3635 &consumers
[i
], &async_domain
);
3638 async_synchronize_full_domain(&async_domain
);
3640 /* If any consumer failed we need to unwind any that succeeded */
3641 for (i
= 0; i
< num_consumers
; i
++) {
3642 if (consumers
[i
].ret
!= 0) {
3643 ret
= consumers
[i
].ret
;
3651 for (i
= 0; i
< num_consumers
; i
++) {
3652 if (consumers
[i
].ret
< 0)
3653 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3656 regulator_disable(consumers
[i
].consumer
);
3661 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3664 * regulator_bulk_disable - disable multiple regulator consumers
3666 * @num_consumers: Number of consumers
3667 * @consumers: Consumer data; clients are stored here.
3668 * @return 0 on success, an errno on failure
3670 * This convenience API allows consumers to disable multiple regulator
3671 * clients in a single API call. If any consumers cannot be disabled
3672 * then any others that were disabled will be enabled again prior to
3675 int regulator_bulk_disable(int num_consumers
,
3676 struct regulator_bulk_data
*consumers
)
3681 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3682 ret
= regulator_disable(consumers
[i
].consumer
);
3690 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3691 for (++i
; i
< num_consumers
; ++i
) {
3692 r
= regulator_enable(consumers
[i
].consumer
);
3694 pr_err("Failed to re-enable %s: %d\n",
3695 consumers
[i
].supply
, r
);
3700 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3703 * regulator_bulk_force_disable - force disable multiple regulator consumers
3705 * @num_consumers: Number of consumers
3706 * @consumers: Consumer data; clients are stored here.
3707 * @return 0 on success, an errno on failure
3709 * This convenience API allows consumers to forcibly disable multiple regulator
3710 * clients in a single API call.
3711 * NOTE: This should be used for situations when device damage will
3712 * likely occur if the regulators are not disabled (e.g. over temp).
3713 * Although regulator_force_disable function call for some consumers can
3714 * return error numbers, the function is called for all consumers.
3716 int regulator_bulk_force_disable(int num_consumers
,
3717 struct regulator_bulk_data
*consumers
)
3722 for (i
= 0; i
< num_consumers
; i
++) {
3724 regulator_force_disable(consumers
[i
].consumer
);
3726 /* Store first error for reporting */
3727 if (consumers
[i
].ret
&& !ret
)
3728 ret
= consumers
[i
].ret
;
3733 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3736 * regulator_bulk_free - free multiple regulator consumers
3738 * @num_consumers: Number of consumers
3739 * @consumers: Consumer data; clients are stored here.
3741 * This convenience API allows consumers to free multiple regulator
3742 * clients in a single API call.
3744 void regulator_bulk_free(int num_consumers
,
3745 struct regulator_bulk_data
*consumers
)
3749 for (i
= 0; i
< num_consumers
; i
++) {
3750 regulator_put(consumers
[i
].consumer
);
3751 consumers
[i
].consumer
= NULL
;
3754 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3757 * regulator_notifier_call_chain - call regulator event notifier
3758 * @rdev: regulator source
3759 * @event: notifier block
3760 * @data: callback-specific data.
3762 * Called by regulator drivers to notify clients a regulator event has
3763 * occurred. We also notify regulator clients downstream.
3764 * Note lock must be held by caller.
3766 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3767 unsigned long event
, void *data
)
3769 lockdep_assert_held_once(&rdev
->mutex
);
3771 _notifier_call_chain(rdev
, event
, data
);
3775 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3778 * regulator_mode_to_status - convert a regulator mode into a status
3780 * @mode: Mode to convert
3782 * Convert a regulator mode into a status.
3784 int regulator_mode_to_status(unsigned int mode
)
3787 case REGULATOR_MODE_FAST
:
3788 return REGULATOR_STATUS_FAST
;
3789 case REGULATOR_MODE_NORMAL
:
3790 return REGULATOR_STATUS_NORMAL
;
3791 case REGULATOR_MODE_IDLE
:
3792 return REGULATOR_STATUS_IDLE
;
3793 case REGULATOR_MODE_STANDBY
:
3794 return REGULATOR_STATUS_STANDBY
;
3796 return REGULATOR_STATUS_UNDEFINED
;
3799 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3801 static struct attribute
*regulator_dev_attrs
[] = {
3802 &dev_attr_name
.attr
,
3803 &dev_attr_num_users
.attr
,
3804 &dev_attr_type
.attr
,
3805 &dev_attr_microvolts
.attr
,
3806 &dev_attr_microamps
.attr
,
3807 &dev_attr_opmode
.attr
,
3808 &dev_attr_state
.attr
,
3809 &dev_attr_status
.attr
,
3810 &dev_attr_bypass
.attr
,
3811 &dev_attr_requested_microamps
.attr
,
3812 &dev_attr_min_microvolts
.attr
,
3813 &dev_attr_max_microvolts
.attr
,
3814 &dev_attr_min_microamps
.attr
,
3815 &dev_attr_max_microamps
.attr
,
3816 &dev_attr_suspend_standby_state
.attr
,
3817 &dev_attr_suspend_mem_state
.attr
,
3818 &dev_attr_suspend_disk_state
.attr
,
3819 &dev_attr_suspend_standby_microvolts
.attr
,
3820 &dev_attr_suspend_mem_microvolts
.attr
,
3821 &dev_attr_suspend_disk_microvolts
.attr
,
3822 &dev_attr_suspend_standby_mode
.attr
,
3823 &dev_attr_suspend_mem_mode
.attr
,
3824 &dev_attr_suspend_disk_mode
.attr
,
3829 * To avoid cluttering sysfs (and memory) with useless state, only
3830 * create attributes that can be meaningfully displayed.
3832 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
3833 struct attribute
*attr
, int idx
)
3835 struct device
*dev
= kobj_to_dev(kobj
);
3836 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
3837 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3838 umode_t mode
= attr
->mode
;
3840 /* these three are always present */
3841 if (attr
== &dev_attr_name
.attr
||
3842 attr
== &dev_attr_num_users
.attr
||
3843 attr
== &dev_attr_type
.attr
)
3846 /* some attributes need specific methods to be displayed */
3847 if (attr
== &dev_attr_microvolts
.attr
) {
3848 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
3849 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
3850 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
3851 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
3856 if (attr
== &dev_attr_microamps
.attr
)
3857 return ops
->get_current_limit
? mode
: 0;
3859 if (attr
== &dev_attr_opmode
.attr
)
3860 return ops
->get_mode
? mode
: 0;
3862 if (attr
== &dev_attr_state
.attr
)
3863 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
3865 if (attr
== &dev_attr_status
.attr
)
3866 return ops
->get_status
? mode
: 0;
3868 if (attr
== &dev_attr_bypass
.attr
)
3869 return ops
->get_bypass
? mode
: 0;
3871 /* some attributes are type-specific */
3872 if (attr
== &dev_attr_requested_microamps
.attr
)
3873 return rdev
->desc
->type
== REGULATOR_CURRENT
? mode
: 0;
3875 /* constraints need specific supporting methods */
3876 if (attr
== &dev_attr_min_microvolts
.attr
||
3877 attr
== &dev_attr_max_microvolts
.attr
)
3878 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
3880 if (attr
== &dev_attr_min_microamps
.attr
||
3881 attr
== &dev_attr_max_microamps
.attr
)
3882 return ops
->set_current_limit
? mode
: 0;
3884 if (attr
== &dev_attr_suspend_standby_state
.attr
||
3885 attr
== &dev_attr_suspend_mem_state
.attr
||
3886 attr
== &dev_attr_suspend_disk_state
.attr
)
3889 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
3890 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
3891 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
3892 return ops
->set_suspend_voltage
? mode
: 0;
3894 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
3895 attr
== &dev_attr_suspend_mem_mode
.attr
||
3896 attr
== &dev_attr_suspend_disk_mode
.attr
)
3897 return ops
->set_suspend_mode
? mode
: 0;
3902 static const struct attribute_group regulator_dev_group
= {
3903 .attrs
= regulator_dev_attrs
,
3904 .is_visible
= regulator_attr_is_visible
,
3907 static const struct attribute_group
*regulator_dev_groups
[] = {
3908 ®ulator_dev_group
,
3912 static void regulator_dev_release(struct device
*dev
)
3914 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
3916 kfree(rdev
->constraints
);
3917 of_node_put(rdev
->dev
.of_node
);
3921 static struct class regulator_class
= {
3922 .name
= "regulator",
3923 .dev_release
= regulator_dev_release
,
3924 .dev_groups
= regulator_dev_groups
,
3927 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
3929 struct device
*parent
= rdev
->dev
.parent
;
3930 const char *rname
= rdev_get_name(rdev
);
3931 char name
[NAME_MAX
];
3933 /* Avoid duplicate debugfs directory names */
3934 if (parent
&& rname
== rdev
->desc
->name
) {
3935 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
3940 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
3941 if (!rdev
->debugfs
) {
3942 rdev_warn(rdev
, "Failed to create debugfs directory\n");
3946 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
3948 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
3950 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
3951 &rdev
->bypass_count
);
3954 static int regulator_register_resolve_supply(struct device
*dev
, void *data
)
3956 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
3958 if (regulator_resolve_supply(rdev
))
3959 rdev_dbg(rdev
, "unable to resolve supply\n");
3965 * regulator_register - register regulator
3966 * @regulator_desc: regulator to register
3967 * @cfg: runtime configuration for regulator
3969 * Called by regulator drivers to register a regulator.
3970 * Returns a valid pointer to struct regulator_dev on success
3971 * or an ERR_PTR() on error.
3973 struct regulator_dev
*
3974 regulator_register(const struct regulator_desc
*regulator_desc
,
3975 const struct regulator_config
*cfg
)
3977 const struct regulation_constraints
*constraints
= NULL
;
3978 const struct regulator_init_data
*init_data
;
3979 struct regulator_config
*config
= NULL
;
3980 static atomic_t regulator_no
= ATOMIC_INIT(-1);
3981 struct regulator_dev
*rdev
;
3985 if (regulator_desc
== NULL
|| cfg
== NULL
)
3986 return ERR_PTR(-EINVAL
);
3991 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
3992 return ERR_PTR(-EINVAL
);
3994 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
3995 regulator_desc
->type
!= REGULATOR_CURRENT
)
3996 return ERR_PTR(-EINVAL
);
3998 /* Only one of each should be implemented */
3999 WARN_ON(regulator_desc
->ops
->get_voltage
&&
4000 regulator_desc
->ops
->get_voltage_sel
);
4001 WARN_ON(regulator_desc
->ops
->set_voltage
&&
4002 regulator_desc
->ops
->set_voltage_sel
);
4004 /* If we're using selectors we must implement list_voltage. */
4005 if (regulator_desc
->ops
->get_voltage_sel
&&
4006 !regulator_desc
->ops
->list_voltage
) {
4007 return ERR_PTR(-EINVAL
);
4009 if (regulator_desc
->ops
->set_voltage_sel
&&
4010 !regulator_desc
->ops
->list_voltage
) {
4011 return ERR_PTR(-EINVAL
);
4014 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
4016 return ERR_PTR(-ENOMEM
);
4019 * Duplicate the config so the driver could override it after
4020 * parsing init data.
4022 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
4023 if (config
== NULL
) {
4025 return ERR_PTR(-ENOMEM
);
4028 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
4029 &rdev
->dev
.of_node
);
4031 init_data
= config
->init_data
;
4032 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
4035 mutex_init(&rdev
->mutex
);
4036 rdev
->reg_data
= config
->driver_data
;
4037 rdev
->owner
= regulator_desc
->owner
;
4038 rdev
->desc
= regulator_desc
;
4040 rdev
->regmap
= config
->regmap
;
4041 else if (dev_get_regmap(dev
, NULL
))
4042 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
4043 else if (dev
->parent
)
4044 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
4045 INIT_LIST_HEAD(&rdev
->consumer_list
);
4046 INIT_LIST_HEAD(&rdev
->list
);
4047 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
4048 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
4050 /* preform any regulator specific init */
4051 if (init_data
&& init_data
->regulator_init
) {
4052 ret
= init_data
->regulator_init(rdev
->reg_data
);
4057 if ((config
->ena_gpio
|| config
->ena_gpio_initialized
) &&
4058 gpio_is_valid(config
->ena_gpio
)) {
4059 mutex_lock(®ulator_list_mutex
);
4060 ret
= regulator_ena_gpio_request(rdev
, config
);
4061 mutex_unlock(®ulator_list_mutex
);
4063 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
4064 config
->ena_gpio
, ret
);
4069 /* register with sysfs */
4070 rdev
->dev
.class = ®ulator_class
;
4071 rdev
->dev
.parent
= dev
;
4072 dev_set_name(&rdev
->dev
, "regulator.%lu",
4073 (unsigned long) atomic_inc_return(®ulator_no
));
4075 /* set regulator constraints */
4077 constraints
= &init_data
->constraints
;
4079 if (init_data
&& init_data
->supply_regulator
)
4080 rdev
->supply_name
= init_data
->supply_regulator
;
4081 else if (regulator_desc
->supply_name
)
4082 rdev
->supply_name
= regulator_desc
->supply_name
;
4085 * Attempt to resolve the regulator supply, if specified,
4086 * but don't return an error if we fail because we will try
4087 * to resolve it again later as more regulators are added.
4089 if (regulator_resolve_supply(rdev
))
4090 rdev_dbg(rdev
, "unable to resolve supply\n");
4092 ret
= set_machine_constraints(rdev
, constraints
);
4096 /* add consumers devices */
4098 mutex_lock(®ulator_list_mutex
);
4099 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
4100 ret
= set_consumer_device_supply(rdev
,
4101 init_data
->consumer_supplies
[i
].dev_name
,
4102 init_data
->consumer_supplies
[i
].supply
);
4104 mutex_unlock(®ulator_list_mutex
);
4105 dev_err(dev
, "Failed to set supply %s\n",
4106 init_data
->consumer_supplies
[i
].supply
);
4107 goto unset_supplies
;
4110 mutex_unlock(®ulator_list_mutex
);
4113 if (!rdev
->desc
->ops
->get_voltage
&&
4114 !rdev
->desc
->ops
->list_voltage
&&
4115 !rdev
->desc
->fixed_uV
)
4116 rdev
->is_switch
= true;
4118 ret
= device_register(&rdev
->dev
);
4120 put_device(&rdev
->dev
);
4121 goto unset_supplies
;
4124 dev_set_drvdata(&rdev
->dev
, rdev
);
4125 rdev_init_debugfs(rdev
);
4127 /* try to resolve regulators supply since a new one was registered */
4128 class_for_each_device(®ulator_class
, NULL
, NULL
,
4129 regulator_register_resolve_supply
);
4134 mutex_lock(®ulator_list_mutex
);
4135 unset_regulator_supplies(rdev
);
4136 mutex_unlock(®ulator_list_mutex
);
4138 kfree(rdev
->constraints
);
4139 mutex_lock(®ulator_list_mutex
);
4140 regulator_ena_gpio_free(rdev
);
4141 mutex_unlock(®ulator_list_mutex
);
4145 return ERR_PTR(ret
);
4147 EXPORT_SYMBOL_GPL(regulator_register
);
4150 * regulator_unregister - unregister regulator
4151 * @rdev: regulator to unregister
4153 * Called by regulator drivers to unregister a regulator.
4155 void regulator_unregister(struct regulator_dev
*rdev
)
4161 while (rdev
->use_count
--)
4162 regulator_disable(rdev
->supply
);
4163 regulator_put(rdev
->supply
);
4165 mutex_lock(®ulator_list_mutex
);
4166 debugfs_remove_recursive(rdev
->debugfs
);
4167 flush_work(&rdev
->disable_work
.work
);
4168 WARN_ON(rdev
->open_count
);
4169 unset_regulator_supplies(rdev
);
4170 list_del(&rdev
->list
);
4171 regulator_ena_gpio_free(rdev
);
4172 mutex_unlock(®ulator_list_mutex
);
4173 device_unregister(&rdev
->dev
);
4175 EXPORT_SYMBOL_GPL(regulator_unregister
);
4177 static int _regulator_suspend_prepare(struct device
*dev
, void *data
)
4179 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4180 const suspend_state_t
*state
= data
;
4183 mutex_lock(&rdev
->mutex
);
4184 ret
= suspend_prepare(rdev
, *state
);
4185 mutex_unlock(&rdev
->mutex
);
4191 * regulator_suspend_prepare - prepare regulators for system wide suspend
4192 * @state: system suspend state
4194 * Configure each regulator with it's suspend operating parameters for state.
4195 * This will usually be called by machine suspend code prior to supending.
4197 int regulator_suspend_prepare(suspend_state_t state
)
4199 /* ON is handled by regulator active state */
4200 if (state
== PM_SUSPEND_ON
)
4203 return class_for_each_device(®ulator_class
, NULL
, &state
,
4204 _regulator_suspend_prepare
);
4206 EXPORT_SYMBOL_GPL(regulator_suspend_prepare
);
4208 static int _regulator_suspend_finish(struct device
*dev
, void *data
)
4210 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4213 mutex_lock(&rdev
->mutex
);
4214 if (rdev
->use_count
> 0 || rdev
->constraints
->always_on
) {
4215 if (!_regulator_is_enabled(rdev
)) {
4216 ret
= _regulator_do_enable(rdev
);
4219 "Failed to resume regulator %d\n",
4223 if (!have_full_constraints())
4225 if (!_regulator_is_enabled(rdev
))
4228 ret
= _regulator_do_disable(rdev
);
4230 dev_err(dev
, "Failed to suspend regulator %d\n", ret
);
4233 mutex_unlock(&rdev
->mutex
);
4235 /* Keep processing regulators in spite of any errors */
4240 * regulator_suspend_finish - resume regulators from system wide suspend
4242 * Turn on regulators that might be turned off by regulator_suspend_prepare
4243 * and that should be turned on according to the regulators properties.
4245 int regulator_suspend_finish(void)
4247 return class_for_each_device(®ulator_class
, NULL
, NULL
,
4248 _regulator_suspend_finish
);
4250 EXPORT_SYMBOL_GPL(regulator_suspend_finish
);
4253 * regulator_has_full_constraints - the system has fully specified constraints
4255 * Calling this function will cause the regulator API to disable all
4256 * regulators which have a zero use count and don't have an always_on
4257 * constraint in a late_initcall.
4259 * The intention is that this will become the default behaviour in a
4260 * future kernel release so users are encouraged to use this facility
4263 void regulator_has_full_constraints(void)
4265 has_full_constraints
= 1;
4267 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
4270 * rdev_get_drvdata - get rdev regulator driver data
4273 * Get rdev regulator driver private data. This call can be used in the
4274 * regulator driver context.
4276 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
4278 return rdev
->reg_data
;
4280 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
4283 * regulator_get_drvdata - get regulator driver data
4284 * @regulator: regulator
4286 * Get regulator driver private data. This call can be used in the consumer
4287 * driver context when non API regulator specific functions need to be called.
4289 void *regulator_get_drvdata(struct regulator
*regulator
)
4291 return regulator
->rdev
->reg_data
;
4293 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
4296 * regulator_set_drvdata - set regulator driver data
4297 * @regulator: regulator
4300 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
4302 regulator
->rdev
->reg_data
= data
;
4304 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
4307 * regulator_get_id - get regulator ID
4310 int rdev_get_id(struct regulator_dev
*rdev
)
4312 return rdev
->desc
->id
;
4314 EXPORT_SYMBOL_GPL(rdev_get_id
);
4316 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
4320 EXPORT_SYMBOL_GPL(rdev_get_dev
);
4322 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
4324 return reg_init_data
->driver_data
;
4326 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
4328 #ifdef CONFIG_DEBUG_FS
4329 static int supply_map_show(struct seq_file
*sf
, void *data
)
4331 struct regulator_map
*map
;
4333 list_for_each_entry(map
, ®ulator_map_list
, list
) {
4334 seq_printf(sf
, "%s -> %s.%s\n",
4335 rdev_get_name(map
->regulator
), map
->dev_name
,
4342 static int supply_map_open(struct inode
*inode
, struct file
*file
)
4344 return single_open(file
, supply_map_show
, inode
->i_private
);
4348 static const struct file_operations supply_map_fops
= {
4349 #ifdef CONFIG_DEBUG_FS
4350 .open
= supply_map_open
,
4352 .llseek
= seq_lseek
,
4353 .release
= single_release
,
4357 #ifdef CONFIG_DEBUG_FS
4358 struct summary_data
{
4360 struct regulator_dev
*parent
;
4364 static void regulator_summary_show_subtree(struct seq_file
*s
,
4365 struct regulator_dev
*rdev
,
4368 static int regulator_summary_show_children(struct device
*dev
, void *data
)
4370 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4371 struct summary_data
*summary_data
= data
;
4373 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
4374 regulator_summary_show_subtree(summary_data
->s
, rdev
,
4375 summary_data
->level
+ 1);
4380 static void regulator_summary_show_subtree(struct seq_file
*s
,
4381 struct regulator_dev
*rdev
,
4384 struct regulation_constraints
*c
;
4385 struct regulator
*consumer
;
4386 struct summary_data summary_data
;
4391 seq_printf(s
, "%*s%-*s %3d %4d %6d ",
4393 30 - level
* 3, rdev_get_name(rdev
),
4394 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
);
4396 seq_printf(s
, "%5dmV ", _regulator_get_voltage(rdev
) / 1000);
4397 seq_printf(s
, "%5dmA ", _regulator_get_current_limit(rdev
) / 1000);
4399 c
= rdev
->constraints
;
4401 switch (rdev
->desc
->type
) {
4402 case REGULATOR_VOLTAGE
:
4403 seq_printf(s
, "%5dmV %5dmV ",
4404 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
4406 case REGULATOR_CURRENT
:
4407 seq_printf(s
, "%5dmA %5dmA ",
4408 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
4415 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
4416 if (consumer
->dev
&& consumer
->dev
->class == ®ulator_class
)
4419 seq_printf(s
, "%*s%-*s ",
4420 (level
+ 1) * 3 + 1, "",
4421 30 - (level
+ 1) * 3,
4422 consumer
->dev
? dev_name(consumer
->dev
) : "deviceless");
4424 switch (rdev
->desc
->type
) {
4425 case REGULATOR_VOLTAGE
:
4426 seq_printf(s
, "%37dmV %5dmV",
4427 consumer
->min_uV
/ 1000,
4428 consumer
->max_uV
/ 1000);
4430 case REGULATOR_CURRENT
:
4438 summary_data
.level
= level
;
4439 summary_data
.parent
= rdev
;
4441 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
4442 regulator_summary_show_children
);
4445 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
4447 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4448 struct seq_file
*s
= data
;
4451 regulator_summary_show_subtree(s
, rdev
, 0);
4456 static int regulator_summary_show(struct seq_file
*s
, void *data
)
4458 seq_puts(s
, " regulator use open bypass voltage current min max\n");
4459 seq_puts(s
, "-------------------------------------------------------------------------------\n");
4461 class_for_each_device(®ulator_class
, NULL
, s
,
4462 regulator_summary_show_roots
);
4467 static int regulator_summary_open(struct inode
*inode
, struct file
*file
)
4469 return single_open(file
, regulator_summary_show
, inode
->i_private
);
4473 static const struct file_operations regulator_summary_fops
= {
4474 #ifdef CONFIG_DEBUG_FS
4475 .open
= regulator_summary_open
,
4477 .llseek
= seq_lseek
,
4478 .release
= single_release
,
4482 static int __init
regulator_init(void)
4486 ret
= class_register(®ulator_class
);
4488 debugfs_root
= debugfs_create_dir("regulator", NULL
);
4490 pr_warn("regulator: Failed to create debugfs directory\n");
4492 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
4495 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
4496 NULL
, ®ulator_summary_fops
);
4498 regulator_dummy_init();
4503 /* init early to allow our consumers to complete system booting */
4504 core_initcall(regulator_init
);
4506 static int __init
regulator_late_cleanup(struct device
*dev
, void *data
)
4508 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4509 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4510 struct regulation_constraints
*c
= rdev
->constraints
;
4513 if (c
&& c
->always_on
)
4516 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
))
4519 mutex_lock(&rdev
->mutex
);
4521 if (rdev
->use_count
)
4524 /* If we can't read the status assume it's on. */
4525 if (ops
->is_enabled
)
4526 enabled
= ops
->is_enabled(rdev
);
4533 if (have_full_constraints()) {
4534 /* We log since this may kill the system if it goes
4536 rdev_info(rdev
, "disabling\n");
4537 ret
= _regulator_do_disable(rdev
);
4539 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
4541 /* The intention is that in future we will
4542 * assume that full constraints are provided
4543 * so warn even if we aren't going to do
4546 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
4550 mutex_unlock(&rdev
->mutex
);
4555 static int __init
regulator_init_complete(void)
4558 * Since DT doesn't provide an idiomatic mechanism for
4559 * enabling full constraints and since it's much more natural
4560 * with DT to provide them just assume that a DT enabled
4561 * system has full constraints.
4563 if (of_have_populated_dt())
4564 has_full_constraints
= true;
4567 * Regulators may had failed to resolve their input supplies
4568 * when were registered, either because the input supply was
4569 * not registered yet or because its parent device was not
4570 * bound yet. So attempt to resolve the input supplies for
4571 * pending regulators before trying to disable unused ones.
4573 class_for_each_device(®ulator_class
, NULL
, NULL
,
4574 regulator_register_resolve_supply
);
4576 /* If we have a full configuration then disable any regulators
4577 * we have permission to change the status for and which are
4578 * not in use or always_on. This is effectively the default
4579 * for DT and ACPI as they have full constraints.
4581 class_for_each_device(®ulator_class
, NULL
, NULL
,
4582 regulator_late_cleanup
);
4586 late_initcall_sync(regulator_init_complete
);