2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
20 #include <linux/of_device.h>
22 #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
26 #define RTC_SW_BIT (1 << 0)
27 #define RTC_ALM_BIT (1 << 2)
28 #define RTC_1HZ_BIT (1 << 4)
29 #define RTC_2HZ_BIT (1 << 7)
30 #define RTC_SAM0_BIT (1 << 8)
31 #define RTC_SAM1_BIT (1 << 9)
32 #define RTC_SAM2_BIT (1 << 10)
33 #define RTC_SAM3_BIT (1 << 11)
34 #define RTC_SAM4_BIT (1 << 12)
35 #define RTC_SAM5_BIT (1 << 13)
36 #define RTC_SAM6_BIT (1 << 14)
37 #define RTC_SAM7_BIT (1 << 15)
38 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
42 #define RTC_ENABLE_BIT (1 << 7)
45 #define MAX_PIE_FREQ 512
47 #define MXC_RTC_TIME 0
48 #define MXC_RTC_ALARM 1
50 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
51 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
52 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
53 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
54 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
55 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
56 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
57 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
58 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
59 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
60 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
61 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
62 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
69 struct rtc_plat_data
{
70 struct rtc_device
*rtc
;
75 struct rtc_time g_rtc_alarm
;
76 enum imx_rtc_type devtype
;
79 static const struct platform_device_id imx_rtc_devtype
[] = {
82 .driver_data
= IMX1_RTC
,
85 .driver_data
= IMX21_RTC
,
90 MODULE_DEVICE_TABLE(platform
, imx_rtc_devtype
);
93 static const struct of_device_id imx_rtc_dt_ids
[] = {
94 { .compatible
= "fsl,imx1-rtc", .data
= (const void *)IMX1_RTC
},
95 { .compatible
= "fsl,imx21-rtc", .data
= (const void *)IMX21_RTC
},
98 MODULE_DEVICE_TABLE(of
, imx_rtc_dt_ids
);
101 static inline int is_imx1_rtc(struct rtc_plat_data
*data
)
103 return data
->devtype
== IMX1_RTC
;
107 * This function is used to obtain the RTC time or the alarm value in
110 static time64_t
get_alarm_or_time(struct device
*dev
, int time_alarm
)
112 struct platform_device
*pdev
= to_platform_device(dev
);
113 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
114 void __iomem
*ioaddr
= pdata
->ioaddr
;
115 u32 day
= 0, hr
= 0, min
= 0, sec
= 0, hr_min
= 0;
117 switch (time_alarm
) {
119 day
= readw(ioaddr
+ RTC_DAYR
);
120 hr_min
= readw(ioaddr
+ RTC_HOURMIN
);
121 sec
= readw(ioaddr
+ RTC_SECOND
);
124 day
= readw(ioaddr
+ RTC_DAYALARM
);
125 hr_min
= readw(ioaddr
+ RTC_ALRM_HM
) & 0xffff;
126 sec
= readw(ioaddr
+ RTC_ALRM_SEC
);
133 return ((((time64_t
)day
* 24 + hr
) * 60) + min
) * 60 + sec
;
137 * This function sets the RTC alarm value or the time value.
139 static void set_alarm_or_time(struct device
*dev
, int time_alarm
, time64_t time
)
141 u32 tod
, day
, hr
, min
, sec
, temp
;
142 struct platform_device
*pdev
= to_platform_device(dev
);
143 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
144 void __iomem
*ioaddr
= pdata
->ioaddr
;
146 day
= div_s64_rem(time
, 86400, &tod
);
148 /* time is within a day now */
152 /* time is within an hour now */
154 sec
= tod
- min
* 60;
156 temp
= (hr
<< 8) + min
;
158 switch (time_alarm
) {
160 writew(day
, ioaddr
+ RTC_DAYR
);
161 writew(sec
, ioaddr
+ RTC_SECOND
);
162 writew(temp
, ioaddr
+ RTC_HOURMIN
);
165 writew(day
, ioaddr
+ RTC_DAYALARM
);
166 writew(sec
, ioaddr
+ RTC_ALRM_SEC
);
167 writew(temp
, ioaddr
+ RTC_ALRM_HM
);
173 * This function updates the RTC alarm registers and then clears all the
174 * interrupt status bits.
176 static void rtc_update_alarm(struct device
*dev
, struct rtc_time
*alrm
)
179 struct platform_device
*pdev
= to_platform_device(dev
);
180 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
181 void __iomem
*ioaddr
= pdata
->ioaddr
;
183 time
= rtc_tm_to_time64(alrm
);
185 /* clear all the interrupt status bits */
186 writew(readw(ioaddr
+ RTC_RTCISR
), ioaddr
+ RTC_RTCISR
);
187 set_alarm_or_time(dev
, MXC_RTC_ALARM
, time
);
190 static void mxc_rtc_irq_enable(struct device
*dev
, unsigned int bit
,
191 unsigned int enabled
)
193 struct platform_device
*pdev
= to_platform_device(dev
);
194 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
195 void __iomem
*ioaddr
= pdata
->ioaddr
;
198 spin_lock_irq(&pdata
->rtc
->irq_lock
);
199 reg
= readw(ioaddr
+ RTC_RTCIENR
);
206 writew(reg
, ioaddr
+ RTC_RTCIENR
);
207 spin_unlock_irq(&pdata
->rtc
->irq_lock
);
210 /* This function is the RTC interrupt service routine. */
211 static irqreturn_t
mxc_rtc_interrupt(int irq
, void *dev_id
)
213 struct platform_device
*pdev
= dev_id
;
214 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
215 void __iomem
*ioaddr
= pdata
->ioaddr
;
220 spin_lock_irqsave(&pdata
->rtc
->irq_lock
, flags
);
221 status
= readw(ioaddr
+ RTC_RTCISR
) & readw(ioaddr
+ RTC_RTCIENR
);
222 /* clear interrupt sources */
223 writew(status
, ioaddr
+ RTC_RTCISR
);
225 /* update irq data & counter */
226 if (status
& RTC_ALM_BIT
) {
227 events
|= (RTC_AF
| RTC_IRQF
);
228 /* RTC alarm should be one-shot */
229 mxc_rtc_irq_enable(&pdev
->dev
, RTC_ALM_BIT
, 0);
232 if (status
& PIT_ALL_ON
)
233 events
|= (RTC_PF
| RTC_IRQF
);
235 rtc_update_irq(pdata
->rtc
, 1, events
);
236 spin_unlock_irqrestore(&pdata
->rtc
->irq_lock
, flags
);
241 static int mxc_rtc_alarm_irq_enable(struct device
*dev
, unsigned int enabled
)
243 mxc_rtc_irq_enable(dev
, RTC_ALM_BIT
, enabled
);
248 * This function reads the current RTC time into tm in Gregorian date.
250 static int mxc_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
254 /* Avoid roll-over from reading the different registers */
256 val
= get_alarm_or_time(dev
, MXC_RTC_TIME
);
257 } while (val
!= get_alarm_or_time(dev
, MXC_RTC_TIME
));
259 rtc_time64_to_tm(val
, tm
);
265 * This function sets the internal RTC time based on tm in Gregorian date.
267 static int mxc_rtc_set_mmss(struct device
*dev
, time64_t time
)
269 struct platform_device
*pdev
= to_platform_device(dev
);
270 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
273 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
275 if (is_imx1_rtc(pdata
)) {
278 rtc_time64_to_tm(time
, &tm
);
280 time
= rtc_tm_to_time64(&tm
);
283 /* Avoid roll-over from reading the different registers */
285 set_alarm_or_time(dev
, MXC_RTC_TIME
, time
);
286 } while (time
!= get_alarm_or_time(dev
, MXC_RTC_TIME
));
292 * This function reads the current alarm value into the passed in 'alrm'
293 * argument. It updates the alrm's pending field value based on the whether
294 * an alarm interrupt occurs or not.
296 static int mxc_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
298 struct platform_device
*pdev
= to_platform_device(dev
);
299 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
300 void __iomem
*ioaddr
= pdata
->ioaddr
;
302 rtc_time64_to_tm(get_alarm_or_time(dev
, MXC_RTC_ALARM
), &alrm
->time
);
303 alrm
->pending
= ((readw(ioaddr
+ RTC_RTCISR
) & RTC_ALM_BIT
)) ? 1 : 0;
309 * This function sets the RTC alarm based on passed in alrm.
311 static int mxc_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*alrm
)
313 struct platform_device
*pdev
= to_platform_device(dev
);
314 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
316 rtc_update_alarm(dev
, &alrm
->time
);
318 memcpy(&pdata
->g_rtc_alarm
, &alrm
->time
, sizeof(struct rtc_time
));
319 mxc_rtc_irq_enable(dev
, RTC_ALM_BIT
, alrm
->enabled
);
325 static const struct rtc_class_ops mxc_rtc_ops
= {
326 .read_time
= mxc_rtc_read_time
,
327 .set_mmss64
= mxc_rtc_set_mmss
,
328 .read_alarm
= mxc_rtc_read_alarm
,
329 .set_alarm
= mxc_rtc_set_alarm
,
330 .alarm_irq_enable
= mxc_rtc_alarm_irq_enable
,
333 static int mxc_rtc_probe(struct platform_device
*pdev
)
335 struct resource
*res
;
336 struct rtc_device
*rtc
;
337 struct rtc_plat_data
*pdata
= NULL
;
341 const struct of_device_id
*of_id
;
343 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
347 of_id
= of_match_device(imx_rtc_dt_ids
, &pdev
->dev
);
349 pdata
->devtype
= (enum imx_rtc_type
)of_id
->data
;
351 pdata
->devtype
= pdev
->id_entry
->driver_data
;
353 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
354 pdata
->ioaddr
= devm_ioremap_resource(&pdev
->dev
, res
);
355 if (IS_ERR(pdata
->ioaddr
))
356 return PTR_ERR(pdata
->ioaddr
);
358 pdata
->clk_ipg
= devm_clk_get(&pdev
->dev
, "ipg");
359 if (IS_ERR(pdata
->clk_ipg
)) {
360 dev_err(&pdev
->dev
, "unable to get ipg clock!\n");
361 return PTR_ERR(pdata
->clk_ipg
);
364 ret
= clk_prepare_enable(pdata
->clk_ipg
);
368 pdata
->clk_ref
= devm_clk_get(&pdev
->dev
, "ref");
369 if (IS_ERR(pdata
->clk_ref
)) {
370 dev_err(&pdev
->dev
, "unable to get ref clock!\n");
371 ret
= PTR_ERR(pdata
->clk_ref
);
372 goto exit_put_clk_ipg
;
375 ret
= clk_prepare_enable(pdata
->clk_ref
);
377 goto exit_put_clk_ipg
;
379 rate
= clk_get_rate(pdata
->clk_ref
);
382 reg
= RTC_INPUT_CLK_32768HZ
;
383 else if (rate
== 32000)
384 reg
= RTC_INPUT_CLK_32000HZ
;
385 else if (rate
== 38400)
386 reg
= RTC_INPUT_CLK_38400HZ
;
388 dev_err(&pdev
->dev
, "rtc clock is not valid (%lu)\n", rate
);
390 goto exit_put_clk_ref
;
393 reg
|= RTC_ENABLE_BIT
;
394 writew(reg
, (pdata
->ioaddr
+ RTC_RTCCTL
));
395 if (((readw(pdata
->ioaddr
+ RTC_RTCCTL
)) & RTC_ENABLE_BIT
) == 0) {
396 dev_err(&pdev
->dev
, "hardware module can't be enabled!\n");
398 goto exit_put_clk_ref
;
401 platform_set_drvdata(pdev
, pdata
);
403 /* Configure and enable the RTC */
404 pdata
->irq
= platform_get_irq(pdev
, 0);
406 if (pdata
->irq
>= 0 &&
407 devm_request_irq(&pdev
->dev
, pdata
->irq
, mxc_rtc_interrupt
,
408 IRQF_SHARED
, pdev
->name
, pdev
) < 0) {
409 dev_warn(&pdev
->dev
, "interrupt not available.\n");
414 device_init_wakeup(&pdev
->dev
, 1);
416 rtc
= devm_rtc_device_register(&pdev
->dev
, pdev
->name
, &mxc_rtc_ops
,
420 goto exit_put_clk_ref
;
428 clk_disable_unprepare(pdata
->clk_ref
);
430 clk_disable_unprepare(pdata
->clk_ipg
);
435 static int mxc_rtc_remove(struct platform_device
*pdev
)
437 struct rtc_plat_data
*pdata
= platform_get_drvdata(pdev
);
439 clk_disable_unprepare(pdata
->clk_ref
);
440 clk_disable_unprepare(pdata
->clk_ipg
);
445 #ifdef CONFIG_PM_SLEEP
446 static int mxc_rtc_suspend(struct device
*dev
)
448 struct rtc_plat_data
*pdata
= dev_get_drvdata(dev
);
450 if (device_may_wakeup(dev
))
451 enable_irq_wake(pdata
->irq
);
456 static int mxc_rtc_resume(struct device
*dev
)
458 struct rtc_plat_data
*pdata
= dev_get_drvdata(dev
);
460 if (device_may_wakeup(dev
))
461 disable_irq_wake(pdata
->irq
);
467 static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops
, mxc_rtc_suspend
, mxc_rtc_resume
);
469 static struct platform_driver mxc_rtc_driver
= {
472 .of_match_table
= of_match_ptr(imx_rtc_dt_ids
),
473 .pm
= &mxc_rtc_pm_ops
,
475 .id_table
= imx_rtc_devtype
,
476 .probe
= mxc_rtc_probe
,
477 .remove
= mxc_rtc_remove
,
480 module_platform_driver(mxc_rtc_driver
)
482 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
483 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
484 MODULE_LICENSE("GPL");