mei: me: add cannon point device ids
[linux/fpc-iii.git] / drivers / scsi / scsi_lib.c
blob83856ee14851fbfb35d6d1a8b312c47273a1dfb2
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
36 #include <trace/events/scsi.h>
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 unsigned char *sense_buffer)
58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 sense_buffer);
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 gfp_t gfp_mask, int numa_node)
65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 gfp_mask, numa_node);
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
71 struct kmem_cache *cache;
72 int ret = 0;
74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 if (cache)
76 return 0;
78 mutex_lock(&scsi_sense_cache_mutex);
79 if (shost->unchecked_isa_dma) {
80 scsi_sense_isadma_cache =
81 kmem_cache_create("scsi_sense_cache(DMA)",
82 SCSI_SENSE_BUFFERSIZE, 0,
83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 if (!scsi_sense_isadma_cache)
85 ret = -ENOMEM;
86 } else {
87 scsi_sense_cache =
88 kmem_cache_create("scsi_sense_cache",
89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN, NULL);
90 if (!scsi_sense_cache)
91 ret = -ENOMEM;
94 mutex_unlock(&scsi_sense_cache_mutex);
95 return ret;
99 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
100 * not change behaviour from the previous unplug mechanism, experimentation
101 * may prove this needs changing.
103 #define SCSI_QUEUE_DELAY 3
105 static void
106 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
113 * Set the appropriate busy bit for the device/host.
115 * If the host/device isn't busy, assume that something actually
116 * completed, and that we should be able to queue a command now.
118 * Note that the prior mid-layer assumption that any host could
119 * always queue at least one command is now broken. The mid-layer
120 * will implement a user specifiable stall (see
121 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
122 * if a command is requeued with no other commands outstanding
123 * either for the device or for the host.
125 switch (reason) {
126 case SCSI_MLQUEUE_HOST_BUSY:
127 atomic_set(&host->host_blocked, host->max_host_blocked);
128 break;
129 case SCSI_MLQUEUE_DEVICE_BUSY:
130 case SCSI_MLQUEUE_EH_RETRY:
131 atomic_set(&device->device_blocked,
132 device->max_device_blocked);
133 break;
134 case SCSI_MLQUEUE_TARGET_BUSY:
135 atomic_set(&starget->target_blocked,
136 starget->max_target_blocked);
137 break;
141 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 struct scsi_device *sdev = cmd->device;
145 if (cmd->request->rq_flags & RQF_DONTPREP) {
146 cmd->request->rq_flags &= ~RQF_DONTPREP;
147 scsi_mq_uninit_cmd(cmd);
148 } else {
149 WARN_ON_ONCE(true);
151 blk_mq_requeue_request(cmd->request, true);
152 put_device(&sdev->sdev_gendev);
156 * __scsi_queue_insert - private queue insertion
157 * @cmd: The SCSI command being requeued
158 * @reason: The reason for the requeue
159 * @unbusy: Whether the queue should be unbusied
161 * This is a private queue insertion. The public interface
162 * scsi_queue_insert() always assumes the queue should be unbusied
163 * because it's always called before the completion. This function is
164 * for a requeue after completion, which should only occur in this
165 * file.
167 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
169 struct scsi_device *device = cmd->device;
170 struct request_queue *q = device->request_queue;
171 unsigned long flags;
173 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
174 "Inserting command %p into mlqueue\n", cmd));
176 scsi_set_blocked(cmd, reason);
179 * Decrement the counters, since these commands are no longer
180 * active on the host/device.
182 if (unbusy)
183 scsi_device_unbusy(device);
186 * Requeue this command. It will go before all other commands
187 * that are already in the queue. Schedule requeue work under
188 * lock such that the kblockd_schedule_work() call happens
189 * before blk_cleanup_queue() finishes.
191 cmd->result = 0;
192 if (q->mq_ops) {
193 scsi_mq_requeue_cmd(cmd);
194 return;
196 spin_lock_irqsave(q->queue_lock, flags);
197 blk_requeue_request(q, cmd->request);
198 kblockd_schedule_work(&device->requeue_work);
199 spin_unlock_irqrestore(q->queue_lock, flags);
203 * Function: scsi_queue_insert()
205 * Purpose: Insert a command in the midlevel queue.
207 * Arguments: cmd - command that we are adding to queue.
208 * reason - why we are inserting command to queue.
210 * Lock status: Assumed that lock is not held upon entry.
212 * Returns: Nothing.
214 * Notes: We do this for one of two cases. Either the host is busy
215 * and it cannot accept any more commands for the time being,
216 * or the device returned QUEUE_FULL and can accept no more
217 * commands.
218 * Notes: This could be called either from an interrupt context or a
219 * normal process context.
221 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
223 __scsi_queue_insert(cmd, reason, 1);
228 * scsi_execute - insert request and wait for the result
229 * @sdev: scsi device
230 * @cmd: scsi command
231 * @data_direction: data direction
232 * @buffer: data buffer
233 * @bufflen: len of buffer
234 * @sense: optional sense buffer
235 * @sshdr: optional decoded sense header
236 * @timeout: request timeout in seconds
237 * @retries: number of times to retry request
238 * @flags: flags for ->cmd_flags
239 * @rq_flags: flags for ->rq_flags
240 * @resid: optional residual length
242 * Returns the scsi_cmnd result field if a command was executed, or a negative
243 * Linux error code if we didn't get that far.
245 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
246 int data_direction, void *buffer, unsigned bufflen,
247 unsigned char *sense, struct scsi_sense_hdr *sshdr,
248 int timeout, int retries, u64 flags, req_flags_t rq_flags,
249 int *resid)
251 struct request *req;
252 struct scsi_request *rq;
253 int ret = DRIVER_ERROR << 24;
255 req = blk_get_request_flags(sdev->request_queue,
256 data_direction == DMA_TO_DEVICE ?
257 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
258 if (IS_ERR(req))
259 return ret;
260 rq = scsi_req(req);
262 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
263 buffer, bufflen, __GFP_RECLAIM))
264 goto out;
266 rq->cmd_len = COMMAND_SIZE(cmd[0]);
267 memcpy(rq->cmd, cmd, rq->cmd_len);
268 rq->retries = retries;
269 req->timeout = timeout;
270 req->cmd_flags |= flags;
271 req->rq_flags |= rq_flags | RQF_QUIET;
274 * head injection *required* here otherwise quiesce won't work
276 blk_execute_rq(req->q, NULL, req, 1);
279 * Some devices (USB mass-storage in particular) may transfer
280 * garbage data together with a residue indicating that the data
281 * is invalid. Prevent the garbage from being misinterpreted
282 * and prevent security leaks by zeroing out the excess data.
284 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
285 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
287 if (resid)
288 *resid = rq->resid_len;
289 if (sense && rq->sense_len)
290 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
291 if (sshdr)
292 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
293 ret = rq->result;
294 out:
295 blk_put_request(req);
297 return ret;
299 EXPORT_SYMBOL(scsi_execute);
302 * Function: scsi_init_cmd_errh()
304 * Purpose: Initialize cmd fields related to error handling.
306 * Arguments: cmd - command that is ready to be queued.
308 * Notes: This function has the job of initializing a number of
309 * fields related to error handling. Typically this will
310 * be called once for each command, as required.
312 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
314 cmd->serial_number = 0;
315 scsi_set_resid(cmd, 0);
316 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
317 if (cmd->cmd_len == 0)
318 cmd->cmd_len = scsi_command_size(cmd->cmnd);
322 * Decrement the host_busy counter and wake up the error handler if necessary.
323 * Avoid as follows that the error handler is not woken up if shost->host_busy
324 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
325 * with an RCU read lock in this function to ensure that this function in its
326 * entirety either finishes before scsi_eh_scmd_add() increases the
327 * host_failed counter or that it notices the shost state change made by
328 * scsi_eh_scmd_add().
330 static void scsi_dec_host_busy(struct Scsi_Host *shost)
332 unsigned long flags;
334 rcu_read_lock();
335 atomic_dec(&shost->host_busy);
336 if (unlikely(scsi_host_in_recovery(shost))) {
337 spin_lock_irqsave(shost->host_lock, flags);
338 if (shost->host_failed || shost->host_eh_scheduled)
339 scsi_eh_wakeup(shost);
340 spin_unlock_irqrestore(shost->host_lock, flags);
342 rcu_read_unlock();
345 void scsi_device_unbusy(struct scsi_device *sdev)
347 struct Scsi_Host *shost = sdev->host;
348 struct scsi_target *starget = scsi_target(sdev);
350 scsi_dec_host_busy(shost);
352 if (starget->can_queue > 0)
353 atomic_dec(&starget->target_busy);
355 atomic_dec(&sdev->device_busy);
358 static void scsi_kick_queue(struct request_queue *q)
360 if (q->mq_ops)
361 blk_mq_start_hw_queues(q);
362 else
363 blk_run_queue(q);
367 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
368 * and call blk_run_queue for all the scsi_devices on the target -
369 * including current_sdev first.
371 * Called with *no* scsi locks held.
373 static void scsi_single_lun_run(struct scsi_device *current_sdev)
375 struct Scsi_Host *shost = current_sdev->host;
376 struct scsi_device *sdev, *tmp;
377 struct scsi_target *starget = scsi_target(current_sdev);
378 unsigned long flags;
380 spin_lock_irqsave(shost->host_lock, flags);
381 starget->starget_sdev_user = NULL;
382 spin_unlock_irqrestore(shost->host_lock, flags);
385 * Call blk_run_queue for all LUNs on the target, starting with
386 * current_sdev. We race with others (to set starget_sdev_user),
387 * but in most cases, we will be first. Ideally, each LU on the
388 * target would get some limited time or requests on the target.
390 scsi_kick_queue(current_sdev->request_queue);
392 spin_lock_irqsave(shost->host_lock, flags);
393 if (starget->starget_sdev_user)
394 goto out;
395 list_for_each_entry_safe(sdev, tmp, &starget->devices,
396 same_target_siblings) {
397 if (sdev == current_sdev)
398 continue;
399 if (scsi_device_get(sdev))
400 continue;
402 spin_unlock_irqrestore(shost->host_lock, flags);
403 scsi_kick_queue(sdev->request_queue);
404 spin_lock_irqsave(shost->host_lock, flags);
406 scsi_device_put(sdev);
408 out:
409 spin_unlock_irqrestore(shost->host_lock, flags);
412 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
414 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
415 return true;
416 if (atomic_read(&sdev->device_blocked) > 0)
417 return true;
418 return false;
421 static inline bool scsi_target_is_busy(struct scsi_target *starget)
423 if (starget->can_queue > 0) {
424 if (atomic_read(&starget->target_busy) >= starget->can_queue)
425 return true;
426 if (atomic_read(&starget->target_blocked) > 0)
427 return true;
429 return false;
432 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
434 if (shost->can_queue > 0 &&
435 atomic_read(&shost->host_busy) >= shost->can_queue)
436 return true;
437 if (atomic_read(&shost->host_blocked) > 0)
438 return true;
439 if (shost->host_self_blocked)
440 return true;
441 return false;
444 static void scsi_starved_list_run(struct Scsi_Host *shost)
446 LIST_HEAD(starved_list);
447 struct scsi_device *sdev;
448 unsigned long flags;
450 spin_lock_irqsave(shost->host_lock, flags);
451 list_splice_init(&shost->starved_list, &starved_list);
453 while (!list_empty(&starved_list)) {
454 struct request_queue *slq;
457 * As long as shost is accepting commands and we have
458 * starved queues, call blk_run_queue. scsi_request_fn
459 * drops the queue_lock and can add us back to the
460 * starved_list.
462 * host_lock protects the starved_list and starved_entry.
463 * scsi_request_fn must get the host_lock before checking
464 * or modifying starved_list or starved_entry.
466 if (scsi_host_is_busy(shost))
467 break;
469 sdev = list_entry(starved_list.next,
470 struct scsi_device, starved_entry);
471 list_del_init(&sdev->starved_entry);
472 if (scsi_target_is_busy(scsi_target(sdev))) {
473 list_move_tail(&sdev->starved_entry,
474 &shost->starved_list);
475 continue;
479 * Once we drop the host lock, a racing scsi_remove_device()
480 * call may remove the sdev from the starved list and destroy
481 * it and the queue. Mitigate by taking a reference to the
482 * queue and never touching the sdev again after we drop the
483 * host lock. Note: if __scsi_remove_device() invokes
484 * blk_cleanup_queue() before the queue is run from this
485 * function then blk_run_queue() will return immediately since
486 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
488 slq = sdev->request_queue;
489 if (!blk_get_queue(slq))
490 continue;
491 spin_unlock_irqrestore(shost->host_lock, flags);
493 scsi_kick_queue(slq);
494 blk_put_queue(slq);
496 spin_lock_irqsave(shost->host_lock, flags);
498 /* put any unprocessed entries back */
499 list_splice(&starved_list, &shost->starved_list);
500 spin_unlock_irqrestore(shost->host_lock, flags);
504 * Function: scsi_run_queue()
506 * Purpose: Select a proper request queue to serve next
508 * Arguments: q - last request's queue
510 * Returns: Nothing
512 * Notes: The previous command was completely finished, start
513 * a new one if possible.
515 static void scsi_run_queue(struct request_queue *q)
517 struct scsi_device *sdev = q->queuedata;
519 if (scsi_target(sdev)->single_lun)
520 scsi_single_lun_run(sdev);
521 if (!list_empty(&sdev->host->starved_list))
522 scsi_starved_list_run(sdev->host);
524 if (q->mq_ops)
525 blk_mq_run_hw_queues(q, false);
526 else
527 blk_run_queue(q);
530 void scsi_requeue_run_queue(struct work_struct *work)
532 struct scsi_device *sdev;
533 struct request_queue *q;
535 sdev = container_of(work, struct scsi_device, requeue_work);
536 q = sdev->request_queue;
537 scsi_run_queue(q);
541 * Function: scsi_requeue_command()
543 * Purpose: Handle post-processing of completed commands.
545 * Arguments: q - queue to operate on
546 * cmd - command that may need to be requeued.
548 * Returns: Nothing
550 * Notes: After command completion, there may be blocks left
551 * over which weren't finished by the previous command
552 * this can be for a number of reasons - the main one is
553 * I/O errors in the middle of the request, in which case
554 * we need to request the blocks that come after the bad
555 * sector.
556 * Notes: Upon return, cmd is a stale pointer.
558 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
560 struct scsi_device *sdev = cmd->device;
561 struct request *req = cmd->request;
562 unsigned long flags;
564 spin_lock_irqsave(q->queue_lock, flags);
565 blk_unprep_request(req);
566 req->special = NULL;
567 scsi_put_command(cmd);
568 blk_requeue_request(q, req);
569 spin_unlock_irqrestore(q->queue_lock, flags);
571 scsi_run_queue(q);
573 put_device(&sdev->sdev_gendev);
576 void scsi_run_host_queues(struct Scsi_Host *shost)
578 struct scsi_device *sdev;
580 shost_for_each_device(sdev, shost)
581 scsi_run_queue(sdev->request_queue);
584 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
586 if (!blk_rq_is_passthrough(cmd->request)) {
587 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
589 if (drv->uninit_command)
590 drv->uninit_command(cmd);
594 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
596 struct scsi_data_buffer *sdb;
598 if (cmd->sdb.table.nents)
599 sg_free_table_chained(&cmd->sdb.table, true);
600 if (cmd->request->next_rq) {
601 sdb = cmd->request->next_rq->special;
602 if (sdb)
603 sg_free_table_chained(&sdb->table, true);
605 if (scsi_prot_sg_count(cmd))
606 sg_free_table_chained(&cmd->prot_sdb->table, true);
609 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
611 scsi_mq_free_sgtables(cmd);
612 scsi_uninit_cmd(cmd);
613 scsi_del_cmd_from_list(cmd);
617 * Function: scsi_release_buffers()
619 * Purpose: Free resources allocate for a scsi_command.
621 * Arguments: cmd - command that we are bailing.
623 * Lock status: Assumed that no lock is held upon entry.
625 * Returns: Nothing
627 * Notes: In the event that an upper level driver rejects a
628 * command, we must release resources allocated during
629 * the __init_io() function. Primarily this would involve
630 * the scatter-gather table.
632 static void scsi_release_buffers(struct scsi_cmnd *cmd)
634 if (cmd->sdb.table.nents)
635 sg_free_table_chained(&cmd->sdb.table, false);
637 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
639 if (scsi_prot_sg_count(cmd))
640 sg_free_table_chained(&cmd->prot_sdb->table, false);
643 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
645 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
647 sg_free_table_chained(&bidi_sdb->table, false);
648 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
649 cmd->request->next_rq->special = NULL;
652 static bool scsi_end_request(struct request *req, blk_status_t error,
653 unsigned int bytes, unsigned int bidi_bytes)
655 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
656 struct scsi_device *sdev = cmd->device;
657 struct request_queue *q = sdev->request_queue;
659 if (blk_update_request(req, error, bytes))
660 return true;
662 /* Bidi request must be completed as a whole */
663 if (unlikely(bidi_bytes) &&
664 blk_update_request(req->next_rq, error, bidi_bytes))
665 return true;
667 if (blk_queue_add_random(q))
668 add_disk_randomness(req->rq_disk);
670 if (!blk_rq_is_scsi(req)) {
671 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
672 cmd->flags &= ~SCMD_INITIALIZED;
675 if (req->mq_ctx) {
677 * In the MQ case the command gets freed by __blk_mq_end_request,
678 * so we have to do all cleanup that depends on it earlier.
680 * We also can't kick the queues from irq context, so we
681 * will have to defer it to a workqueue.
683 scsi_mq_uninit_cmd(cmd);
685 __blk_mq_end_request(req, error);
687 if (scsi_target(sdev)->single_lun ||
688 !list_empty(&sdev->host->starved_list))
689 kblockd_schedule_work(&sdev->requeue_work);
690 else
691 blk_mq_run_hw_queues(q, true);
692 } else {
693 unsigned long flags;
695 if (bidi_bytes)
696 scsi_release_bidi_buffers(cmd);
697 scsi_release_buffers(cmd);
698 scsi_put_command(cmd);
700 spin_lock_irqsave(q->queue_lock, flags);
701 blk_finish_request(req, error);
702 spin_unlock_irqrestore(q->queue_lock, flags);
704 scsi_run_queue(q);
707 put_device(&sdev->sdev_gendev);
708 return false;
712 * __scsi_error_from_host_byte - translate SCSI error code into errno
713 * @cmd: SCSI command (unused)
714 * @result: scsi error code
716 * Translate SCSI error code into block errors.
718 static blk_status_t __scsi_error_from_host_byte(struct scsi_cmnd *cmd,
719 int result)
721 switch (host_byte(result)) {
722 case DID_TRANSPORT_FAILFAST:
723 return BLK_STS_TRANSPORT;
724 case DID_TARGET_FAILURE:
725 set_host_byte(cmd, DID_OK);
726 return BLK_STS_TARGET;
727 case DID_NEXUS_FAILURE:
728 return BLK_STS_NEXUS;
729 case DID_ALLOC_FAILURE:
730 set_host_byte(cmd, DID_OK);
731 return BLK_STS_NOSPC;
732 case DID_MEDIUM_ERROR:
733 set_host_byte(cmd, DID_OK);
734 return BLK_STS_MEDIUM;
735 default:
736 return BLK_STS_IOERR;
741 * Function: scsi_io_completion()
743 * Purpose: Completion processing for block device I/O requests.
745 * Arguments: cmd - command that is finished.
747 * Lock status: Assumed that no lock is held upon entry.
749 * Returns: Nothing
751 * Notes: We will finish off the specified number of sectors. If we
752 * are done, the command block will be released and the queue
753 * function will be goosed. If we are not done then we have to
754 * figure out what to do next:
756 * a) We can call scsi_requeue_command(). The request
757 * will be unprepared and put back on the queue. Then
758 * a new command will be created for it. This should
759 * be used if we made forward progress, or if we want
760 * to switch from READ(10) to READ(6) for example.
762 * b) We can call __scsi_queue_insert(). The request will
763 * be put back on the queue and retried using the same
764 * command as before, possibly after a delay.
766 * c) We can call scsi_end_request() with -EIO to fail
767 * the remainder of the request.
769 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
771 int result = cmd->result;
772 struct request_queue *q = cmd->device->request_queue;
773 struct request *req = cmd->request;
774 blk_status_t error = BLK_STS_OK;
775 struct scsi_sense_hdr sshdr;
776 bool sense_valid = false;
777 int sense_deferred = 0, level = 0;
778 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
779 ACTION_DELAYED_RETRY} action;
780 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
782 if (result) {
783 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
784 if (sense_valid)
785 sense_deferred = scsi_sense_is_deferred(&sshdr);
788 if (blk_rq_is_passthrough(req)) {
789 if (result) {
790 if (sense_valid) {
792 * SG_IO wants current and deferred errors
794 scsi_req(req)->sense_len =
795 min(8 + cmd->sense_buffer[7],
796 SCSI_SENSE_BUFFERSIZE);
798 if (!sense_deferred)
799 error = __scsi_error_from_host_byte(cmd, result);
802 * __scsi_error_from_host_byte may have reset the host_byte
804 scsi_req(req)->result = cmd->result;
805 scsi_req(req)->resid_len = scsi_get_resid(cmd);
807 if (scsi_bidi_cmnd(cmd)) {
809 * Bidi commands Must be complete as a whole,
810 * both sides at once.
812 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
813 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
814 blk_rq_bytes(req->next_rq)))
815 BUG();
816 return;
818 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
820 * Flush commands do not transfers any data, and thus cannot use
821 * good_bytes != blk_rq_bytes(req) as the signal for an error.
822 * This sets the error explicitly for the problem case.
824 error = __scsi_error_from_host_byte(cmd, result);
827 /* no bidi support for !blk_rq_is_passthrough yet */
828 BUG_ON(blk_bidi_rq(req));
831 * Next deal with any sectors which we were able to correctly
832 * handle.
834 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
835 "%u sectors total, %d bytes done.\n",
836 blk_rq_sectors(req), good_bytes));
839 * Recovered errors need reporting, but they're always treated as
840 * success, so fiddle the result code here. For passthrough requests
841 * we already took a copy of the original into sreq->result which
842 * is what gets returned to the user
844 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
845 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
846 * print since caller wants ATA registers. Only occurs on
847 * SCSI ATA PASS_THROUGH commands when CK_COND=1
849 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
851 else if (!(req->rq_flags & RQF_QUIET))
852 scsi_print_sense(cmd);
853 result = 0;
854 /* for passthrough error may be set */
855 error = BLK_STS_OK;
859 * special case: failed zero length commands always need to
860 * drop down into the retry code. Otherwise, if we finished
861 * all bytes in the request we are done now.
863 if (!(blk_rq_bytes(req) == 0 && error) &&
864 !scsi_end_request(req, error, good_bytes, 0))
865 return;
868 * Kill remainder if no retrys.
870 if (error && scsi_noretry_cmd(cmd)) {
871 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
872 BUG();
873 return;
877 * If there had been no error, but we have leftover bytes in the
878 * requeues just queue the command up again.
880 if (result == 0)
881 goto requeue;
883 error = __scsi_error_from_host_byte(cmd, result);
885 if (host_byte(result) == DID_RESET) {
886 /* Third party bus reset or reset for error recovery
887 * reasons. Just retry the command and see what
888 * happens.
890 action = ACTION_RETRY;
891 } else if (sense_valid && !sense_deferred) {
892 switch (sshdr.sense_key) {
893 case UNIT_ATTENTION:
894 if (cmd->device->removable) {
895 /* Detected disc change. Set a bit
896 * and quietly refuse further access.
898 cmd->device->changed = 1;
899 action = ACTION_FAIL;
900 } else {
901 /* Must have been a power glitch, or a
902 * bus reset. Could not have been a
903 * media change, so we just retry the
904 * command and see what happens.
906 action = ACTION_RETRY;
908 break;
909 case ILLEGAL_REQUEST:
910 /* If we had an ILLEGAL REQUEST returned, then
911 * we may have performed an unsupported
912 * command. The only thing this should be
913 * would be a ten byte read where only a six
914 * byte read was supported. Also, on a system
915 * where READ CAPACITY failed, we may have
916 * read past the end of the disk.
918 if ((cmd->device->use_10_for_rw &&
919 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
920 (cmd->cmnd[0] == READ_10 ||
921 cmd->cmnd[0] == WRITE_10)) {
922 /* This will issue a new 6-byte command. */
923 cmd->device->use_10_for_rw = 0;
924 action = ACTION_REPREP;
925 } else if (sshdr.asc == 0x10) /* DIX */ {
926 action = ACTION_FAIL;
927 error = BLK_STS_PROTECTION;
928 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
929 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
930 action = ACTION_FAIL;
931 error = BLK_STS_TARGET;
932 } else
933 action = ACTION_FAIL;
934 break;
935 case ABORTED_COMMAND:
936 action = ACTION_FAIL;
937 if (sshdr.asc == 0x10) /* DIF */
938 error = BLK_STS_PROTECTION;
939 break;
940 case NOT_READY:
941 /* If the device is in the process of becoming
942 * ready, or has a temporary blockage, retry.
944 if (sshdr.asc == 0x04) {
945 switch (sshdr.ascq) {
946 case 0x01: /* becoming ready */
947 case 0x04: /* format in progress */
948 case 0x05: /* rebuild in progress */
949 case 0x06: /* recalculation in progress */
950 case 0x07: /* operation in progress */
951 case 0x08: /* Long write in progress */
952 case 0x09: /* self test in progress */
953 case 0x14: /* space allocation in progress */
954 action = ACTION_DELAYED_RETRY;
955 break;
956 default:
957 action = ACTION_FAIL;
958 break;
960 } else
961 action = ACTION_FAIL;
962 break;
963 case VOLUME_OVERFLOW:
964 /* See SSC3rXX or current. */
965 action = ACTION_FAIL;
966 break;
967 default:
968 action = ACTION_FAIL;
969 break;
971 } else
972 action = ACTION_FAIL;
974 if (action != ACTION_FAIL &&
975 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
976 action = ACTION_FAIL;
978 switch (action) {
979 case ACTION_FAIL:
980 /* Give up and fail the remainder of the request */
981 if (!(req->rq_flags & RQF_QUIET)) {
982 static DEFINE_RATELIMIT_STATE(_rs,
983 DEFAULT_RATELIMIT_INTERVAL,
984 DEFAULT_RATELIMIT_BURST);
986 if (unlikely(scsi_logging_level))
987 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
988 SCSI_LOG_MLCOMPLETE_BITS);
991 * if logging is enabled the failure will be printed
992 * in scsi_log_completion(), so avoid duplicate messages
994 if (!level && __ratelimit(&_rs)) {
995 scsi_print_result(cmd, NULL, FAILED);
996 if (driver_byte(result) & DRIVER_SENSE)
997 scsi_print_sense(cmd);
998 scsi_print_command(cmd);
1001 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1002 return;
1003 /*FALLTHRU*/
1004 case ACTION_REPREP:
1005 requeue:
1006 /* Unprep the request and put it back at the head of the queue.
1007 * A new command will be prepared and issued.
1009 if (q->mq_ops) {
1010 scsi_mq_requeue_cmd(cmd);
1011 } else {
1012 scsi_release_buffers(cmd);
1013 scsi_requeue_command(q, cmd);
1015 break;
1016 case ACTION_RETRY:
1017 /* Retry the same command immediately */
1018 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1019 break;
1020 case ACTION_DELAYED_RETRY:
1021 /* Retry the same command after a delay */
1022 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1023 break;
1027 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1029 int count;
1032 * If sg table allocation fails, requeue request later.
1034 if (unlikely(sg_alloc_table_chained(&sdb->table,
1035 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1036 return BLKPREP_DEFER;
1039 * Next, walk the list, and fill in the addresses and sizes of
1040 * each segment.
1042 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1043 BUG_ON(count > sdb->table.nents);
1044 sdb->table.nents = count;
1045 sdb->length = blk_rq_payload_bytes(req);
1046 return BLKPREP_OK;
1050 * Function: scsi_init_io()
1052 * Purpose: SCSI I/O initialize function.
1054 * Arguments: cmd - Command descriptor we wish to initialize
1056 * Returns: 0 on success
1057 * BLKPREP_DEFER if the failure is retryable
1058 * BLKPREP_KILL if the failure is fatal
1060 int scsi_init_io(struct scsi_cmnd *cmd)
1062 struct scsi_device *sdev = cmd->device;
1063 struct request *rq = cmd->request;
1064 bool is_mq = (rq->mq_ctx != NULL);
1065 int error = BLKPREP_KILL;
1067 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1068 goto err_exit;
1070 error = scsi_init_sgtable(rq, &cmd->sdb);
1071 if (error)
1072 goto err_exit;
1074 if (blk_bidi_rq(rq)) {
1075 if (!rq->q->mq_ops) {
1076 struct scsi_data_buffer *bidi_sdb =
1077 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1078 if (!bidi_sdb) {
1079 error = BLKPREP_DEFER;
1080 goto err_exit;
1083 rq->next_rq->special = bidi_sdb;
1086 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1087 if (error)
1088 goto err_exit;
1091 if (blk_integrity_rq(rq)) {
1092 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1093 int ivecs, count;
1095 if (prot_sdb == NULL) {
1097 * This can happen if someone (e.g. multipath)
1098 * queues a command to a device on an adapter
1099 * that does not support DIX.
1101 WARN_ON_ONCE(1);
1102 error = BLKPREP_KILL;
1103 goto err_exit;
1106 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1108 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1109 prot_sdb->table.sgl)) {
1110 error = BLKPREP_DEFER;
1111 goto err_exit;
1114 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1115 prot_sdb->table.sgl);
1116 BUG_ON(unlikely(count > ivecs));
1117 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1119 cmd->prot_sdb = prot_sdb;
1120 cmd->prot_sdb->table.nents = count;
1123 return BLKPREP_OK;
1124 err_exit:
1125 if (is_mq) {
1126 scsi_mq_free_sgtables(cmd);
1127 } else {
1128 scsi_release_buffers(cmd);
1129 cmd->request->special = NULL;
1130 scsi_put_command(cmd);
1131 put_device(&sdev->sdev_gendev);
1133 return error;
1135 EXPORT_SYMBOL(scsi_init_io);
1138 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1139 * @rq: Request associated with the SCSI command to be initialized.
1141 * This function initializes the members of struct scsi_cmnd that must be
1142 * initialized before request processing starts and that won't be
1143 * reinitialized if a SCSI command is requeued.
1145 * Called from inside blk_get_request() for pass-through requests and from
1146 * inside scsi_init_command() for filesystem requests.
1148 void scsi_initialize_rq(struct request *rq)
1150 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1152 scsi_req_init(&cmd->req);
1153 cmd->jiffies_at_alloc = jiffies;
1154 cmd->retries = 0;
1156 EXPORT_SYMBOL(scsi_initialize_rq);
1158 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1159 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1161 struct scsi_device *sdev = cmd->device;
1162 struct Scsi_Host *shost = sdev->host;
1163 unsigned long flags;
1165 if (shost->use_cmd_list) {
1166 spin_lock_irqsave(&sdev->list_lock, flags);
1167 list_add_tail(&cmd->list, &sdev->cmd_list);
1168 spin_unlock_irqrestore(&sdev->list_lock, flags);
1172 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1173 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1175 struct scsi_device *sdev = cmd->device;
1176 struct Scsi_Host *shost = sdev->host;
1177 unsigned long flags;
1179 if (shost->use_cmd_list) {
1180 spin_lock_irqsave(&sdev->list_lock, flags);
1181 BUG_ON(list_empty(&cmd->list));
1182 list_del_init(&cmd->list);
1183 spin_unlock_irqrestore(&sdev->list_lock, flags);
1187 /* Called after a request has been started. */
1188 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1190 void *buf = cmd->sense_buffer;
1191 void *prot = cmd->prot_sdb;
1192 struct request *rq = blk_mq_rq_from_pdu(cmd);
1193 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1194 unsigned long jiffies_at_alloc;
1195 int retries;
1197 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1198 flags |= SCMD_INITIALIZED;
1199 scsi_initialize_rq(rq);
1202 jiffies_at_alloc = cmd->jiffies_at_alloc;
1203 retries = cmd->retries;
1204 /* zero out the cmd, except for the embedded scsi_request */
1205 memset((char *)cmd + sizeof(cmd->req), 0,
1206 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1208 cmd->device = dev;
1209 cmd->sense_buffer = buf;
1210 cmd->prot_sdb = prot;
1211 cmd->flags = flags;
1212 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1213 cmd->jiffies_at_alloc = jiffies_at_alloc;
1214 cmd->retries = retries;
1216 scsi_add_cmd_to_list(cmd);
1219 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1221 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1224 * Passthrough requests may transfer data, in which case they must
1225 * a bio attached to them. Or they might contain a SCSI command
1226 * that does not transfer data, in which case they may optionally
1227 * submit a request without an attached bio.
1229 if (req->bio) {
1230 int ret = scsi_init_io(cmd);
1231 if (unlikely(ret))
1232 return ret;
1233 } else {
1234 BUG_ON(blk_rq_bytes(req));
1236 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1239 cmd->cmd_len = scsi_req(req)->cmd_len;
1240 cmd->cmnd = scsi_req(req)->cmd;
1241 cmd->transfersize = blk_rq_bytes(req);
1242 cmd->allowed = scsi_req(req)->retries;
1243 return BLKPREP_OK;
1247 * Setup a normal block command. These are simple request from filesystems
1248 * that still need to be translated to SCSI CDBs from the ULD.
1250 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1252 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1254 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1255 int ret = sdev->handler->prep_fn(sdev, req);
1256 if (ret != BLKPREP_OK)
1257 return ret;
1260 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1261 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1262 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1265 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1267 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1269 if (!blk_rq_bytes(req))
1270 cmd->sc_data_direction = DMA_NONE;
1271 else if (rq_data_dir(req) == WRITE)
1272 cmd->sc_data_direction = DMA_TO_DEVICE;
1273 else
1274 cmd->sc_data_direction = DMA_FROM_DEVICE;
1276 if (blk_rq_is_scsi(req))
1277 return scsi_setup_scsi_cmnd(sdev, req);
1278 else
1279 return scsi_setup_fs_cmnd(sdev, req);
1282 static int
1283 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1285 int ret = BLKPREP_OK;
1288 * If the device is not in running state we will reject some
1289 * or all commands.
1291 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1292 switch (sdev->sdev_state) {
1293 case SDEV_OFFLINE:
1294 case SDEV_TRANSPORT_OFFLINE:
1296 * If the device is offline we refuse to process any
1297 * commands. The device must be brought online
1298 * before trying any recovery commands.
1300 sdev_printk(KERN_ERR, sdev,
1301 "rejecting I/O to offline device\n");
1302 ret = BLKPREP_KILL;
1303 break;
1304 case SDEV_DEL:
1306 * If the device is fully deleted, we refuse to
1307 * process any commands as well.
1309 sdev_printk(KERN_ERR, sdev,
1310 "rejecting I/O to dead device\n");
1311 ret = BLKPREP_KILL;
1312 break;
1313 case SDEV_BLOCK:
1314 case SDEV_CREATED_BLOCK:
1315 ret = BLKPREP_DEFER;
1316 break;
1317 case SDEV_QUIESCE:
1319 * If the devices is blocked we defer normal commands.
1321 if (req && !(req->rq_flags & RQF_PREEMPT))
1322 ret = BLKPREP_DEFER;
1323 break;
1324 default:
1326 * For any other not fully online state we only allow
1327 * special commands. In particular any user initiated
1328 * command is not allowed.
1330 if (req && !(req->rq_flags & RQF_PREEMPT))
1331 ret = BLKPREP_KILL;
1332 break;
1335 return ret;
1338 static int
1339 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1341 struct scsi_device *sdev = q->queuedata;
1343 switch (ret) {
1344 case BLKPREP_KILL:
1345 case BLKPREP_INVALID:
1346 scsi_req(req)->result = DID_NO_CONNECT << 16;
1347 /* release the command and kill it */
1348 if (req->special) {
1349 struct scsi_cmnd *cmd = req->special;
1350 scsi_release_buffers(cmd);
1351 scsi_put_command(cmd);
1352 put_device(&sdev->sdev_gendev);
1353 req->special = NULL;
1355 break;
1356 case BLKPREP_DEFER:
1358 * If we defer, the blk_peek_request() returns NULL, but the
1359 * queue must be restarted, so we schedule a callback to happen
1360 * shortly.
1362 if (atomic_read(&sdev->device_busy) == 0)
1363 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1364 break;
1365 default:
1366 req->rq_flags |= RQF_DONTPREP;
1369 return ret;
1372 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1374 struct scsi_device *sdev = q->queuedata;
1375 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1376 int ret;
1378 ret = scsi_prep_state_check(sdev, req);
1379 if (ret != BLKPREP_OK)
1380 goto out;
1382 if (!req->special) {
1383 /* Bail if we can't get a reference to the device */
1384 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1385 ret = BLKPREP_DEFER;
1386 goto out;
1389 scsi_init_command(sdev, cmd);
1390 req->special = cmd;
1393 cmd->tag = req->tag;
1394 cmd->request = req;
1395 cmd->prot_op = SCSI_PROT_NORMAL;
1397 ret = scsi_setup_cmnd(sdev, req);
1398 out:
1399 return scsi_prep_return(q, req, ret);
1402 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1404 scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1408 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1409 * return 0.
1411 * Called with the queue_lock held.
1413 static inline int scsi_dev_queue_ready(struct request_queue *q,
1414 struct scsi_device *sdev)
1416 unsigned int busy;
1418 busy = atomic_inc_return(&sdev->device_busy) - 1;
1419 if (atomic_read(&sdev->device_blocked)) {
1420 if (busy)
1421 goto out_dec;
1424 * unblock after device_blocked iterates to zero
1426 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1428 * For the MQ case we take care of this in the caller.
1430 if (!q->mq_ops)
1431 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1432 goto out_dec;
1434 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1435 "unblocking device at zero depth\n"));
1438 if (busy >= sdev->queue_depth)
1439 goto out_dec;
1441 return 1;
1442 out_dec:
1443 atomic_dec(&sdev->device_busy);
1444 return 0;
1448 * scsi_target_queue_ready: checks if there we can send commands to target
1449 * @sdev: scsi device on starget to check.
1451 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1452 struct scsi_device *sdev)
1454 struct scsi_target *starget = scsi_target(sdev);
1455 unsigned int busy;
1457 if (starget->single_lun) {
1458 spin_lock_irq(shost->host_lock);
1459 if (starget->starget_sdev_user &&
1460 starget->starget_sdev_user != sdev) {
1461 spin_unlock_irq(shost->host_lock);
1462 return 0;
1464 starget->starget_sdev_user = sdev;
1465 spin_unlock_irq(shost->host_lock);
1468 if (starget->can_queue <= 0)
1469 return 1;
1471 busy = atomic_inc_return(&starget->target_busy) - 1;
1472 if (atomic_read(&starget->target_blocked) > 0) {
1473 if (busy)
1474 goto starved;
1477 * unblock after target_blocked iterates to zero
1479 if (atomic_dec_return(&starget->target_blocked) > 0)
1480 goto out_dec;
1482 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1483 "unblocking target at zero depth\n"));
1486 if (busy >= starget->can_queue)
1487 goto starved;
1489 return 1;
1491 starved:
1492 spin_lock_irq(shost->host_lock);
1493 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1494 spin_unlock_irq(shost->host_lock);
1495 out_dec:
1496 if (starget->can_queue > 0)
1497 atomic_dec(&starget->target_busy);
1498 return 0;
1502 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1503 * return 0. We must end up running the queue again whenever 0 is
1504 * returned, else IO can hang.
1506 static inline int scsi_host_queue_ready(struct request_queue *q,
1507 struct Scsi_Host *shost,
1508 struct scsi_device *sdev)
1510 unsigned int busy;
1512 if (scsi_host_in_recovery(shost))
1513 return 0;
1515 busy = atomic_inc_return(&shost->host_busy) - 1;
1516 if (atomic_read(&shost->host_blocked) > 0) {
1517 if (busy)
1518 goto starved;
1521 * unblock after host_blocked iterates to zero
1523 if (atomic_dec_return(&shost->host_blocked) > 0)
1524 goto out_dec;
1526 SCSI_LOG_MLQUEUE(3,
1527 shost_printk(KERN_INFO, shost,
1528 "unblocking host at zero depth\n"));
1531 if (shost->can_queue > 0 && busy >= shost->can_queue)
1532 goto starved;
1533 if (shost->host_self_blocked)
1534 goto starved;
1536 /* We're OK to process the command, so we can't be starved */
1537 if (!list_empty(&sdev->starved_entry)) {
1538 spin_lock_irq(shost->host_lock);
1539 if (!list_empty(&sdev->starved_entry))
1540 list_del_init(&sdev->starved_entry);
1541 spin_unlock_irq(shost->host_lock);
1544 return 1;
1546 starved:
1547 spin_lock_irq(shost->host_lock);
1548 if (list_empty(&sdev->starved_entry))
1549 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1550 spin_unlock_irq(shost->host_lock);
1551 out_dec:
1552 scsi_dec_host_busy(shost);
1553 return 0;
1557 * Busy state exporting function for request stacking drivers.
1559 * For efficiency, no lock is taken to check the busy state of
1560 * shost/starget/sdev, since the returned value is not guaranteed and
1561 * may be changed after request stacking drivers call the function,
1562 * regardless of taking lock or not.
1564 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1565 * needs to return 'not busy'. Otherwise, request stacking drivers
1566 * may hold requests forever.
1568 static int scsi_lld_busy(struct request_queue *q)
1570 struct scsi_device *sdev = q->queuedata;
1571 struct Scsi_Host *shost;
1573 if (blk_queue_dying(q))
1574 return 0;
1576 shost = sdev->host;
1579 * Ignore host/starget busy state.
1580 * Since block layer does not have a concept of fairness across
1581 * multiple queues, congestion of host/starget needs to be handled
1582 * in SCSI layer.
1584 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1585 return 1;
1587 return 0;
1591 * Kill a request for a dead device
1593 static void scsi_kill_request(struct request *req, struct request_queue *q)
1595 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1596 struct scsi_device *sdev;
1597 struct scsi_target *starget;
1598 struct Scsi_Host *shost;
1600 blk_start_request(req);
1602 scmd_printk(KERN_INFO, cmd, "killing request\n");
1604 sdev = cmd->device;
1605 starget = scsi_target(sdev);
1606 shost = sdev->host;
1607 scsi_init_cmd_errh(cmd);
1608 cmd->result = DID_NO_CONNECT << 16;
1609 atomic_inc(&cmd->device->iorequest_cnt);
1612 * SCSI request completion path will do scsi_device_unbusy(),
1613 * bump busy counts. To bump the counters, we need to dance
1614 * with the locks as normal issue path does.
1616 atomic_inc(&sdev->device_busy);
1617 atomic_inc(&shost->host_busy);
1618 if (starget->can_queue > 0)
1619 atomic_inc(&starget->target_busy);
1621 blk_complete_request(req);
1624 static void scsi_softirq_done(struct request *rq)
1626 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1627 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1628 int disposition;
1630 INIT_LIST_HEAD(&cmd->eh_entry);
1632 atomic_inc(&cmd->device->iodone_cnt);
1633 if (cmd->result)
1634 atomic_inc(&cmd->device->ioerr_cnt);
1636 disposition = scsi_decide_disposition(cmd);
1637 if (disposition != SUCCESS &&
1638 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1639 sdev_printk(KERN_ERR, cmd->device,
1640 "timing out command, waited %lus\n",
1641 wait_for/HZ);
1642 disposition = SUCCESS;
1645 scsi_log_completion(cmd, disposition);
1647 switch (disposition) {
1648 case SUCCESS:
1649 scsi_finish_command(cmd);
1650 break;
1651 case NEEDS_RETRY:
1652 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1653 break;
1654 case ADD_TO_MLQUEUE:
1655 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1656 break;
1657 default:
1658 scsi_eh_scmd_add(cmd);
1659 break;
1664 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1665 * @cmd: command block we are dispatching.
1667 * Return: nonzero return request was rejected and device's queue needs to be
1668 * plugged.
1670 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1672 struct Scsi_Host *host = cmd->device->host;
1673 int rtn = 0;
1675 atomic_inc(&cmd->device->iorequest_cnt);
1677 /* check if the device is still usable */
1678 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1679 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1680 * returns an immediate error upwards, and signals
1681 * that the device is no longer present */
1682 cmd->result = DID_NO_CONNECT << 16;
1683 goto done;
1686 /* Check to see if the scsi lld made this device blocked. */
1687 if (unlikely(scsi_device_blocked(cmd->device))) {
1689 * in blocked state, the command is just put back on
1690 * the device queue. The suspend state has already
1691 * blocked the queue so future requests should not
1692 * occur until the device transitions out of the
1693 * suspend state.
1695 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1696 "queuecommand : device blocked\n"));
1697 return SCSI_MLQUEUE_DEVICE_BUSY;
1700 /* Store the LUN value in cmnd, if needed. */
1701 if (cmd->device->lun_in_cdb)
1702 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1703 (cmd->device->lun << 5 & 0xe0);
1705 scsi_log_send(cmd);
1708 * Before we queue this command, check if the command
1709 * length exceeds what the host adapter can handle.
1711 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1712 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1713 "queuecommand : command too long. "
1714 "cdb_size=%d host->max_cmd_len=%d\n",
1715 cmd->cmd_len, cmd->device->host->max_cmd_len));
1716 cmd->result = (DID_ABORT << 16);
1717 goto done;
1720 if (unlikely(host->shost_state == SHOST_DEL)) {
1721 cmd->result = (DID_NO_CONNECT << 16);
1722 goto done;
1726 trace_scsi_dispatch_cmd_start(cmd);
1727 rtn = host->hostt->queuecommand(host, cmd);
1728 if (rtn) {
1729 trace_scsi_dispatch_cmd_error(cmd, rtn);
1730 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1731 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1732 rtn = SCSI_MLQUEUE_HOST_BUSY;
1734 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1735 "queuecommand : request rejected\n"));
1738 return rtn;
1739 done:
1740 cmd->scsi_done(cmd);
1741 return 0;
1745 * scsi_done - Invoke completion on finished SCSI command.
1746 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1747 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1749 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1750 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1751 * calls blk_complete_request() for further processing.
1753 * This function is interrupt context safe.
1755 static void scsi_done(struct scsi_cmnd *cmd)
1757 trace_scsi_dispatch_cmd_done(cmd);
1758 blk_complete_request(cmd->request);
1762 * Function: scsi_request_fn()
1764 * Purpose: Main strategy routine for SCSI.
1766 * Arguments: q - Pointer to actual queue.
1768 * Returns: Nothing
1770 * Lock status: request queue lock assumed to be held when called.
1772 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1773 * protection for ZBC disks.
1775 static void scsi_request_fn(struct request_queue *q)
1776 __releases(q->queue_lock)
1777 __acquires(q->queue_lock)
1779 struct scsi_device *sdev = q->queuedata;
1780 struct Scsi_Host *shost;
1781 struct scsi_cmnd *cmd;
1782 struct request *req;
1785 * To start with, we keep looping until the queue is empty, or until
1786 * the host is no longer able to accept any more requests.
1788 shost = sdev->host;
1789 for (;;) {
1790 int rtn;
1792 * get next queueable request. We do this early to make sure
1793 * that the request is fully prepared even if we cannot
1794 * accept it.
1796 req = blk_peek_request(q);
1797 if (!req)
1798 break;
1800 if (unlikely(!scsi_device_online(sdev))) {
1801 sdev_printk(KERN_ERR, sdev,
1802 "rejecting I/O to offline device\n");
1803 scsi_kill_request(req, q);
1804 continue;
1807 if (!scsi_dev_queue_ready(q, sdev))
1808 break;
1811 * Remove the request from the request list.
1813 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1814 blk_start_request(req);
1816 spin_unlock_irq(q->queue_lock);
1817 cmd = blk_mq_rq_to_pdu(req);
1818 if (cmd != req->special) {
1819 printk(KERN_CRIT "impossible request in %s.\n"
1820 "please mail a stack trace to "
1821 "linux-scsi@vger.kernel.org\n",
1822 __func__);
1823 blk_dump_rq_flags(req, "foo");
1824 BUG();
1828 * We hit this when the driver is using a host wide
1829 * tag map. For device level tag maps the queue_depth check
1830 * in the device ready fn would prevent us from trying
1831 * to allocate a tag. Since the map is a shared host resource
1832 * we add the dev to the starved list so it eventually gets
1833 * a run when a tag is freed.
1835 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1836 spin_lock_irq(shost->host_lock);
1837 if (list_empty(&sdev->starved_entry))
1838 list_add_tail(&sdev->starved_entry,
1839 &shost->starved_list);
1840 spin_unlock_irq(shost->host_lock);
1841 goto not_ready;
1844 if (!scsi_target_queue_ready(shost, sdev))
1845 goto not_ready;
1847 if (!scsi_host_queue_ready(q, shost, sdev))
1848 goto host_not_ready;
1850 if (sdev->simple_tags)
1851 cmd->flags |= SCMD_TAGGED;
1852 else
1853 cmd->flags &= ~SCMD_TAGGED;
1856 * Finally, initialize any error handling parameters, and set up
1857 * the timers for timeouts.
1859 scsi_init_cmd_errh(cmd);
1862 * Dispatch the command to the low-level driver.
1864 cmd->scsi_done = scsi_done;
1865 rtn = scsi_dispatch_cmd(cmd);
1866 if (rtn) {
1867 scsi_queue_insert(cmd, rtn);
1868 spin_lock_irq(q->queue_lock);
1869 goto out_delay;
1871 spin_lock_irq(q->queue_lock);
1874 return;
1876 host_not_ready:
1877 if (scsi_target(sdev)->can_queue > 0)
1878 atomic_dec(&scsi_target(sdev)->target_busy);
1879 not_ready:
1881 * lock q, handle tag, requeue req, and decrement device_busy. We
1882 * must return with queue_lock held.
1884 * Decrementing device_busy without checking it is OK, as all such
1885 * cases (host limits or settings) should run the queue at some
1886 * later time.
1888 spin_lock_irq(q->queue_lock);
1889 blk_requeue_request(q, req);
1890 atomic_dec(&sdev->device_busy);
1891 out_delay:
1892 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1893 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1896 static inline blk_status_t prep_to_mq(int ret)
1898 switch (ret) {
1899 case BLKPREP_OK:
1900 return BLK_STS_OK;
1901 case BLKPREP_DEFER:
1902 return BLK_STS_RESOURCE;
1903 default:
1904 return BLK_STS_IOERR;
1908 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1909 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1911 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
1912 sizeof(struct scatterlist);
1915 static int scsi_mq_prep_fn(struct request *req)
1917 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1918 struct scsi_device *sdev = req->q->queuedata;
1919 struct Scsi_Host *shost = sdev->host;
1920 struct scatterlist *sg;
1922 scsi_init_command(sdev, cmd);
1924 req->special = cmd;
1926 cmd->request = req;
1928 cmd->tag = req->tag;
1929 cmd->prot_op = SCSI_PROT_NORMAL;
1931 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1932 cmd->sdb.table.sgl = sg;
1934 if (scsi_host_get_prot(shost)) {
1935 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1937 cmd->prot_sdb->table.sgl =
1938 (struct scatterlist *)(cmd->prot_sdb + 1);
1941 if (blk_bidi_rq(req)) {
1942 struct request *next_rq = req->next_rq;
1943 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1945 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1946 bidi_sdb->table.sgl =
1947 (struct scatterlist *)(bidi_sdb + 1);
1949 next_rq->special = bidi_sdb;
1952 blk_mq_start_request(req);
1954 return scsi_setup_cmnd(sdev, req);
1957 static void scsi_mq_done(struct scsi_cmnd *cmd)
1959 trace_scsi_dispatch_cmd_done(cmd);
1960 blk_mq_complete_request(cmd->request);
1963 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
1965 struct request_queue *q = hctx->queue;
1966 struct scsi_device *sdev = q->queuedata;
1968 atomic_dec(&sdev->device_busy);
1969 put_device(&sdev->sdev_gendev);
1972 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
1974 struct request_queue *q = hctx->queue;
1975 struct scsi_device *sdev = q->queuedata;
1977 if (!get_device(&sdev->sdev_gendev))
1978 goto out;
1979 if (!scsi_dev_queue_ready(q, sdev))
1980 goto out_put_device;
1982 return true;
1984 out_put_device:
1985 put_device(&sdev->sdev_gendev);
1986 out:
1987 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
1988 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
1989 return false;
1992 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1993 const struct blk_mq_queue_data *bd)
1995 struct request *req = bd->rq;
1996 struct request_queue *q = req->q;
1997 struct scsi_device *sdev = q->queuedata;
1998 struct Scsi_Host *shost = sdev->host;
1999 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2000 blk_status_t ret;
2001 int reason;
2003 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2004 if (ret != BLK_STS_OK)
2005 goto out_put_budget;
2007 ret = BLK_STS_RESOURCE;
2008 if (!scsi_target_queue_ready(shost, sdev))
2009 goto out_put_budget;
2010 if (!scsi_host_queue_ready(q, shost, sdev))
2011 goto out_dec_target_busy;
2013 if (!(req->rq_flags & RQF_DONTPREP)) {
2014 ret = prep_to_mq(scsi_mq_prep_fn(req));
2015 if (ret != BLK_STS_OK)
2016 goto out_dec_host_busy;
2017 req->rq_flags |= RQF_DONTPREP;
2018 } else {
2019 blk_mq_start_request(req);
2022 if (sdev->simple_tags)
2023 cmd->flags |= SCMD_TAGGED;
2024 else
2025 cmd->flags &= ~SCMD_TAGGED;
2027 scsi_init_cmd_errh(cmd);
2028 cmd->scsi_done = scsi_mq_done;
2030 reason = scsi_dispatch_cmd(cmd);
2031 if (reason) {
2032 scsi_set_blocked(cmd, reason);
2033 ret = BLK_STS_RESOURCE;
2034 goto out_dec_host_busy;
2037 return BLK_STS_OK;
2039 out_dec_host_busy:
2040 scsi_dec_host_busy(shost);
2041 out_dec_target_busy:
2042 if (scsi_target(sdev)->can_queue > 0)
2043 atomic_dec(&scsi_target(sdev)->target_busy);
2044 out_put_budget:
2045 scsi_mq_put_budget(hctx);
2046 switch (ret) {
2047 case BLK_STS_OK:
2048 break;
2049 case BLK_STS_RESOURCE:
2050 if (atomic_read(&sdev->device_busy) == 0 &&
2051 !scsi_device_blocked(sdev))
2052 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2053 break;
2054 default:
2056 * Make sure to release all allocated ressources when
2057 * we hit an error, as we will never see this command
2058 * again.
2060 if (req->rq_flags & RQF_DONTPREP)
2061 scsi_mq_uninit_cmd(cmd);
2062 break;
2064 return ret;
2067 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2068 bool reserved)
2070 if (reserved)
2071 return BLK_EH_RESET_TIMER;
2072 return scsi_times_out(req);
2075 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2076 unsigned int hctx_idx, unsigned int numa_node)
2078 struct Scsi_Host *shost = set->driver_data;
2079 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2080 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2081 struct scatterlist *sg;
2083 if (unchecked_isa_dma)
2084 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2085 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2086 GFP_KERNEL, numa_node);
2087 if (!cmd->sense_buffer)
2088 return -ENOMEM;
2089 cmd->req.sense = cmd->sense_buffer;
2091 if (scsi_host_get_prot(shost)) {
2092 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2093 shost->hostt->cmd_size;
2094 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2097 return 0;
2100 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2101 unsigned int hctx_idx)
2103 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2105 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2106 cmd->sense_buffer);
2109 static int scsi_map_queues(struct blk_mq_tag_set *set)
2111 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2113 if (shost->hostt->map_queues)
2114 return shost->hostt->map_queues(shost);
2115 return blk_mq_map_queues(set);
2118 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2120 struct device *host_dev;
2121 u64 bounce_limit = 0xffffffff;
2123 if (shost->unchecked_isa_dma)
2124 return BLK_BOUNCE_ISA;
2126 * Platforms with virtual-DMA translation
2127 * hardware have no practical limit.
2129 if (!PCI_DMA_BUS_IS_PHYS)
2130 return BLK_BOUNCE_ANY;
2132 host_dev = scsi_get_device(shost);
2133 if (host_dev && host_dev->dma_mask)
2134 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2136 return bounce_limit;
2139 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2141 struct device *dev = shost->dma_dev;
2143 queue_flag_set_unlocked(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2146 * this limit is imposed by hardware restrictions
2148 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2149 SG_MAX_SEGMENTS));
2151 if (scsi_host_prot_dma(shost)) {
2152 shost->sg_prot_tablesize =
2153 min_not_zero(shost->sg_prot_tablesize,
2154 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2155 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2156 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2159 blk_queue_max_hw_sectors(q, shost->max_sectors);
2160 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2161 blk_queue_segment_boundary(q, shost->dma_boundary);
2162 dma_set_seg_boundary(dev, shost->dma_boundary);
2164 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2166 if (!shost->use_clustering)
2167 q->limits.cluster = 0;
2170 * Set a reasonable default alignment: The larger of 32-byte (dword),
2171 * which is a common minimum for HBAs, and the minimum DMA alignment,
2172 * which is set by the platform.
2174 * Devices that require a bigger alignment can increase it later.
2176 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2178 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2180 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2181 gfp_t gfp)
2183 struct Scsi_Host *shost = q->rq_alloc_data;
2184 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2185 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2187 memset(cmd, 0, sizeof(*cmd));
2189 if (unchecked_isa_dma)
2190 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2191 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2192 NUMA_NO_NODE);
2193 if (!cmd->sense_buffer)
2194 goto fail;
2195 cmd->req.sense = cmd->sense_buffer;
2197 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2198 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2199 if (!cmd->prot_sdb)
2200 goto fail_free_sense;
2203 return 0;
2205 fail_free_sense:
2206 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2207 fail:
2208 return -ENOMEM;
2211 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2213 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2215 if (cmd->prot_sdb)
2216 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2217 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2218 cmd->sense_buffer);
2221 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2223 struct Scsi_Host *shost = sdev->host;
2224 struct request_queue *q;
2226 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2227 if (!q)
2228 return NULL;
2229 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2230 q->rq_alloc_data = shost;
2231 q->request_fn = scsi_request_fn;
2232 q->init_rq_fn = scsi_old_init_rq;
2233 q->exit_rq_fn = scsi_old_exit_rq;
2234 q->initialize_rq_fn = scsi_initialize_rq;
2236 if (blk_init_allocated_queue(q) < 0) {
2237 blk_cleanup_queue(q);
2238 return NULL;
2241 __scsi_init_queue(shost, q);
2242 blk_queue_prep_rq(q, scsi_prep_fn);
2243 blk_queue_unprep_rq(q, scsi_unprep_fn);
2244 blk_queue_softirq_done(q, scsi_softirq_done);
2245 blk_queue_rq_timed_out(q, scsi_times_out);
2246 blk_queue_lld_busy(q, scsi_lld_busy);
2247 return q;
2250 static const struct blk_mq_ops scsi_mq_ops = {
2251 .get_budget = scsi_mq_get_budget,
2252 .put_budget = scsi_mq_put_budget,
2253 .queue_rq = scsi_queue_rq,
2254 .complete = scsi_softirq_done,
2255 .timeout = scsi_timeout,
2256 #ifdef CONFIG_BLK_DEBUG_FS
2257 .show_rq = scsi_show_rq,
2258 #endif
2259 .init_request = scsi_mq_init_request,
2260 .exit_request = scsi_mq_exit_request,
2261 .initialize_rq_fn = scsi_initialize_rq,
2262 .map_queues = scsi_map_queues,
2265 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2267 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2268 if (IS_ERR(sdev->request_queue))
2269 return NULL;
2271 sdev->request_queue->queuedata = sdev;
2272 __scsi_init_queue(sdev->host, sdev->request_queue);
2273 return sdev->request_queue;
2276 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2278 unsigned int cmd_size, sgl_size;
2280 sgl_size = scsi_mq_sgl_size(shost);
2281 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2282 if (scsi_host_get_prot(shost))
2283 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2285 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2286 shost->tag_set.ops = &scsi_mq_ops;
2287 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2288 shost->tag_set.queue_depth = shost->can_queue;
2289 shost->tag_set.cmd_size = cmd_size;
2290 shost->tag_set.numa_node = NUMA_NO_NODE;
2291 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2292 shost->tag_set.flags |=
2293 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2294 shost->tag_set.driver_data = shost;
2296 return blk_mq_alloc_tag_set(&shost->tag_set);
2299 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2301 blk_mq_free_tag_set(&shost->tag_set);
2305 * scsi_device_from_queue - return sdev associated with a request_queue
2306 * @q: The request queue to return the sdev from
2308 * Return the sdev associated with a request queue or NULL if the
2309 * request_queue does not reference a SCSI device.
2311 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2313 struct scsi_device *sdev = NULL;
2315 if (q->mq_ops) {
2316 if (q->mq_ops == &scsi_mq_ops)
2317 sdev = q->queuedata;
2318 } else if (q->request_fn == scsi_request_fn)
2319 sdev = q->queuedata;
2320 if (!sdev || !get_device(&sdev->sdev_gendev))
2321 sdev = NULL;
2323 return sdev;
2325 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2328 * Function: scsi_block_requests()
2330 * Purpose: Utility function used by low-level drivers to prevent further
2331 * commands from being queued to the device.
2333 * Arguments: shost - Host in question
2335 * Returns: Nothing
2337 * Lock status: No locks are assumed held.
2339 * Notes: There is no timer nor any other means by which the requests
2340 * get unblocked other than the low-level driver calling
2341 * scsi_unblock_requests().
2343 void scsi_block_requests(struct Scsi_Host *shost)
2345 shost->host_self_blocked = 1;
2347 EXPORT_SYMBOL(scsi_block_requests);
2350 * Function: scsi_unblock_requests()
2352 * Purpose: Utility function used by low-level drivers to allow further
2353 * commands from being queued to the device.
2355 * Arguments: shost - Host in question
2357 * Returns: Nothing
2359 * Lock status: No locks are assumed held.
2361 * Notes: There is no timer nor any other means by which the requests
2362 * get unblocked other than the low-level driver calling
2363 * scsi_unblock_requests().
2365 * This is done as an API function so that changes to the
2366 * internals of the scsi mid-layer won't require wholesale
2367 * changes to drivers that use this feature.
2369 void scsi_unblock_requests(struct Scsi_Host *shost)
2371 shost->host_self_blocked = 0;
2372 scsi_run_host_queues(shost);
2374 EXPORT_SYMBOL(scsi_unblock_requests);
2376 int __init scsi_init_queue(void)
2378 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2379 sizeof(struct scsi_data_buffer),
2380 0, 0, NULL);
2381 if (!scsi_sdb_cache) {
2382 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2383 return -ENOMEM;
2386 return 0;
2389 void scsi_exit_queue(void)
2391 kmem_cache_destroy(scsi_sense_cache);
2392 kmem_cache_destroy(scsi_sense_isadma_cache);
2393 kmem_cache_destroy(scsi_sdb_cache);
2397 * scsi_mode_select - issue a mode select
2398 * @sdev: SCSI device to be queried
2399 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2400 * @sp: Save page bit (0 == don't save, 1 == save)
2401 * @modepage: mode page being requested
2402 * @buffer: request buffer (may not be smaller than eight bytes)
2403 * @len: length of request buffer.
2404 * @timeout: command timeout
2405 * @retries: number of retries before failing
2406 * @data: returns a structure abstracting the mode header data
2407 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2408 * must be SCSI_SENSE_BUFFERSIZE big.
2410 * Returns zero if successful; negative error number or scsi
2411 * status on error
2415 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2416 unsigned char *buffer, int len, int timeout, int retries,
2417 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2419 unsigned char cmd[10];
2420 unsigned char *real_buffer;
2421 int ret;
2423 memset(cmd, 0, sizeof(cmd));
2424 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2426 if (sdev->use_10_for_ms) {
2427 if (len > 65535)
2428 return -EINVAL;
2429 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2430 if (!real_buffer)
2431 return -ENOMEM;
2432 memcpy(real_buffer + 8, buffer, len);
2433 len += 8;
2434 real_buffer[0] = 0;
2435 real_buffer[1] = 0;
2436 real_buffer[2] = data->medium_type;
2437 real_buffer[3] = data->device_specific;
2438 real_buffer[4] = data->longlba ? 0x01 : 0;
2439 real_buffer[5] = 0;
2440 real_buffer[6] = data->block_descriptor_length >> 8;
2441 real_buffer[7] = data->block_descriptor_length;
2443 cmd[0] = MODE_SELECT_10;
2444 cmd[7] = len >> 8;
2445 cmd[8] = len;
2446 } else {
2447 if (len > 255 || data->block_descriptor_length > 255 ||
2448 data->longlba)
2449 return -EINVAL;
2451 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2452 if (!real_buffer)
2453 return -ENOMEM;
2454 memcpy(real_buffer + 4, buffer, len);
2455 len += 4;
2456 real_buffer[0] = 0;
2457 real_buffer[1] = data->medium_type;
2458 real_buffer[2] = data->device_specific;
2459 real_buffer[3] = data->block_descriptor_length;
2462 cmd[0] = MODE_SELECT;
2463 cmd[4] = len;
2466 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2467 sshdr, timeout, retries, NULL);
2468 kfree(real_buffer);
2469 return ret;
2471 EXPORT_SYMBOL_GPL(scsi_mode_select);
2474 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2475 * @sdev: SCSI device to be queried
2476 * @dbd: set if mode sense will allow block descriptors to be returned
2477 * @modepage: mode page being requested
2478 * @buffer: request buffer (may not be smaller than eight bytes)
2479 * @len: length of request buffer.
2480 * @timeout: command timeout
2481 * @retries: number of retries before failing
2482 * @data: returns a structure abstracting the mode header data
2483 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2484 * must be SCSI_SENSE_BUFFERSIZE big.
2486 * Returns zero if unsuccessful, or the header offset (either 4
2487 * or 8 depending on whether a six or ten byte command was
2488 * issued) if successful.
2491 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2492 unsigned char *buffer, int len, int timeout, int retries,
2493 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2495 unsigned char cmd[12];
2496 int use_10_for_ms;
2497 int header_length;
2498 int result, retry_count = retries;
2499 struct scsi_sense_hdr my_sshdr;
2501 memset(data, 0, sizeof(*data));
2502 memset(&cmd[0], 0, 12);
2503 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2504 cmd[2] = modepage;
2506 /* caller might not be interested in sense, but we need it */
2507 if (!sshdr)
2508 sshdr = &my_sshdr;
2510 retry:
2511 use_10_for_ms = sdev->use_10_for_ms;
2513 if (use_10_for_ms) {
2514 if (len < 8)
2515 len = 8;
2517 cmd[0] = MODE_SENSE_10;
2518 cmd[8] = len;
2519 header_length = 8;
2520 } else {
2521 if (len < 4)
2522 len = 4;
2524 cmd[0] = MODE_SENSE;
2525 cmd[4] = len;
2526 header_length = 4;
2529 memset(buffer, 0, len);
2531 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2532 sshdr, timeout, retries, NULL);
2534 /* This code looks awful: what it's doing is making sure an
2535 * ILLEGAL REQUEST sense return identifies the actual command
2536 * byte as the problem. MODE_SENSE commands can return
2537 * ILLEGAL REQUEST if the code page isn't supported */
2539 if (use_10_for_ms && !scsi_status_is_good(result) &&
2540 (driver_byte(result) & DRIVER_SENSE)) {
2541 if (scsi_sense_valid(sshdr)) {
2542 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2543 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2545 * Invalid command operation code
2547 sdev->use_10_for_ms = 0;
2548 goto retry;
2553 if(scsi_status_is_good(result)) {
2554 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2555 (modepage == 6 || modepage == 8))) {
2556 /* Initio breakage? */
2557 header_length = 0;
2558 data->length = 13;
2559 data->medium_type = 0;
2560 data->device_specific = 0;
2561 data->longlba = 0;
2562 data->block_descriptor_length = 0;
2563 } else if(use_10_for_ms) {
2564 data->length = buffer[0]*256 + buffer[1] + 2;
2565 data->medium_type = buffer[2];
2566 data->device_specific = buffer[3];
2567 data->longlba = buffer[4] & 0x01;
2568 data->block_descriptor_length = buffer[6]*256
2569 + buffer[7];
2570 } else {
2571 data->length = buffer[0] + 1;
2572 data->medium_type = buffer[1];
2573 data->device_specific = buffer[2];
2574 data->block_descriptor_length = buffer[3];
2576 data->header_length = header_length;
2577 } else if ((status_byte(result) == CHECK_CONDITION) &&
2578 scsi_sense_valid(sshdr) &&
2579 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2580 retry_count--;
2581 goto retry;
2584 return result;
2586 EXPORT_SYMBOL(scsi_mode_sense);
2589 * scsi_test_unit_ready - test if unit is ready
2590 * @sdev: scsi device to change the state of.
2591 * @timeout: command timeout
2592 * @retries: number of retries before failing
2593 * @sshdr: outpout pointer for decoded sense information.
2595 * Returns zero if unsuccessful or an error if TUR failed. For
2596 * removable media, UNIT_ATTENTION sets ->changed flag.
2599 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2600 struct scsi_sense_hdr *sshdr)
2602 char cmd[] = {
2603 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2605 int result;
2607 /* try to eat the UNIT_ATTENTION if there are enough retries */
2608 do {
2609 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2610 timeout, retries, NULL);
2611 if (sdev->removable && scsi_sense_valid(sshdr) &&
2612 sshdr->sense_key == UNIT_ATTENTION)
2613 sdev->changed = 1;
2614 } while (scsi_sense_valid(sshdr) &&
2615 sshdr->sense_key == UNIT_ATTENTION && --retries);
2617 return result;
2619 EXPORT_SYMBOL(scsi_test_unit_ready);
2622 * scsi_device_set_state - Take the given device through the device state model.
2623 * @sdev: scsi device to change the state of.
2624 * @state: state to change to.
2626 * Returns zero if successful or an error if the requested
2627 * transition is illegal.
2630 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2632 enum scsi_device_state oldstate = sdev->sdev_state;
2634 if (state == oldstate)
2635 return 0;
2637 switch (state) {
2638 case SDEV_CREATED:
2639 switch (oldstate) {
2640 case SDEV_CREATED_BLOCK:
2641 break;
2642 default:
2643 goto illegal;
2645 break;
2647 case SDEV_RUNNING:
2648 switch (oldstate) {
2649 case SDEV_CREATED:
2650 case SDEV_OFFLINE:
2651 case SDEV_TRANSPORT_OFFLINE:
2652 case SDEV_QUIESCE:
2653 case SDEV_BLOCK:
2654 break;
2655 default:
2656 goto illegal;
2658 break;
2660 case SDEV_QUIESCE:
2661 switch (oldstate) {
2662 case SDEV_RUNNING:
2663 case SDEV_OFFLINE:
2664 case SDEV_TRANSPORT_OFFLINE:
2665 break;
2666 default:
2667 goto illegal;
2669 break;
2671 case SDEV_OFFLINE:
2672 case SDEV_TRANSPORT_OFFLINE:
2673 switch (oldstate) {
2674 case SDEV_CREATED:
2675 case SDEV_RUNNING:
2676 case SDEV_QUIESCE:
2677 case SDEV_BLOCK:
2678 break;
2679 default:
2680 goto illegal;
2682 break;
2684 case SDEV_BLOCK:
2685 switch (oldstate) {
2686 case SDEV_RUNNING:
2687 case SDEV_CREATED_BLOCK:
2688 break;
2689 default:
2690 goto illegal;
2692 break;
2694 case SDEV_CREATED_BLOCK:
2695 switch (oldstate) {
2696 case SDEV_CREATED:
2697 break;
2698 default:
2699 goto illegal;
2701 break;
2703 case SDEV_CANCEL:
2704 switch (oldstate) {
2705 case SDEV_CREATED:
2706 case SDEV_RUNNING:
2707 case SDEV_QUIESCE:
2708 case SDEV_OFFLINE:
2709 case SDEV_TRANSPORT_OFFLINE:
2710 break;
2711 default:
2712 goto illegal;
2714 break;
2716 case SDEV_DEL:
2717 switch (oldstate) {
2718 case SDEV_CREATED:
2719 case SDEV_RUNNING:
2720 case SDEV_OFFLINE:
2721 case SDEV_TRANSPORT_OFFLINE:
2722 case SDEV_CANCEL:
2723 case SDEV_BLOCK:
2724 case SDEV_CREATED_BLOCK:
2725 break;
2726 default:
2727 goto illegal;
2729 break;
2732 sdev->sdev_state = state;
2733 return 0;
2735 illegal:
2736 SCSI_LOG_ERROR_RECOVERY(1,
2737 sdev_printk(KERN_ERR, sdev,
2738 "Illegal state transition %s->%s",
2739 scsi_device_state_name(oldstate),
2740 scsi_device_state_name(state))
2742 return -EINVAL;
2744 EXPORT_SYMBOL(scsi_device_set_state);
2747 * sdev_evt_emit - emit a single SCSI device uevent
2748 * @sdev: associated SCSI device
2749 * @evt: event to emit
2751 * Send a single uevent (scsi_event) to the associated scsi_device.
2753 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2755 int idx = 0;
2756 char *envp[3];
2758 switch (evt->evt_type) {
2759 case SDEV_EVT_MEDIA_CHANGE:
2760 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2761 break;
2762 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2763 scsi_rescan_device(&sdev->sdev_gendev);
2764 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2765 break;
2766 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2767 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2768 break;
2769 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2770 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2771 break;
2772 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2773 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2774 break;
2775 case SDEV_EVT_LUN_CHANGE_REPORTED:
2776 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2777 break;
2778 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2779 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2780 break;
2781 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2782 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2783 break;
2784 default:
2785 /* do nothing */
2786 break;
2789 envp[idx++] = NULL;
2791 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2795 * sdev_evt_thread - send a uevent for each scsi event
2796 * @work: work struct for scsi_device
2798 * Dispatch queued events to their associated scsi_device kobjects
2799 * as uevents.
2801 void scsi_evt_thread(struct work_struct *work)
2803 struct scsi_device *sdev;
2804 enum scsi_device_event evt_type;
2805 LIST_HEAD(event_list);
2807 sdev = container_of(work, struct scsi_device, event_work);
2809 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2810 if (test_and_clear_bit(evt_type, sdev->pending_events))
2811 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2813 while (1) {
2814 struct scsi_event *evt;
2815 struct list_head *this, *tmp;
2816 unsigned long flags;
2818 spin_lock_irqsave(&sdev->list_lock, flags);
2819 list_splice_init(&sdev->event_list, &event_list);
2820 spin_unlock_irqrestore(&sdev->list_lock, flags);
2822 if (list_empty(&event_list))
2823 break;
2825 list_for_each_safe(this, tmp, &event_list) {
2826 evt = list_entry(this, struct scsi_event, node);
2827 list_del(&evt->node);
2828 scsi_evt_emit(sdev, evt);
2829 kfree(evt);
2835 * sdev_evt_send - send asserted event to uevent thread
2836 * @sdev: scsi_device event occurred on
2837 * @evt: event to send
2839 * Assert scsi device event asynchronously.
2841 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2843 unsigned long flags;
2845 #if 0
2846 /* FIXME: currently this check eliminates all media change events
2847 * for polled devices. Need to update to discriminate between AN
2848 * and polled events */
2849 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2850 kfree(evt);
2851 return;
2853 #endif
2855 spin_lock_irqsave(&sdev->list_lock, flags);
2856 list_add_tail(&evt->node, &sdev->event_list);
2857 schedule_work(&sdev->event_work);
2858 spin_unlock_irqrestore(&sdev->list_lock, flags);
2860 EXPORT_SYMBOL_GPL(sdev_evt_send);
2863 * sdev_evt_alloc - allocate a new scsi event
2864 * @evt_type: type of event to allocate
2865 * @gfpflags: GFP flags for allocation
2867 * Allocates and returns a new scsi_event.
2869 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2870 gfp_t gfpflags)
2872 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2873 if (!evt)
2874 return NULL;
2876 evt->evt_type = evt_type;
2877 INIT_LIST_HEAD(&evt->node);
2879 /* evt_type-specific initialization, if any */
2880 switch (evt_type) {
2881 case SDEV_EVT_MEDIA_CHANGE:
2882 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2883 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2884 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2885 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2886 case SDEV_EVT_LUN_CHANGE_REPORTED:
2887 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2888 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2889 default:
2890 /* do nothing */
2891 break;
2894 return evt;
2896 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2899 * sdev_evt_send_simple - send asserted event to uevent thread
2900 * @sdev: scsi_device event occurred on
2901 * @evt_type: type of event to send
2902 * @gfpflags: GFP flags for allocation
2904 * Assert scsi device event asynchronously, given an event type.
2906 void sdev_evt_send_simple(struct scsi_device *sdev,
2907 enum scsi_device_event evt_type, gfp_t gfpflags)
2909 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2910 if (!evt) {
2911 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2912 evt_type);
2913 return;
2916 sdev_evt_send(sdev, evt);
2918 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2921 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2922 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2924 static int scsi_request_fn_active(struct scsi_device *sdev)
2926 struct request_queue *q = sdev->request_queue;
2927 int request_fn_active;
2929 WARN_ON_ONCE(sdev->host->use_blk_mq);
2931 spin_lock_irq(q->queue_lock);
2932 request_fn_active = q->request_fn_active;
2933 spin_unlock_irq(q->queue_lock);
2935 return request_fn_active;
2939 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
2940 * @sdev: SCSI device pointer.
2942 * Wait until the ongoing shost->hostt->queuecommand() calls that are
2943 * invoked from scsi_request_fn() have finished.
2945 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
2947 WARN_ON_ONCE(sdev->host->use_blk_mq);
2949 while (scsi_request_fn_active(sdev))
2950 msleep(20);
2954 * scsi_device_quiesce - Block user issued commands.
2955 * @sdev: scsi device to quiesce.
2957 * This works by trying to transition to the SDEV_QUIESCE state
2958 * (which must be a legal transition). When the device is in this
2959 * state, only special requests will be accepted, all others will
2960 * be deferred. Since special requests may also be requeued requests,
2961 * a successful return doesn't guarantee the device will be
2962 * totally quiescent.
2964 * Must be called with user context, may sleep.
2966 * Returns zero if unsuccessful or an error if not.
2969 scsi_device_quiesce(struct scsi_device *sdev)
2971 struct request_queue *q = sdev->request_queue;
2972 int err;
2975 * It is allowed to call scsi_device_quiesce() multiple times from
2976 * the same context but concurrent scsi_device_quiesce() calls are
2977 * not allowed.
2979 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2981 blk_set_preempt_only(q);
2983 blk_mq_freeze_queue(q);
2985 * Ensure that the effect of blk_set_preempt_only() will be visible
2986 * for percpu_ref_tryget() callers that occur after the queue
2987 * unfreeze even if the queue was already frozen before this function
2988 * was called. See also https://lwn.net/Articles/573497/.
2990 synchronize_rcu();
2991 blk_mq_unfreeze_queue(q);
2993 mutex_lock(&sdev->state_mutex);
2994 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2995 if (err == 0)
2996 sdev->quiesced_by = current;
2997 else
2998 blk_clear_preempt_only(q);
2999 mutex_unlock(&sdev->state_mutex);
3001 return err;
3003 EXPORT_SYMBOL(scsi_device_quiesce);
3006 * scsi_device_resume - Restart user issued commands to a quiesced device.
3007 * @sdev: scsi device to resume.
3009 * Moves the device from quiesced back to running and restarts the
3010 * queues.
3012 * Must be called with user context, may sleep.
3014 void scsi_device_resume(struct scsi_device *sdev)
3016 /* check if the device state was mutated prior to resume, and if
3017 * so assume the state is being managed elsewhere (for example
3018 * device deleted during suspend)
3020 mutex_lock(&sdev->state_mutex);
3021 WARN_ON_ONCE(!sdev->quiesced_by);
3022 sdev->quiesced_by = NULL;
3023 blk_clear_preempt_only(sdev->request_queue);
3024 if (sdev->sdev_state == SDEV_QUIESCE)
3025 scsi_device_set_state(sdev, SDEV_RUNNING);
3026 mutex_unlock(&sdev->state_mutex);
3028 EXPORT_SYMBOL(scsi_device_resume);
3030 static void
3031 device_quiesce_fn(struct scsi_device *sdev, void *data)
3033 scsi_device_quiesce(sdev);
3036 void
3037 scsi_target_quiesce(struct scsi_target *starget)
3039 starget_for_each_device(starget, NULL, device_quiesce_fn);
3041 EXPORT_SYMBOL(scsi_target_quiesce);
3043 static void
3044 device_resume_fn(struct scsi_device *sdev, void *data)
3046 scsi_device_resume(sdev);
3049 void
3050 scsi_target_resume(struct scsi_target *starget)
3052 starget_for_each_device(starget, NULL, device_resume_fn);
3054 EXPORT_SYMBOL(scsi_target_resume);
3057 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3058 * @sdev: device to block
3060 * Pause SCSI command processing on the specified device. Does not sleep.
3062 * Returns zero if successful or a negative error code upon failure.
3064 * Notes:
3065 * This routine transitions the device to the SDEV_BLOCK state (which must be
3066 * a legal transition). When the device is in this state, command processing
3067 * is paused until the device leaves the SDEV_BLOCK state. See also
3068 * scsi_internal_device_unblock_nowait().
3070 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3072 struct request_queue *q = sdev->request_queue;
3073 unsigned long flags;
3074 int err = 0;
3076 err = scsi_device_set_state(sdev, SDEV_BLOCK);
3077 if (err) {
3078 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3080 if (err)
3081 return err;
3085 * The device has transitioned to SDEV_BLOCK. Stop the
3086 * block layer from calling the midlayer with this device's
3087 * request queue.
3089 if (q->mq_ops) {
3090 blk_mq_quiesce_queue_nowait(q);
3091 } else {
3092 spin_lock_irqsave(q->queue_lock, flags);
3093 blk_stop_queue(q);
3094 spin_unlock_irqrestore(q->queue_lock, flags);
3097 return 0;
3099 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3102 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3103 * @sdev: device to block
3105 * Pause SCSI command processing on the specified device and wait until all
3106 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3108 * Returns zero if successful or a negative error code upon failure.
3110 * Note:
3111 * This routine transitions the device to the SDEV_BLOCK state (which must be
3112 * a legal transition). When the device is in this state, command processing
3113 * is paused until the device leaves the SDEV_BLOCK state. See also
3114 * scsi_internal_device_unblock().
3116 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3117 * scsi_internal_device_block() has blocked a SCSI device and also
3118 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3120 static int scsi_internal_device_block(struct scsi_device *sdev)
3122 struct request_queue *q = sdev->request_queue;
3123 int err;
3125 mutex_lock(&sdev->state_mutex);
3126 err = scsi_internal_device_block_nowait(sdev);
3127 if (err == 0) {
3128 if (q->mq_ops)
3129 blk_mq_quiesce_queue(q);
3130 else
3131 scsi_wait_for_queuecommand(sdev);
3133 mutex_unlock(&sdev->state_mutex);
3135 return err;
3138 void scsi_start_queue(struct scsi_device *sdev)
3140 struct request_queue *q = sdev->request_queue;
3141 unsigned long flags;
3143 if (q->mq_ops) {
3144 blk_mq_unquiesce_queue(q);
3145 } else {
3146 spin_lock_irqsave(q->queue_lock, flags);
3147 blk_start_queue(q);
3148 spin_unlock_irqrestore(q->queue_lock, flags);
3153 * scsi_internal_device_unblock_nowait - resume a device after a block request
3154 * @sdev: device to resume
3155 * @new_state: state to set the device to after unblocking
3157 * Restart the device queue for a previously suspended SCSI device. Does not
3158 * sleep.
3160 * Returns zero if successful or a negative error code upon failure.
3162 * Notes:
3163 * This routine transitions the device to the SDEV_RUNNING state or to one of
3164 * the offline states (which must be a legal transition) allowing the midlayer
3165 * to goose the queue for this device.
3167 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3168 enum scsi_device_state new_state)
3171 * Try to transition the scsi device to SDEV_RUNNING or one of the
3172 * offlined states and goose the device queue if successful.
3174 switch (sdev->sdev_state) {
3175 case SDEV_BLOCK:
3176 case SDEV_TRANSPORT_OFFLINE:
3177 sdev->sdev_state = new_state;
3178 break;
3179 case SDEV_CREATED_BLOCK:
3180 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3181 new_state == SDEV_OFFLINE)
3182 sdev->sdev_state = new_state;
3183 else
3184 sdev->sdev_state = SDEV_CREATED;
3185 break;
3186 case SDEV_CANCEL:
3187 case SDEV_OFFLINE:
3188 break;
3189 default:
3190 return -EINVAL;
3192 scsi_start_queue(sdev);
3194 return 0;
3196 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3199 * scsi_internal_device_unblock - resume a device after a block request
3200 * @sdev: device to resume
3201 * @new_state: state to set the device to after unblocking
3203 * Restart the device queue for a previously suspended SCSI device. May sleep.
3205 * Returns zero if successful or a negative error code upon failure.
3207 * Notes:
3208 * This routine transitions the device to the SDEV_RUNNING state or to one of
3209 * the offline states (which must be a legal transition) allowing the midlayer
3210 * to goose the queue for this device.
3212 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3213 enum scsi_device_state new_state)
3215 int ret;
3217 mutex_lock(&sdev->state_mutex);
3218 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3219 mutex_unlock(&sdev->state_mutex);
3221 return ret;
3224 static void
3225 device_block(struct scsi_device *sdev, void *data)
3227 scsi_internal_device_block(sdev);
3230 static int
3231 target_block(struct device *dev, void *data)
3233 if (scsi_is_target_device(dev))
3234 starget_for_each_device(to_scsi_target(dev), NULL,
3235 device_block);
3236 return 0;
3239 void
3240 scsi_target_block(struct device *dev)
3242 if (scsi_is_target_device(dev))
3243 starget_for_each_device(to_scsi_target(dev), NULL,
3244 device_block);
3245 else
3246 device_for_each_child(dev, NULL, target_block);
3248 EXPORT_SYMBOL_GPL(scsi_target_block);
3250 static void
3251 device_unblock(struct scsi_device *sdev, void *data)
3253 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3256 static int
3257 target_unblock(struct device *dev, void *data)
3259 if (scsi_is_target_device(dev))
3260 starget_for_each_device(to_scsi_target(dev), data,
3261 device_unblock);
3262 return 0;
3265 void
3266 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3268 if (scsi_is_target_device(dev))
3269 starget_for_each_device(to_scsi_target(dev), &new_state,
3270 device_unblock);
3271 else
3272 device_for_each_child(dev, &new_state, target_unblock);
3274 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3277 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3278 * @sgl: scatter-gather list
3279 * @sg_count: number of segments in sg
3280 * @offset: offset in bytes into sg, on return offset into the mapped area
3281 * @len: bytes to map, on return number of bytes mapped
3283 * Returns virtual address of the start of the mapped page
3285 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3286 size_t *offset, size_t *len)
3288 int i;
3289 size_t sg_len = 0, len_complete = 0;
3290 struct scatterlist *sg;
3291 struct page *page;
3293 WARN_ON(!irqs_disabled());
3295 for_each_sg(sgl, sg, sg_count, i) {
3296 len_complete = sg_len; /* Complete sg-entries */
3297 sg_len += sg->length;
3298 if (sg_len > *offset)
3299 break;
3302 if (unlikely(i == sg_count)) {
3303 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3304 "elements %d\n",
3305 __func__, sg_len, *offset, sg_count);
3306 WARN_ON(1);
3307 return NULL;
3310 /* Offset starting from the beginning of first page in this sg-entry */
3311 *offset = *offset - len_complete + sg->offset;
3313 /* Assumption: contiguous pages can be accessed as "page + i" */
3314 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3315 *offset &= ~PAGE_MASK;
3317 /* Bytes in this sg-entry from *offset to the end of the page */
3318 sg_len = PAGE_SIZE - *offset;
3319 if (*len > sg_len)
3320 *len = sg_len;
3322 return kmap_atomic(page);
3324 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3327 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3328 * @virt: virtual address to be unmapped
3330 void scsi_kunmap_atomic_sg(void *virt)
3332 kunmap_atomic(virt);
3334 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3336 void sdev_disable_disk_events(struct scsi_device *sdev)
3338 atomic_inc(&sdev->disk_events_disable_depth);
3340 EXPORT_SYMBOL(sdev_disable_disk_events);
3342 void sdev_enable_disk_events(struct scsi_device *sdev)
3344 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3345 return;
3346 atomic_dec(&sdev->disk_events_disable_depth);
3348 EXPORT_SYMBOL(sdev_enable_disk_events);
3351 * scsi_vpd_lun_id - return a unique device identification
3352 * @sdev: SCSI device
3353 * @id: buffer for the identification
3354 * @id_len: length of the buffer
3356 * Copies a unique device identification into @id based
3357 * on the information in the VPD page 0x83 of the device.
3358 * The string will be formatted as a SCSI name string.
3360 * Returns the length of the identification or error on failure.
3361 * If the identifier is longer than the supplied buffer the actual
3362 * identifier length is returned and the buffer is not zero-padded.
3364 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3366 u8 cur_id_type = 0xff;
3367 u8 cur_id_size = 0;
3368 const unsigned char *d, *cur_id_str;
3369 const struct scsi_vpd *vpd_pg83;
3370 int id_size = -EINVAL;
3372 rcu_read_lock();
3373 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3374 if (!vpd_pg83) {
3375 rcu_read_unlock();
3376 return -ENXIO;
3380 * Look for the correct descriptor.
3381 * Order of preference for lun descriptor:
3382 * - SCSI name string
3383 * - NAA IEEE Registered Extended
3384 * - EUI-64 based 16-byte
3385 * - EUI-64 based 12-byte
3386 * - NAA IEEE Registered
3387 * - NAA IEEE Extended
3388 * - T10 Vendor ID
3389 * as longer descriptors reduce the likelyhood
3390 * of identification clashes.
3393 /* The id string must be at least 20 bytes + terminating NULL byte */
3394 if (id_len < 21) {
3395 rcu_read_unlock();
3396 return -EINVAL;
3399 memset(id, 0, id_len);
3400 d = vpd_pg83->data + 4;
3401 while (d < vpd_pg83->data + vpd_pg83->len) {
3402 /* Skip designators not referring to the LUN */
3403 if ((d[1] & 0x30) != 0x00)
3404 goto next_desig;
3406 switch (d[1] & 0xf) {
3407 case 0x1:
3408 /* T10 Vendor ID */
3409 if (cur_id_size > d[3])
3410 break;
3411 /* Prefer anything */
3412 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3413 break;
3414 cur_id_size = d[3];
3415 if (cur_id_size + 4 > id_len)
3416 cur_id_size = id_len - 4;
3417 cur_id_str = d + 4;
3418 cur_id_type = d[1] & 0xf;
3419 id_size = snprintf(id, id_len, "t10.%*pE",
3420 cur_id_size, cur_id_str);
3421 break;
3422 case 0x2:
3423 /* EUI-64 */
3424 if (cur_id_size > d[3])
3425 break;
3426 /* Prefer NAA IEEE Registered Extended */
3427 if (cur_id_type == 0x3 &&
3428 cur_id_size == d[3])
3429 break;
3430 cur_id_size = d[3];
3431 cur_id_str = d + 4;
3432 cur_id_type = d[1] & 0xf;
3433 switch (cur_id_size) {
3434 case 8:
3435 id_size = snprintf(id, id_len,
3436 "eui.%8phN",
3437 cur_id_str);
3438 break;
3439 case 12:
3440 id_size = snprintf(id, id_len,
3441 "eui.%12phN",
3442 cur_id_str);
3443 break;
3444 case 16:
3445 id_size = snprintf(id, id_len,
3446 "eui.%16phN",
3447 cur_id_str);
3448 break;
3449 default:
3450 cur_id_size = 0;
3451 break;
3453 break;
3454 case 0x3:
3455 /* NAA */
3456 if (cur_id_size > d[3])
3457 break;
3458 cur_id_size = d[3];
3459 cur_id_str = d + 4;
3460 cur_id_type = d[1] & 0xf;
3461 switch (cur_id_size) {
3462 case 8:
3463 id_size = snprintf(id, id_len,
3464 "naa.%8phN",
3465 cur_id_str);
3466 break;
3467 case 16:
3468 id_size = snprintf(id, id_len,
3469 "naa.%16phN",
3470 cur_id_str);
3471 break;
3472 default:
3473 cur_id_size = 0;
3474 break;
3476 break;
3477 case 0x8:
3478 /* SCSI name string */
3479 if (cur_id_size + 4 > d[3])
3480 break;
3481 /* Prefer others for truncated descriptor */
3482 if (cur_id_size && d[3] > id_len)
3483 break;
3484 cur_id_size = id_size = d[3];
3485 cur_id_str = d + 4;
3486 cur_id_type = d[1] & 0xf;
3487 if (cur_id_size >= id_len)
3488 cur_id_size = id_len - 1;
3489 memcpy(id, cur_id_str, cur_id_size);
3490 /* Decrease priority for truncated descriptor */
3491 if (cur_id_size != id_size)
3492 cur_id_size = 6;
3493 break;
3494 default:
3495 break;
3497 next_desig:
3498 d += d[3] + 4;
3500 rcu_read_unlock();
3502 return id_size;
3504 EXPORT_SYMBOL(scsi_vpd_lun_id);
3507 * scsi_vpd_tpg_id - return a target port group identifier
3508 * @sdev: SCSI device
3510 * Returns the Target Port Group identifier from the information
3511 * froom VPD page 0x83 of the device.
3513 * Returns the identifier or error on failure.
3515 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3517 const unsigned char *d;
3518 const struct scsi_vpd *vpd_pg83;
3519 int group_id = -EAGAIN, rel_port = -1;
3521 rcu_read_lock();
3522 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3523 if (!vpd_pg83) {
3524 rcu_read_unlock();
3525 return -ENXIO;
3528 d = vpd_pg83->data + 4;
3529 while (d < vpd_pg83->data + vpd_pg83->len) {
3530 switch (d[1] & 0xf) {
3531 case 0x4:
3532 /* Relative target port */
3533 rel_port = get_unaligned_be16(&d[6]);
3534 break;
3535 case 0x5:
3536 /* Target port group */
3537 group_id = get_unaligned_be16(&d[6]);
3538 break;
3539 default:
3540 break;
3542 d += d[3] + 4;
3544 rcu_read_unlock();
3546 if (group_id >= 0 && rel_id && rel_port != -1)
3547 *rel_id = rel_port;
3549 return group_id;
3551 EXPORT_SYMBOL(scsi_vpd_tpg_id);