2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
27 #include <trace/events/block.h>
29 #include <linux/blk-mq.h>
32 #include "blk-mq-tag.h"
35 #include "blk-mq-sched.h"
37 static DEFINE_MUTEX(all_q_mutex
);
38 static LIST_HEAD(all_q_list
);
41 * Check if any of the ctx's have pending work in this hardware queue
43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
45 return sbitmap_any_bit_set(&hctx
->ctx_map
) ||
46 !list_empty_careful(&hctx
->dispatch
) ||
47 blk_mq_sched_has_work(hctx
);
51 * Mark this ctx as having pending work in this hardware queue
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
54 struct blk_mq_ctx
*ctx
)
56 if (!sbitmap_test_bit(&hctx
->ctx_map
, ctx
->index_hw
))
57 sbitmap_set_bit(&hctx
->ctx_map
, ctx
->index_hw
);
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
61 struct blk_mq_ctx
*ctx
)
63 sbitmap_clear_bit(&hctx
->ctx_map
, ctx
->index_hw
);
66 void blk_mq_freeze_queue_start(struct request_queue
*q
)
70 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
71 if (freeze_depth
== 1) {
72 percpu_ref_kill(&q
->q_usage_counter
);
73 blk_mq_run_hw_queues(q
, false);
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
78 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
80 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
87 void blk_freeze_queue(struct request_queue
*q
)
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
96 blk_mq_freeze_queue_start(q
);
97 blk_mq_freeze_queue_wait(q
);
100 void blk_mq_freeze_queue(struct request_queue
*q
)
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
110 void blk_mq_unfreeze_queue(struct request_queue
*q
)
114 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
115 WARN_ON_ONCE(freeze_depth
< 0);
117 percpu_ref_reinit(&q
->q_usage_counter
);
118 wake_up_all(&q
->mq_freeze_wq
);
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
131 void blk_mq_quiesce_queue(struct request_queue
*q
)
133 struct blk_mq_hw_ctx
*hctx
;
137 blk_mq_stop_hw_queues(q
);
139 queue_for_each_hw_ctx(q
, hctx
, i
) {
140 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
141 synchronize_srcu(&hctx
->queue_rq_srcu
);
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue
);
150 void blk_mq_wake_waiters(struct request_queue
*q
)
152 struct blk_mq_hw_ctx
*hctx
;
155 queue_for_each_hw_ctx(q
, hctx
, i
)
156 if (blk_mq_hw_queue_mapped(hctx
))
157 blk_mq_tag_wakeup_all(hctx
->tags
, true);
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
164 wake_up_all(&q
->mq_freeze_wq
);
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
169 return blk_mq_has_free_tags(hctx
->tags
);
171 EXPORT_SYMBOL(blk_mq_can_queue
);
173 void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
174 struct request
*rq
, unsigned int op
)
176 INIT_LIST_HEAD(&rq
->queuelist
);
177 /* csd/requeue_work/fifo_time is initialized before use */
181 if (blk_queue_io_stat(q
))
182 rq
->rq_flags
|= RQF_IO_STAT
;
183 /* do not touch atomic flags, it needs atomic ops against the timer */
185 INIT_HLIST_NODE(&rq
->hash
);
186 RB_CLEAR_NODE(&rq
->rb_node
);
189 rq
->start_time
= jiffies
;
190 #ifdef CONFIG_BLK_CGROUP
192 set_start_time_ns(rq
);
193 rq
->io_start_time_ns
= 0;
195 rq
->nr_phys_segments
= 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq
->nr_integrity_segments
= 0;
200 /* tag was already set */
204 INIT_LIST_HEAD(&rq
->timeout_list
);
208 rq
->end_io_data
= NULL
;
211 ctx
->rq_dispatched
[op_is_sync(op
)]++;
213 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init
);
215 struct request
*__blk_mq_alloc_request(struct blk_mq_alloc_data
*data
,
221 tag
= blk_mq_get_tag(data
);
222 if (tag
!= BLK_MQ_TAG_FAIL
) {
223 struct blk_mq_tags
*tags
= blk_mq_tags_from_data(data
);
225 rq
= tags
->static_rqs
[tag
];
227 if (data
->flags
& BLK_MQ_REQ_INTERNAL
) {
229 rq
->internal_tag
= tag
;
231 if (blk_mq_tag_busy(data
->hctx
)) {
232 rq
->rq_flags
= RQF_MQ_INFLIGHT
;
233 atomic_inc(&data
->hctx
->nr_active
);
236 rq
->internal_tag
= -1;
239 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, op
);
245 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request
);
247 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
,
250 struct blk_mq_alloc_data alloc_data
= { .flags
= flags
};
254 ret
= blk_queue_enter(q
, flags
& BLK_MQ_REQ_NOWAIT
);
258 rq
= blk_mq_sched_get_request(q
, NULL
, rw
, &alloc_data
);
260 blk_mq_put_ctx(alloc_data
.ctx
);
264 return ERR_PTR(-EWOULDBLOCK
);
267 rq
->__sector
= (sector_t
) -1;
268 rq
->bio
= rq
->biotail
= NULL
;
271 EXPORT_SYMBOL(blk_mq_alloc_request
);
273 struct request
*blk_mq_alloc_request_hctx(struct request_queue
*q
, int rw
,
274 unsigned int flags
, unsigned int hctx_idx
)
276 struct blk_mq_hw_ctx
*hctx
;
277 struct blk_mq_ctx
*ctx
;
279 struct blk_mq_alloc_data alloc_data
;
283 * If the tag allocator sleeps we could get an allocation for a
284 * different hardware context. No need to complicate the low level
285 * allocator for this for the rare use case of a command tied to
288 if (WARN_ON_ONCE(!(flags
& BLK_MQ_REQ_NOWAIT
)))
289 return ERR_PTR(-EINVAL
);
291 if (hctx_idx
>= q
->nr_hw_queues
)
292 return ERR_PTR(-EIO
);
294 ret
= blk_queue_enter(q
, true);
299 * Check if the hardware context is actually mapped to anything.
300 * If not tell the caller that it should skip this queue.
302 hctx
= q
->queue_hw_ctx
[hctx_idx
];
303 if (!blk_mq_hw_queue_mapped(hctx
)) {
307 ctx
= __blk_mq_get_ctx(q
, cpumask_first(hctx
->cpumask
));
309 blk_mq_set_alloc_data(&alloc_data
, q
, flags
, ctx
, hctx
);
310 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
322 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx
);
324 void __blk_mq_finish_request(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
327 const int sched_tag
= rq
->internal_tag
;
328 struct request_queue
*q
= rq
->q
;
330 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
)
331 atomic_dec(&hctx
->nr_active
);
333 wbt_done(q
->rq_wb
, &rq
->issue_stat
);
336 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
337 clear_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
339 blk_mq_put_tag(hctx
, hctx
->tags
, ctx
, rq
->tag
);
341 blk_mq_sched_completed_request(hctx
, rq
);
342 blk_mq_sched_restart_queues(hctx
);
346 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx
*hctx
,
349 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
351 ctx
->rq_completed
[rq_is_sync(rq
)]++;
352 __blk_mq_finish_request(hctx
, ctx
, rq
);
355 void blk_mq_finish_request(struct request
*rq
)
357 blk_mq_finish_hctx_request(blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
), rq
);
360 void blk_mq_free_request(struct request
*rq
)
362 blk_mq_sched_put_request(rq
);
364 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
366 inline void __blk_mq_end_request(struct request
*rq
, int error
)
368 blk_account_io_done(rq
);
371 wbt_done(rq
->q
->rq_wb
, &rq
->issue_stat
);
372 rq
->end_io(rq
, error
);
374 if (unlikely(blk_bidi_rq(rq
)))
375 blk_mq_free_request(rq
->next_rq
);
376 blk_mq_free_request(rq
);
379 EXPORT_SYMBOL(__blk_mq_end_request
);
381 void blk_mq_end_request(struct request
*rq
, int error
)
383 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
385 __blk_mq_end_request(rq
, error
);
387 EXPORT_SYMBOL(blk_mq_end_request
);
389 static void __blk_mq_complete_request_remote(void *data
)
391 struct request
*rq
= data
;
393 rq
->q
->softirq_done_fn(rq
);
396 static void blk_mq_ipi_complete_request(struct request
*rq
)
398 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
402 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
403 rq
->q
->softirq_done_fn(rq
);
408 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
409 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
411 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
412 rq
->csd
.func
= __blk_mq_complete_request_remote
;
415 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
417 rq
->q
->softirq_done_fn(rq
);
422 static void blk_mq_stat_add(struct request
*rq
)
424 if (rq
->rq_flags
& RQF_STATS
) {
426 * We could rq->mq_ctx here, but there's less of a risk
427 * of races if we have the completion event add the stats
428 * to the local software queue.
430 struct blk_mq_ctx
*ctx
;
432 ctx
= __blk_mq_get_ctx(rq
->q
, raw_smp_processor_id());
433 blk_stat_add(&ctx
->stat
[rq_data_dir(rq
)], rq
);
437 static void __blk_mq_complete_request(struct request
*rq
)
439 struct request_queue
*q
= rq
->q
;
443 if (!q
->softirq_done_fn
)
444 blk_mq_end_request(rq
, rq
->errors
);
446 blk_mq_ipi_complete_request(rq
);
450 * blk_mq_complete_request - end I/O on a request
451 * @rq: the request being processed
454 * Ends all I/O on a request. It does not handle partial completions.
455 * The actual completion happens out-of-order, through a IPI handler.
457 void blk_mq_complete_request(struct request
*rq
, int error
)
459 struct request_queue
*q
= rq
->q
;
461 if (unlikely(blk_should_fake_timeout(q
)))
463 if (!blk_mark_rq_complete(rq
)) {
465 __blk_mq_complete_request(rq
);
468 EXPORT_SYMBOL(blk_mq_complete_request
);
470 int blk_mq_request_started(struct request
*rq
)
472 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
474 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
476 void blk_mq_start_request(struct request
*rq
)
478 struct request_queue
*q
= rq
->q
;
480 blk_mq_sched_started_request(rq
);
482 trace_block_rq_issue(q
, rq
);
484 if (test_bit(QUEUE_FLAG_STATS
, &q
->queue_flags
)) {
485 blk_stat_set_issue_time(&rq
->issue_stat
);
486 rq
->rq_flags
|= RQF_STATS
;
487 wbt_issue(q
->rq_wb
, &rq
->issue_stat
);
493 * Ensure that ->deadline is visible before set the started
494 * flag and clear the completed flag.
496 smp_mb__before_atomic();
499 * Mark us as started and clear complete. Complete might have been
500 * set if requeue raced with timeout, which then marked it as
501 * complete. So be sure to clear complete again when we start
502 * the request, otherwise we'll ignore the completion event.
504 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
505 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
506 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
507 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
509 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
511 * Make sure space for the drain appears. We know we can do
512 * this because max_hw_segments has been adjusted to be one
513 * fewer than the device can handle.
515 rq
->nr_phys_segments
++;
518 EXPORT_SYMBOL(blk_mq_start_request
);
520 static void __blk_mq_requeue_request(struct request
*rq
)
522 struct request_queue
*q
= rq
->q
;
524 trace_block_rq_requeue(q
, rq
);
525 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
526 blk_mq_sched_requeue_request(rq
);
528 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
529 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
530 rq
->nr_phys_segments
--;
534 void blk_mq_requeue_request(struct request
*rq
, bool kick_requeue_list
)
536 __blk_mq_requeue_request(rq
);
538 BUG_ON(blk_queued_rq(rq
));
539 blk_mq_add_to_requeue_list(rq
, true, kick_requeue_list
);
541 EXPORT_SYMBOL(blk_mq_requeue_request
);
543 static void blk_mq_requeue_work(struct work_struct
*work
)
545 struct request_queue
*q
=
546 container_of(work
, struct request_queue
, requeue_work
.work
);
548 struct request
*rq
, *next
;
551 spin_lock_irqsave(&q
->requeue_lock
, flags
);
552 list_splice_init(&q
->requeue_list
, &rq_list
);
553 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
555 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
556 if (!(rq
->rq_flags
& RQF_SOFTBARRIER
))
559 rq
->rq_flags
&= ~RQF_SOFTBARRIER
;
560 list_del_init(&rq
->queuelist
);
561 blk_mq_sched_insert_request(rq
, true, false, false, true);
564 while (!list_empty(&rq_list
)) {
565 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
566 list_del_init(&rq
->queuelist
);
567 blk_mq_sched_insert_request(rq
, false, false, false, true);
570 blk_mq_run_hw_queues(q
, false);
573 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
,
574 bool kick_requeue_list
)
576 struct request_queue
*q
= rq
->q
;
580 * We abuse this flag that is otherwise used by the I/O scheduler to
581 * request head insertation from the workqueue.
583 BUG_ON(rq
->rq_flags
& RQF_SOFTBARRIER
);
585 spin_lock_irqsave(&q
->requeue_lock
, flags
);
587 rq
->rq_flags
|= RQF_SOFTBARRIER
;
588 list_add(&rq
->queuelist
, &q
->requeue_list
);
590 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
592 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
594 if (kick_requeue_list
)
595 blk_mq_kick_requeue_list(q
);
597 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
599 void blk_mq_kick_requeue_list(struct request_queue
*q
)
601 kblockd_schedule_delayed_work(&q
->requeue_work
, 0);
603 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
605 void blk_mq_delay_kick_requeue_list(struct request_queue
*q
,
608 kblockd_schedule_delayed_work(&q
->requeue_work
,
609 msecs_to_jiffies(msecs
));
611 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list
);
613 void blk_mq_abort_requeue_list(struct request_queue
*q
)
618 spin_lock_irqsave(&q
->requeue_lock
, flags
);
619 list_splice_init(&q
->requeue_list
, &rq_list
);
620 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
622 while (!list_empty(&rq_list
)) {
625 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
626 list_del_init(&rq
->queuelist
);
628 blk_mq_end_request(rq
, rq
->errors
);
631 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
633 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
635 if (tag
< tags
->nr_tags
) {
636 prefetch(tags
->rqs
[tag
]);
637 return tags
->rqs
[tag
];
642 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
644 struct blk_mq_timeout_data
{
646 unsigned int next_set
;
649 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
651 const struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
652 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
655 * We know that complete is set at this point. If STARTED isn't set
656 * anymore, then the request isn't active and the "timeout" should
657 * just be ignored. This can happen due to the bitflag ordering.
658 * Timeout first checks if STARTED is set, and if it is, assumes
659 * the request is active. But if we race with completion, then
660 * we both flags will get cleared. So check here again, and ignore
661 * a timeout event with a request that isn't active.
663 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
667 ret
= ops
->timeout(req
, reserved
);
671 __blk_mq_complete_request(req
);
673 case BLK_EH_RESET_TIMER
:
675 blk_clear_rq_complete(req
);
677 case BLK_EH_NOT_HANDLED
:
680 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
685 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
686 struct request
*rq
, void *priv
, bool reserved
)
688 struct blk_mq_timeout_data
*data
= priv
;
690 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
692 * If a request wasn't started before the queue was
693 * marked dying, kill it here or it'll go unnoticed.
695 if (unlikely(blk_queue_dying(rq
->q
))) {
697 blk_mq_end_request(rq
, rq
->errors
);
702 if (time_after_eq(jiffies
, rq
->deadline
)) {
703 if (!blk_mark_rq_complete(rq
))
704 blk_mq_rq_timed_out(rq
, reserved
);
705 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
706 data
->next
= rq
->deadline
;
711 static void blk_mq_timeout_work(struct work_struct
*work
)
713 struct request_queue
*q
=
714 container_of(work
, struct request_queue
, timeout_work
);
715 struct blk_mq_timeout_data data
= {
721 /* A deadlock might occur if a request is stuck requiring a
722 * timeout at the same time a queue freeze is waiting
723 * completion, since the timeout code would not be able to
724 * acquire the queue reference here.
726 * That's why we don't use blk_queue_enter here; instead, we use
727 * percpu_ref_tryget directly, because we need to be able to
728 * obtain a reference even in the short window between the queue
729 * starting to freeze, by dropping the first reference in
730 * blk_mq_freeze_queue_start, and the moment the last request is
731 * consumed, marked by the instant q_usage_counter reaches
734 if (!percpu_ref_tryget(&q
->q_usage_counter
))
737 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
740 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
741 mod_timer(&q
->timeout
, data
.next
);
743 struct blk_mq_hw_ctx
*hctx
;
745 queue_for_each_hw_ctx(q
, hctx
, i
) {
746 /* the hctx may be unmapped, so check it here */
747 if (blk_mq_hw_queue_mapped(hctx
))
748 blk_mq_tag_idle(hctx
);
755 * Reverse check our software queue for entries that we could potentially
756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757 * too much time checking for merges.
759 static bool blk_mq_attempt_merge(struct request_queue
*q
,
760 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
765 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
771 if (!blk_rq_merge_ok(rq
, bio
))
774 switch (blk_try_merge(rq
, bio
)) {
775 case ELEVATOR_BACK_MERGE
:
776 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
777 merged
= bio_attempt_back_merge(q
, rq
, bio
);
779 case ELEVATOR_FRONT_MERGE
:
780 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
781 merged
= bio_attempt_front_merge(q
, rq
, bio
);
783 case ELEVATOR_DISCARD_MERGE
:
784 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
798 struct flush_busy_ctx_data
{
799 struct blk_mq_hw_ctx
*hctx
;
800 struct list_head
*list
;
803 static bool flush_busy_ctx(struct sbitmap
*sb
, unsigned int bitnr
, void *data
)
805 struct flush_busy_ctx_data
*flush_data
= data
;
806 struct blk_mq_hw_ctx
*hctx
= flush_data
->hctx
;
807 struct blk_mq_ctx
*ctx
= hctx
->ctxs
[bitnr
];
809 sbitmap_clear_bit(sb
, bitnr
);
810 spin_lock(&ctx
->lock
);
811 list_splice_tail_init(&ctx
->rq_list
, flush_data
->list
);
812 spin_unlock(&ctx
->lock
);
817 * Process software queues that have been marked busy, splicing them
818 * to the for-dispatch
820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
822 struct flush_busy_ctx_data data
= {
827 sbitmap_for_each_set(&hctx
->ctx_map
, flush_busy_ctx
, &data
);
829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs
);
831 static inline unsigned int queued_to_index(unsigned int queued
)
836 return min(BLK_MQ_MAX_DISPATCH_ORDER
- 1, ilog2(queued
) + 1);
839 bool blk_mq_get_driver_tag(struct request
*rq
, struct blk_mq_hw_ctx
**hctx
,
842 struct blk_mq_alloc_data data
= {
844 .hctx
= blk_mq_map_queue(rq
->q
, rq
->mq_ctx
->cpu
),
845 .flags
= wait
? 0 : BLK_MQ_REQ_NOWAIT
,
855 rq
->tag
= blk_mq_get_tag(&data
);
857 if (blk_mq_tag_busy(data
.hctx
)) {
858 rq
->rq_flags
|= RQF_MQ_INFLIGHT
;
859 atomic_inc(&data
.hctx
->nr_active
);
861 data
.hctx
->tags
->rqs
[rq
->tag
] = rq
;
868 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx
*hctx
,
871 if (rq
->tag
== -1 || rq
->internal_tag
== -1)
874 blk_mq_put_tag(hctx
, hctx
->tags
, rq
->mq_ctx
, rq
->tag
);
877 if (rq
->rq_flags
& RQF_MQ_INFLIGHT
) {
878 rq
->rq_flags
&= ~RQF_MQ_INFLIGHT
;
879 atomic_dec(&hctx
->nr_active
);
884 * If we fail getting a driver tag because all the driver tags are already
885 * assigned and on the dispatch list, BUT the first entry does not have a
886 * tag, then we could deadlock. For that case, move entries with assigned
887 * driver tags to the front, leaving the set of tagged requests in the
888 * same order, and the untagged set in the same order.
890 static bool reorder_tags_to_front(struct list_head
*list
)
892 struct request
*rq
, *tmp
, *first
= NULL
;
894 list_for_each_entry_safe_reverse(rq
, tmp
, list
, queuelist
) {
898 list_move(&rq
->queuelist
, list
);
904 return first
!= NULL
;
907 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
909 struct request_queue
*q
= hctx
->queue
;
911 LIST_HEAD(driver_list
);
912 struct list_head
*dptr
;
913 int queued
, ret
= BLK_MQ_RQ_QUEUE_OK
;
916 * Start off with dptr being NULL, so we start the first request
917 * immediately, even if we have more pending.
922 * Now process all the entries, sending them to the driver.
925 while (!list_empty(list
)) {
926 struct blk_mq_queue_data bd
;
928 rq
= list_first_entry(list
, struct request
, queuelist
);
929 if (!blk_mq_get_driver_tag(rq
, &hctx
, false)) {
930 if (!queued
&& reorder_tags_to_front(list
))
934 * We failed getting a driver tag. Mark the queue(s)
935 * as needing a restart. Retry getting a tag again,
936 * in case the needed IO completed right before we
937 * marked the queue as needing a restart.
939 blk_mq_sched_mark_restart(hctx
);
940 if (!blk_mq_get_driver_tag(rq
, &hctx
, false))
943 list_del_init(&rq
->queuelist
);
947 bd
.last
= list_empty(list
);
949 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
951 case BLK_MQ_RQ_QUEUE_OK
:
954 case BLK_MQ_RQ_QUEUE_BUSY
:
955 blk_mq_put_driver_tag(hctx
, rq
);
956 list_add(&rq
->queuelist
, list
);
957 __blk_mq_requeue_request(rq
);
960 pr_err("blk-mq: bad return on queue: %d\n", ret
);
961 case BLK_MQ_RQ_QUEUE_ERROR
:
963 blk_mq_end_request(rq
, rq
->errors
);
967 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
971 * We've done the first request. If we have more than 1
972 * left in the list, set dptr to defer issue.
974 if (!dptr
&& list
->next
!= list
->prev
)
978 hctx
->dispatched
[queued_to_index(queued
)]++;
981 * Any items that need requeuing? Stuff them into hctx->dispatch,
982 * that is where we will continue on next queue run.
984 if (!list_empty(list
)) {
985 spin_lock(&hctx
->lock
);
986 list_splice_init(list
, &hctx
->dispatch
);
987 spin_unlock(&hctx
->lock
);
990 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
991 * it's possible the queue is stopped and restarted again
992 * before this. Queue restart will dispatch requests. And since
993 * requests in rq_list aren't added into hctx->dispatch yet,
994 * the requests in rq_list might get lost.
996 * blk_mq_run_hw_queue() already checks the STOPPED bit
998 * If RESTART is set, then let completion restart the queue
999 * instead of potentially looping here.
1001 if (!blk_mq_sched_needs_restart(hctx
))
1002 blk_mq_run_hw_queue(hctx
, true);
1008 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1012 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
) &&
1013 cpu_online(hctx
->next_cpu
));
1015 if (!(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1017 blk_mq_sched_dispatch_requests(hctx
);
1020 srcu_idx
= srcu_read_lock(&hctx
->queue_rq_srcu
);
1021 blk_mq_sched_dispatch_requests(hctx
);
1022 srcu_read_unlock(&hctx
->queue_rq_srcu
, srcu_idx
);
1027 * It'd be great if the workqueue API had a way to pass
1028 * in a mask and had some smarts for more clever placement.
1029 * For now we just round-robin here, switching for every
1030 * BLK_MQ_CPU_WORK_BATCH queued items.
1032 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
1034 if (hctx
->queue
->nr_hw_queues
== 1)
1035 return WORK_CPU_UNBOUND
;
1037 if (--hctx
->next_cpu_batch
<= 0) {
1040 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
1041 if (next_cpu
>= nr_cpu_ids
)
1042 next_cpu
= cpumask_first(hctx
->cpumask
);
1044 hctx
->next_cpu
= next_cpu
;
1045 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1048 return hctx
->next_cpu
;
1051 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1053 if (unlikely(blk_mq_hctx_stopped(hctx
) ||
1054 !blk_mq_hw_queue_mapped(hctx
)))
1057 if (!async
&& !(hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1058 int cpu
= get_cpu();
1059 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
1060 __blk_mq_run_hw_queue(hctx
);
1068 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx
), &hctx
->run_work
);
1071 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
1073 struct blk_mq_hw_ctx
*hctx
;
1076 queue_for_each_hw_ctx(q
, hctx
, i
) {
1077 if (!blk_mq_hctx_has_pending(hctx
) ||
1078 blk_mq_hctx_stopped(hctx
))
1081 blk_mq_run_hw_queue(hctx
, async
);
1084 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
1087 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1088 * @q: request queue.
1090 * The caller is responsible for serializing this function against
1091 * blk_mq_{start,stop}_hw_queue().
1093 bool blk_mq_queue_stopped(struct request_queue
*q
)
1095 struct blk_mq_hw_ctx
*hctx
;
1098 queue_for_each_hw_ctx(q
, hctx
, i
)
1099 if (blk_mq_hctx_stopped(hctx
))
1104 EXPORT_SYMBOL(blk_mq_queue_stopped
);
1106 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1108 cancel_work(&hctx
->run_work
);
1109 cancel_delayed_work(&hctx
->delay_work
);
1110 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1112 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
1114 void blk_mq_stop_hw_queues(struct request_queue
*q
)
1116 struct blk_mq_hw_ctx
*hctx
;
1119 queue_for_each_hw_ctx(q
, hctx
, i
)
1120 blk_mq_stop_hw_queue(hctx
);
1122 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
1124 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
1126 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1128 blk_mq_run_hw_queue(hctx
, false);
1130 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
1132 void blk_mq_start_hw_queues(struct request_queue
*q
)
1134 struct blk_mq_hw_ctx
*hctx
;
1137 queue_for_each_hw_ctx(q
, hctx
, i
)
1138 blk_mq_start_hw_queue(hctx
);
1140 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
1142 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
1144 if (!blk_mq_hctx_stopped(hctx
))
1147 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
1148 blk_mq_run_hw_queue(hctx
, async
);
1150 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue
);
1152 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
1154 struct blk_mq_hw_ctx
*hctx
;
1157 queue_for_each_hw_ctx(q
, hctx
, i
)
1158 blk_mq_start_stopped_hw_queue(hctx
, async
);
1160 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
1162 static void blk_mq_run_work_fn(struct work_struct
*work
)
1164 struct blk_mq_hw_ctx
*hctx
;
1166 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
);
1168 __blk_mq_run_hw_queue(hctx
);
1171 static void blk_mq_delay_work_fn(struct work_struct
*work
)
1173 struct blk_mq_hw_ctx
*hctx
;
1175 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
1177 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
1178 __blk_mq_run_hw_queue(hctx
);
1181 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
1183 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
1186 blk_mq_stop_hw_queue(hctx
);
1187 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1188 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
1190 EXPORT_SYMBOL(blk_mq_delay_queue
);
1192 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
1196 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1198 trace_block_rq_insert(hctx
->queue
, rq
);
1201 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1203 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1206 void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
,
1209 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1211 __blk_mq_insert_req_list(hctx
, rq
, at_head
);
1212 blk_mq_hctx_mark_pending(hctx
, ctx
);
1215 void blk_mq_insert_requests(struct blk_mq_hw_ctx
*hctx
, struct blk_mq_ctx
*ctx
,
1216 struct list_head
*list
)
1220 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1223 spin_lock(&ctx
->lock
);
1224 while (!list_empty(list
)) {
1227 rq
= list_first_entry(list
, struct request
, queuelist
);
1228 BUG_ON(rq
->mq_ctx
!= ctx
);
1229 list_del_init(&rq
->queuelist
);
1230 __blk_mq_insert_req_list(hctx
, rq
, false);
1232 blk_mq_hctx_mark_pending(hctx
, ctx
);
1233 spin_unlock(&ctx
->lock
);
1236 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1238 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1239 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1241 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1242 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1243 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1246 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1248 struct blk_mq_ctx
*this_ctx
;
1249 struct request_queue
*this_q
;
1252 LIST_HEAD(ctx_list
);
1255 list_splice_init(&plug
->mq_list
, &list
);
1257 list_sort(NULL
, &list
, plug_ctx_cmp
);
1263 while (!list_empty(&list
)) {
1264 rq
= list_entry_rq(list
.next
);
1265 list_del_init(&rq
->queuelist
);
1267 if (rq
->mq_ctx
!= this_ctx
) {
1269 trace_block_unplug(this_q
, depth
, from_schedule
);
1270 blk_mq_sched_insert_requests(this_q
, this_ctx
,
1275 this_ctx
= rq
->mq_ctx
;
1281 list_add_tail(&rq
->queuelist
, &ctx_list
);
1285 * If 'this_ctx' is set, we know we have entries to complete
1286 * on 'ctx_list'. Do those.
1289 trace_block_unplug(this_q
, depth
, from_schedule
);
1290 blk_mq_sched_insert_requests(this_q
, this_ctx
, &ctx_list
,
1295 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1297 init_request_from_bio(rq
, bio
);
1299 blk_account_io_start(rq
, true);
1302 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1304 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1305 !blk_queue_nomerges(hctx
->queue
);
1308 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1309 struct blk_mq_ctx
*ctx
,
1310 struct request
*rq
, struct bio
*bio
)
1312 if (!hctx_allow_merges(hctx
) || !bio_mergeable(bio
)) {
1313 blk_mq_bio_to_request(rq
, bio
);
1314 spin_lock(&ctx
->lock
);
1316 __blk_mq_insert_request(hctx
, rq
, false);
1317 spin_unlock(&ctx
->lock
);
1320 struct request_queue
*q
= hctx
->queue
;
1322 spin_lock(&ctx
->lock
);
1323 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1324 blk_mq_bio_to_request(rq
, bio
);
1328 spin_unlock(&ctx
->lock
);
1329 __blk_mq_finish_request(hctx
, ctx
, rq
);
1334 static blk_qc_t
request_to_qc_t(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
1337 return blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
, false);
1339 return blk_tag_to_qc_t(rq
->internal_tag
, hctx
->queue_num
, true);
1342 static void blk_mq_try_issue_directly(struct request
*rq
, blk_qc_t
*cookie
)
1344 struct request_queue
*q
= rq
->q
;
1345 struct blk_mq_queue_data bd
= {
1350 struct blk_mq_hw_ctx
*hctx
;
1351 blk_qc_t new_cookie
;
1357 if (!blk_mq_get_driver_tag(rq
, &hctx
, false))
1360 new_cookie
= request_to_qc_t(hctx
, rq
);
1363 * For OK queue, we are done. For error, kill it. Any other
1364 * error (busy), just add it to our list as we previously
1367 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1368 if (ret
== BLK_MQ_RQ_QUEUE_OK
) {
1369 *cookie
= new_cookie
;
1373 __blk_mq_requeue_request(rq
);
1375 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1376 *cookie
= BLK_QC_T_NONE
;
1378 blk_mq_end_request(rq
, rq
->errors
);
1383 blk_mq_sched_insert_request(rq
, false, true, true, false);
1387 * Multiple hardware queue variant. This will not use per-process plugs,
1388 * but will attempt to bypass the hctx queueing if we can go straight to
1389 * hardware for SYNC IO.
1391 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1393 const int is_sync
= op_is_sync(bio
->bi_opf
);
1394 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1395 struct blk_mq_alloc_data data
= { .flags
= 0 };
1397 unsigned int request_count
= 0, srcu_idx
;
1398 struct blk_plug
*plug
;
1399 struct request
*same_queue_rq
= NULL
;
1401 unsigned int wb_acct
;
1403 blk_queue_bounce(q
, &bio
);
1405 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1407 return BLK_QC_T_NONE
;
1410 blk_queue_split(q
, &bio
, q
->bio_split
);
1412 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1413 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1414 return BLK_QC_T_NONE
;
1416 if (blk_mq_sched_bio_merge(q
, bio
))
1417 return BLK_QC_T_NONE
;
1419 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1421 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1423 rq
= blk_mq_sched_get_request(q
, bio
, bio
->bi_opf
, &data
);
1424 if (unlikely(!rq
)) {
1425 __wbt_done(q
->rq_wb
, wb_acct
);
1426 return BLK_QC_T_NONE
;
1429 wbt_track(&rq
->issue_stat
, wb_acct
);
1431 cookie
= request_to_qc_t(data
.hctx
, rq
);
1433 if (unlikely(is_flush_fua
)) {
1436 blk_mq_bio_to_request(rq
, bio
);
1437 blk_insert_flush(rq
);
1441 plug
= current
->plug
;
1443 * If the driver supports defer issued based on 'last', then
1444 * queue it up like normal since we can potentially save some
1447 if (((plug
&& !blk_queue_nomerges(q
)) || is_sync
) &&
1448 !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1449 struct request
*old_rq
= NULL
;
1451 blk_mq_bio_to_request(rq
, bio
);
1454 * We do limited plugging. If the bio can be merged, do that.
1455 * Otherwise the existing request in the plug list will be
1456 * issued. So the plug list will have one request at most
1460 * The plug list might get flushed before this. If that
1461 * happens, same_queue_rq is invalid and plug list is
1464 if (same_queue_rq
&& !list_empty(&plug
->mq_list
)) {
1465 old_rq
= same_queue_rq
;
1466 list_del_init(&old_rq
->queuelist
);
1468 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1469 } else /* is_sync */
1471 blk_mq_put_ctx(data
.ctx
);
1475 if (!(data
.hctx
->flags
& BLK_MQ_F_BLOCKING
)) {
1477 blk_mq_try_issue_directly(old_rq
, &cookie
);
1480 srcu_idx
= srcu_read_lock(&data
.hctx
->queue_rq_srcu
);
1481 blk_mq_try_issue_directly(old_rq
, &cookie
);
1482 srcu_read_unlock(&data
.hctx
->queue_rq_srcu
, srcu_idx
);
1489 blk_mq_put_ctx(data
.ctx
);
1490 blk_mq_bio_to_request(rq
, bio
);
1491 blk_mq_sched_insert_request(rq
, false, true,
1492 !is_sync
|| is_flush_fua
, true);
1495 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1497 * For a SYNC request, send it to the hardware immediately. For
1498 * an ASYNC request, just ensure that we run it later on. The
1499 * latter allows for merging opportunities and more efficient
1503 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1505 blk_mq_put_ctx(data
.ctx
);
1511 * Single hardware queue variant. This will attempt to use any per-process
1512 * plug for merging and IO deferral.
1514 static blk_qc_t
blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1516 const int is_sync
= op_is_sync(bio
->bi_opf
);
1517 const int is_flush_fua
= op_is_flush(bio
->bi_opf
);
1518 struct blk_plug
*plug
;
1519 unsigned int request_count
= 0;
1520 struct blk_mq_alloc_data data
= { .flags
= 0 };
1523 unsigned int wb_acct
;
1525 blk_queue_bounce(q
, &bio
);
1527 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1529 return BLK_QC_T_NONE
;
1532 blk_queue_split(q
, &bio
, q
->bio_split
);
1534 if (!is_flush_fua
&& !blk_queue_nomerges(q
)) {
1535 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1536 return BLK_QC_T_NONE
;
1538 request_count
= blk_plug_queued_count(q
);
1540 if (blk_mq_sched_bio_merge(q
, bio
))
1541 return BLK_QC_T_NONE
;
1543 wb_acct
= wbt_wait(q
->rq_wb
, bio
, NULL
);
1545 trace_block_getrq(q
, bio
, bio
->bi_opf
);
1547 rq
= blk_mq_sched_get_request(q
, bio
, bio
->bi_opf
, &data
);
1548 if (unlikely(!rq
)) {
1549 __wbt_done(q
->rq_wb
, wb_acct
);
1550 return BLK_QC_T_NONE
;
1553 wbt_track(&rq
->issue_stat
, wb_acct
);
1555 cookie
= request_to_qc_t(data
.hctx
, rq
);
1557 if (unlikely(is_flush_fua
)) {
1560 blk_mq_bio_to_request(rq
, bio
);
1561 blk_insert_flush(rq
);
1566 * A task plug currently exists. Since this is completely lockless,
1567 * utilize that to temporarily store requests until the task is
1568 * either done or scheduled away.
1570 plug
= current
->plug
;
1572 struct request
*last
= NULL
;
1574 blk_mq_bio_to_request(rq
, bio
);
1577 * @request_count may become stale because of schedule
1578 * out, so check the list again.
1580 if (list_empty(&plug
->mq_list
))
1583 trace_block_plug(q
);
1585 last
= list_entry_rq(plug
->mq_list
.prev
);
1587 blk_mq_put_ctx(data
.ctx
);
1589 if (request_count
>= BLK_MAX_REQUEST_COUNT
|| (last
&&
1590 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
)) {
1591 blk_flush_plug_list(plug
, false);
1592 trace_block_plug(q
);
1595 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1601 blk_mq_put_ctx(data
.ctx
);
1602 blk_mq_bio_to_request(rq
, bio
);
1603 blk_mq_sched_insert_request(rq
, false, true,
1604 !is_sync
|| is_flush_fua
, true);
1607 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1609 * For a SYNC request, send it to the hardware immediately. For
1610 * an ASYNC request, just ensure that we run it later on. The
1611 * latter allows for merging opportunities and more efficient
1615 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1618 blk_mq_put_ctx(data
.ctx
);
1623 void blk_mq_free_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1624 unsigned int hctx_idx
)
1628 if (tags
->rqs
&& set
->ops
->exit_request
) {
1631 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1632 struct request
*rq
= tags
->static_rqs
[i
];
1636 set
->ops
->exit_request(set
->driver_data
, rq
,
1638 tags
->static_rqs
[i
] = NULL
;
1642 while (!list_empty(&tags
->page_list
)) {
1643 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1644 list_del_init(&page
->lru
);
1646 * Remove kmemleak object previously allocated in
1647 * blk_mq_init_rq_map().
1649 kmemleak_free(page_address(page
));
1650 __free_pages(page
, page
->private);
1654 void blk_mq_free_rq_map(struct blk_mq_tags
*tags
)
1658 kfree(tags
->static_rqs
);
1659 tags
->static_rqs
= NULL
;
1661 blk_mq_free_tags(tags
);
1664 struct blk_mq_tags
*blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
,
1665 unsigned int hctx_idx
,
1666 unsigned int nr_tags
,
1667 unsigned int reserved_tags
)
1669 struct blk_mq_tags
*tags
;
1671 tags
= blk_mq_init_tags(nr_tags
, reserved_tags
,
1673 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1677 tags
->rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1678 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1681 blk_mq_free_tags(tags
);
1685 tags
->static_rqs
= kzalloc_node(nr_tags
* sizeof(struct request
*),
1686 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1688 if (!tags
->static_rqs
) {
1690 blk_mq_free_tags(tags
);
1697 static size_t order_to_size(unsigned int order
)
1699 return (size_t)PAGE_SIZE
<< order
;
1702 int blk_mq_alloc_rqs(struct blk_mq_tag_set
*set
, struct blk_mq_tags
*tags
,
1703 unsigned int hctx_idx
, unsigned int depth
)
1705 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1706 size_t rq_size
, left
;
1708 INIT_LIST_HEAD(&tags
->page_list
);
1711 * rq_size is the size of the request plus driver payload, rounded
1712 * to the cacheline size
1714 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1716 left
= rq_size
* depth
;
1718 for (i
= 0; i
< depth
; ) {
1719 int this_order
= max_order
;
1724 while (this_order
&& left
< order_to_size(this_order
- 1))
1728 page
= alloc_pages_node(set
->numa_node
,
1729 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1735 if (order_to_size(this_order
) < rq_size
)
1742 page
->private = this_order
;
1743 list_add_tail(&page
->lru
, &tags
->page_list
);
1745 p
= page_address(page
);
1747 * Allow kmemleak to scan these pages as they contain pointers
1748 * to additional allocations like via ops->init_request().
1750 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
1751 entries_per_page
= order_to_size(this_order
) / rq_size
;
1752 to_do
= min(entries_per_page
, depth
- i
);
1753 left
-= to_do
* rq_size
;
1754 for (j
= 0; j
< to_do
; j
++) {
1755 struct request
*rq
= p
;
1757 tags
->static_rqs
[i
] = rq
;
1758 if (set
->ops
->init_request
) {
1759 if (set
->ops
->init_request(set
->driver_data
,
1762 tags
->static_rqs
[i
] = NULL
;
1774 blk_mq_free_rqs(set
, tags
, hctx_idx
);
1779 * 'cpu' is going away. splice any existing rq_list entries from this
1780 * software queue to the hw queue dispatch list, and ensure that it
1783 static int blk_mq_hctx_notify_dead(unsigned int cpu
, struct hlist_node
*node
)
1785 struct blk_mq_hw_ctx
*hctx
;
1786 struct blk_mq_ctx
*ctx
;
1789 hctx
= hlist_entry_safe(node
, struct blk_mq_hw_ctx
, cpuhp_dead
);
1790 ctx
= __blk_mq_get_ctx(hctx
->queue
, cpu
);
1792 spin_lock(&ctx
->lock
);
1793 if (!list_empty(&ctx
->rq_list
)) {
1794 list_splice_init(&ctx
->rq_list
, &tmp
);
1795 blk_mq_hctx_clear_pending(hctx
, ctx
);
1797 spin_unlock(&ctx
->lock
);
1799 if (list_empty(&tmp
))
1802 spin_lock(&hctx
->lock
);
1803 list_splice_tail_init(&tmp
, &hctx
->dispatch
);
1804 spin_unlock(&hctx
->lock
);
1806 blk_mq_run_hw_queue(hctx
, true);
1810 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx
*hctx
)
1812 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD
,
1816 /* hctx->ctxs will be freed in queue's release handler */
1817 static void blk_mq_exit_hctx(struct request_queue
*q
,
1818 struct blk_mq_tag_set
*set
,
1819 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1821 unsigned flush_start_tag
= set
->queue_depth
;
1823 blk_mq_tag_idle(hctx
);
1825 if (set
->ops
->exit_request
)
1826 set
->ops
->exit_request(set
->driver_data
,
1827 hctx
->fq
->flush_rq
, hctx_idx
,
1828 flush_start_tag
+ hctx_idx
);
1830 if (set
->ops
->exit_hctx
)
1831 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1833 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
1834 cleanup_srcu_struct(&hctx
->queue_rq_srcu
);
1836 blk_mq_remove_cpuhp(hctx
);
1837 blk_free_flush_queue(hctx
->fq
);
1838 sbitmap_free(&hctx
->ctx_map
);
1841 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1842 struct blk_mq_tag_set
*set
, int nr_queue
)
1844 struct blk_mq_hw_ctx
*hctx
;
1847 queue_for_each_hw_ctx(q
, hctx
, i
) {
1850 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1854 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1855 struct blk_mq_tag_set
*set
)
1857 struct blk_mq_hw_ctx
*hctx
;
1860 queue_for_each_hw_ctx(q
, hctx
, i
)
1861 free_cpumask_var(hctx
->cpumask
);
1864 static int blk_mq_init_hctx(struct request_queue
*q
,
1865 struct blk_mq_tag_set
*set
,
1866 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1869 unsigned flush_start_tag
= set
->queue_depth
;
1871 node
= hctx
->numa_node
;
1872 if (node
== NUMA_NO_NODE
)
1873 node
= hctx
->numa_node
= set
->numa_node
;
1875 INIT_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1876 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1877 spin_lock_init(&hctx
->lock
);
1878 INIT_LIST_HEAD(&hctx
->dispatch
);
1880 hctx
->queue_num
= hctx_idx
;
1881 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
1883 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD
, &hctx
->cpuhp_dead
);
1885 hctx
->tags
= set
->tags
[hctx_idx
];
1888 * Allocate space for all possible cpus to avoid allocation at
1891 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1894 goto unregister_cpu_notifier
;
1896 if (sbitmap_init_node(&hctx
->ctx_map
, nr_cpu_ids
, ilog2(8), GFP_KERNEL
,
1902 if (set
->ops
->init_hctx
&&
1903 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1906 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1910 if (set
->ops
->init_request
&&
1911 set
->ops
->init_request(set
->driver_data
,
1912 hctx
->fq
->flush_rq
, hctx_idx
,
1913 flush_start_tag
+ hctx_idx
, node
))
1916 if (hctx
->flags
& BLK_MQ_F_BLOCKING
)
1917 init_srcu_struct(&hctx
->queue_rq_srcu
);
1924 if (set
->ops
->exit_hctx
)
1925 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1927 sbitmap_free(&hctx
->ctx_map
);
1930 unregister_cpu_notifier
:
1931 blk_mq_remove_cpuhp(hctx
);
1935 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1936 unsigned int nr_hw_queues
)
1940 for_each_possible_cpu(i
) {
1941 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1942 struct blk_mq_hw_ctx
*hctx
;
1944 memset(__ctx
, 0, sizeof(*__ctx
));
1946 spin_lock_init(&__ctx
->lock
);
1947 INIT_LIST_HEAD(&__ctx
->rq_list
);
1949 blk_stat_init(&__ctx
->stat
[BLK_STAT_READ
]);
1950 blk_stat_init(&__ctx
->stat
[BLK_STAT_WRITE
]);
1952 /* If the cpu isn't online, the cpu is mapped to first hctx */
1956 hctx
= blk_mq_map_queue(q
, i
);
1959 * Set local node, IFF we have more than one hw queue. If
1960 * not, we remain on the home node of the device
1962 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1963 hctx
->numa_node
= local_memory_node(cpu_to_node(i
));
1967 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set
*set
, int hctx_idx
)
1971 set
->tags
[hctx_idx
] = blk_mq_alloc_rq_map(set
, hctx_idx
,
1972 set
->queue_depth
, set
->reserved_tags
);
1973 if (!set
->tags
[hctx_idx
])
1976 ret
= blk_mq_alloc_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
,
1981 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
1982 set
->tags
[hctx_idx
] = NULL
;
1986 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set
*set
,
1987 unsigned int hctx_idx
)
1989 if (set
->tags
[hctx_idx
]) {
1990 blk_mq_free_rqs(set
, set
->tags
[hctx_idx
], hctx_idx
);
1991 blk_mq_free_rq_map(set
->tags
[hctx_idx
]);
1992 set
->tags
[hctx_idx
] = NULL
;
1996 static void blk_mq_map_swqueue(struct request_queue
*q
,
1997 const struct cpumask
*online_mask
)
1999 unsigned int i
, hctx_idx
;
2000 struct blk_mq_hw_ctx
*hctx
;
2001 struct blk_mq_ctx
*ctx
;
2002 struct blk_mq_tag_set
*set
= q
->tag_set
;
2005 * Avoid others reading imcomplete hctx->cpumask through sysfs
2007 mutex_lock(&q
->sysfs_lock
);
2009 queue_for_each_hw_ctx(q
, hctx
, i
) {
2010 cpumask_clear(hctx
->cpumask
);
2015 * Map software to hardware queues
2017 for_each_possible_cpu(i
) {
2018 /* If the cpu isn't online, the cpu is mapped to first hctx */
2019 if (!cpumask_test_cpu(i
, online_mask
))
2022 hctx_idx
= q
->mq_map
[i
];
2023 /* unmapped hw queue can be remapped after CPU topo changed */
2024 if (!set
->tags
[hctx_idx
] &&
2025 !__blk_mq_alloc_rq_map(set
, hctx_idx
)) {
2027 * If tags initialization fail for some hctx,
2028 * that hctx won't be brought online. In this
2029 * case, remap the current ctx to hctx[0] which
2030 * is guaranteed to always have tags allocated
2035 ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
2036 hctx
= blk_mq_map_queue(q
, i
);
2038 cpumask_set_cpu(i
, hctx
->cpumask
);
2039 ctx
->index_hw
= hctx
->nr_ctx
;
2040 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
2043 mutex_unlock(&q
->sysfs_lock
);
2045 queue_for_each_hw_ctx(q
, hctx
, i
) {
2047 * If no software queues are mapped to this hardware queue,
2048 * disable it and free the request entries.
2050 if (!hctx
->nr_ctx
) {
2051 /* Never unmap queue 0. We need it as a
2052 * fallback in case of a new remap fails
2055 if (i
&& set
->tags
[i
])
2056 blk_mq_free_map_and_requests(set
, i
);
2062 hctx
->tags
= set
->tags
[i
];
2063 WARN_ON(!hctx
->tags
);
2066 * Set the map size to the number of mapped software queues.
2067 * This is more accurate and more efficient than looping
2068 * over all possibly mapped software queues.
2070 sbitmap_resize(&hctx
->ctx_map
, hctx
->nr_ctx
);
2073 * Initialize batch roundrobin counts
2075 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
2076 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
2080 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
2082 struct blk_mq_hw_ctx
*hctx
;
2085 queue_for_each_hw_ctx(q
, hctx
, i
) {
2087 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
2089 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2093 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
, bool shared
)
2095 struct request_queue
*q
;
2097 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2098 blk_mq_freeze_queue(q
);
2099 queue_set_hctx_shared(q
, shared
);
2100 blk_mq_unfreeze_queue(q
);
2104 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
2106 struct blk_mq_tag_set
*set
= q
->tag_set
;
2108 mutex_lock(&set
->tag_list_lock
);
2109 list_del_init(&q
->tag_set_list
);
2110 if (list_is_singular(&set
->tag_list
)) {
2111 /* just transitioned to unshared */
2112 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
2113 /* update existing queue */
2114 blk_mq_update_tag_set_depth(set
, false);
2116 mutex_unlock(&set
->tag_list_lock
);
2119 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
2120 struct request_queue
*q
)
2124 mutex_lock(&set
->tag_list_lock
);
2126 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2127 if (!list_empty(&set
->tag_list
) && !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
2128 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
2129 /* update existing queue */
2130 blk_mq_update_tag_set_depth(set
, true);
2132 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
2133 queue_set_hctx_shared(q
, true);
2134 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
2136 mutex_unlock(&set
->tag_list_lock
);
2140 * It is the actual release handler for mq, but we do it from
2141 * request queue's release handler for avoiding use-after-free
2142 * and headache because q->mq_kobj shouldn't have been introduced,
2143 * but we can't group ctx/kctx kobj without it.
2145 void blk_mq_release(struct request_queue
*q
)
2147 struct blk_mq_hw_ctx
*hctx
;
2150 blk_mq_sched_teardown(q
);
2152 /* hctx kobj stays in hctx */
2153 queue_for_each_hw_ctx(q
, hctx
, i
) {
2162 kfree(q
->queue_hw_ctx
);
2164 /* ctx kobj stays in queue_ctx */
2165 free_percpu(q
->queue_ctx
);
2168 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
2170 struct request_queue
*uninit_q
, *q
;
2172 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
2174 return ERR_PTR(-ENOMEM
);
2176 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
2178 blk_cleanup_queue(uninit_q
);
2182 EXPORT_SYMBOL(blk_mq_init_queue
);
2184 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set
*set
,
2185 struct request_queue
*q
)
2188 struct blk_mq_hw_ctx
**hctxs
= q
->queue_hw_ctx
;
2190 blk_mq_sysfs_unregister(q
);
2191 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2197 node
= blk_mq_hw_queue_to_node(q
->mq_map
, i
);
2198 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
2203 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2210 atomic_set(&hctxs
[i
]->nr_active
, 0);
2211 hctxs
[i
]->numa_node
= node
;
2212 hctxs
[i
]->queue_num
= i
;
2214 if (blk_mq_init_hctx(q
, set
, hctxs
[i
], i
)) {
2215 free_cpumask_var(hctxs
[i
]->cpumask
);
2220 blk_mq_hctx_kobj_init(hctxs
[i
]);
2222 for (j
= i
; j
< q
->nr_hw_queues
; j
++) {
2223 struct blk_mq_hw_ctx
*hctx
= hctxs
[j
];
2227 blk_mq_free_map_and_requests(set
, j
);
2228 blk_mq_exit_hctx(q
, set
, hctx
, j
);
2229 free_cpumask_var(hctx
->cpumask
);
2230 kobject_put(&hctx
->kobj
);
2237 q
->nr_hw_queues
= i
;
2238 blk_mq_sysfs_register(q
);
2241 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2242 struct request_queue
*q
)
2244 /* mark the queue as mq asap */
2245 q
->mq_ops
= set
->ops
;
2247 q
->queue_ctx
= alloc_percpu(struct blk_mq_ctx
);
2251 q
->queue_hw_ctx
= kzalloc_node(nr_cpu_ids
* sizeof(*(q
->queue_hw_ctx
)),
2252 GFP_KERNEL
, set
->numa_node
);
2253 if (!q
->queue_hw_ctx
)
2256 q
->mq_map
= set
->mq_map
;
2258 blk_mq_realloc_hw_ctxs(set
, q
);
2259 if (!q
->nr_hw_queues
)
2262 INIT_WORK(&q
->timeout_work
, blk_mq_timeout_work
);
2263 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2265 q
->nr_queues
= nr_cpu_ids
;
2267 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2269 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2270 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2272 q
->sg_reserved_size
= INT_MAX
;
2274 INIT_DELAYED_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2275 INIT_LIST_HEAD(&q
->requeue_list
);
2276 spin_lock_init(&q
->requeue_lock
);
2278 if (q
->nr_hw_queues
> 1)
2279 blk_queue_make_request(q
, blk_mq_make_request
);
2281 blk_queue_make_request(q
, blk_sq_make_request
);
2284 * Do this after blk_queue_make_request() overrides it...
2286 q
->nr_requests
= set
->queue_depth
;
2289 * Default to classic polling
2293 if (set
->ops
->complete
)
2294 blk_queue_softirq_done(q
, set
->ops
->complete
);
2296 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2299 mutex_lock(&all_q_mutex
);
2301 list_add_tail(&q
->all_q_node
, &all_q_list
);
2302 blk_mq_add_queue_tag_set(set
, q
);
2303 blk_mq_map_swqueue(q
, cpu_online_mask
);
2305 mutex_unlock(&all_q_mutex
);
2308 if (!(set
->flags
& BLK_MQ_F_NO_SCHED
)) {
2311 ret
= blk_mq_sched_init(q
);
2313 return ERR_PTR(ret
);
2319 kfree(q
->queue_hw_ctx
);
2321 free_percpu(q
->queue_ctx
);
2324 return ERR_PTR(-ENOMEM
);
2326 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2328 void blk_mq_free_queue(struct request_queue
*q
)
2330 struct blk_mq_tag_set
*set
= q
->tag_set
;
2332 mutex_lock(&all_q_mutex
);
2333 list_del_init(&q
->all_q_node
);
2334 mutex_unlock(&all_q_mutex
);
2338 blk_mq_del_queue_tag_set(q
);
2340 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2341 blk_mq_free_hw_queues(q
, set
);
2344 /* Basically redo blk_mq_init_queue with queue frozen */
2345 static void blk_mq_queue_reinit(struct request_queue
*q
,
2346 const struct cpumask
*online_mask
)
2348 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2350 blk_mq_sysfs_unregister(q
);
2353 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2354 * we should change hctx numa_node according to new topology (this
2355 * involves free and re-allocate memory, worthy doing?)
2358 blk_mq_map_swqueue(q
, online_mask
);
2360 blk_mq_sysfs_register(q
);
2364 * New online cpumask which is going to be set in this hotplug event.
2365 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2366 * one-by-one and dynamically allocating this could result in a failure.
2368 static struct cpumask cpuhp_online_new
;
2370 static void blk_mq_queue_reinit_work(void)
2372 struct request_queue
*q
;
2374 mutex_lock(&all_q_mutex
);
2376 * We need to freeze and reinit all existing queues. Freezing
2377 * involves synchronous wait for an RCU grace period and doing it
2378 * one by one may take a long time. Start freezing all queues in
2379 * one swoop and then wait for the completions so that freezing can
2380 * take place in parallel.
2382 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2383 blk_mq_freeze_queue_start(q
);
2384 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2385 blk_mq_freeze_queue_wait(q
);
2387 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2388 blk_mq_queue_reinit(q
, &cpuhp_online_new
);
2390 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2391 blk_mq_unfreeze_queue(q
);
2393 mutex_unlock(&all_q_mutex
);
2396 static int blk_mq_queue_reinit_dead(unsigned int cpu
)
2398 cpumask_copy(&cpuhp_online_new
, cpu_online_mask
);
2399 blk_mq_queue_reinit_work();
2404 * Before hotadded cpu starts handling requests, new mappings must be
2405 * established. Otherwise, these requests in hw queue might never be
2408 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2409 * for CPU0, and ctx1 for CPU1).
2411 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2412 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2414 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2415 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2416 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2419 static int blk_mq_queue_reinit_prepare(unsigned int cpu
)
2421 cpumask_copy(&cpuhp_online_new
, cpu_online_mask
);
2422 cpumask_set_cpu(cpu
, &cpuhp_online_new
);
2423 blk_mq_queue_reinit_work();
2427 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2431 for (i
= 0; i
< set
->nr_hw_queues
; i
++)
2432 if (!__blk_mq_alloc_rq_map(set
, i
))
2439 blk_mq_free_rq_map(set
->tags
[i
]);
2445 * Allocate the request maps associated with this tag_set. Note that this
2446 * may reduce the depth asked for, if memory is tight. set->queue_depth
2447 * will be updated to reflect the allocated depth.
2449 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2454 depth
= set
->queue_depth
;
2456 err
= __blk_mq_alloc_rq_maps(set
);
2460 set
->queue_depth
>>= 1;
2461 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2465 } while (set
->queue_depth
);
2467 if (!set
->queue_depth
|| err
) {
2468 pr_err("blk-mq: failed to allocate request map\n");
2472 if (depth
!= set
->queue_depth
)
2473 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2474 depth
, set
->queue_depth
);
2480 * Alloc a tag set to be associated with one or more request queues.
2481 * May fail with EINVAL for various error conditions. May adjust the
2482 * requested depth down, if if it too large. In that case, the set
2483 * value will be stored in set->queue_depth.
2485 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2489 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2491 if (!set
->nr_hw_queues
)
2493 if (!set
->queue_depth
)
2495 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2498 if (!set
->ops
->queue_rq
)
2501 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2502 pr_info("blk-mq: reduced tag depth to %u\n",
2504 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2508 * If a crashdump is active, then we are potentially in a very
2509 * memory constrained environment. Limit us to 1 queue and
2510 * 64 tags to prevent using too much memory.
2512 if (is_kdump_kernel()) {
2513 set
->nr_hw_queues
= 1;
2514 set
->queue_depth
= min(64U, set
->queue_depth
);
2517 * There is no use for more h/w queues than cpus.
2519 if (set
->nr_hw_queues
> nr_cpu_ids
)
2520 set
->nr_hw_queues
= nr_cpu_ids
;
2522 set
->tags
= kzalloc_node(nr_cpu_ids
* sizeof(struct blk_mq_tags
*),
2523 GFP_KERNEL
, set
->numa_node
);
2528 set
->mq_map
= kzalloc_node(sizeof(*set
->mq_map
) * nr_cpu_ids
,
2529 GFP_KERNEL
, set
->numa_node
);
2533 if (set
->ops
->map_queues
)
2534 ret
= set
->ops
->map_queues(set
);
2536 ret
= blk_mq_map_queues(set
);
2538 goto out_free_mq_map
;
2540 ret
= blk_mq_alloc_rq_maps(set
);
2542 goto out_free_mq_map
;
2544 mutex_init(&set
->tag_list_lock
);
2545 INIT_LIST_HEAD(&set
->tag_list
);
2557 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2559 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2563 for (i
= 0; i
< nr_cpu_ids
; i
++)
2564 blk_mq_free_map_and_requests(set
, i
);
2572 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2574 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2576 struct blk_mq_tag_set
*set
= q
->tag_set
;
2577 struct blk_mq_hw_ctx
*hctx
;
2583 blk_mq_freeze_queue(q
);
2584 blk_mq_quiesce_queue(q
);
2587 queue_for_each_hw_ctx(q
, hctx
, i
) {
2591 * If we're using an MQ scheduler, just update the scheduler
2592 * queue depth. This is similar to what the old code would do.
2594 if (!hctx
->sched_tags
) {
2595 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->tags
,
2596 min(nr
, set
->queue_depth
),
2599 ret
= blk_mq_tag_update_depth(hctx
, &hctx
->sched_tags
,
2607 q
->nr_requests
= nr
;
2609 blk_mq_unfreeze_queue(q
);
2610 blk_mq_start_stopped_hw_queues(q
, true);
2615 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set
*set
, int nr_hw_queues
)
2617 struct request_queue
*q
;
2619 if (nr_hw_queues
> nr_cpu_ids
)
2620 nr_hw_queues
= nr_cpu_ids
;
2621 if (nr_hw_queues
< 1 || nr_hw_queues
== set
->nr_hw_queues
)
2624 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2625 blk_mq_freeze_queue(q
);
2627 set
->nr_hw_queues
= nr_hw_queues
;
2628 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
2629 blk_mq_realloc_hw_ctxs(set
, q
);
2632 * Manually set the make_request_fn as blk_queue_make_request
2633 * resets a lot of the queue settings.
2635 if (q
->nr_hw_queues
> 1)
2636 q
->make_request_fn
= blk_mq_make_request
;
2638 q
->make_request_fn
= blk_sq_make_request
;
2640 blk_mq_queue_reinit(q
, cpu_online_mask
);
2643 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
)
2644 blk_mq_unfreeze_queue(q
);
2646 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues
);
2648 static unsigned long blk_mq_poll_nsecs(struct request_queue
*q
,
2649 struct blk_mq_hw_ctx
*hctx
,
2652 struct blk_rq_stat stat
[2];
2653 unsigned long ret
= 0;
2656 * If stats collection isn't on, don't sleep but turn it on for
2659 if (!blk_stat_enable(q
))
2663 * We don't have to do this once per IO, should optimize this
2664 * to just use the current window of stats until it changes
2666 memset(&stat
, 0, sizeof(stat
));
2667 blk_hctx_stat_get(hctx
, stat
);
2670 * As an optimistic guess, use half of the mean service time
2671 * for this type of request. We can (and should) make this smarter.
2672 * For instance, if the completion latencies are tight, we can
2673 * get closer than just half the mean. This is especially
2674 * important on devices where the completion latencies are longer
2677 if (req_op(rq
) == REQ_OP_READ
&& stat
[BLK_STAT_READ
].nr_samples
)
2678 ret
= (stat
[BLK_STAT_READ
].mean
+ 1) / 2;
2679 else if (req_op(rq
) == REQ_OP_WRITE
&& stat
[BLK_STAT_WRITE
].nr_samples
)
2680 ret
= (stat
[BLK_STAT_WRITE
].mean
+ 1) / 2;
2685 static bool blk_mq_poll_hybrid_sleep(struct request_queue
*q
,
2686 struct blk_mq_hw_ctx
*hctx
,
2689 struct hrtimer_sleeper hs
;
2690 enum hrtimer_mode mode
;
2694 if (test_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
))
2700 * -1: don't ever hybrid sleep
2701 * 0: use half of prev avg
2702 * >0: use this specific value
2704 if (q
->poll_nsec
== -1)
2706 else if (q
->poll_nsec
> 0)
2707 nsecs
= q
->poll_nsec
;
2709 nsecs
= blk_mq_poll_nsecs(q
, hctx
, rq
);
2714 set_bit(REQ_ATOM_POLL_SLEPT
, &rq
->atomic_flags
);
2717 * This will be replaced with the stats tracking code, using
2718 * 'avg_completion_time / 2' as the pre-sleep target.
2722 mode
= HRTIMER_MODE_REL
;
2723 hrtimer_init_on_stack(&hs
.timer
, CLOCK_MONOTONIC
, mode
);
2724 hrtimer_set_expires(&hs
.timer
, kt
);
2726 hrtimer_init_sleeper(&hs
, current
);
2728 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
2730 set_current_state(TASK_UNINTERRUPTIBLE
);
2731 hrtimer_start_expires(&hs
.timer
, mode
);
2734 hrtimer_cancel(&hs
.timer
);
2735 mode
= HRTIMER_MODE_ABS
;
2736 } while (hs
.task
&& !signal_pending(current
));
2738 __set_current_state(TASK_RUNNING
);
2739 destroy_hrtimer_on_stack(&hs
.timer
);
2743 static bool __blk_mq_poll(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
2745 struct request_queue
*q
= hctx
->queue
;
2749 * If we sleep, have the caller restart the poll loop to reset
2750 * the state. Like for the other success return cases, the
2751 * caller is responsible for checking if the IO completed. If
2752 * the IO isn't complete, we'll get called again and will go
2753 * straight to the busy poll loop.
2755 if (blk_mq_poll_hybrid_sleep(q
, hctx
, rq
))
2758 hctx
->poll_considered
++;
2760 state
= current
->state
;
2761 while (!need_resched()) {
2764 hctx
->poll_invoked
++;
2766 ret
= q
->mq_ops
->poll(hctx
, rq
->tag
);
2768 hctx
->poll_success
++;
2769 set_current_state(TASK_RUNNING
);
2773 if (signal_pending_state(state
, current
))
2774 set_current_state(TASK_RUNNING
);
2776 if (current
->state
== TASK_RUNNING
)
2786 bool blk_mq_poll(struct request_queue
*q
, blk_qc_t cookie
)
2788 struct blk_mq_hw_ctx
*hctx
;
2789 struct blk_plug
*plug
;
2792 if (!q
->mq_ops
|| !q
->mq_ops
->poll
|| !blk_qc_t_valid(cookie
) ||
2793 !test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
2796 plug
= current
->plug
;
2798 blk_flush_plug_list(plug
, false);
2800 hctx
= q
->queue_hw_ctx
[blk_qc_t_to_queue_num(cookie
)];
2801 if (!blk_qc_t_is_internal(cookie
))
2802 rq
= blk_mq_tag_to_rq(hctx
->tags
, blk_qc_t_to_tag(cookie
));
2804 rq
= blk_mq_tag_to_rq(hctx
->sched_tags
, blk_qc_t_to_tag(cookie
));
2806 return __blk_mq_poll(hctx
, rq
);
2808 EXPORT_SYMBOL_GPL(blk_mq_poll
);
2810 void blk_mq_disable_hotplug(void)
2812 mutex_lock(&all_q_mutex
);
2815 void blk_mq_enable_hotplug(void)
2817 mutex_unlock(&all_q_mutex
);
2820 static int __init
blk_mq_init(void)
2822 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD
, "block/mq:dead", NULL
,
2823 blk_mq_hctx_notify_dead
);
2825 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE
, "block/mq:prepare",
2826 blk_mq_queue_reinit_prepare
,
2827 blk_mq_queue_reinit_dead
);
2830 subsys_initcall(blk_mq_init
);