2 * Copyright 2004-2010 Analog Devices Inc.
4 * Licensed under the GPL-2 or later.
7 #include <linux/delay.h>
8 #include <linux/console.h>
9 #include <linux/bootmem.h>
10 #include <linux/seq_file.h>
11 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/tty.h>
15 #include <linux/pfn.h>
17 #ifdef CONFIG_MTD_UCLINUX
18 #include <linux/mtd/map.h>
19 #include <linux/ext2_fs.h>
20 #include <linux/cramfs_fs.h>
21 #include <linux/romfs_fs.h>
25 #include <asm/cacheflush.h>
26 #include <asm/blackfin.h>
27 #include <asm/cplbinit.h>
28 #include <asm/div64.h>
30 #include <asm/fixed_code.h>
31 #include <asm/early_printk.h>
34 EXPORT_SYMBOL(_bfin_swrst
);
36 unsigned long memory_start
, memory_end
, physical_mem_end
;
37 unsigned long _rambase
, _ramstart
, _ramend
;
38 unsigned long reserved_mem_dcache_on
;
39 unsigned long reserved_mem_icache_on
;
40 EXPORT_SYMBOL(memory_start
);
41 EXPORT_SYMBOL(memory_end
);
42 EXPORT_SYMBOL(physical_mem_end
);
43 EXPORT_SYMBOL(_ramend
);
44 EXPORT_SYMBOL(reserved_mem_dcache_on
);
46 #ifdef CONFIG_MTD_UCLINUX
47 extern struct map_info uclinux_ram_map
;
48 unsigned long memory_mtd_end
, memory_mtd_start
, mtd_size
;
50 EXPORT_SYMBOL(memory_mtd_end
);
51 EXPORT_SYMBOL(memory_mtd_start
);
52 EXPORT_SYMBOL(mtd_size
);
55 char __initdata command_line
[COMMAND_LINE_SIZE
];
56 void __initdata
*init_retx
, *init_saved_retx
, *init_saved_seqstat
,
57 *init_saved_icplb_fault_addr
, *init_saved_dcplb_fault_addr
;
59 /* boot memmap, for parsing "memmap=" */
60 #define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
61 #define BFIN_MEMMAP_RAM 1
62 #define BFIN_MEMMAP_RESERVED 2
63 static struct bfin_memmap
{
65 struct bfin_memmap_entry
{
66 unsigned long long addr
; /* start of memory segment */
67 unsigned long long size
;
69 } map
[BFIN_MEMMAP_MAX
];
70 } bfin_memmap __initdata
;
72 /* for memmap sanitization */
73 struct change_member
{
74 struct bfin_memmap_entry
*pentry
; /* pointer to original entry */
75 unsigned long long addr
; /* address for this change point */
77 static struct change_member change_point_list
[2*BFIN_MEMMAP_MAX
] __initdata
;
78 static struct change_member
*change_point
[2*BFIN_MEMMAP_MAX
] __initdata
;
79 static struct bfin_memmap_entry
*overlap_list
[BFIN_MEMMAP_MAX
] __initdata
;
80 static struct bfin_memmap_entry new_map
[BFIN_MEMMAP_MAX
] __initdata
;
82 DEFINE_PER_CPU(struct blackfin_cpudata
, cpu_data
);
84 static int early_init_clkin_hz(char *buf
);
86 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
87 void __init
generate_cplb_tables(void)
91 generate_cplb_tables_all();
92 /* Generate per-CPU I&D CPLB tables */
93 for (cpu
= 0; cpu
< num_possible_cpus(); ++cpu
)
94 generate_cplb_tables_cpu(cpu
);
98 void __cpuinit
bfin_setup_caches(unsigned int cpu
)
100 #ifdef CONFIG_BFIN_ICACHE
101 bfin_icache_init(icplb_tbl
[cpu
]);
104 #ifdef CONFIG_BFIN_DCACHE
105 bfin_dcache_init(dcplb_tbl
[cpu
]);
109 * In cache coherence emulation mode, we need to have the
110 * D-cache enabled before running any atomic operation which
111 * might involve cache invalidation (i.e. spinlock, rwlock).
112 * So printk's are deferred until then.
114 #ifdef CONFIG_BFIN_ICACHE
115 printk(KERN_INFO
"Instruction Cache Enabled for CPU%u\n", cpu
);
116 printk(KERN_INFO
" External memory:"
117 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
122 " in instruction cache\n");
124 printk(KERN_INFO
" L2 SRAM :"
125 # ifdef CONFIG_BFIN_L2_ICACHEABLE
130 " in instruction cache\n");
133 printk(KERN_INFO
"Instruction Cache Disabled for CPU%u\n", cpu
);
136 #ifdef CONFIG_BFIN_DCACHE
137 printk(KERN_INFO
"Data Cache Enabled for CPU%u\n", cpu
);
138 printk(KERN_INFO
" External memory:"
139 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
140 " cacheable (write-back)"
141 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
142 " cacheable (write-through)"
148 printk(KERN_INFO
" L2 SRAM :"
149 # if defined CONFIG_BFIN_L2_WRITEBACK
150 " cacheable (write-back)"
151 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
152 " cacheable (write-through)"
158 printk(KERN_INFO
"Data Cache Disabled for CPU%u\n", cpu
);
162 void __cpuinit
bfin_setup_cpudata(unsigned int cpu
)
164 struct blackfin_cpudata
*cpudata
= &per_cpu(cpu_data
, cpu
);
166 cpudata
->idle
= current
;
167 cpudata
->imemctl
= bfin_read_IMEM_CONTROL();
168 cpudata
->dmemctl
= bfin_read_DMEM_CONTROL();
171 void __init
bfin_cache_init(void)
173 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
174 generate_cplb_tables();
176 bfin_setup_caches(0);
179 void __init
bfin_relocate_l1_mem(void)
181 unsigned long text_l1_len
= (unsigned long)_text_l1_len
;
182 unsigned long data_l1_len
= (unsigned long)_data_l1_len
;
183 unsigned long data_b_l1_len
= (unsigned long)_data_b_l1_len
;
184 unsigned long l2_len
= (unsigned long)_l2_len
;
186 early_shadow_stamp();
189 * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
190 * we know that everything about l1 text/data is nice and aligned,
191 * so copy by 4 byte chunks, and don't worry about overlapping
194 * We can't use the dma_memcpy functions, since they can call
195 * scheduler functions which might be in L1 :( and core writes
196 * into L1 instruction cause bad access errors, so we are stuck,
197 * we are required to use DMA, but can't use the common dma
198 * functions. We can't use memcpy either - since that might be
199 * going to be in the relocated L1
202 blackfin_dma_early_init();
204 /* if necessary, copy L1 text to L1 instruction SRAM */
205 if (L1_CODE_LENGTH
&& text_l1_len
)
206 early_dma_memcpy(_stext_l1
, _text_l1_lma
, text_l1_len
);
208 /* if necessary, copy L1 data to L1 data bank A SRAM */
209 if (L1_DATA_A_LENGTH
&& data_l1_len
)
210 early_dma_memcpy(_sdata_l1
, _data_l1_lma
, data_l1_len
);
212 /* if necessary, copy L1 data B to L1 data bank B SRAM */
213 if (L1_DATA_B_LENGTH
&& data_b_l1_len
)
214 early_dma_memcpy(_sdata_b_l1
, _data_b_l1_lma
, data_b_l1_len
);
216 early_dma_memcpy_done();
218 #if defined(CONFIG_SMP) && defined(CONFIG_ICACHE_FLUSH_L1)
219 blackfin_iflush_l1_entry
[0] = (unsigned long)blackfin_icache_flush_range_l1
;
222 /* if necessary, copy L2 text/data to L2 SRAM */
223 if (L2_LENGTH
&& l2_len
)
224 memcpy(_stext_l2
, _l2_lma
, l2_len
);
228 void __init
bfin_relocate_coreb_l1_mem(void)
230 unsigned long text_l1_len
= (unsigned long)_text_l1_len
;
231 unsigned long data_l1_len
= (unsigned long)_data_l1_len
;
232 unsigned long data_b_l1_len
= (unsigned long)_data_b_l1_len
;
234 blackfin_dma_early_init();
236 /* if necessary, copy L1 text to L1 instruction SRAM */
237 if (L1_CODE_LENGTH
&& text_l1_len
)
238 early_dma_memcpy((void *)COREB_L1_CODE_START
, _text_l1_lma
,
241 /* if necessary, copy L1 data to L1 data bank A SRAM */
242 if (L1_DATA_A_LENGTH
&& data_l1_len
)
243 early_dma_memcpy((void *)COREB_L1_DATA_A_START
, _data_l1_lma
,
246 /* if necessary, copy L1 data B to L1 data bank B SRAM */
247 if (L1_DATA_B_LENGTH
&& data_b_l1_len
)
248 early_dma_memcpy((void *)COREB_L1_DATA_B_START
, _data_b_l1_lma
,
251 early_dma_memcpy_done();
253 #ifdef CONFIG_ICACHE_FLUSH_L1
254 blackfin_iflush_l1_entry
[1] = (unsigned long)blackfin_icache_flush_range_l1
-
255 (unsigned long)_stext_l1
+ COREB_L1_CODE_START
;
260 #ifdef CONFIG_ROMKERNEL
261 void __init
bfin_relocate_xip_data(void)
263 early_shadow_stamp();
265 memcpy(_sdata
, _data_lma
, (unsigned long)_data_len
- THREAD_SIZE
+ sizeof(struct thread_info
));
266 memcpy(_sinitdata
, _init_data_lma
, (unsigned long)_init_data_len
);
270 /* add_memory_region to memmap */
271 static void __init
add_memory_region(unsigned long long start
,
272 unsigned long long size
, int type
)
276 i
= bfin_memmap
.nr_map
;
278 if (i
== BFIN_MEMMAP_MAX
) {
279 printk(KERN_ERR
"Ooops! Too many entries in the memory map!\n");
283 bfin_memmap
.map
[i
].addr
= start
;
284 bfin_memmap
.map
[i
].size
= size
;
285 bfin_memmap
.map
[i
].type
= type
;
286 bfin_memmap
.nr_map
++;
290 * Sanitize the boot memmap, removing overlaps.
292 static int __init
sanitize_memmap(struct bfin_memmap_entry
*map
, int *pnr_map
)
294 struct change_member
*change_tmp
;
295 unsigned long current_type
, last_type
;
296 unsigned long long last_addr
;
297 int chgidx
, still_changing
;
300 int old_nr
, new_nr
, chg_nr
;
304 Visually we're performing the following (1,2,3,4 = memory types)
306 Sample memory map (w/overlaps):
307 ____22__________________
308 ______________________4_
309 ____1111________________
310 _44_____________________
311 11111111________________
312 ____________________33__
313 ___________44___________
314 __________33333_________
315 ______________22________
316 ___________________2222_
317 _________111111111______
318 _____________________11_
319 _________________4______
321 Sanitized equivalent (no overlap):
322 1_______________________
323 _44_____________________
324 ___1____________________
325 ____22__________________
326 ______11________________
327 _________1______________
328 __________3_____________
329 ___________44___________
330 _____________33_________
331 _______________2________
332 ________________1_______
333 _________________4______
334 ___________________2____
335 ____________________33__
336 ______________________4_
338 /* if there's only one memory region, don't bother */
344 /* bail out if we find any unreasonable addresses in memmap */
345 for (i
= 0; i
< old_nr
; i
++)
346 if (map
[i
].addr
+ map
[i
].size
< map
[i
].addr
)
349 /* create pointers for initial change-point information (for sorting) */
350 for (i
= 0; i
< 2*old_nr
; i
++)
351 change_point
[i
] = &change_point_list
[i
];
353 /* record all known change-points (starting and ending addresses),
354 omitting those that are for empty memory regions */
356 for (i
= 0; i
< old_nr
; i
++) {
357 if (map
[i
].size
!= 0) {
358 change_point
[chgidx
]->addr
= map
[i
].addr
;
359 change_point
[chgidx
++]->pentry
= &map
[i
];
360 change_point
[chgidx
]->addr
= map
[i
].addr
+ map
[i
].size
;
361 change_point
[chgidx
++]->pentry
= &map
[i
];
364 chg_nr
= chgidx
; /* true number of change-points */
366 /* sort change-point list by memory addresses (low -> high) */
368 while (still_changing
) {
370 for (i
= 1; i
< chg_nr
; i
++) {
371 /* if <current_addr> > <last_addr>, swap */
372 /* or, if current=<start_addr> & last=<end_addr>, swap */
373 if ((change_point
[i
]->addr
< change_point
[i
-1]->addr
) ||
374 ((change_point
[i
]->addr
== change_point
[i
-1]->addr
) &&
375 (change_point
[i
]->addr
== change_point
[i
]->pentry
->addr
) &&
376 (change_point
[i
-1]->addr
!= change_point
[i
-1]->pentry
->addr
))
378 change_tmp
= change_point
[i
];
379 change_point
[i
] = change_point
[i
-1];
380 change_point
[i
-1] = change_tmp
;
386 /* create a new memmap, removing overlaps */
387 overlap_entries
= 0; /* number of entries in the overlap table */
388 new_entry
= 0; /* index for creating new memmap entries */
389 last_type
= 0; /* start with undefined memory type */
390 last_addr
= 0; /* start with 0 as last starting address */
391 /* loop through change-points, determining affect on the new memmap */
392 for (chgidx
= 0; chgidx
< chg_nr
; chgidx
++) {
393 /* keep track of all overlapping memmap entries */
394 if (change_point
[chgidx
]->addr
== change_point
[chgidx
]->pentry
->addr
) {
395 /* add map entry to overlap list (> 1 entry implies an overlap) */
396 overlap_list
[overlap_entries
++] = change_point
[chgidx
]->pentry
;
398 /* remove entry from list (order independent, so swap with last) */
399 for (i
= 0; i
< overlap_entries
; i
++) {
400 if (overlap_list
[i
] == change_point
[chgidx
]->pentry
)
401 overlap_list
[i
] = overlap_list
[overlap_entries
-1];
405 /* if there are overlapping entries, decide which "type" to use */
406 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
408 for (i
= 0; i
< overlap_entries
; i
++)
409 if (overlap_list
[i
]->type
> current_type
)
410 current_type
= overlap_list
[i
]->type
;
411 /* continue building up new memmap based on this information */
412 if (current_type
!= last_type
) {
413 if (last_type
!= 0) {
414 new_map
[new_entry
].size
=
415 change_point
[chgidx
]->addr
- last_addr
;
416 /* move forward only if the new size was non-zero */
417 if (new_map
[new_entry
].size
!= 0)
418 if (++new_entry
>= BFIN_MEMMAP_MAX
)
419 break; /* no more space left for new entries */
421 if (current_type
!= 0) {
422 new_map
[new_entry
].addr
= change_point
[chgidx
]->addr
;
423 new_map
[new_entry
].type
= current_type
;
424 last_addr
= change_point
[chgidx
]->addr
;
426 last_type
= current_type
;
429 new_nr
= new_entry
; /* retain count for new entries */
431 /* copy new mapping into original location */
432 memcpy(map
, new_map
, new_nr
*sizeof(struct bfin_memmap_entry
));
438 static void __init
print_memory_map(char *who
)
442 for (i
= 0; i
< bfin_memmap
.nr_map
; i
++) {
443 printk(KERN_DEBUG
" %s: %016Lx - %016Lx ", who
,
444 bfin_memmap
.map
[i
].addr
,
445 bfin_memmap
.map
[i
].addr
+ bfin_memmap
.map
[i
].size
);
446 switch (bfin_memmap
.map
[i
].type
) {
447 case BFIN_MEMMAP_RAM
:
448 printk(KERN_CONT
"(usable)\n");
450 case BFIN_MEMMAP_RESERVED
:
451 printk(KERN_CONT
"(reserved)\n");
454 printk(KERN_CONT
"type %lu\n", bfin_memmap
.map
[i
].type
);
460 static __init
int parse_memmap(char *arg
)
462 unsigned long long start_at
, mem_size
;
467 mem_size
= memparse(arg
, &arg
);
469 start_at
= memparse(arg
+1, &arg
);
470 add_memory_region(start_at
, mem_size
, BFIN_MEMMAP_RAM
);
471 } else if (*arg
== '$') {
472 start_at
= memparse(arg
+1, &arg
);
473 add_memory_region(start_at
, mem_size
, BFIN_MEMMAP_RESERVED
);
480 * Initial parsing of the command line. Currently, we support:
481 * - Controlling the linux memory size: mem=xxx[KMG]
482 * - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
483 * $ -> reserved memory is dcacheable
484 * # -> reserved memory is icacheable
485 * - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
486 * @ from <start> to <start>+<mem>, type RAM
487 * $ from <start> to <start>+<mem>, type RESERVED
489 static __init
void parse_cmdline_early(char *cmdline_p
)
491 char c
= ' ', *to
= cmdline_p
;
492 unsigned int memsize
;
495 if (!memcmp(to
, "mem=", 4)) {
497 memsize
= memparse(to
, &to
);
501 } else if (!memcmp(to
, "max_mem=", 8)) {
503 memsize
= memparse(to
, &to
);
505 physical_mem_end
= memsize
;
509 reserved_mem_dcache_on
= 1;
512 reserved_mem_icache_on
= 1;
515 } else if (!memcmp(to
, "clkin_hz=", 9)) {
517 early_init_clkin_hz(to
);
518 #ifdef CONFIG_EARLY_PRINTK
519 } else if (!memcmp(to
, "earlyprintk=", 12)) {
521 setup_early_printk(to
);
523 } else if (!memcmp(to
, "memmap=", 7)) {
535 * Setup memory defaults from user config.
536 * The physical memory layout looks like:
538 * [_rambase, _ramstart]: kernel image
539 * [memory_start, memory_end]: dynamic memory managed by kernel
540 * [memory_end, _ramend]: reserved memory
541 * [memory_mtd_start(memory_end),
542 * memory_mtd_start + mtd_size]: rootfs (if any)
543 * [_ramend - DMA_UNCACHED_REGION,
544 * _ramend]: uncached DMA region
545 * [_ramend, physical_mem_end]: memory not managed by kernel
547 static __init
void memory_setup(void)
549 #ifdef CONFIG_MTD_UCLINUX
550 unsigned long mtd_phys
= 0;
552 unsigned long max_mem
;
554 _rambase
= CONFIG_BOOT_LOAD
;
555 _ramstart
= (unsigned long)_end
;
557 if (DMA_UNCACHED_REGION
> (_ramend
- _ramstart
)) {
559 panic("DMA region exceeds memory limit: %lu.",
560 _ramend
- _ramstart
);
562 max_mem
= memory_end
= _ramend
- DMA_UNCACHED_REGION
;
564 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
565 /* Due to a Hardware Anomaly we need to limit the size of usable
566 * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
567 * 05000263 - Hardware loop corrupted when taking an ICPLB exception
569 # if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
570 if (max_mem
>= 56 * 1024 * 1024)
571 max_mem
= 56 * 1024 * 1024;
573 if (max_mem
>= 60 * 1024 * 1024)
574 max_mem
= 60 * 1024 * 1024;
575 # endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
576 #endif /* ANOMALY_05000263 */
580 /* Round up to multiple of 4MB */
581 memory_start
= (_ramstart
+ 0x3fffff) & ~0x3fffff;
583 memory_start
= PAGE_ALIGN(_ramstart
);
586 #if defined(CONFIG_MTD_UCLINUX)
587 /* generic memory mapped MTD driver */
588 memory_mtd_end
= memory_end
;
590 mtd_phys
= _ramstart
;
591 mtd_size
= PAGE_ALIGN(*((unsigned long *)(mtd_phys
+ 8)));
593 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
594 if (*((unsigned short *)(mtd_phys
+ 0x438)) == EXT2_SUPER_MAGIC
)
596 PAGE_ALIGN(*((unsigned long *)(mtd_phys
+ 0x404)) << 10);
599 # if defined(CONFIG_CRAMFS)
600 if (*((unsigned long *)(mtd_phys
)) == CRAMFS_MAGIC
)
601 mtd_size
= PAGE_ALIGN(*((unsigned long *)(mtd_phys
+ 0x4)));
604 # if defined(CONFIG_ROMFS_FS)
605 if (((unsigned long *)mtd_phys
)[0] == ROMSB_WORD0
606 && ((unsigned long *)mtd_phys
)[1] == ROMSB_WORD1
) {
608 PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys
)[2]));
610 /* ROM_FS is XIP, so if we found it, we need to limit memory */
611 if (memory_end
> max_mem
) {
612 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem
>> 20);
613 memory_end
= max_mem
;
616 # endif /* CONFIG_ROMFS_FS */
618 /* Since the default MTD_UCLINUX has no magic number, we just blindly
619 * read 8 past the end of the kernel's image, and look at it.
620 * When no image is attached, mtd_size is set to a random number
621 * Do some basic sanity checks before operating on things
623 if (mtd_size
== 0 || memory_end
<= mtd_size
) {
624 pr_emerg("Could not find valid ram mtd attached.\n");
626 memory_end
-= mtd_size
;
628 /* Relocate MTD image to the top of memory after the uncached memory area */
629 uclinux_ram_map
.phys
= memory_mtd_start
= memory_end
;
630 uclinux_ram_map
.size
= mtd_size
;
631 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
632 _end
, mtd_size
, (void *)memory_mtd_start
);
633 dma_memcpy((void *)uclinux_ram_map
.phys
, _end
, uclinux_ram_map
.size
);
635 #endif /* CONFIG_MTD_UCLINUX */
637 /* We need lo limit memory, since everything could have a text section
638 * of userspace in it, and expose anomaly 05000263. If the anomaly
639 * doesn't exist, or we don't need to - then dont.
641 if (memory_end
> max_mem
) {
642 pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem
>> 20);
643 memory_end
= max_mem
;
647 #if defined(CONFIG_ROMFS_ON_MTD) && defined(CONFIG_MTD_ROM)
648 page_mask_nelts
= (((_ramend
+ ASYNC_BANK3_BASE
+ ASYNC_BANK3_SIZE
-
649 ASYNC_BANK0_BASE
) >> PAGE_SHIFT
) + 31) / 32;
651 page_mask_nelts
= ((_ramend
>> PAGE_SHIFT
) + 31) / 32;
653 page_mask_order
= get_order(3 * page_mask_nelts
* sizeof(long));
656 init_mm
.start_code
= (unsigned long)_stext
;
657 init_mm
.end_code
= (unsigned long)_etext
;
658 init_mm
.end_data
= (unsigned long)_edata
;
659 init_mm
.brk
= (unsigned long)0;
661 printk(KERN_INFO
"Board Memory: %ldMB\n", physical_mem_end
>> 20);
662 printk(KERN_INFO
"Kernel Managed Memory: %ldMB\n", _ramend
>> 20);
664 printk(KERN_INFO
"Memory map:\n"
665 " fixedcode = 0x%p-0x%p\n"
666 " text = 0x%p-0x%p\n"
667 " rodata = 0x%p-0x%p\n"
669 " data = 0x%p-0x%p\n"
670 " stack = 0x%p-0x%p\n"
671 " init = 0x%p-0x%p\n"
672 " available = 0x%p-0x%p\n"
673 #ifdef CONFIG_MTD_UCLINUX
674 " rootfs = 0x%p-0x%p\n"
676 #if DMA_UNCACHED_REGION > 0
677 " DMA Zone = 0x%p-0x%p\n"
679 , (void *)FIXED_CODE_START
, (void *)FIXED_CODE_END
,
681 __start_rodata
, __end_rodata
,
682 __bss_start
, __bss_stop
,
684 (void *)&init_thread_union
,
685 (void *)((int)(&init_thread_union
) + THREAD_SIZE
),
686 __init_begin
, __init_end
,
687 (void *)_ramstart
, (void *)memory_end
688 #ifdef CONFIG_MTD_UCLINUX
689 , (void *)memory_mtd_start
, (void *)(memory_mtd_start
+ mtd_size
)
691 #if DMA_UNCACHED_REGION > 0
692 , (void *)(_ramend
- DMA_UNCACHED_REGION
), (void *)(_ramend
)
698 * Find the lowest, highest page frame number we have available
700 void __init
find_min_max_pfn(void)
705 min_low_pfn
= memory_end
;
707 for (i
= 0; i
< bfin_memmap
.nr_map
; i
++) {
708 unsigned long start
, end
;
710 if (bfin_memmap
.map
[i
].type
!= BFIN_MEMMAP_RAM
)
712 start
= PFN_UP(bfin_memmap
.map
[i
].addr
);
713 end
= PFN_DOWN(bfin_memmap
.map
[i
].addr
+
714 bfin_memmap
.map
[i
].size
);
719 if (start
< min_low_pfn
)
724 static __init
void setup_bootmem_allocator(void)
728 unsigned long start_pfn
, end_pfn
;
729 unsigned long curr_pfn
, last_pfn
, size
;
731 /* mark memory between memory_start and memory_end usable */
732 add_memory_region(memory_start
,
733 memory_end
- memory_start
, BFIN_MEMMAP_RAM
);
734 /* sanity check for overlap */
735 sanitize_memmap(bfin_memmap
.map
, &bfin_memmap
.nr_map
);
736 print_memory_map("boot memmap");
738 /* initialize globals in linux/bootmem.h */
740 /* pfn of the last usable page frame */
741 if (max_pfn
> memory_end
>> PAGE_SHIFT
)
742 max_pfn
= memory_end
>> PAGE_SHIFT
;
743 /* pfn of last page frame directly mapped by kernel */
744 max_low_pfn
= max_pfn
;
745 /* pfn of the first usable page frame after kernel image*/
746 if (min_low_pfn
< memory_start
>> PAGE_SHIFT
)
747 min_low_pfn
= memory_start
>> PAGE_SHIFT
;
749 start_pfn
= PAGE_OFFSET
>> PAGE_SHIFT
;
750 end_pfn
= memory_end
>> PAGE_SHIFT
;
753 * give all the memory to the bootmap allocator, tell it to put the
754 * boot mem_map at the start of memory.
756 bootmap_size
= init_bootmem_node(NODE_DATA(0),
757 memory_start
>> PAGE_SHIFT
, /* map goes here */
760 /* register the memmap regions with the bootmem allocator */
761 for (i
= 0; i
< bfin_memmap
.nr_map
; i
++) {
763 * Reserve usable memory
765 if (bfin_memmap
.map
[i
].type
!= BFIN_MEMMAP_RAM
)
768 * We are rounding up the start address of usable memory:
770 curr_pfn
= PFN_UP(bfin_memmap
.map
[i
].addr
);
771 if (curr_pfn
>= end_pfn
)
774 * ... and at the end of the usable range downwards:
776 last_pfn
= PFN_DOWN(bfin_memmap
.map
[i
].addr
+
777 bfin_memmap
.map
[i
].size
);
779 if (last_pfn
> end_pfn
)
783 * .. finally, did all the rounding and playing
784 * around just make the area go away?
786 if (last_pfn
<= curr_pfn
)
789 size
= last_pfn
- curr_pfn
;
790 free_bootmem(PFN_PHYS(curr_pfn
), PFN_PHYS(size
));
793 /* reserve memory before memory_start, including bootmap */
794 reserve_bootmem(PAGE_OFFSET
,
795 memory_start
+ bootmap_size
+ PAGE_SIZE
- 1 - PAGE_OFFSET
,
799 #define EBSZ_TO_MEG(ebsz) \
802 switch (ebsz & 0xf) { \
803 case 0x1: meg = 16; break; \
804 case 0x3: meg = 32; break; \
805 case 0x5: meg = 64; break; \
806 case 0x7: meg = 128; break; \
807 case 0x9: meg = 256; break; \
808 case 0xb: meg = 512; break; \
812 static inline int __init
get_mem_size(void)
814 #if defined(EBIU_SDBCTL)
815 # if defined(BF561_FAMILY)
817 u32 sdbctl
= bfin_read_EBIU_SDBCTL();
818 ret
+= EBSZ_TO_MEG(sdbctl
>> 0);
819 ret
+= EBSZ_TO_MEG(sdbctl
>> 8);
820 ret
+= EBSZ_TO_MEG(sdbctl
>> 16);
821 ret
+= EBSZ_TO_MEG(sdbctl
>> 24);
824 return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
826 #elif defined(EBIU_DDRCTL1)
827 u32 ddrctl
= bfin_read_EBIU_DDRCTL1();
829 switch (ddrctl
& 0xc0000) {
830 case DEVSZ_64
: ret
= 64 / 8;
831 case DEVSZ_128
: ret
= 128 / 8;
832 case DEVSZ_256
: ret
= 256 / 8;
833 case DEVSZ_512
: ret
= 512 / 8;
835 switch (ddrctl
& 0x30000) {
836 case DEVWD_4
: ret
*= 2;
837 case DEVWD_8
: ret
*= 2;
838 case DEVWD_16
: break;
840 if ((ddrctl
& 0xc000) == 0x4000)
847 __attribute__((weak
))
848 void __init
native_machine_early_platform_add_devices(void)
852 void __init
setup_arch(char **cmdline_p
)
854 unsigned long sclk
, cclk
;
856 native_machine_early_platform_add_devices();
858 enable_shadow_console();
860 /* Check to make sure we are running on the right processor */
861 if (unlikely(CPUID
!= bfin_cpuid()))
862 printk(KERN_ERR
"ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
863 CPU
, bfin_cpuid(), bfin_revid());
865 #ifdef CONFIG_DUMMY_CONSOLE
866 conswitchp
= &dummy_con
;
869 #if defined(CONFIG_CMDLINE_BOOL)
870 strncpy(&command_line
[0], CONFIG_CMDLINE
, sizeof(command_line
));
871 command_line
[sizeof(command_line
) - 1] = 0;
874 /* Keep a copy of command line */
875 *cmdline_p
= &command_line
[0];
876 memcpy(boot_command_line
, command_line
, COMMAND_LINE_SIZE
);
877 boot_command_line
[COMMAND_LINE_SIZE
- 1] = '\0';
879 memset(&bfin_memmap
, 0, sizeof(bfin_memmap
));
881 /* If the user does not specify things on the command line, use
882 * what the bootloader set things up as
884 physical_mem_end
= 0;
885 parse_cmdline_early(&command_line
[0]);
888 _ramend
= get_mem_size() * 1024 * 1024;
890 if (physical_mem_end
== 0)
891 physical_mem_end
= _ramend
;
895 /* Initialize Async memory banks */
896 bfin_write_EBIU_AMBCTL0(AMBCTL0VAL
);
897 bfin_write_EBIU_AMBCTL1(AMBCTL1VAL
);
898 bfin_write_EBIU_AMGCTL(AMGCTLVAL
);
899 #ifdef CONFIG_EBIU_MBSCTLVAL
900 bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL
);
901 bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL
);
902 bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL
);
904 #ifdef CONFIG_BFIN_HYSTERESIS_CONTROL
905 bfin_write_PORTF_HYSTERISIS(HYST_PORTF_0_15
);
906 bfin_write_PORTG_HYSTERISIS(HYST_PORTG_0_15
);
907 bfin_write_PORTH_HYSTERISIS(HYST_PORTH_0_15
);
908 bfin_write_MISCPORT_HYSTERISIS((bfin_read_MISCPORT_HYSTERISIS() &
909 ~HYST_NONEGPIO_MASK
) | HYST_NONEGPIO
);
915 if ((ANOMALY_05000273
|| ANOMALY_05000274
) && (cclk
>> 1) < sclk
)
916 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
919 if (ANOMALY_05000266
) {
920 bfin_read_IMDMA_D0_IRQ_STATUS();
921 bfin_read_IMDMA_D1_IRQ_STATUS();
924 printk(KERN_INFO
"Hardware Trace ");
925 if (bfin_read_TBUFCTL() & 0x1)
926 printk(KERN_CONT
"Active ");
928 printk(KERN_CONT
"Off ");
929 if (bfin_read_TBUFCTL() & 0x2)
930 printk(KERN_CONT
"and Enabled\n");
932 printk(KERN_CONT
"and Disabled\n");
934 printk(KERN_INFO
"Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
936 /* Newer parts mirror SWRST bits in SYSCR */
937 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
938 defined(CONFIG_BF538) || defined(CONFIG_BF539)
939 _bfin_swrst
= bfin_read_SWRST();
941 /* Clear boot mode field */
942 _bfin_swrst
= bfin_read_SYSCR() & ~0xf;
945 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
946 bfin_write_SWRST(_bfin_swrst
& ~DOUBLE_FAULT
);
948 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
949 bfin_write_SWRST(_bfin_swrst
| DOUBLE_FAULT
);
953 if (_bfin_swrst
& SWRST_DBL_FAULT_A
) {
955 if (_bfin_swrst
& RESET_DOUBLE
) {
957 printk(KERN_EMERG
"Recovering from DOUBLE FAULT event\n");
958 #ifdef CONFIG_DEBUG_DOUBLEFAULT
959 /* We assume the crashing kernel, and the current symbol table match */
960 printk(KERN_EMERG
" While handling exception (EXCAUSE = 0x%x) at %pF\n",
961 (int)init_saved_seqstat
& SEQSTAT_EXCAUSE
, init_saved_retx
);
962 printk(KERN_NOTICE
" DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr
);
963 printk(KERN_NOTICE
" ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr
);
965 printk(KERN_NOTICE
" The instruction at %pF caused a double exception\n",
967 } else if (_bfin_swrst
& RESET_WDOG
)
968 printk(KERN_INFO
"Recovering from Watchdog event\n");
969 else if (_bfin_swrst
& RESET_SOFTWARE
)
970 printk(KERN_NOTICE
"Reset caused by Software reset\n");
972 printk(KERN_INFO
"Blackfin support (C) 2004-2010 Analog Devices, Inc.\n");
973 if (bfin_compiled_revid() == 0xffff)
974 printk(KERN_INFO
"Compiled for ADSP-%s Rev any, running on 0.%d\n", CPU
, bfin_revid());
975 else if (bfin_compiled_revid() == -1)
976 printk(KERN_INFO
"Compiled for ADSP-%s Rev none\n", CPU
);
978 printk(KERN_INFO
"Compiled for ADSP-%s Rev 0.%d\n", CPU
, bfin_compiled_revid());
980 if (likely(CPUID
== bfin_cpuid())) {
981 if (bfin_revid() != bfin_compiled_revid()) {
982 if (bfin_compiled_revid() == -1)
983 printk(KERN_ERR
"Warning: Compiled for Rev none, but running on Rev %d\n",
985 else if (bfin_compiled_revid() != 0xffff) {
986 printk(KERN_ERR
"Warning: Compiled for Rev %d, but running on Rev %d\n",
987 bfin_compiled_revid(), bfin_revid());
988 if (bfin_compiled_revid() > bfin_revid())
989 panic("Error: you are missing anomaly workarounds for this rev");
992 if (bfin_revid() < CONFIG_BF_REV_MIN
|| bfin_revid() > CONFIG_BF_REV_MAX
)
993 printk(KERN_ERR
"Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
997 printk(KERN_INFO
"Blackfin Linux support by http://blackfin.uclinux.org/\n");
999 printk(KERN_INFO
"Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
1000 cclk
/ 1000000, sclk
/ 1000000);
1002 setup_bootmem_allocator();
1006 /* Copy atomic sequences to their fixed location, and sanity check that
1007 these locations are the ones that we advertise to userspace. */
1008 memcpy((void *)FIXED_CODE_START
, &fixed_code_start
,
1009 FIXED_CODE_END
- FIXED_CODE_START
);
1010 BUG_ON((char *)&sigreturn_stub
- (char *)&fixed_code_start
1011 != SIGRETURN_STUB
- FIXED_CODE_START
);
1012 BUG_ON((char *)&atomic_xchg32
- (char *)&fixed_code_start
1013 != ATOMIC_XCHG32
- FIXED_CODE_START
);
1014 BUG_ON((char *)&atomic_cas32
- (char *)&fixed_code_start
1015 != ATOMIC_CAS32
- FIXED_CODE_START
);
1016 BUG_ON((char *)&atomic_add32
- (char *)&fixed_code_start
1017 != ATOMIC_ADD32
- FIXED_CODE_START
);
1018 BUG_ON((char *)&atomic_sub32
- (char *)&fixed_code_start
1019 != ATOMIC_SUB32
- FIXED_CODE_START
);
1020 BUG_ON((char *)&atomic_ior32
- (char *)&fixed_code_start
1021 != ATOMIC_IOR32
- FIXED_CODE_START
);
1022 BUG_ON((char *)&atomic_and32
- (char *)&fixed_code_start
1023 != ATOMIC_AND32
- FIXED_CODE_START
);
1024 BUG_ON((char *)&atomic_xor32
- (char *)&fixed_code_start
1025 != ATOMIC_XOR32
- FIXED_CODE_START
);
1026 BUG_ON((char *)&safe_user_instruction
- (char *)&fixed_code_start
1027 != SAFE_USER_INSTRUCTION
- FIXED_CODE_START
);
1030 platform_init_cpus();
1032 init_exception_vectors();
1033 bfin_cache_init(); /* Initialize caches for the boot CPU */
1036 static int __init
topology_init(void)
1039 /* Record CPU-private information for the boot processor. */
1040 bfin_setup_cpudata(0);
1042 for_each_possible_cpu(cpu
) {
1043 register_cpu(&per_cpu(cpu_data
, cpu
).cpu
, cpu
);
1049 subsys_initcall(topology_init
);
1051 /* Get the input clock frequency */
1052 static u_long cached_clkin_hz
= CONFIG_CLKIN_HZ
;
1053 static u_long
get_clkin_hz(void)
1055 return cached_clkin_hz
;
1057 static int __init
early_init_clkin_hz(char *buf
)
1059 cached_clkin_hz
= simple_strtoul(buf
, NULL
, 0);
1060 #ifdef BFIN_KERNEL_CLOCK
1061 if (cached_clkin_hz
!= CONFIG_CLKIN_HZ
)
1062 panic("cannot change clkin_hz when reprogramming clocks");
1066 early_param("clkin_hz=", early_init_clkin_hz
);
1068 /* Get the voltage input multiplier */
1069 static u_long
get_vco(void)
1071 static u_long cached_vco
;
1072 u_long msel
, pll_ctl
;
1074 /* The assumption here is that VCO never changes at runtime.
1075 * If, someday, we support that, then we'll have to change this.
1080 pll_ctl
= bfin_read_PLL_CTL();
1081 msel
= (pll_ctl
>> 9) & 0x3F;
1085 cached_vco
= get_clkin_hz();
1086 cached_vco
>>= (1 & pll_ctl
); /* DF bit */
1091 /* Get the Core clock */
1092 u_long
get_cclk(void)
1094 static u_long cached_cclk_pll_div
, cached_cclk
;
1097 if (bfin_read_PLL_STAT() & 0x1)
1098 return get_clkin_hz();
1100 ssel
= bfin_read_PLL_DIV();
1101 if (ssel
== cached_cclk_pll_div
)
1104 cached_cclk_pll_div
= ssel
;
1106 csel
= ((ssel
>> 4) & 0x03);
1108 if (ssel
&& ssel
< (1 << csel
)) /* SCLK > CCLK */
1109 cached_cclk
= get_vco() / ssel
;
1111 cached_cclk
= get_vco() >> csel
;
1114 EXPORT_SYMBOL(get_cclk
);
1116 /* Get the System clock */
1117 u_long
get_sclk(void)
1119 static u_long cached_sclk
;
1122 /* The assumption here is that SCLK never changes at runtime.
1123 * If, someday, we support that, then we'll have to change this.
1128 if (bfin_read_PLL_STAT() & 0x1)
1129 return get_clkin_hz();
1131 ssel
= bfin_read_PLL_DIV() & 0xf;
1133 printk(KERN_WARNING
"Invalid System Clock\n");
1137 cached_sclk
= get_vco() / ssel
;
1140 EXPORT_SYMBOL(get_sclk
);
1142 unsigned long sclk_to_usecs(unsigned long sclk
)
1144 u64 tmp
= USEC_PER_SEC
* (u64
)sclk
;
1145 do_div(tmp
, get_sclk());
1148 EXPORT_SYMBOL(sclk_to_usecs
);
1150 unsigned long usecs_to_sclk(unsigned long usecs
)
1152 u64 tmp
= get_sclk() * (u64
)usecs
;
1153 do_div(tmp
, USEC_PER_SEC
);
1156 EXPORT_SYMBOL(usecs_to_sclk
);
1159 * Get CPU information for use by the procfs.
1161 static int show_cpuinfo(struct seq_file
*m
, void *v
)
1163 char *cpu
, *mmu
, *fpu
, *vendor
, *cache
;
1165 int cpu_num
= *(unsigned int *)v
;
1167 u_int icache_size
= BFIN_ICACHESIZE
/ 1024, dcache_size
= 0, dsup_banks
= 0;
1168 struct blackfin_cpudata
*cpudata
= &per_cpu(cpu_data
, cpu_num
);
1173 revid
= bfin_revid();
1178 switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE
) {
1180 vendor
= "Analog Devices";
1187 seq_printf(m
, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num
, vendor
);
1189 if (CPUID
== bfin_cpuid())
1190 seq_printf(m
, "cpu family\t: 0x%04x\n", CPUID
);
1192 seq_printf(m
, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1193 CPUID
, bfin_cpuid());
1195 seq_printf(m
, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1197 cpu
, cclk
/1000000, sclk
/1000000,
1205 if (bfin_revid() != bfin_compiled_revid()) {
1206 if (bfin_compiled_revid() == -1)
1207 seq_printf(m
, "(Compiled for Rev none)");
1208 else if (bfin_compiled_revid() == 0xffff)
1209 seq_printf(m
, "(Compiled for Rev any)");
1211 seq_printf(m
, "(Compiled for Rev %d)", bfin_compiled_revid());
1214 seq_printf(m
, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1215 cclk
/1000000, cclk
%1000000,
1216 sclk
/1000000, sclk
%1000000);
1217 seq_printf(m
, "bogomips\t: %lu.%02lu\n"
1218 "Calibration\t: %lu loops\n",
1219 (loops_per_jiffy
* HZ
) / 500000,
1220 ((loops_per_jiffy
* HZ
) / 5000) % 100,
1221 (loops_per_jiffy
* HZ
));
1223 /* Check Cache configutation */
1224 switch (cpudata
->dmemctl
& (1 << DMC0_P
| 1 << DMC1_P
)) {
1226 cache
= "dbank-A/B\t: cache/sram";
1231 cache
= "dbank-A/B\t: cache/cache";
1236 cache
= "dbank-A/B\t: sram/sram";
1247 /* Is it turned on? */
1248 if ((cpudata
->dmemctl
& (ENDCPLB
| DMC_ENABLE
)) != (ENDCPLB
| DMC_ENABLE
))
1251 if ((cpudata
->imemctl
& (IMC
| ENICPLB
)) != (IMC
| ENICPLB
))
1254 seq_printf(m
, "cache size\t: %d KB(L1 icache) "
1255 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1256 icache_size
, dcache_size
, 0);
1257 seq_printf(m
, "%s\n", cache
);
1258 seq_printf(m
, "external memory\t: "
1259 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1264 " in instruction cache\n");
1265 seq_printf(m
, "external memory\t: "
1266 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1267 "cacheable (write-back)"
1268 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1269 "cacheable (write-through)"
1273 " in data cache\n");
1276 seq_printf(m
, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1277 BFIN_ISUBBANKS
, BFIN_IWAYS
, BFIN_ILINES
);
1279 seq_printf(m
, "icache setup\t: off\n");
1282 "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1283 dsup_banks
, BFIN_DSUBBANKS
, BFIN_DWAYS
,
1285 #ifdef __ARCH_SYNC_CORE_DCACHE
1286 seq_printf(m
, "SMP Dcache Flushes\t: %lu\n\n", dcache_invld_count
[cpu_num
]);
1288 #ifdef __ARCH_SYNC_CORE_ICACHE
1289 seq_printf(m
, "SMP Icache Flushes\t: %lu\n\n", icache_invld_count
[cpu_num
]);
1292 if (cpu_num
!= num_possible_cpus() - 1)
1296 seq_printf(m
, "L2 SRAM\t\t: %dKB\n", L2_LENGTH
/0x400);
1297 seq_printf(m
, "L2 SRAM\t\t: "
1298 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1303 " in instruction cache\n");
1304 seq_printf(m
, "L2 SRAM\t\t: "
1305 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1306 "cacheable (write-back)"
1307 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1308 "cacheable (write-through)"
1312 " in data cache\n");
1314 seq_printf(m
, "board name\t: %s\n", bfin_board_name
);
1315 seq_printf(m
, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1316 physical_mem_end
>> 10, (void *)0, (void *)physical_mem_end
);
1317 seq_printf(m
, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1318 ((int)memory_end
- (int)_rambase
) >> 10,
1320 (void *)memory_end
);
1321 seq_printf(m
, "\n");
1326 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1329 *pos
= first_cpu(cpu_online_map
);
1330 if (*pos
>= num_online_cpus())
1336 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1338 *pos
= next_cpu(*pos
, cpu_online_map
);
1340 return c_start(m
, pos
);
1343 static void c_stop(struct seq_file
*m
, void *v
)
1347 const struct seq_operations cpuinfo_op
= {
1351 .show
= show_cpuinfo
,
1354 void __init
cmdline_init(const char *r0
)
1356 early_shadow_stamp();
1358 strncpy(command_line
, r0
, COMMAND_LINE_SIZE
);