hwmon: (jc42) Change detection class
[linux/fpc-iii.git] / arch / x86 / xen / mmu.c
blob02d7524603710bf1afed949598645f6ebab2413b
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/fixmap.h>
54 #include <asm/mmu_context.h>
55 #include <asm/setup.h>
56 #include <asm/paravirt.h>
57 #include <asm/e820.h>
58 #include <asm/linkage.h>
59 #include <asm/page.h>
60 #include <asm/init.h>
61 #include <asm/pat.h>
63 #include <asm/xen/hypercall.h>
64 #include <asm/xen/hypervisor.h>
66 #include <xen/xen.h>
67 #include <xen/page.h>
68 #include <xen/interface/xen.h>
69 #include <xen/interface/hvm/hvm_op.h>
70 #include <xen/interface/version.h>
71 #include <xen/interface/memory.h>
72 #include <xen/hvc-console.h>
74 #include "multicalls.h"
75 #include "mmu.h"
76 #include "debugfs.h"
78 #define MMU_UPDATE_HISTO 30
81 * Protects atomic reservation decrease/increase against concurrent increases.
82 * Also protects non-atomic updates of current_pages and balloon lists.
84 DEFINE_SPINLOCK(xen_reservation_lock);
86 #ifdef CONFIG_XEN_DEBUG_FS
88 static struct {
89 u32 pgd_update;
90 u32 pgd_update_pinned;
91 u32 pgd_update_batched;
93 u32 pud_update;
94 u32 pud_update_pinned;
95 u32 pud_update_batched;
97 u32 pmd_update;
98 u32 pmd_update_pinned;
99 u32 pmd_update_batched;
101 u32 pte_update;
102 u32 pte_update_pinned;
103 u32 pte_update_batched;
105 u32 mmu_update;
106 u32 mmu_update_extended;
107 u32 mmu_update_histo[MMU_UPDATE_HISTO];
109 u32 prot_commit;
110 u32 prot_commit_batched;
112 u32 set_pte_at;
113 u32 set_pte_at_batched;
114 u32 set_pte_at_pinned;
115 u32 set_pte_at_current;
116 u32 set_pte_at_kernel;
117 } mmu_stats;
119 static u8 zero_stats;
121 static inline void check_zero(void)
123 if (unlikely(zero_stats)) {
124 memset(&mmu_stats, 0, sizeof(mmu_stats));
125 zero_stats = 0;
129 #define ADD_STATS(elem, val) \
130 do { check_zero(); mmu_stats.elem += (val); } while(0)
132 #else /* !CONFIG_XEN_DEBUG_FS */
134 #define ADD_STATS(elem, val) do { (void)(val); } while(0)
136 #endif /* CONFIG_XEN_DEBUG_FS */
140 * Identity map, in addition to plain kernel map. This needs to be
141 * large enough to allocate page table pages to allocate the rest.
142 * Each page can map 2MB.
144 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
145 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
147 #ifdef CONFIG_X86_64
148 /* l3 pud for userspace vsyscall mapping */
149 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
150 #endif /* CONFIG_X86_64 */
153 * Note about cr3 (pagetable base) values:
155 * xen_cr3 contains the current logical cr3 value; it contains the
156 * last set cr3. This may not be the current effective cr3, because
157 * its update may be being lazily deferred. However, a vcpu looking
158 * at its own cr3 can use this value knowing that it everything will
159 * be self-consistent.
161 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
162 * hypercall to set the vcpu cr3 is complete (so it may be a little
163 * out of date, but it will never be set early). If one vcpu is
164 * looking at another vcpu's cr3 value, it should use this variable.
166 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
167 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
171 * Just beyond the highest usermode address. STACK_TOP_MAX has a
172 * redzone above it, so round it up to a PGD boundary.
174 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
176 unsigned long arbitrary_virt_to_mfn(void *vaddr)
178 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
180 return PFN_DOWN(maddr.maddr);
183 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
185 unsigned long address = (unsigned long)vaddr;
186 unsigned int level;
187 pte_t *pte;
188 unsigned offset;
191 * if the PFN is in the linear mapped vaddr range, we can just use
192 * the (quick) virt_to_machine() p2m lookup
194 if (virt_addr_valid(vaddr))
195 return virt_to_machine(vaddr);
197 /* otherwise we have to do a (slower) full page-table walk */
199 pte = lookup_address(address, &level);
200 BUG_ON(pte == NULL);
201 offset = address & ~PAGE_MASK;
202 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
204 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
206 void make_lowmem_page_readonly(void *vaddr)
208 pte_t *pte, ptev;
209 unsigned long address = (unsigned long)vaddr;
210 unsigned int level;
212 pte = lookup_address(address, &level);
213 if (pte == NULL)
214 return; /* vaddr missing */
216 ptev = pte_wrprotect(*pte);
218 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
219 BUG();
222 void make_lowmem_page_readwrite(void *vaddr)
224 pte_t *pte, ptev;
225 unsigned long address = (unsigned long)vaddr;
226 unsigned int level;
228 pte = lookup_address(address, &level);
229 if (pte == NULL)
230 return; /* vaddr missing */
232 ptev = pte_mkwrite(*pte);
234 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
235 BUG();
239 static bool xen_page_pinned(void *ptr)
241 struct page *page = virt_to_page(ptr);
243 return PagePinned(page);
246 static bool xen_iomap_pte(pte_t pte)
248 return pte_flags(pte) & _PAGE_IOMAP;
251 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
253 struct multicall_space mcs;
254 struct mmu_update *u;
256 mcs = xen_mc_entry(sizeof(*u));
257 u = mcs.args;
259 /* ptep might be kmapped when using 32-bit HIGHPTE */
260 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
261 u->val = pte_val_ma(pteval);
263 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
265 xen_mc_issue(PARAVIRT_LAZY_MMU);
267 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
269 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
271 xen_set_domain_pte(ptep, pteval, DOMID_IO);
274 static void xen_extend_mmu_update(const struct mmu_update *update)
276 struct multicall_space mcs;
277 struct mmu_update *u;
279 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
281 if (mcs.mc != NULL) {
282 ADD_STATS(mmu_update_extended, 1);
283 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
285 mcs.mc->args[1]++;
287 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
288 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
289 else
290 ADD_STATS(mmu_update_histo[0], 1);
291 } else {
292 ADD_STATS(mmu_update, 1);
293 mcs = __xen_mc_entry(sizeof(*u));
294 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
295 ADD_STATS(mmu_update_histo[1], 1);
298 u = mcs.args;
299 *u = *update;
302 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
304 struct mmu_update u;
306 preempt_disable();
308 xen_mc_batch();
310 /* ptr may be ioremapped for 64-bit pagetable setup */
311 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
312 u.val = pmd_val_ma(val);
313 xen_extend_mmu_update(&u);
315 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
317 xen_mc_issue(PARAVIRT_LAZY_MMU);
319 preempt_enable();
322 void xen_set_pmd(pmd_t *ptr, pmd_t val)
324 ADD_STATS(pmd_update, 1);
326 /* If page is not pinned, we can just update the entry
327 directly */
328 if (!xen_page_pinned(ptr)) {
329 *ptr = val;
330 return;
333 ADD_STATS(pmd_update_pinned, 1);
335 xen_set_pmd_hyper(ptr, val);
339 * Associate a virtual page frame with a given physical page frame
340 * and protection flags for that frame.
342 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
344 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
347 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
348 pte_t *ptep, pte_t pteval)
350 if (xen_iomap_pte(pteval)) {
351 xen_set_iomap_pte(ptep, pteval);
352 goto out;
355 ADD_STATS(set_pte_at, 1);
356 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
357 ADD_STATS(set_pte_at_current, mm == current->mm);
358 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
360 if (mm == current->mm || mm == &init_mm) {
361 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
362 struct multicall_space mcs;
363 mcs = xen_mc_entry(0);
365 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
366 ADD_STATS(set_pte_at_batched, 1);
367 xen_mc_issue(PARAVIRT_LAZY_MMU);
368 goto out;
369 } else
370 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
371 goto out;
373 xen_set_pte(ptep, pteval);
375 out: return;
378 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
379 unsigned long addr, pte_t *ptep)
381 /* Just return the pte as-is. We preserve the bits on commit */
382 return *ptep;
385 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
386 pte_t *ptep, pte_t pte)
388 struct mmu_update u;
390 xen_mc_batch();
392 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
393 u.val = pte_val_ma(pte);
394 xen_extend_mmu_update(&u);
396 ADD_STATS(prot_commit, 1);
397 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
399 xen_mc_issue(PARAVIRT_LAZY_MMU);
402 /* Assume pteval_t is equivalent to all the other *val_t types. */
403 static pteval_t pte_mfn_to_pfn(pteval_t val)
405 if (val & _PAGE_PRESENT) {
406 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
407 pteval_t flags = val & PTE_FLAGS_MASK;
408 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
411 return val;
414 static pteval_t pte_pfn_to_mfn(pteval_t val)
416 if (val & _PAGE_PRESENT) {
417 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
418 pteval_t flags = val & PTE_FLAGS_MASK;
419 unsigned long mfn;
421 if (!xen_feature(XENFEAT_auto_translated_physmap))
422 mfn = get_phys_to_machine(pfn);
423 else
424 mfn = pfn;
426 * If there's no mfn for the pfn, then just create an
427 * empty non-present pte. Unfortunately this loses
428 * information about the original pfn, so
429 * pte_mfn_to_pfn is asymmetric.
431 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
432 mfn = 0;
433 flags = 0;
434 } else {
436 * Paramount to do this test _after_ the
437 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
438 * IDENTITY_FRAME_BIT resolves to true.
440 mfn &= ~FOREIGN_FRAME_BIT;
441 if (mfn & IDENTITY_FRAME_BIT) {
442 mfn &= ~IDENTITY_FRAME_BIT;
443 flags |= _PAGE_IOMAP;
446 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
449 return val;
452 static pteval_t iomap_pte(pteval_t val)
454 if (val & _PAGE_PRESENT) {
455 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
456 pteval_t flags = val & PTE_FLAGS_MASK;
458 /* We assume the pte frame number is a MFN, so
459 just use it as-is. */
460 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
463 return val;
466 pteval_t xen_pte_val(pte_t pte)
468 pteval_t pteval = pte.pte;
470 /* If this is a WC pte, convert back from Xen WC to Linux WC */
471 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
472 WARN_ON(!pat_enabled);
473 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
476 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
477 return pteval;
479 return pte_mfn_to_pfn(pteval);
481 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
483 pgdval_t xen_pgd_val(pgd_t pgd)
485 return pte_mfn_to_pfn(pgd.pgd);
487 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
490 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
491 * are reserved for now, to correspond to the Intel-reserved PAT
492 * types.
494 * We expect Linux's PAT set as follows:
496 * Idx PTE flags Linux Xen Default
497 * 0 WB WB WB
498 * 1 PWT WC WT WT
499 * 2 PCD UC- UC- UC-
500 * 3 PCD PWT UC UC UC
501 * 4 PAT WB WC WB
502 * 5 PAT PWT WC WP WT
503 * 6 PAT PCD UC- UC UC-
504 * 7 PAT PCD PWT UC UC UC
507 void xen_set_pat(u64 pat)
509 /* We expect Linux to use a PAT setting of
510 * UC UC- WC WB (ignoring the PAT flag) */
511 WARN_ON(pat != 0x0007010600070106ull);
514 pte_t xen_make_pte(pteval_t pte)
516 phys_addr_t addr = (pte & PTE_PFN_MASK);
518 /* If Linux is trying to set a WC pte, then map to the Xen WC.
519 * If _PAGE_PAT is set, then it probably means it is really
520 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
521 * things work out OK...
523 * (We should never see kernel mappings with _PAGE_PSE set,
524 * but we could see hugetlbfs mappings, I think.).
526 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
527 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
528 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
532 * Unprivileged domains are allowed to do IOMAPpings for
533 * PCI passthrough, but not map ISA space. The ISA
534 * mappings are just dummy local mappings to keep other
535 * parts of the kernel happy.
537 if (unlikely(pte & _PAGE_IOMAP) &&
538 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
539 pte = iomap_pte(pte);
540 } else {
541 pte &= ~_PAGE_IOMAP;
542 pte = pte_pfn_to_mfn(pte);
545 return native_make_pte(pte);
547 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
549 #ifdef CONFIG_XEN_DEBUG
550 pte_t xen_make_pte_debug(pteval_t pte)
552 phys_addr_t addr = (pte & PTE_PFN_MASK);
553 phys_addr_t other_addr;
554 bool io_page = false;
555 pte_t _pte;
557 if (pte & _PAGE_IOMAP)
558 io_page = true;
560 _pte = xen_make_pte(pte);
562 if (!addr)
563 return _pte;
565 if (io_page &&
566 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
567 other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
568 WARN_ONCE(addr != other_addr,
569 "0x%lx is using VM_IO, but it is 0x%lx!\n",
570 (unsigned long)addr, (unsigned long)other_addr);
571 } else {
572 pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
573 other_addr = (_pte.pte & PTE_PFN_MASK);
574 WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set),
575 "0x%lx is missing VM_IO (and wasn't fixed)!\n",
576 (unsigned long)addr);
579 return _pte;
581 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
582 #endif
584 pgd_t xen_make_pgd(pgdval_t pgd)
586 pgd = pte_pfn_to_mfn(pgd);
587 return native_make_pgd(pgd);
589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
591 pmdval_t xen_pmd_val(pmd_t pmd)
593 return pte_mfn_to_pfn(pmd.pmd);
595 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
597 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
599 struct mmu_update u;
601 preempt_disable();
603 xen_mc_batch();
605 /* ptr may be ioremapped for 64-bit pagetable setup */
606 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
607 u.val = pud_val_ma(val);
608 xen_extend_mmu_update(&u);
610 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
612 xen_mc_issue(PARAVIRT_LAZY_MMU);
614 preempt_enable();
617 void xen_set_pud(pud_t *ptr, pud_t val)
619 ADD_STATS(pud_update, 1);
621 /* If page is not pinned, we can just update the entry
622 directly */
623 if (!xen_page_pinned(ptr)) {
624 *ptr = val;
625 return;
628 ADD_STATS(pud_update_pinned, 1);
630 xen_set_pud_hyper(ptr, val);
633 void xen_set_pte(pte_t *ptep, pte_t pte)
635 if (xen_iomap_pte(pte)) {
636 xen_set_iomap_pte(ptep, pte);
637 return;
640 ADD_STATS(pte_update, 1);
641 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
642 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
644 #ifdef CONFIG_X86_PAE
645 ptep->pte_high = pte.pte_high;
646 smp_wmb();
647 ptep->pte_low = pte.pte_low;
648 #else
649 *ptep = pte;
650 #endif
653 #ifdef CONFIG_X86_PAE
654 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
656 if (xen_iomap_pte(pte)) {
657 xen_set_iomap_pte(ptep, pte);
658 return;
661 set_64bit((u64 *)ptep, native_pte_val(pte));
664 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
666 ptep->pte_low = 0;
667 smp_wmb(); /* make sure low gets written first */
668 ptep->pte_high = 0;
671 void xen_pmd_clear(pmd_t *pmdp)
673 set_pmd(pmdp, __pmd(0));
675 #endif /* CONFIG_X86_PAE */
677 pmd_t xen_make_pmd(pmdval_t pmd)
679 pmd = pte_pfn_to_mfn(pmd);
680 return native_make_pmd(pmd);
682 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
684 #if PAGETABLE_LEVELS == 4
685 pudval_t xen_pud_val(pud_t pud)
687 return pte_mfn_to_pfn(pud.pud);
689 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
691 pud_t xen_make_pud(pudval_t pud)
693 pud = pte_pfn_to_mfn(pud);
695 return native_make_pud(pud);
697 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
699 pgd_t *xen_get_user_pgd(pgd_t *pgd)
701 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
702 unsigned offset = pgd - pgd_page;
703 pgd_t *user_ptr = NULL;
705 if (offset < pgd_index(USER_LIMIT)) {
706 struct page *page = virt_to_page(pgd_page);
707 user_ptr = (pgd_t *)page->private;
708 if (user_ptr)
709 user_ptr += offset;
712 return user_ptr;
715 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
717 struct mmu_update u;
719 u.ptr = virt_to_machine(ptr).maddr;
720 u.val = pgd_val_ma(val);
721 xen_extend_mmu_update(&u);
725 * Raw hypercall-based set_pgd, intended for in early boot before
726 * there's a page structure. This implies:
727 * 1. The only existing pagetable is the kernel's
728 * 2. It is always pinned
729 * 3. It has no user pagetable attached to it
731 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
733 preempt_disable();
735 xen_mc_batch();
737 __xen_set_pgd_hyper(ptr, val);
739 xen_mc_issue(PARAVIRT_LAZY_MMU);
741 preempt_enable();
744 void xen_set_pgd(pgd_t *ptr, pgd_t val)
746 pgd_t *user_ptr = xen_get_user_pgd(ptr);
748 ADD_STATS(pgd_update, 1);
750 /* If page is not pinned, we can just update the entry
751 directly */
752 if (!xen_page_pinned(ptr)) {
753 *ptr = val;
754 if (user_ptr) {
755 WARN_ON(xen_page_pinned(user_ptr));
756 *user_ptr = val;
758 return;
761 ADD_STATS(pgd_update_pinned, 1);
762 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
764 /* If it's pinned, then we can at least batch the kernel and
765 user updates together. */
766 xen_mc_batch();
768 __xen_set_pgd_hyper(ptr, val);
769 if (user_ptr)
770 __xen_set_pgd_hyper(user_ptr, val);
772 xen_mc_issue(PARAVIRT_LAZY_MMU);
774 #endif /* PAGETABLE_LEVELS == 4 */
777 * (Yet another) pagetable walker. This one is intended for pinning a
778 * pagetable. This means that it walks a pagetable and calls the
779 * callback function on each page it finds making up the page table,
780 * at every level. It walks the entire pagetable, but it only bothers
781 * pinning pte pages which are below limit. In the normal case this
782 * will be STACK_TOP_MAX, but at boot we need to pin up to
783 * FIXADDR_TOP.
785 * For 32-bit the important bit is that we don't pin beyond there,
786 * because then we start getting into Xen's ptes.
788 * For 64-bit, we must skip the Xen hole in the middle of the address
789 * space, just after the big x86-64 virtual hole.
791 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
792 int (*func)(struct mm_struct *mm, struct page *,
793 enum pt_level),
794 unsigned long limit)
796 int flush = 0;
797 unsigned hole_low, hole_high;
798 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
799 unsigned pgdidx, pudidx, pmdidx;
801 /* The limit is the last byte to be touched */
802 limit--;
803 BUG_ON(limit >= FIXADDR_TOP);
805 if (xen_feature(XENFEAT_auto_translated_physmap))
806 return 0;
809 * 64-bit has a great big hole in the middle of the address
810 * space, which contains the Xen mappings. On 32-bit these
811 * will end up making a zero-sized hole and so is a no-op.
813 hole_low = pgd_index(USER_LIMIT);
814 hole_high = pgd_index(PAGE_OFFSET);
816 pgdidx_limit = pgd_index(limit);
817 #if PTRS_PER_PUD > 1
818 pudidx_limit = pud_index(limit);
819 #else
820 pudidx_limit = 0;
821 #endif
822 #if PTRS_PER_PMD > 1
823 pmdidx_limit = pmd_index(limit);
824 #else
825 pmdidx_limit = 0;
826 #endif
828 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
829 pud_t *pud;
831 if (pgdidx >= hole_low && pgdidx < hole_high)
832 continue;
834 if (!pgd_val(pgd[pgdidx]))
835 continue;
837 pud = pud_offset(&pgd[pgdidx], 0);
839 if (PTRS_PER_PUD > 1) /* not folded */
840 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
842 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
843 pmd_t *pmd;
845 if (pgdidx == pgdidx_limit &&
846 pudidx > pudidx_limit)
847 goto out;
849 if (pud_none(pud[pudidx]))
850 continue;
852 pmd = pmd_offset(&pud[pudidx], 0);
854 if (PTRS_PER_PMD > 1) /* not folded */
855 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
857 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
858 struct page *pte;
860 if (pgdidx == pgdidx_limit &&
861 pudidx == pudidx_limit &&
862 pmdidx > pmdidx_limit)
863 goto out;
865 if (pmd_none(pmd[pmdidx]))
866 continue;
868 pte = pmd_page(pmd[pmdidx]);
869 flush |= (*func)(mm, pte, PT_PTE);
874 out:
875 /* Do the top level last, so that the callbacks can use it as
876 a cue to do final things like tlb flushes. */
877 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
879 return flush;
882 static int xen_pgd_walk(struct mm_struct *mm,
883 int (*func)(struct mm_struct *mm, struct page *,
884 enum pt_level),
885 unsigned long limit)
887 return __xen_pgd_walk(mm, mm->pgd, func, limit);
890 /* If we're using split pte locks, then take the page's lock and
891 return a pointer to it. Otherwise return NULL. */
892 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
894 spinlock_t *ptl = NULL;
896 #if USE_SPLIT_PTLOCKS
897 ptl = __pte_lockptr(page);
898 spin_lock_nest_lock(ptl, &mm->page_table_lock);
899 #endif
901 return ptl;
904 static void xen_pte_unlock(void *v)
906 spinlock_t *ptl = v;
907 spin_unlock(ptl);
910 static void xen_do_pin(unsigned level, unsigned long pfn)
912 struct mmuext_op *op;
913 struct multicall_space mcs;
915 mcs = __xen_mc_entry(sizeof(*op));
916 op = mcs.args;
917 op->cmd = level;
918 op->arg1.mfn = pfn_to_mfn(pfn);
919 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
922 static int xen_pin_page(struct mm_struct *mm, struct page *page,
923 enum pt_level level)
925 unsigned pgfl = TestSetPagePinned(page);
926 int flush;
928 if (pgfl)
929 flush = 0; /* already pinned */
930 else if (PageHighMem(page))
931 /* kmaps need flushing if we found an unpinned
932 highpage */
933 flush = 1;
934 else {
935 void *pt = lowmem_page_address(page);
936 unsigned long pfn = page_to_pfn(page);
937 struct multicall_space mcs = __xen_mc_entry(0);
938 spinlock_t *ptl;
940 flush = 0;
943 * We need to hold the pagetable lock between the time
944 * we make the pagetable RO and when we actually pin
945 * it. If we don't, then other users may come in and
946 * attempt to update the pagetable by writing it,
947 * which will fail because the memory is RO but not
948 * pinned, so Xen won't do the trap'n'emulate.
950 * If we're using split pte locks, we can't hold the
951 * entire pagetable's worth of locks during the
952 * traverse, because we may wrap the preempt count (8
953 * bits). The solution is to mark RO and pin each PTE
954 * page while holding the lock. This means the number
955 * of locks we end up holding is never more than a
956 * batch size (~32 entries, at present).
958 * If we're not using split pte locks, we needn't pin
959 * the PTE pages independently, because we're
960 * protected by the overall pagetable lock.
962 ptl = NULL;
963 if (level == PT_PTE)
964 ptl = xen_pte_lock(page, mm);
966 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
967 pfn_pte(pfn, PAGE_KERNEL_RO),
968 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
970 if (ptl) {
971 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
973 /* Queue a deferred unlock for when this batch
974 is completed. */
975 xen_mc_callback(xen_pte_unlock, ptl);
979 return flush;
982 /* This is called just after a mm has been created, but it has not
983 been used yet. We need to make sure that its pagetable is all
984 read-only, and can be pinned. */
985 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
987 xen_mc_batch();
989 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
990 /* re-enable interrupts for flushing */
991 xen_mc_issue(0);
993 kmap_flush_unused();
995 xen_mc_batch();
998 #ifdef CONFIG_X86_64
1000 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1002 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1004 if (user_pgd) {
1005 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1006 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1007 PFN_DOWN(__pa(user_pgd)));
1010 #else /* CONFIG_X86_32 */
1011 #ifdef CONFIG_X86_PAE
1012 /* Need to make sure unshared kernel PMD is pinnable */
1013 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1014 PT_PMD);
1015 #endif
1016 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1017 #endif /* CONFIG_X86_64 */
1018 xen_mc_issue(0);
1021 static void xen_pgd_pin(struct mm_struct *mm)
1023 __xen_pgd_pin(mm, mm->pgd);
1027 * On save, we need to pin all pagetables to make sure they get their
1028 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1029 * them (unpinned pgds are not currently in use, probably because the
1030 * process is under construction or destruction).
1032 * Expected to be called in stop_machine() ("equivalent to taking
1033 * every spinlock in the system"), so the locking doesn't really
1034 * matter all that much.
1036 void xen_mm_pin_all(void)
1038 struct page *page;
1040 spin_lock(&pgd_lock);
1042 list_for_each_entry(page, &pgd_list, lru) {
1043 if (!PagePinned(page)) {
1044 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1045 SetPageSavePinned(page);
1049 spin_unlock(&pgd_lock);
1053 * The init_mm pagetable is really pinned as soon as its created, but
1054 * that's before we have page structures to store the bits. So do all
1055 * the book-keeping now.
1057 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
1058 enum pt_level level)
1060 SetPagePinned(page);
1061 return 0;
1064 static void __init xen_mark_init_mm_pinned(void)
1066 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1069 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1070 enum pt_level level)
1072 unsigned pgfl = TestClearPagePinned(page);
1074 if (pgfl && !PageHighMem(page)) {
1075 void *pt = lowmem_page_address(page);
1076 unsigned long pfn = page_to_pfn(page);
1077 spinlock_t *ptl = NULL;
1078 struct multicall_space mcs;
1081 * Do the converse to pin_page. If we're using split
1082 * pte locks, we must be holding the lock for while
1083 * the pte page is unpinned but still RO to prevent
1084 * concurrent updates from seeing it in this
1085 * partially-pinned state.
1087 if (level == PT_PTE) {
1088 ptl = xen_pte_lock(page, mm);
1090 if (ptl)
1091 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1094 mcs = __xen_mc_entry(0);
1096 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1097 pfn_pte(pfn, PAGE_KERNEL),
1098 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1100 if (ptl) {
1101 /* unlock when batch completed */
1102 xen_mc_callback(xen_pte_unlock, ptl);
1106 return 0; /* never need to flush on unpin */
1109 /* Release a pagetables pages back as normal RW */
1110 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1112 xen_mc_batch();
1114 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1116 #ifdef CONFIG_X86_64
1118 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1120 if (user_pgd) {
1121 xen_do_pin(MMUEXT_UNPIN_TABLE,
1122 PFN_DOWN(__pa(user_pgd)));
1123 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1126 #endif
1128 #ifdef CONFIG_X86_PAE
1129 /* Need to make sure unshared kernel PMD is unpinned */
1130 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1131 PT_PMD);
1132 #endif
1134 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1136 xen_mc_issue(0);
1139 static void xen_pgd_unpin(struct mm_struct *mm)
1141 __xen_pgd_unpin(mm, mm->pgd);
1145 * On resume, undo any pinning done at save, so that the rest of the
1146 * kernel doesn't see any unexpected pinned pagetables.
1148 void xen_mm_unpin_all(void)
1150 struct page *page;
1152 spin_lock(&pgd_lock);
1154 list_for_each_entry(page, &pgd_list, lru) {
1155 if (PageSavePinned(page)) {
1156 BUG_ON(!PagePinned(page));
1157 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1158 ClearPageSavePinned(page);
1162 spin_unlock(&pgd_lock);
1165 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1167 spin_lock(&next->page_table_lock);
1168 xen_pgd_pin(next);
1169 spin_unlock(&next->page_table_lock);
1172 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1174 spin_lock(&mm->page_table_lock);
1175 xen_pgd_pin(mm);
1176 spin_unlock(&mm->page_table_lock);
1180 #ifdef CONFIG_SMP
1181 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1182 we need to repoint it somewhere else before we can unpin it. */
1183 static void drop_other_mm_ref(void *info)
1185 struct mm_struct *mm = info;
1186 struct mm_struct *active_mm;
1188 active_mm = percpu_read(cpu_tlbstate.active_mm);
1190 if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1191 leave_mm(smp_processor_id());
1193 /* If this cpu still has a stale cr3 reference, then make sure
1194 it has been flushed. */
1195 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1196 load_cr3(swapper_pg_dir);
1199 static void xen_drop_mm_ref(struct mm_struct *mm)
1201 cpumask_var_t mask;
1202 unsigned cpu;
1204 if (current->active_mm == mm) {
1205 if (current->mm == mm)
1206 load_cr3(swapper_pg_dir);
1207 else
1208 leave_mm(smp_processor_id());
1211 /* Get the "official" set of cpus referring to our pagetable. */
1212 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1213 for_each_online_cpu(cpu) {
1214 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1215 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1216 continue;
1217 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1219 return;
1221 cpumask_copy(mask, mm_cpumask(mm));
1223 /* It's possible that a vcpu may have a stale reference to our
1224 cr3, because its in lazy mode, and it hasn't yet flushed
1225 its set of pending hypercalls yet. In this case, we can
1226 look at its actual current cr3 value, and force it to flush
1227 if needed. */
1228 for_each_online_cpu(cpu) {
1229 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1230 cpumask_set_cpu(cpu, mask);
1233 if (!cpumask_empty(mask))
1234 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1235 free_cpumask_var(mask);
1237 #else
1238 static void xen_drop_mm_ref(struct mm_struct *mm)
1240 if (current->active_mm == mm)
1241 load_cr3(swapper_pg_dir);
1243 #endif
1246 * While a process runs, Xen pins its pagetables, which means that the
1247 * hypervisor forces it to be read-only, and it controls all updates
1248 * to it. This means that all pagetable updates have to go via the
1249 * hypervisor, which is moderately expensive.
1251 * Since we're pulling the pagetable down, we switch to use init_mm,
1252 * unpin old process pagetable and mark it all read-write, which
1253 * allows further operations on it to be simple memory accesses.
1255 * The only subtle point is that another CPU may be still using the
1256 * pagetable because of lazy tlb flushing. This means we need need to
1257 * switch all CPUs off this pagetable before we can unpin it.
1259 void xen_exit_mmap(struct mm_struct *mm)
1261 get_cpu(); /* make sure we don't move around */
1262 xen_drop_mm_ref(mm);
1263 put_cpu();
1265 spin_lock(&mm->page_table_lock);
1267 /* pgd may not be pinned in the error exit path of execve */
1268 if (xen_page_pinned(mm->pgd))
1269 xen_pgd_unpin(mm);
1271 spin_unlock(&mm->page_table_lock);
1274 static void __init xen_pagetable_setup_start(pgd_t *base)
1278 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1280 /* reserve the range used */
1281 native_pagetable_reserve(start, end);
1283 /* set as RW the rest */
1284 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1285 PFN_PHYS(pgt_buf_top));
1286 while (end < PFN_PHYS(pgt_buf_top)) {
1287 make_lowmem_page_readwrite(__va(end));
1288 end += PAGE_SIZE;
1292 static void xen_post_allocator_init(void);
1294 static void __init xen_pagetable_setup_done(pgd_t *base)
1296 xen_setup_shared_info();
1297 xen_post_allocator_init();
1300 static void xen_write_cr2(unsigned long cr2)
1302 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1305 static unsigned long xen_read_cr2(void)
1307 return percpu_read(xen_vcpu)->arch.cr2;
1310 unsigned long xen_read_cr2_direct(void)
1312 return percpu_read(xen_vcpu_info.arch.cr2);
1315 static void xen_flush_tlb(void)
1317 struct mmuext_op *op;
1318 struct multicall_space mcs;
1320 preempt_disable();
1322 mcs = xen_mc_entry(sizeof(*op));
1324 op = mcs.args;
1325 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1326 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1328 xen_mc_issue(PARAVIRT_LAZY_MMU);
1330 preempt_enable();
1333 static void xen_flush_tlb_single(unsigned long addr)
1335 struct mmuext_op *op;
1336 struct multicall_space mcs;
1338 preempt_disable();
1340 mcs = xen_mc_entry(sizeof(*op));
1341 op = mcs.args;
1342 op->cmd = MMUEXT_INVLPG_LOCAL;
1343 op->arg1.linear_addr = addr & PAGE_MASK;
1344 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1346 xen_mc_issue(PARAVIRT_LAZY_MMU);
1348 preempt_enable();
1351 static void xen_flush_tlb_others(const struct cpumask *cpus,
1352 struct mm_struct *mm, unsigned long va)
1354 struct {
1355 struct mmuext_op op;
1356 DECLARE_BITMAP(mask, NR_CPUS);
1357 } *args;
1358 struct multicall_space mcs;
1360 if (cpumask_empty(cpus))
1361 return; /* nothing to do */
1363 mcs = xen_mc_entry(sizeof(*args));
1364 args = mcs.args;
1365 args->op.arg2.vcpumask = to_cpumask(args->mask);
1367 /* Remove us, and any offline CPUS. */
1368 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1369 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1371 if (va == TLB_FLUSH_ALL) {
1372 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1373 } else {
1374 args->op.cmd = MMUEXT_INVLPG_MULTI;
1375 args->op.arg1.linear_addr = va;
1378 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1380 xen_mc_issue(PARAVIRT_LAZY_MMU);
1383 static unsigned long xen_read_cr3(void)
1385 return percpu_read(xen_cr3);
1388 static void set_current_cr3(void *v)
1390 percpu_write(xen_current_cr3, (unsigned long)v);
1393 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1395 struct mmuext_op *op;
1396 struct multicall_space mcs;
1397 unsigned long mfn;
1399 if (cr3)
1400 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1401 else
1402 mfn = 0;
1404 WARN_ON(mfn == 0 && kernel);
1406 mcs = __xen_mc_entry(sizeof(*op));
1408 op = mcs.args;
1409 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1410 op->arg1.mfn = mfn;
1412 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1414 if (kernel) {
1415 percpu_write(xen_cr3, cr3);
1417 /* Update xen_current_cr3 once the batch has actually
1418 been submitted. */
1419 xen_mc_callback(set_current_cr3, (void *)cr3);
1423 static void xen_write_cr3(unsigned long cr3)
1425 BUG_ON(preemptible());
1427 xen_mc_batch(); /* disables interrupts */
1429 /* Update while interrupts are disabled, so its atomic with
1430 respect to ipis */
1431 percpu_write(xen_cr3, cr3);
1433 __xen_write_cr3(true, cr3);
1435 #ifdef CONFIG_X86_64
1437 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1438 if (user_pgd)
1439 __xen_write_cr3(false, __pa(user_pgd));
1440 else
1441 __xen_write_cr3(false, 0);
1443 #endif
1445 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1448 static int xen_pgd_alloc(struct mm_struct *mm)
1450 pgd_t *pgd = mm->pgd;
1451 int ret = 0;
1453 BUG_ON(PagePinned(virt_to_page(pgd)));
1455 #ifdef CONFIG_X86_64
1457 struct page *page = virt_to_page(pgd);
1458 pgd_t *user_pgd;
1460 BUG_ON(page->private != 0);
1462 ret = -ENOMEM;
1464 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1465 page->private = (unsigned long)user_pgd;
1467 if (user_pgd != NULL) {
1468 user_pgd[pgd_index(VSYSCALL_START)] =
1469 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1470 ret = 0;
1473 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1475 #endif
1477 return ret;
1480 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1482 #ifdef CONFIG_X86_64
1483 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1485 if (user_pgd)
1486 free_page((unsigned long)user_pgd);
1487 #endif
1490 #ifdef CONFIG_X86_32
1491 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1493 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1494 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1495 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1496 pte_val_ma(pte));
1498 return pte;
1500 #else /* CONFIG_X86_64 */
1501 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1503 unsigned long pfn = pte_pfn(pte);
1506 * If the new pfn is within the range of the newly allocated
1507 * kernel pagetable, and it isn't being mapped into an
1508 * early_ioremap fixmap slot as a freshly allocated page, make sure
1509 * it is RO.
1511 if (((!is_early_ioremap_ptep(ptep) &&
1512 pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1513 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1514 pte = pte_wrprotect(pte);
1516 return pte;
1518 #endif /* CONFIG_X86_64 */
1520 /* Init-time set_pte while constructing initial pagetables, which
1521 doesn't allow RO pagetable pages to be remapped RW */
1522 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1524 pte = mask_rw_pte(ptep, pte);
1526 xen_set_pte(ptep, pte);
1529 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1531 struct mmuext_op op;
1532 op.cmd = cmd;
1533 op.arg1.mfn = pfn_to_mfn(pfn);
1534 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1535 BUG();
1538 /* Early in boot, while setting up the initial pagetable, assume
1539 everything is pinned. */
1540 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1542 #ifdef CONFIG_FLATMEM
1543 BUG_ON(mem_map); /* should only be used early */
1544 #endif
1545 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1546 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1549 /* Used for pmd and pud */
1550 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1552 #ifdef CONFIG_FLATMEM
1553 BUG_ON(mem_map); /* should only be used early */
1554 #endif
1555 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1558 /* Early release_pte assumes that all pts are pinned, since there's
1559 only init_mm and anything attached to that is pinned. */
1560 static void __init xen_release_pte_init(unsigned long pfn)
1562 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1563 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1566 static void __init xen_release_pmd_init(unsigned long pfn)
1568 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1571 /* This needs to make sure the new pte page is pinned iff its being
1572 attached to a pinned pagetable. */
1573 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1575 struct page *page = pfn_to_page(pfn);
1577 if (PagePinned(virt_to_page(mm->pgd))) {
1578 SetPagePinned(page);
1580 if (!PageHighMem(page)) {
1581 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1582 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1583 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1584 } else {
1585 /* make sure there are no stray mappings of
1586 this page */
1587 kmap_flush_unused();
1592 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1594 xen_alloc_ptpage(mm, pfn, PT_PTE);
1597 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1599 xen_alloc_ptpage(mm, pfn, PT_PMD);
1602 /* This should never happen until we're OK to use struct page */
1603 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1605 struct page *page = pfn_to_page(pfn);
1607 if (PagePinned(page)) {
1608 if (!PageHighMem(page)) {
1609 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1610 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1611 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1613 ClearPagePinned(page);
1617 static void xen_release_pte(unsigned long pfn)
1619 xen_release_ptpage(pfn, PT_PTE);
1622 static void xen_release_pmd(unsigned long pfn)
1624 xen_release_ptpage(pfn, PT_PMD);
1627 #if PAGETABLE_LEVELS == 4
1628 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1630 xen_alloc_ptpage(mm, pfn, PT_PUD);
1633 static void xen_release_pud(unsigned long pfn)
1635 xen_release_ptpage(pfn, PT_PUD);
1637 #endif
1639 void __init xen_reserve_top(void)
1641 #ifdef CONFIG_X86_32
1642 unsigned long top = HYPERVISOR_VIRT_START;
1643 struct xen_platform_parameters pp;
1645 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1646 top = pp.virt_start;
1648 reserve_top_address(-top);
1649 #endif /* CONFIG_X86_32 */
1653 * Like __va(), but returns address in the kernel mapping (which is
1654 * all we have until the physical memory mapping has been set up.
1656 static void *__ka(phys_addr_t paddr)
1658 #ifdef CONFIG_X86_64
1659 return (void *)(paddr + __START_KERNEL_map);
1660 #else
1661 return __va(paddr);
1662 #endif
1665 /* Convert a machine address to physical address */
1666 static unsigned long m2p(phys_addr_t maddr)
1668 phys_addr_t paddr;
1670 maddr &= PTE_PFN_MASK;
1671 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1673 return paddr;
1676 /* Convert a machine address to kernel virtual */
1677 static void *m2v(phys_addr_t maddr)
1679 return __ka(m2p(maddr));
1682 /* Set the page permissions on an identity-mapped pages */
1683 static void set_page_prot(void *addr, pgprot_t prot)
1685 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1686 pte_t pte = pfn_pte(pfn, prot);
1688 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1689 BUG();
1692 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1694 unsigned pmdidx, pteidx;
1695 unsigned ident_pte;
1696 unsigned long pfn;
1698 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1699 PAGE_SIZE);
1701 ident_pte = 0;
1702 pfn = 0;
1703 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1704 pte_t *pte_page;
1706 /* Reuse or allocate a page of ptes */
1707 if (pmd_present(pmd[pmdidx]))
1708 pte_page = m2v(pmd[pmdidx].pmd);
1709 else {
1710 /* Check for free pte pages */
1711 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1712 break;
1714 pte_page = &level1_ident_pgt[ident_pte];
1715 ident_pte += PTRS_PER_PTE;
1717 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1720 /* Install mappings */
1721 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1722 pte_t pte;
1724 if (!pte_none(pte_page[pteidx]))
1725 continue;
1727 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1728 pte_page[pteidx] = pte;
1732 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1733 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1735 set_page_prot(pmd, PAGE_KERNEL_RO);
1738 void __init xen_setup_machphys_mapping(void)
1740 struct xen_machphys_mapping mapping;
1741 unsigned long machine_to_phys_nr_ents;
1743 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1744 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1745 machine_to_phys_nr_ents = mapping.max_mfn + 1;
1746 } else {
1747 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1749 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1752 #ifdef CONFIG_X86_64
1753 static void convert_pfn_mfn(void *v)
1755 pte_t *pte = v;
1756 int i;
1758 /* All levels are converted the same way, so just treat them
1759 as ptes. */
1760 for (i = 0; i < PTRS_PER_PTE; i++)
1761 pte[i] = xen_make_pte(pte[i].pte);
1765 * Set up the initial kernel pagetable.
1767 * We can construct this by grafting the Xen provided pagetable into
1768 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1769 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1770 * means that only the kernel has a physical mapping to start with -
1771 * but that's enough to get __va working. We need to fill in the rest
1772 * of the physical mapping once some sort of allocator has been set
1773 * up.
1775 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1776 unsigned long max_pfn)
1778 pud_t *l3;
1779 pmd_t *l2;
1781 /* max_pfn_mapped is the last pfn mapped in the initial memory
1782 * mappings. Considering that on Xen after the kernel mappings we
1783 * have the mappings of some pages that don't exist in pfn space, we
1784 * set max_pfn_mapped to the last real pfn mapped. */
1785 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1787 /* Zap identity mapping */
1788 init_level4_pgt[0] = __pgd(0);
1790 /* Pre-constructed entries are in pfn, so convert to mfn */
1791 convert_pfn_mfn(init_level4_pgt);
1792 convert_pfn_mfn(level3_ident_pgt);
1793 convert_pfn_mfn(level3_kernel_pgt);
1795 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1796 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1798 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1799 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1801 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1802 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1803 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1805 /* Set up identity map */
1806 xen_map_identity_early(level2_ident_pgt, max_pfn);
1808 /* Make pagetable pieces RO */
1809 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1810 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1811 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1812 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1813 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1814 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1816 /* Pin down new L4 */
1817 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1818 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1820 /* Unpin Xen-provided one */
1821 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1823 /* Switch over */
1824 pgd = init_level4_pgt;
1827 * At this stage there can be no user pgd, and no page
1828 * structure to attach it to, so make sure we just set kernel
1829 * pgd.
1831 xen_mc_batch();
1832 __xen_write_cr3(true, __pa(pgd));
1833 xen_mc_issue(PARAVIRT_LAZY_CPU);
1835 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1836 __pa(xen_start_info->pt_base +
1837 xen_start_info->nr_pt_frames * PAGE_SIZE),
1838 "XEN PAGETABLES");
1840 return pgd;
1842 #else /* !CONFIG_X86_64 */
1843 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1844 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1846 static void __init xen_write_cr3_init(unsigned long cr3)
1848 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1850 BUG_ON(read_cr3() != __pa(initial_page_table));
1851 BUG_ON(cr3 != __pa(swapper_pg_dir));
1854 * We are switching to swapper_pg_dir for the first time (from
1855 * initial_page_table) and therefore need to mark that page
1856 * read-only and then pin it.
1858 * Xen disallows sharing of kernel PMDs for PAE
1859 * guests. Therefore we must copy the kernel PMD from
1860 * initial_page_table into a new kernel PMD to be used in
1861 * swapper_pg_dir.
1863 swapper_kernel_pmd =
1864 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1865 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1866 sizeof(pmd_t) * PTRS_PER_PMD);
1867 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1868 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1869 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1871 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1872 xen_write_cr3(cr3);
1873 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1875 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1876 PFN_DOWN(__pa(initial_page_table)));
1877 set_page_prot(initial_page_table, PAGE_KERNEL);
1878 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1880 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1883 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1884 unsigned long max_pfn)
1886 pmd_t *kernel_pmd;
1888 initial_kernel_pmd =
1889 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1891 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1893 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1894 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1896 xen_map_identity_early(initial_kernel_pmd, max_pfn);
1898 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1899 initial_page_table[KERNEL_PGD_BOUNDARY] =
1900 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1902 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1903 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1904 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1906 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1908 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1909 PFN_DOWN(__pa(initial_page_table)));
1910 xen_write_cr3(__pa(initial_page_table));
1912 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1913 __pa(xen_start_info->pt_base +
1914 xen_start_info->nr_pt_frames * PAGE_SIZE),
1915 "XEN PAGETABLES");
1917 return initial_page_table;
1919 #endif /* CONFIG_X86_64 */
1921 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1923 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1925 pte_t pte;
1927 phys >>= PAGE_SHIFT;
1929 switch (idx) {
1930 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1931 #ifdef CONFIG_X86_F00F_BUG
1932 case FIX_F00F_IDT:
1933 #endif
1934 #ifdef CONFIG_X86_32
1935 case FIX_WP_TEST:
1936 case FIX_VDSO:
1937 # ifdef CONFIG_HIGHMEM
1938 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1939 # endif
1940 #else
1941 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1942 #endif
1943 case FIX_TEXT_POKE0:
1944 case FIX_TEXT_POKE1:
1945 /* All local page mappings */
1946 pte = pfn_pte(phys, prot);
1947 break;
1949 #ifdef CONFIG_X86_LOCAL_APIC
1950 case FIX_APIC_BASE: /* maps dummy local APIC */
1951 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1952 break;
1953 #endif
1955 #ifdef CONFIG_X86_IO_APIC
1956 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1958 * We just don't map the IO APIC - all access is via
1959 * hypercalls. Keep the address in the pte for reference.
1961 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1962 break;
1963 #endif
1965 case FIX_PARAVIRT_BOOTMAP:
1966 /* This is an MFN, but it isn't an IO mapping from the
1967 IO domain */
1968 pte = mfn_pte(phys, prot);
1969 break;
1971 default:
1972 /* By default, set_fixmap is used for hardware mappings */
1973 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1974 break;
1977 __native_set_fixmap(idx, pte);
1979 #ifdef CONFIG_X86_64
1980 /* Replicate changes to map the vsyscall page into the user
1981 pagetable vsyscall mapping. */
1982 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1983 unsigned long vaddr = __fix_to_virt(idx);
1984 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1986 #endif
1989 void __init xen_ident_map_ISA(void)
1991 unsigned long pa;
1994 * If we're dom0, then linear map the ISA machine addresses into
1995 * the kernel's address space.
1997 if (!xen_initial_domain())
1998 return;
2000 xen_raw_printk("Xen: setup ISA identity maps\n");
2002 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
2003 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
2005 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
2006 BUG();
2009 xen_flush_tlb();
2012 static void __init xen_post_allocator_init(void)
2014 #ifdef CONFIG_XEN_DEBUG
2015 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
2016 #endif
2017 pv_mmu_ops.set_pte = xen_set_pte;
2018 pv_mmu_ops.set_pmd = xen_set_pmd;
2019 pv_mmu_ops.set_pud = xen_set_pud;
2020 #if PAGETABLE_LEVELS == 4
2021 pv_mmu_ops.set_pgd = xen_set_pgd;
2022 #endif
2024 /* This will work as long as patching hasn't happened yet
2025 (which it hasn't) */
2026 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2027 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2028 pv_mmu_ops.release_pte = xen_release_pte;
2029 pv_mmu_ops.release_pmd = xen_release_pmd;
2030 #if PAGETABLE_LEVELS == 4
2031 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2032 pv_mmu_ops.release_pud = xen_release_pud;
2033 #endif
2035 #ifdef CONFIG_X86_64
2036 SetPagePinned(virt_to_page(level3_user_vsyscall));
2037 #endif
2038 xen_mark_init_mm_pinned();
2041 static void xen_leave_lazy_mmu(void)
2043 preempt_disable();
2044 xen_mc_flush();
2045 paravirt_leave_lazy_mmu();
2046 preempt_enable();
2049 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2050 .read_cr2 = xen_read_cr2,
2051 .write_cr2 = xen_write_cr2,
2053 .read_cr3 = xen_read_cr3,
2054 #ifdef CONFIG_X86_32
2055 .write_cr3 = xen_write_cr3_init,
2056 #else
2057 .write_cr3 = xen_write_cr3,
2058 #endif
2060 .flush_tlb_user = xen_flush_tlb,
2061 .flush_tlb_kernel = xen_flush_tlb,
2062 .flush_tlb_single = xen_flush_tlb_single,
2063 .flush_tlb_others = xen_flush_tlb_others,
2065 .pte_update = paravirt_nop,
2066 .pte_update_defer = paravirt_nop,
2068 .pgd_alloc = xen_pgd_alloc,
2069 .pgd_free = xen_pgd_free,
2071 .alloc_pte = xen_alloc_pte_init,
2072 .release_pte = xen_release_pte_init,
2073 .alloc_pmd = xen_alloc_pmd_init,
2074 .release_pmd = xen_release_pmd_init,
2076 .set_pte = xen_set_pte_init,
2077 .set_pte_at = xen_set_pte_at,
2078 .set_pmd = xen_set_pmd_hyper,
2080 .ptep_modify_prot_start = __ptep_modify_prot_start,
2081 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2083 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2084 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2086 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2087 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2089 #ifdef CONFIG_X86_PAE
2090 .set_pte_atomic = xen_set_pte_atomic,
2091 .pte_clear = xen_pte_clear,
2092 .pmd_clear = xen_pmd_clear,
2093 #endif /* CONFIG_X86_PAE */
2094 .set_pud = xen_set_pud_hyper,
2096 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2097 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2099 #if PAGETABLE_LEVELS == 4
2100 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2101 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2102 .set_pgd = xen_set_pgd_hyper,
2104 .alloc_pud = xen_alloc_pmd_init,
2105 .release_pud = xen_release_pmd_init,
2106 #endif /* PAGETABLE_LEVELS == 4 */
2108 .activate_mm = xen_activate_mm,
2109 .dup_mmap = xen_dup_mmap,
2110 .exit_mmap = xen_exit_mmap,
2112 .lazy_mode = {
2113 .enter = paravirt_enter_lazy_mmu,
2114 .leave = xen_leave_lazy_mmu,
2117 .set_fixmap = xen_set_fixmap,
2120 void __init xen_init_mmu_ops(void)
2122 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2123 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2124 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2125 pv_mmu_ops = xen_mmu_ops;
2127 memset(dummy_mapping, 0xff, PAGE_SIZE);
2130 /* Protected by xen_reservation_lock. */
2131 #define MAX_CONTIG_ORDER 9 /* 2MB */
2132 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2134 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2135 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2136 unsigned long *in_frames,
2137 unsigned long *out_frames)
2139 int i;
2140 struct multicall_space mcs;
2142 xen_mc_batch();
2143 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2144 mcs = __xen_mc_entry(0);
2146 if (in_frames)
2147 in_frames[i] = virt_to_mfn(vaddr);
2149 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2150 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2152 if (out_frames)
2153 out_frames[i] = virt_to_pfn(vaddr);
2155 xen_mc_issue(0);
2159 * Update the pfn-to-mfn mappings for a virtual address range, either to
2160 * point to an array of mfns, or contiguously from a single starting
2161 * mfn.
2163 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2164 unsigned long *mfns,
2165 unsigned long first_mfn)
2167 unsigned i, limit;
2168 unsigned long mfn;
2170 xen_mc_batch();
2172 limit = 1u << order;
2173 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2174 struct multicall_space mcs;
2175 unsigned flags;
2177 mcs = __xen_mc_entry(0);
2178 if (mfns)
2179 mfn = mfns[i];
2180 else
2181 mfn = first_mfn + i;
2183 if (i < (limit - 1))
2184 flags = 0;
2185 else {
2186 if (order == 0)
2187 flags = UVMF_INVLPG | UVMF_ALL;
2188 else
2189 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2192 MULTI_update_va_mapping(mcs.mc, vaddr,
2193 mfn_pte(mfn, PAGE_KERNEL), flags);
2195 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2198 xen_mc_issue(0);
2202 * Perform the hypercall to exchange a region of our pfns to point to
2203 * memory with the required contiguous alignment. Takes the pfns as
2204 * input, and populates mfns as output.
2206 * Returns a success code indicating whether the hypervisor was able to
2207 * satisfy the request or not.
2209 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2210 unsigned long *pfns_in,
2211 unsigned long extents_out,
2212 unsigned int order_out,
2213 unsigned long *mfns_out,
2214 unsigned int address_bits)
2216 long rc;
2217 int success;
2219 struct xen_memory_exchange exchange = {
2220 .in = {
2221 .nr_extents = extents_in,
2222 .extent_order = order_in,
2223 .extent_start = pfns_in,
2224 .domid = DOMID_SELF
2226 .out = {
2227 .nr_extents = extents_out,
2228 .extent_order = order_out,
2229 .extent_start = mfns_out,
2230 .address_bits = address_bits,
2231 .domid = DOMID_SELF
2235 BUG_ON(extents_in << order_in != extents_out << order_out);
2237 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2238 success = (exchange.nr_exchanged == extents_in);
2240 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2241 BUG_ON(success && (rc != 0));
2243 return success;
2246 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2247 unsigned int address_bits)
2249 unsigned long *in_frames = discontig_frames, out_frame;
2250 unsigned long flags;
2251 int success;
2254 * Currently an auto-translated guest will not perform I/O, nor will
2255 * it require PAE page directories below 4GB. Therefore any calls to
2256 * this function are redundant and can be ignored.
2259 if (xen_feature(XENFEAT_auto_translated_physmap))
2260 return 0;
2262 if (unlikely(order > MAX_CONTIG_ORDER))
2263 return -ENOMEM;
2265 memset((void *) vstart, 0, PAGE_SIZE << order);
2267 spin_lock_irqsave(&xen_reservation_lock, flags);
2269 /* 1. Zap current PTEs, remembering MFNs. */
2270 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2272 /* 2. Get a new contiguous memory extent. */
2273 out_frame = virt_to_pfn(vstart);
2274 success = xen_exchange_memory(1UL << order, 0, in_frames,
2275 1, order, &out_frame,
2276 address_bits);
2278 /* 3. Map the new extent in place of old pages. */
2279 if (success)
2280 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2281 else
2282 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2284 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2286 return success ? 0 : -ENOMEM;
2288 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2290 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2292 unsigned long *out_frames = discontig_frames, in_frame;
2293 unsigned long flags;
2294 int success;
2296 if (xen_feature(XENFEAT_auto_translated_physmap))
2297 return;
2299 if (unlikely(order > MAX_CONTIG_ORDER))
2300 return;
2302 memset((void *) vstart, 0, PAGE_SIZE << order);
2304 spin_lock_irqsave(&xen_reservation_lock, flags);
2306 /* 1. Find start MFN of contiguous extent. */
2307 in_frame = virt_to_mfn(vstart);
2309 /* 2. Zap current PTEs. */
2310 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2312 /* 3. Do the exchange for non-contiguous MFNs. */
2313 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2314 0, out_frames, 0);
2316 /* 4. Map new pages in place of old pages. */
2317 if (success)
2318 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2319 else
2320 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2322 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2324 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2326 #ifdef CONFIG_XEN_PVHVM
2327 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2329 struct xen_hvm_pagetable_dying a;
2330 int rc;
2332 a.domid = DOMID_SELF;
2333 a.gpa = __pa(mm->pgd);
2334 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2335 WARN_ON_ONCE(rc < 0);
2338 static int is_pagetable_dying_supported(void)
2340 struct xen_hvm_pagetable_dying a;
2341 int rc = 0;
2343 a.domid = DOMID_SELF;
2344 a.gpa = 0x00;
2345 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2346 if (rc < 0) {
2347 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2348 return 0;
2350 return 1;
2353 void __init xen_hvm_init_mmu_ops(void)
2355 if (is_pagetable_dying_supported())
2356 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2358 #endif
2360 #define REMAP_BATCH_SIZE 16
2362 struct remap_data {
2363 unsigned long mfn;
2364 pgprot_t prot;
2365 struct mmu_update *mmu_update;
2368 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2369 unsigned long addr, void *data)
2371 struct remap_data *rmd = data;
2372 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2374 rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2375 rmd->mmu_update->val = pte_val_ma(pte);
2376 rmd->mmu_update++;
2378 return 0;
2381 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2382 unsigned long addr,
2383 unsigned long mfn, int nr,
2384 pgprot_t prot, unsigned domid)
2386 struct remap_data rmd;
2387 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2388 int batch;
2389 unsigned long range;
2390 int err = 0;
2392 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2394 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2395 (VM_PFNMAP | VM_RESERVED | VM_IO)));
2397 rmd.mfn = mfn;
2398 rmd.prot = prot;
2400 while (nr) {
2401 batch = min(REMAP_BATCH_SIZE, nr);
2402 range = (unsigned long)batch << PAGE_SHIFT;
2404 rmd.mmu_update = mmu_update;
2405 err = apply_to_page_range(vma->vm_mm, addr, range,
2406 remap_area_mfn_pte_fn, &rmd);
2407 if (err)
2408 goto out;
2410 err = -EFAULT;
2411 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2412 goto out;
2414 nr -= batch;
2415 addr += range;
2418 err = 0;
2419 out:
2421 flush_tlb_all();
2423 return err;
2425 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2427 #ifdef CONFIG_XEN_DEBUG_FS
2429 static int p2m_dump_open(struct inode *inode, struct file *filp)
2431 return single_open(filp, p2m_dump_show, NULL);
2434 static const struct file_operations p2m_dump_fops = {
2435 .open = p2m_dump_open,
2436 .read = seq_read,
2437 .llseek = seq_lseek,
2438 .release = single_release,
2441 static struct dentry *d_mmu_debug;
2443 static int __init xen_mmu_debugfs(void)
2445 struct dentry *d_xen = xen_init_debugfs();
2447 if (d_xen == NULL)
2448 return -ENOMEM;
2450 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2452 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2454 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2455 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2456 &mmu_stats.pgd_update_pinned);
2457 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2458 &mmu_stats.pgd_update_pinned);
2460 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2461 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2462 &mmu_stats.pud_update_pinned);
2463 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2464 &mmu_stats.pud_update_pinned);
2466 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2467 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2468 &mmu_stats.pmd_update_pinned);
2469 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2470 &mmu_stats.pmd_update_pinned);
2472 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2473 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2474 // &mmu_stats.pte_update_pinned);
2475 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2476 &mmu_stats.pte_update_pinned);
2478 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2479 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2480 &mmu_stats.mmu_update_extended);
2481 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2482 mmu_stats.mmu_update_histo, 20);
2484 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2485 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2486 &mmu_stats.set_pte_at_batched);
2487 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2488 &mmu_stats.set_pte_at_current);
2489 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2490 &mmu_stats.set_pte_at_kernel);
2492 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2493 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2494 &mmu_stats.prot_commit_batched);
2496 debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops);
2497 return 0;
2499 fs_initcall(xen_mmu_debugfs);
2501 #endif /* CONFIG_XEN_DEBUG_FS */