s390/chsc: Add exception handler for CHSC instruction
[linux/fpc-iii.git] / block / blk-mq.c
blobb29e7dc7b309e4cf939cd2c011b26b38dfd4df73
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
27 #include <trace/events/block.h>
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
35 #include "blk-mq-sched.h"
37 static DEFINE_MUTEX(all_q_mutex);
38 static LIST_HEAD(all_q_list);
41 * Check if any of the ctx's have pending work in this hardware queue
43 bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
45 return sbitmap_any_bit_set(&hctx->ctx_map) ||
46 !list_empty_careful(&hctx->dispatch) ||
47 blk_mq_sched_has_work(hctx);
51 * Mark this ctx as having pending work in this hardware queue
53 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
54 struct blk_mq_ctx *ctx)
56 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
57 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
60 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
61 struct blk_mq_ctx *ctx)
63 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
66 void blk_mq_freeze_queue_start(struct request_queue *q)
68 int freeze_depth;
70 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
71 if (freeze_depth == 1) {
72 percpu_ref_kill(&q->q_usage_counter);
73 blk_mq_run_hw_queues(q, false);
76 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
78 static void blk_mq_freeze_queue_wait(struct request_queue *q)
80 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
84 * Guarantee no request is in use, so we can change any data structure of
85 * the queue afterward.
87 void blk_freeze_queue(struct request_queue *q)
90 * In the !blk_mq case we are only calling this to kill the
91 * q_usage_counter, otherwise this increases the freeze depth
92 * and waits for it to return to zero. For this reason there is
93 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
94 * exported to drivers as the only user for unfreeze is blk_mq.
96 blk_mq_freeze_queue_start(q);
97 blk_mq_freeze_queue_wait(q);
100 void blk_mq_freeze_queue(struct request_queue *q)
103 * ...just an alias to keep freeze and unfreeze actions balanced
104 * in the blk_mq_* namespace
106 blk_freeze_queue(q);
108 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
110 void blk_mq_unfreeze_queue(struct request_queue *q)
112 int freeze_depth;
114 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
115 WARN_ON_ONCE(freeze_depth < 0);
116 if (!freeze_depth) {
117 percpu_ref_reinit(&q->q_usage_counter);
118 wake_up_all(&q->mq_freeze_wq);
121 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
124 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
125 * @q: request queue.
127 * Note: this function does not prevent that the struct request end_io()
128 * callback function is invoked. Additionally, it is not prevented that
129 * new queue_rq() calls occur unless the queue has been stopped first.
131 void blk_mq_quiesce_queue(struct request_queue *q)
133 struct blk_mq_hw_ctx *hctx;
134 unsigned int i;
135 bool rcu = false;
137 blk_mq_stop_hw_queues(q);
139 queue_for_each_hw_ctx(q, hctx, i) {
140 if (hctx->flags & BLK_MQ_F_BLOCKING)
141 synchronize_srcu(&hctx->queue_rq_srcu);
142 else
143 rcu = true;
145 if (rcu)
146 synchronize_rcu();
148 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
150 void blk_mq_wake_waiters(struct request_queue *q)
152 struct blk_mq_hw_ctx *hctx;
153 unsigned int i;
155 queue_for_each_hw_ctx(q, hctx, i)
156 if (blk_mq_hw_queue_mapped(hctx))
157 blk_mq_tag_wakeup_all(hctx->tags, true);
160 * If we are called because the queue has now been marked as
161 * dying, we need to ensure that processes currently waiting on
162 * the queue are notified as well.
164 wake_up_all(&q->mq_freeze_wq);
167 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
169 return blk_mq_has_free_tags(hctx->tags);
171 EXPORT_SYMBOL(blk_mq_can_queue);
173 void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
174 struct request *rq, unsigned int op)
176 INIT_LIST_HEAD(&rq->queuelist);
177 /* csd/requeue_work/fifo_time is initialized before use */
178 rq->q = q;
179 rq->mq_ctx = ctx;
180 rq->cmd_flags = op;
181 if (blk_queue_io_stat(q))
182 rq->rq_flags |= RQF_IO_STAT;
183 /* do not touch atomic flags, it needs atomic ops against the timer */
184 rq->cpu = -1;
185 INIT_HLIST_NODE(&rq->hash);
186 RB_CLEAR_NODE(&rq->rb_node);
187 rq->rq_disk = NULL;
188 rq->part = NULL;
189 rq->start_time = jiffies;
190 #ifdef CONFIG_BLK_CGROUP
191 rq->rl = NULL;
192 set_start_time_ns(rq);
193 rq->io_start_time_ns = 0;
194 #endif
195 rq->nr_phys_segments = 0;
196 #if defined(CONFIG_BLK_DEV_INTEGRITY)
197 rq->nr_integrity_segments = 0;
198 #endif
199 rq->special = NULL;
200 /* tag was already set */
201 rq->errors = 0;
202 rq->extra_len = 0;
204 INIT_LIST_HEAD(&rq->timeout_list);
205 rq->timeout = 0;
207 rq->end_io = NULL;
208 rq->end_io_data = NULL;
209 rq->next_rq = NULL;
211 ctx->rq_dispatched[op_is_sync(op)]++;
213 EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
215 struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
216 unsigned int op)
218 struct request *rq;
219 unsigned int tag;
221 tag = blk_mq_get_tag(data);
222 if (tag != BLK_MQ_TAG_FAIL) {
223 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
225 rq = tags->static_rqs[tag];
227 if (data->flags & BLK_MQ_REQ_INTERNAL) {
228 rq->tag = -1;
229 rq->internal_tag = tag;
230 } else {
231 if (blk_mq_tag_busy(data->hctx)) {
232 rq->rq_flags = RQF_MQ_INFLIGHT;
233 atomic_inc(&data->hctx->nr_active);
235 rq->tag = tag;
236 rq->internal_tag = -1;
239 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
240 return rq;
243 return NULL;
245 EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
247 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
248 unsigned int flags)
250 struct blk_mq_alloc_data alloc_data = { .flags = flags };
251 struct request *rq;
252 int ret;
254 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
255 if (ret)
256 return ERR_PTR(ret);
258 rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
260 blk_mq_put_ctx(alloc_data.ctx);
261 blk_queue_exit(q);
263 if (!rq)
264 return ERR_PTR(-EWOULDBLOCK);
266 rq->__data_len = 0;
267 rq->__sector = (sector_t) -1;
268 rq->bio = rq->biotail = NULL;
269 return rq;
271 EXPORT_SYMBOL(blk_mq_alloc_request);
273 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
274 unsigned int flags, unsigned int hctx_idx)
276 struct blk_mq_hw_ctx *hctx;
277 struct blk_mq_ctx *ctx;
278 struct request *rq;
279 struct blk_mq_alloc_data alloc_data;
280 int ret;
283 * If the tag allocator sleeps we could get an allocation for a
284 * different hardware context. No need to complicate the low level
285 * allocator for this for the rare use case of a command tied to
286 * a specific queue.
288 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
289 return ERR_PTR(-EINVAL);
291 if (hctx_idx >= q->nr_hw_queues)
292 return ERR_PTR(-EIO);
294 ret = blk_queue_enter(q, true);
295 if (ret)
296 return ERR_PTR(ret);
299 * Check if the hardware context is actually mapped to anything.
300 * If not tell the caller that it should skip this queue.
302 hctx = q->queue_hw_ctx[hctx_idx];
303 if (!blk_mq_hw_queue_mapped(hctx)) {
304 ret = -EXDEV;
305 goto out_queue_exit;
307 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
309 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
310 rq = __blk_mq_alloc_request(&alloc_data, rw);
311 if (!rq) {
312 ret = -EWOULDBLOCK;
313 goto out_queue_exit;
316 return rq;
318 out_queue_exit:
319 blk_queue_exit(q);
320 return ERR_PTR(ret);
322 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
324 void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
325 struct request *rq)
327 const int sched_tag = rq->internal_tag;
328 struct request_queue *q = rq->q;
330 if (rq->rq_flags & RQF_MQ_INFLIGHT)
331 atomic_dec(&hctx->nr_active);
333 wbt_done(q->rq_wb, &rq->issue_stat);
334 rq->rq_flags = 0;
336 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
337 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
338 if (rq->tag != -1)
339 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
340 if (sched_tag != -1)
341 blk_mq_sched_completed_request(hctx, rq);
342 blk_mq_sched_restart_queues(hctx);
343 blk_queue_exit(q);
346 static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
347 struct request *rq)
349 struct blk_mq_ctx *ctx = rq->mq_ctx;
351 ctx->rq_completed[rq_is_sync(rq)]++;
352 __blk_mq_finish_request(hctx, ctx, rq);
355 void blk_mq_finish_request(struct request *rq)
357 blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
360 void blk_mq_free_request(struct request *rq)
362 blk_mq_sched_put_request(rq);
364 EXPORT_SYMBOL_GPL(blk_mq_free_request);
366 inline void __blk_mq_end_request(struct request *rq, int error)
368 blk_account_io_done(rq);
370 if (rq->end_io) {
371 wbt_done(rq->q->rq_wb, &rq->issue_stat);
372 rq->end_io(rq, error);
373 } else {
374 if (unlikely(blk_bidi_rq(rq)))
375 blk_mq_free_request(rq->next_rq);
376 blk_mq_free_request(rq);
379 EXPORT_SYMBOL(__blk_mq_end_request);
381 void blk_mq_end_request(struct request *rq, int error)
383 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
384 BUG();
385 __blk_mq_end_request(rq, error);
387 EXPORT_SYMBOL(blk_mq_end_request);
389 static void __blk_mq_complete_request_remote(void *data)
391 struct request *rq = data;
393 rq->q->softirq_done_fn(rq);
396 static void blk_mq_ipi_complete_request(struct request *rq)
398 struct blk_mq_ctx *ctx = rq->mq_ctx;
399 bool shared = false;
400 int cpu;
402 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
403 rq->q->softirq_done_fn(rq);
404 return;
407 cpu = get_cpu();
408 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
409 shared = cpus_share_cache(cpu, ctx->cpu);
411 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
412 rq->csd.func = __blk_mq_complete_request_remote;
413 rq->csd.info = rq;
414 rq->csd.flags = 0;
415 smp_call_function_single_async(ctx->cpu, &rq->csd);
416 } else {
417 rq->q->softirq_done_fn(rq);
419 put_cpu();
422 static void blk_mq_stat_add(struct request *rq)
424 if (rq->rq_flags & RQF_STATS) {
426 * We could rq->mq_ctx here, but there's less of a risk
427 * of races if we have the completion event add the stats
428 * to the local software queue.
430 struct blk_mq_ctx *ctx;
432 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
433 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
437 static void __blk_mq_complete_request(struct request *rq)
439 struct request_queue *q = rq->q;
441 blk_mq_stat_add(rq);
443 if (!q->softirq_done_fn)
444 blk_mq_end_request(rq, rq->errors);
445 else
446 blk_mq_ipi_complete_request(rq);
450 * blk_mq_complete_request - end I/O on a request
451 * @rq: the request being processed
453 * Description:
454 * Ends all I/O on a request. It does not handle partial completions.
455 * The actual completion happens out-of-order, through a IPI handler.
457 void blk_mq_complete_request(struct request *rq, int error)
459 struct request_queue *q = rq->q;
461 if (unlikely(blk_should_fake_timeout(q)))
462 return;
463 if (!blk_mark_rq_complete(rq)) {
464 rq->errors = error;
465 __blk_mq_complete_request(rq);
468 EXPORT_SYMBOL(blk_mq_complete_request);
470 int blk_mq_request_started(struct request *rq)
472 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
474 EXPORT_SYMBOL_GPL(blk_mq_request_started);
476 void blk_mq_start_request(struct request *rq)
478 struct request_queue *q = rq->q;
480 blk_mq_sched_started_request(rq);
482 trace_block_rq_issue(q, rq);
484 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
485 blk_stat_set_issue_time(&rq->issue_stat);
486 rq->rq_flags |= RQF_STATS;
487 wbt_issue(q->rq_wb, &rq->issue_stat);
490 blk_add_timer(rq);
493 * Ensure that ->deadline is visible before set the started
494 * flag and clear the completed flag.
496 smp_mb__before_atomic();
499 * Mark us as started and clear complete. Complete might have been
500 * set if requeue raced with timeout, which then marked it as
501 * complete. So be sure to clear complete again when we start
502 * the request, otherwise we'll ignore the completion event.
504 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
505 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
506 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
507 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
509 if (q->dma_drain_size && blk_rq_bytes(rq)) {
511 * Make sure space for the drain appears. We know we can do
512 * this because max_hw_segments has been adjusted to be one
513 * fewer than the device can handle.
515 rq->nr_phys_segments++;
518 EXPORT_SYMBOL(blk_mq_start_request);
520 static void __blk_mq_requeue_request(struct request *rq)
522 struct request_queue *q = rq->q;
524 trace_block_rq_requeue(q, rq);
525 wbt_requeue(q->rq_wb, &rq->issue_stat);
526 blk_mq_sched_requeue_request(rq);
528 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
529 if (q->dma_drain_size && blk_rq_bytes(rq))
530 rq->nr_phys_segments--;
534 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
536 __blk_mq_requeue_request(rq);
538 BUG_ON(blk_queued_rq(rq));
539 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
541 EXPORT_SYMBOL(blk_mq_requeue_request);
543 static void blk_mq_requeue_work(struct work_struct *work)
545 struct request_queue *q =
546 container_of(work, struct request_queue, requeue_work.work);
547 LIST_HEAD(rq_list);
548 struct request *rq, *next;
549 unsigned long flags;
551 spin_lock_irqsave(&q->requeue_lock, flags);
552 list_splice_init(&q->requeue_list, &rq_list);
553 spin_unlock_irqrestore(&q->requeue_lock, flags);
555 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
556 if (!(rq->rq_flags & RQF_SOFTBARRIER))
557 continue;
559 rq->rq_flags &= ~RQF_SOFTBARRIER;
560 list_del_init(&rq->queuelist);
561 blk_mq_sched_insert_request(rq, true, false, false, true);
564 while (!list_empty(&rq_list)) {
565 rq = list_entry(rq_list.next, struct request, queuelist);
566 list_del_init(&rq->queuelist);
567 blk_mq_sched_insert_request(rq, false, false, false, true);
570 blk_mq_run_hw_queues(q, false);
573 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
574 bool kick_requeue_list)
576 struct request_queue *q = rq->q;
577 unsigned long flags;
580 * We abuse this flag that is otherwise used by the I/O scheduler to
581 * request head insertation from the workqueue.
583 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
585 spin_lock_irqsave(&q->requeue_lock, flags);
586 if (at_head) {
587 rq->rq_flags |= RQF_SOFTBARRIER;
588 list_add(&rq->queuelist, &q->requeue_list);
589 } else {
590 list_add_tail(&rq->queuelist, &q->requeue_list);
592 spin_unlock_irqrestore(&q->requeue_lock, flags);
594 if (kick_requeue_list)
595 blk_mq_kick_requeue_list(q);
597 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
599 void blk_mq_kick_requeue_list(struct request_queue *q)
601 kblockd_schedule_delayed_work(&q->requeue_work, 0);
603 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
605 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
606 unsigned long msecs)
608 kblockd_schedule_delayed_work(&q->requeue_work,
609 msecs_to_jiffies(msecs));
611 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
613 void blk_mq_abort_requeue_list(struct request_queue *q)
615 unsigned long flags;
616 LIST_HEAD(rq_list);
618 spin_lock_irqsave(&q->requeue_lock, flags);
619 list_splice_init(&q->requeue_list, &rq_list);
620 spin_unlock_irqrestore(&q->requeue_lock, flags);
622 while (!list_empty(&rq_list)) {
623 struct request *rq;
625 rq = list_first_entry(&rq_list, struct request, queuelist);
626 list_del_init(&rq->queuelist);
627 rq->errors = -EIO;
628 blk_mq_end_request(rq, rq->errors);
631 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
633 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
635 if (tag < tags->nr_tags) {
636 prefetch(tags->rqs[tag]);
637 return tags->rqs[tag];
640 return NULL;
642 EXPORT_SYMBOL(blk_mq_tag_to_rq);
644 struct blk_mq_timeout_data {
645 unsigned long next;
646 unsigned int next_set;
649 void blk_mq_rq_timed_out(struct request *req, bool reserved)
651 const struct blk_mq_ops *ops = req->q->mq_ops;
652 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
655 * We know that complete is set at this point. If STARTED isn't set
656 * anymore, then the request isn't active and the "timeout" should
657 * just be ignored. This can happen due to the bitflag ordering.
658 * Timeout first checks if STARTED is set, and if it is, assumes
659 * the request is active. But if we race with completion, then
660 * we both flags will get cleared. So check here again, and ignore
661 * a timeout event with a request that isn't active.
663 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
664 return;
666 if (ops->timeout)
667 ret = ops->timeout(req, reserved);
669 switch (ret) {
670 case BLK_EH_HANDLED:
671 __blk_mq_complete_request(req);
672 break;
673 case BLK_EH_RESET_TIMER:
674 blk_add_timer(req);
675 blk_clear_rq_complete(req);
676 break;
677 case BLK_EH_NOT_HANDLED:
678 break;
679 default:
680 printk(KERN_ERR "block: bad eh return: %d\n", ret);
681 break;
685 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
686 struct request *rq, void *priv, bool reserved)
688 struct blk_mq_timeout_data *data = priv;
690 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
692 * If a request wasn't started before the queue was
693 * marked dying, kill it here or it'll go unnoticed.
695 if (unlikely(blk_queue_dying(rq->q))) {
696 rq->errors = -EIO;
697 blk_mq_end_request(rq, rq->errors);
699 return;
702 if (time_after_eq(jiffies, rq->deadline)) {
703 if (!blk_mark_rq_complete(rq))
704 blk_mq_rq_timed_out(rq, reserved);
705 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
706 data->next = rq->deadline;
707 data->next_set = 1;
711 static void blk_mq_timeout_work(struct work_struct *work)
713 struct request_queue *q =
714 container_of(work, struct request_queue, timeout_work);
715 struct blk_mq_timeout_data data = {
716 .next = 0,
717 .next_set = 0,
719 int i;
721 /* A deadlock might occur if a request is stuck requiring a
722 * timeout at the same time a queue freeze is waiting
723 * completion, since the timeout code would not be able to
724 * acquire the queue reference here.
726 * That's why we don't use blk_queue_enter here; instead, we use
727 * percpu_ref_tryget directly, because we need to be able to
728 * obtain a reference even in the short window between the queue
729 * starting to freeze, by dropping the first reference in
730 * blk_mq_freeze_queue_start, and the moment the last request is
731 * consumed, marked by the instant q_usage_counter reaches
732 * zero.
734 if (!percpu_ref_tryget(&q->q_usage_counter))
735 return;
737 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
739 if (data.next_set) {
740 data.next = blk_rq_timeout(round_jiffies_up(data.next));
741 mod_timer(&q->timeout, data.next);
742 } else {
743 struct blk_mq_hw_ctx *hctx;
745 queue_for_each_hw_ctx(q, hctx, i) {
746 /* the hctx may be unmapped, so check it here */
747 if (blk_mq_hw_queue_mapped(hctx))
748 blk_mq_tag_idle(hctx);
751 blk_queue_exit(q);
755 * Reverse check our software queue for entries that we could potentially
756 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
757 * too much time checking for merges.
759 static bool blk_mq_attempt_merge(struct request_queue *q,
760 struct blk_mq_ctx *ctx, struct bio *bio)
762 struct request *rq;
763 int checked = 8;
765 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
766 bool merged = false;
768 if (!checked--)
769 break;
771 if (!blk_rq_merge_ok(rq, bio))
772 continue;
774 switch (blk_try_merge(rq, bio)) {
775 case ELEVATOR_BACK_MERGE:
776 if (blk_mq_sched_allow_merge(q, rq, bio))
777 merged = bio_attempt_back_merge(q, rq, bio);
778 break;
779 case ELEVATOR_FRONT_MERGE:
780 if (blk_mq_sched_allow_merge(q, rq, bio))
781 merged = bio_attempt_front_merge(q, rq, bio);
782 break;
783 case ELEVATOR_DISCARD_MERGE:
784 merged = bio_attempt_discard_merge(q, rq, bio);
785 break;
786 default:
787 continue;
790 if (merged)
791 ctx->rq_merged++;
792 return merged;
795 return false;
798 struct flush_busy_ctx_data {
799 struct blk_mq_hw_ctx *hctx;
800 struct list_head *list;
803 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
805 struct flush_busy_ctx_data *flush_data = data;
806 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
807 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
809 sbitmap_clear_bit(sb, bitnr);
810 spin_lock(&ctx->lock);
811 list_splice_tail_init(&ctx->rq_list, flush_data->list);
812 spin_unlock(&ctx->lock);
813 return true;
817 * Process software queues that have been marked busy, splicing them
818 * to the for-dispatch
820 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
822 struct flush_busy_ctx_data data = {
823 .hctx = hctx,
824 .list = list,
827 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
829 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
831 static inline unsigned int queued_to_index(unsigned int queued)
833 if (!queued)
834 return 0;
836 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
839 bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
840 bool wait)
842 struct blk_mq_alloc_data data = {
843 .q = rq->q,
844 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
845 .flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
848 if (rq->tag != -1) {
849 done:
850 if (hctx)
851 *hctx = data.hctx;
852 return true;
855 rq->tag = blk_mq_get_tag(&data);
856 if (rq->tag >= 0) {
857 if (blk_mq_tag_busy(data.hctx)) {
858 rq->rq_flags |= RQF_MQ_INFLIGHT;
859 atomic_inc(&data.hctx->nr_active);
861 data.hctx->tags->rqs[rq->tag] = rq;
862 goto done;
865 return false;
868 static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
869 struct request *rq)
871 if (rq->tag == -1 || rq->internal_tag == -1)
872 return;
874 blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
875 rq->tag = -1;
877 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
878 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
879 atomic_dec(&hctx->nr_active);
884 * If we fail getting a driver tag because all the driver tags are already
885 * assigned and on the dispatch list, BUT the first entry does not have a
886 * tag, then we could deadlock. For that case, move entries with assigned
887 * driver tags to the front, leaving the set of tagged requests in the
888 * same order, and the untagged set in the same order.
890 static bool reorder_tags_to_front(struct list_head *list)
892 struct request *rq, *tmp, *first = NULL;
894 list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
895 if (rq == first)
896 break;
897 if (rq->tag != -1) {
898 list_move(&rq->queuelist, list);
899 if (!first)
900 first = rq;
904 return first != NULL;
907 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
909 struct request_queue *q = hctx->queue;
910 struct request *rq;
911 LIST_HEAD(driver_list);
912 struct list_head *dptr;
913 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
916 * Start off with dptr being NULL, so we start the first request
917 * immediately, even if we have more pending.
919 dptr = NULL;
922 * Now process all the entries, sending them to the driver.
924 queued = 0;
925 while (!list_empty(list)) {
926 struct blk_mq_queue_data bd;
928 rq = list_first_entry(list, struct request, queuelist);
929 if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
930 if (!queued && reorder_tags_to_front(list))
931 continue;
934 * We failed getting a driver tag. Mark the queue(s)
935 * as needing a restart. Retry getting a tag again,
936 * in case the needed IO completed right before we
937 * marked the queue as needing a restart.
939 blk_mq_sched_mark_restart(hctx);
940 if (!blk_mq_get_driver_tag(rq, &hctx, false))
941 break;
943 list_del_init(&rq->queuelist);
945 bd.rq = rq;
946 bd.list = dptr;
947 bd.last = list_empty(list);
949 ret = q->mq_ops->queue_rq(hctx, &bd);
950 switch (ret) {
951 case BLK_MQ_RQ_QUEUE_OK:
952 queued++;
953 break;
954 case BLK_MQ_RQ_QUEUE_BUSY:
955 blk_mq_put_driver_tag(hctx, rq);
956 list_add(&rq->queuelist, list);
957 __blk_mq_requeue_request(rq);
958 break;
959 default:
960 pr_err("blk-mq: bad return on queue: %d\n", ret);
961 case BLK_MQ_RQ_QUEUE_ERROR:
962 rq->errors = -EIO;
963 blk_mq_end_request(rq, rq->errors);
964 break;
967 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
968 break;
971 * We've done the first request. If we have more than 1
972 * left in the list, set dptr to defer issue.
974 if (!dptr && list->next != list->prev)
975 dptr = &driver_list;
978 hctx->dispatched[queued_to_index(queued)]++;
981 * Any items that need requeuing? Stuff them into hctx->dispatch,
982 * that is where we will continue on next queue run.
984 if (!list_empty(list)) {
985 spin_lock(&hctx->lock);
986 list_splice_init(list, &hctx->dispatch);
987 spin_unlock(&hctx->lock);
990 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
991 * it's possible the queue is stopped and restarted again
992 * before this. Queue restart will dispatch requests. And since
993 * requests in rq_list aren't added into hctx->dispatch yet,
994 * the requests in rq_list might get lost.
996 * blk_mq_run_hw_queue() already checks the STOPPED bit
998 * If RESTART is set, then let completion restart the queue
999 * instead of potentially looping here.
1001 if (!blk_mq_sched_needs_restart(hctx))
1002 blk_mq_run_hw_queue(hctx, true);
1005 return queued != 0;
1008 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1010 int srcu_idx;
1012 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1013 cpu_online(hctx->next_cpu));
1015 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
1016 rcu_read_lock();
1017 blk_mq_sched_dispatch_requests(hctx);
1018 rcu_read_unlock();
1019 } else {
1020 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1021 blk_mq_sched_dispatch_requests(hctx);
1022 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
1027 * It'd be great if the workqueue API had a way to pass
1028 * in a mask and had some smarts for more clever placement.
1029 * For now we just round-robin here, switching for every
1030 * BLK_MQ_CPU_WORK_BATCH queued items.
1032 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1034 if (hctx->queue->nr_hw_queues == 1)
1035 return WORK_CPU_UNBOUND;
1037 if (--hctx->next_cpu_batch <= 0) {
1038 int next_cpu;
1040 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
1041 if (next_cpu >= nr_cpu_ids)
1042 next_cpu = cpumask_first(hctx->cpumask);
1044 hctx->next_cpu = next_cpu;
1045 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1048 return hctx->next_cpu;
1051 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1053 if (unlikely(blk_mq_hctx_stopped(hctx) ||
1054 !blk_mq_hw_queue_mapped(hctx)))
1055 return;
1057 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1058 int cpu = get_cpu();
1059 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1060 __blk_mq_run_hw_queue(hctx);
1061 put_cpu();
1062 return;
1065 put_cpu();
1068 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1071 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1073 struct blk_mq_hw_ctx *hctx;
1074 int i;
1076 queue_for_each_hw_ctx(q, hctx, i) {
1077 if (!blk_mq_hctx_has_pending(hctx) ||
1078 blk_mq_hctx_stopped(hctx))
1079 continue;
1081 blk_mq_run_hw_queue(hctx, async);
1084 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1087 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1088 * @q: request queue.
1090 * The caller is responsible for serializing this function against
1091 * blk_mq_{start,stop}_hw_queue().
1093 bool blk_mq_queue_stopped(struct request_queue *q)
1095 struct blk_mq_hw_ctx *hctx;
1096 int i;
1098 queue_for_each_hw_ctx(q, hctx, i)
1099 if (blk_mq_hctx_stopped(hctx))
1100 return true;
1102 return false;
1104 EXPORT_SYMBOL(blk_mq_queue_stopped);
1106 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1108 cancel_work(&hctx->run_work);
1109 cancel_delayed_work(&hctx->delay_work);
1110 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1112 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1114 void blk_mq_stop_hw_queues(struct request_queue *q)
1116 struct blk_mq_hw_ctx *hctx;
1117 int i;
1119 queue_for_each_hw_ctx(q, hctx, i)
1120 blk_mq_stop_hw_queue(hctx);
1122 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1124 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1126 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1128 blk_mq_run_hw_queue(hctx, false);
1130 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1132 void blk_mq_start_hw_queues(struct request_queue *q)
1134 struct blk_mq_hw_ctx *hctx;
1135 int i;
1137 queue_for_each_hw_ctx(q, hctx, i)
1138 blk_mq_start_hw_queue(hctx);
1140 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1142 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1144 if (!blk_mq_hctx_stopped(hctx))
1145 return;
1147 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1148 blk_mq_run_hw_queue(hctx, async);
1150 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1152 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1154 struct blk_mq_hw_ctx *hctx;
1155 int i;
1157 queue_for_each_hw_ctx(q, hctx, i)
1158 blk_mq_start_stopped_hw_queue(hctx, async);
1160 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1162 static void blk_mq_run_work_fn(struct work_struct *work)
1164 struct blk_mq_hw_ctx *hctx;
1166 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1168 __blk_mq_run_hw_queue(hctx);
1171 static void blk_mq_delay_work_fn(struct work_struct *work)
1173 struct blk_mq_hw_ctx *hctx;
1175 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1177 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1178 __blk_mq_run_hw_queue(hctx);
1181 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1183 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1184 return;
1186 blk_mq_stop_hw_queue(hctx);
1187 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1188 &hctx->delay_work, msecs_to_jiffies(msecs));
1190 EXPORT_SYMBOL(blk_mq_delay_queue);
1192 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1193 struct request *rq,
1194 bool at_head)
1196 struct blk_mq_ctx *ctx = rq->mq_ctx;
1198 trace_block_rq_insert(hctx->queue, rq);
1200 if (at_head)
1201 list_add(&rq->queuelist, &ctx->rq_list);
1202 else
1203 list_add_tail(&rq->queuelist, &ctx->rq_list);
1206 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1207 bool at_head)
1209 struct blk_mq_ctx *ctx = rq->mq_ctx;
1211 __blk_mq_insert_req_list(hctx, rq, at_head);
1212 blk_mq_hctx_mark_pending(hctx, ctx);
1215 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1216 struct list_head *list)
1220 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1221 * offline now
1223 spin_lock(&ctx->lock);
1224 while (!list_empty(list)) {
1225 struct request *rq;
1227 rq = list_first_entry(list, struct request, queuelist);
1228 BUG_ON(rq->mq_ctx != ctx);
1229 list_del_init(&rq->queuelist);
1230 __blk_mq_insert_req_list(hctx, rq, false);
1232 blk_mq_hctx_mark_pending(hctx, ctx);
1233 spin_unlock(&ctx->lock);
1236 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1238 struct request *rqa = container_of(a, struct request, queuelist);
1239 struct request *rqb = container_of(b, struct request, queuelist);
1241 return !(rqa->mq_ctx < rqb->mq_ctx ||
1242 (rqa->mq_ctx == rqb->mq_ctx &&
1243 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1246 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1248 struct blk_mq_ctx *this_ctx;
1249 struct request_queue *this_q;
1250 struct request *rq;
1251 LIST_HEAD(list);
1252 LIST_HEAD(ctx_list);
1253 unsigned int depth;
1255 list_splice_init(&plug->mq_list, &list);
1257 list_sort(NULL, &list, plug_ctx_cmp);
1259 this_q = NULL;
1260 this_ctx = NULL;
1261 depth = 0;
1263 while (!list_empty(&list)) {
1264 rq = list_entry_rq(list.next);
1265 list_del_init(&rq->queuelist);
1266 BUG_ON(!rq->q);
1267 if (rq->mq_ctx != this_ctx) {
1268 if (this_ctx) {
1269 trace_block_unplug(this_q, depth, from_schedule);
1270 blk_mq_sched_insert_requests(this_q, this_ctx,
1271 &ctx_list,
1272 from_schedule);
1275 this_ctx = rq->mq_ctx;
1276 this_q = rq->q;
1277 depth = 0;
1280 depth++;
1281 list_add_tail(&rq->queuelist, &ctx_list);
1285 * If 'this_ctx' is set, we know we have entries to complete
1286 * on 'ctx_list'. Do those.
1288 if (this_ctx) {
1289 trace_block_unplug(this_q, depth, from_schedule);
1290 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1291 from_schedule);
1295 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1297 init_request_from_bio(rq, bio);
1299 blk_account_io_start(rq, true);
1302 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1304 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1305 !blk_queue_nomerges(hctx->queue);
1308 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1309 struct blk_mq_ctx *ctx,
1310 struct request *rq, struct bio *bio)
1312 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1313 blk_mq_bio_to_request(rq, bio);
1314 spin_lock(&ctx->lock);
1315 insert_rq:
1316 __blk_mq_insert_request(hctx, rq, false);
1317 spin_unlock(&ctx->lock);
1318 return false;
1319 } else {
1320 struct request_queue *q = hctx->queue;
1322 spin_lock(&ctx->lock);
1323 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1324 blk_mq_bio_to_request(rq, bio);
1325 goto insert_rq;
1328 spin_unlock(&ctx->lock);
1329 __blk_mq_finish_request(hctx, ctx, rq);
1330 return true;
1334 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1336 if (rq->tag != -1)
1337 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1339 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1342 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1344 struct request_queue *q = rq->q;
1345 struct blk_mq_queue_data bd = {
1346 .rq = rq,
1347 .list = NULL,
1348 .last = 1
1350 struct blk_mq_hw_ctx *hctx;
1351 blk_qc_t new_cookie;
1352 int ret;
1354 if (q->elevator)
1355 goto insert;
1357 if (!blk_mq_get_driver_tag(rq, &hctx, false))
1358 goto insert;
1360 new_cookie = request_to_qc_t(hctx, rq);
1363 * For OK queue, we are done. For error, kill it. Any other
1364 * error (busy), just add it to our list as we previously
1365 * would have done
1367 ret = q->mq_ops->queue_rq(hctx, &bd);
1368 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1369 *cookie = new_cookie;
1370 return;
1373 __blk_mq_requeue_request(rq);
1375 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1376 *cookie = BLK_QC_T_NONE;
1377 rq->errors = -EIO;
1378 blk_mq_end_request(rq, rq->errors);
1379 return;
1382 insert:
1383 blk_mq_sched_insert_request(rq, false, true, true, false);
1387 * Multiple hardware queue variant. This will not use per-process plugs,
1388 * but will attempt to bypass the hctx queueing if we can go straight to
1389 * hardware for SYNC IO.
1391 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1393 const int is_sync = op_is_sync(bio->bi_opf);
1394 const int is_flush_fua = op_is_flush(bio->bi_opf);
1395 struct blk_mq_alloc_data data = { .flags = 0 };
1396 struct request *rq;
1397 unsigned int request_count = 0, srcu_idx;
1398 struct blk_plug *plug;
1399 struct request *same_queue_rq = NULL;
1400 blk_qc_t cookie;
1401 unsigned int wb_acct;
1403 blk_queue_bounce(q, &bio);
1405 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1406 bio_io_error(bio);
1407 return BLK_QC_T_NONE;
1410 blk_queue_split(q, &bio, q->bio_split);
1412 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1413 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1414 return BLK_QC_T_NONE;
1416 if (blk_mq_sched_bio_merge(q, bio))
1417 return BLK_QC_T_NONE;
1419 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1421 trace_block_getrq(q, bio, bio->bi_opf);
1423 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1424 if (unlikely(!rq)) {
1425 __wbt_done(q->rq_wb, wb_acct);
1426 return BLK_QC_T_NONE;
1429 wbt_track(&rq->issue_stat, wb_acct);
1431 cookie = request_to_qc_t(data.hctx, rq);
1433 if (unlikely(is_flush_fua)) {
1434 if (q->elevator)
1435 goto elv_insert;
1436 blk_mq_bio_to_request(rq, bio);
1437 blk_insert_flush(rq);
1438 goto run_queue;
1441 plug = current->plug;
1443 * If the driver supports defer issued based on 'last', then
1444 * queue it up like normal since we can potentially save some
1445 * CPU this way.
1447 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1448 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1449 struct request *old_rq = NULL;
1451 blk_mq_bio_to_request(rq, bio);
1454 * We do limited plugging. If the bio can be merged, do that.
1455 * Otherwise the existing request in the plug list will be
1456 * issued. So the plug list will have one request at most
1458 if (plug) {
1460 * The plug list might get flushed before this. If that
1461 * happens, same_queue_rq is invalid and plug list is
1462 * empty
1464 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1465 old_rq = same_queue_rq;
1466 list_del_init(&old_rq->queuelist);
1468 list_add_tail(&rq->queuelist, &plug->mq_list);
1469 } else /* is_sync */
1470 old_rq = rq;
1471 blk_mq_put_ctx(data.ctx);
1472 if (!old_rq)
1473 goto done;
1475 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1476 rcu_read_lock();
1477 blk_mq_try_issue_directly(old_rq, &cookie);
1478 rcu_read_unlock();
1479 } else {
1480 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1481 blk_mq_try_issue_directly(old_rq, &cookie);
1482 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1484 goto done;
1487 if (q->elevator) {
1488 elv_insert:
1489 blk_mq_put_ctx(data.ctx);
1490 blk_mq_bio_to_request(rq, bio);
1491 blk_mq_sched_insert_request(rq, false, true,
1492 !is_sync || is_flush_fua, true);
1493 goto done;
1495 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1497 * For a SYNC request, send it to the hardware immediately. For
1498 * an ASYNC request, just ensure that we run it later on. The
1499 * latter allows for merging opportunities and more efficient
1500 * dispatching.
1502 run_queue:
1503 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1505 blk_mq_put_ctx(data.ctx);
1506 done:
1507 return cookie;
1511 * Single hardware queue variant. This will attempt to use any per-process
1512 * plug for merging and IO deferral.
1514 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1516 const int is_sync = op_is_sync(bio->bi_opf);
1517 const int is_flush_fua = op_is_flush(bio->bi_opf);
1518 struct blk_plug *plug;
1519 unsigned int request_count = 0;
1520 struct blk_mq_alloc_data data = { .flags = 0 };
1521 struct request *rq;
1522 blk_qc_t cookie;
1523 unsigned int wb_acct;
1525 blk_queue_bounce(q, &bio);
1527 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1528 bio_io_error(bio);
1529 return BLK_QC_T_NONE;
1532 blk_queue_split(q, &bio, q->bio_split);
1534 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1535 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1536 return BLK_QC_T_NONE;
1537 } else
1538 request_count = blk_plug_queued_count(q);
1540 if (blk_mq_sched_bio_merge(q, bio))
1541 return BLK_QC_T_NONE;
1543 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1545 trace_block_getrq(q, bio, bio->bi_opf);
1547 rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
1548 if (unlikely(!rq)) {
1549 __wbt_done(q->rq_wb, wb_acct);
1550 return BLK_QC_T_NONE;
1553 wbt_track(&rq->issue_stat, wb_acct);
1555 cookie = request_to_qc_t(data.hctx, rq);
1557 if (unlikely(is_flush_fua)) {
1558 if (q->elevator)
1559 goto elv_insert;
1560 blk_mq_bio_to_request(rq, bio);
1561 blk_insert_flush(rq);
1562 goto run_queue;
1566 * A task plug currently exists. Since this is completely lockless,
1567 * utilize that to temporarily store requests until the task is
1568 * either done or scheduled away.
1570 plug = current->plug;
1571 if (plug) {
1572 struct request *last = NULL;
1574 blk_mq_bio_to_request(rq, bio);
1577 * @request_count may become stale because of schedule
1578 * out, so check the list again.
1580 if (list_empty(&plug->mq_list))
1581 request_count = 0;
1582 if (!request_count)
1583 trace_block_plug(q);
1584 else
1585 last = list_entry_rq(plug->mq_list.prev);
1587 blk_mq_put_ctx(data.ctx);
1589 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1590 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1591 blk_flush_plug_list(plug, false);
1592 trace_block_plug(q);
1595 list_add_tail(&rq->queuelist, &plug->mq_list);
1596 return cookie;
1599 if (q->elevator) {
1600 elv_insert:
1601 blk_mq_put_ctx(data.ctx);
1602 blk_mq_bio_to_request(rq, bio);
1603 blk_mq_sched_insert_request(rq, false, true,
1604 !is_sync || is_flush_fua, true);
1605 goto done;
1607 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1609 * For a SYNC request, send it to the hardware immediately. For
1610 * an ASYNC request, just ensure that we run it later on. The
1611 * latter allows for merging opportunities and more efficient
1612 * dispatching.
1614 run_queue:
1615 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1618 blk_mq_put_ctx(data.ctx);
1619 done:
1620 return cookie;
1623 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1624 unsigned int hctx_idx)
1626 struct page *page;
1628 if (tags->rqs && set->ops->exit_request) {
1629 int i;
1631 for (i = 0; i < tags->nr_tags; i++) {
1632 struct request *rq = tags->static_rqs[i];
1634 if (!rq)
1635 continue;
1636 set->ops->exit_request(set->driver_data, rq,
1637 hctx_idx, i);
1638 tags->static_rqs[i] = NULL;
1642 while (!list_empty(&tags->page_list)) {
1643 page = list_first_entry(&tags->page_list, struct page, lru);
1644 list_del_init(&page->lru);
1646 * Remove kmemleak object previously allocated in
1647 * blk_mq_init_rq_map().
1649 kmemleak_free(page_address(page));
1650 __free_pages(page, page->private);
1654 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1656 kfree(tags->rqs);
1657 tags->rqs = NULL;
1658 kfree(tags->static_rqs);
1659 tags->static_rqs = NULL;
1661 blk_mq_free_tags(tags);
1664 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1665 unsigned int hctx_idx,
1666 unsigned int nr_tags,
1667 unsigned int reserved_tags)
1669 struct blk_mq_tags *tags;
1671 tags = blk_mq_init_tags(nr_tags, reserved_tags,
1672 set->numa_node,
1673 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1674 if (!tags)
1675 return NULL;
1677 tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1678 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1679 set->numa_node);
1680 if (!tags->rqs) {
1681 blk_mq_free_tags(tags);
1682 return NULL;
1685 tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1686 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1687 set->numa_node);
1688 if (!tags->static_rqs) {
1689 kfree(tags->rqs);
1690 blk_mq_free_tags(tags);
1691 return NULL;
1694 return tags;
1697 static size_t order_to_size(unsigned int order)
1699 return (size_t)PAGE_SIZE << order;
1702 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1703 unsigned int hctx_idx, unsigned int depth)
1705 unsigned int i, j, entries_per_page, max_order = 4;
1706 size_t rq_size, left;
1708 INIT_LIST_HEAD(&tags->page_list);
1711 * rq_size is the size of the request plus driver payload, rounded
1712 * to the cacheline size
1714 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1715 cache_line_size());
1716 left = rq_size * depth;
1718 for (i = 0; i < depth; ) {
1719 int this_order = max_order;
1720 struct page *page;
1721 int to_do;
1722 void *p;
1724 while (this_order && left < order_to_size(this_order - 1))
1725 this_order--;
1727 do {
1728 page = alloc_pages_node(set->numa_node,
1729 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1730 this_order);
1731 if (page)
1732 break;
1733 if (!this_order--)
1734 break;
1735 if (order_to_size(this_order) < rq_size)
1736 break;
1737 } while (1);
1739 if (!page)
1740 goto fail;
1742 page->private = this_order;
1743 list_add_tail(&page->lru, &tags->page_list);
1745 p = page_address(page);
1747 * Allow kmemleak to scan these pages as they contain pointers
1748 * to additional allocations like via ops->init_request().
1750 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1751 entries_per_page = order_to_size(this_order) / rq_size;
1752 to_do = min(entries_per_page, depth - i);
1753 left -= to_do * rq_size;
1754 for (j = 0; j < to_do; j++) {
1755 struct request *rq = p;
1757 tags->static_rqs[i] = rq;
1758 if (set->ops->init_request) {
1759 if (set->ops->init_request(set->driver_data,
1760 rq, hctx_idx, i,
1761 set->numa_node)) {
1762 tags->static_rqs[i] = NULL;
1763 goto fail;
1767 p += rq_size;
1768 i++;
1771 return 0;
1773 fail:
1774 blk_mq_free_rqs(set, tags, hctx_idx);
1775 return -ENOMEM;
1779 * 'cpu' is going away. splice any existing rq_list entries from this
1780 * software queue to the hw queue dispatch list, and ensure that it
1781 * gets run.
1783 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1785 struct blk_mq_hw_ctx *hctx;
1786 struct blk_mq_ctx *ctx;
1787 LIST_HEAD(tmp);
1789 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1790 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1792 spin_lock(&ctx->lock);
1793 if (!list_empty(&ctx->rq_list)) {
1794 list_splice_init(&ctx->rq_list, &tmp);
1795 blk_mq_hctx_clear_pending(hctx, ctx);
1797 spin_unlock(&ctx->lock);
1799 if (list_empty(&tmp))
1800 return 0;
1802 spin_lock(&hctx->lock);
1803 list_splice_tail_init(&tmp, &hctx->dispatch);
1804 spin_unlock(&hctx->lock);
1806 blk_mq_run_hw_queue(hctx, true);
1807 return 0;
1810 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1812 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1813 &hctx->cpuhp_dead);
1816 /* hctx->ctxs will be freed in queue's release handler */
1817 static void blk_mq_exit_hctx(struct request_queue *q,
1818 struct blk_mq_tag_set *set,
1819 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1821 unsigned flush_start_tag = set->queue_depth;
1823 blk_mq_tag_idle(hctx);
1825 if (set->ops->exit_request)
1826 set->ops->exit_request(set->driver_data,
1827 hctx->fq->flush_rq, hctx_idx,
1828 flush_start_tag + hctx_idx);
1830 if (set->ops->exit_hctx)
1831 set->ops->exit_hctx(hctx, hctx_idx);
1833 if (hctx->flags & BLK_MQ_F_BLOCKING)
1834 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1836 blk_mq_remove_cpuhp(hctx);
1837 blk_free_flush_queue(hctx->fq);
1838 sbitmap_free(&hctx->ctx_map);
1841 static void blk_mq_exit_hw_queues(struct request_queue *q,
1842 struct blk_mq_tag_set *set, int nr_queue)
1844 struct blk_mq_hw_ctx *hctx;
1845 unsigned int i;
1847 queue_for_each_hw_ctx(q, hctx, i) {
1848 if (i == nr_queue)
1849 break;
1850 blk_mq_exit_hctx(q, set, hctx, i);
1854 static void blk_mq_free_hw_queues(struct request_queue *q,
1855 struct blk_mq_tag_set *set)
1857 struct blk_mq_hw_ctx *hctx;
1858 unsigned int i;
1860 queue_for_each_hw_ctx(q, hctx, i)
1861 free_cpumask_var(hctx->cpumask);
1864 static int blk_mq_init_hctx(struct request_queue *q,
1865 struct blk_mq_tag_set *set,
1866 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1868 int node;
1869 unsigned flush_start_tag = set->queue_depth;
1871 node = hctx->numa_node;
1872 if (node == NUMA_NO_NODE)
1873 node = hctx->numa_node = set->numa_node;
1875 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1876 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1877 spin_lock_init(&hctx->lock);
1878 INIT_LIST_HEAD(&hctx->dispatch);
1879 hctx->queue = q;
1880 hctx->queue_num = hctx_idx;
1881 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1883 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1885 hctx->tags = set->tags[hctx_idx];
1888 * Allocate space for all possible cpus to avoid allocation at
1889 * runtime
1891 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1892 GFP_KERNEL, node);
1893 if (!hctx->ctxs)
1894 goto unregister_cpu_notifier;
1896 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1897 node))
1898 goto free_ctxs;
1900 hctx->nr_ctx = 0;
1902 if (set->ops->init_hctx &&
1903 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1904 goto free_bitmap;
1906 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1907 if (!hctx->fq)
1908 goto exit_hctx;
1910 if (set->ops->init_request &&
1911 set->ops->init_request(set->driver_data,
1912 hctx->fq->flush_rq, hctx_idx,
1913 flush_start_tag + hctx_idx, node))
1914 goto free_fq;
1916 if (hctx->flags & BLK_MQ_F_BLOCKING)
1917 init_srcu_struct(&hctx->queue_rq_srcu);
1919 return 0;
1921 free_fq:
1922 kfree(hctx->fq);
1923 exit_hctx:
1924 if (set->ops->exit_hctx)
1925 set->ops->exit_hctx(hctx, hctx_idx);
1926 free_bitmap:
1927 sbitmap_free(&hctx->ctx_map);
1928 free_ctxs:
1929 kfree(hctx->ctxs);
1930 unregister_cpu_notifier:
1931 blk_mq_remove_cpuhp(hctx);
1932 return -1;
1935 static void blk_mq_init_cpu_queues(struct request_queue *q,
1936 unsigned int nr_hw_queues)
1938 unsigned int i;
1940 for_each_possible_cpu(i) {
1941 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1942 struct blk_mq_hw_ctx *hctx;
1944 memset(__ctx, 0, sizeof(*__ctx));
1945 __ctx->cpu = i;
1946 spin_lock_init(&__ctx->lock);
1947 INIT_LIST_HEAD(&__ctx->rq_list);
1948 __ctx->queue = q;
1949 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1950 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1952 /* If the cpu isn't online, the cpu is mapped to first hctx */
1953 if (!cpu_online(i))
1954 continue;
1956 hctx = blk_mq_map_queue(q, i);
1959 * Set local node, IFF we have more than one hw queue. If
1960 * not, we remain on the home node of the device
1962 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1963 hctx->numa_node = local_memory_node(cpu_to_node(i));
1967 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
1969 int ret = 0;
1971 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
1972 set->queue_depth, set->reserved_tags);
1973 if (!set->tags[hctx_idx])
1974 return false;
1976 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
1977 set->queue_depth);
1978 if (!ret)
1979 return true;
1981 blk_mq_free_rq_map(set->tags[hctx_idx]);
1982 set->tags[hctx_idx] = NULL;
1983 return false;
1986 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
1987 unsigned int hctx_idx)
1989 if (set->tags[hctx_idx]) {
1990 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
1991 blk_mq_free_rq_map(set->tags[hctx_idx]);
1992 set->tags[hctx_idx] = NULL;
1996 static void blk_mq_map_swqueue(struct request_queue *q,
1997 const struct cpumask *online_mask)
1999 unsigned int i, hctx_idx;
2000 struct blk_mq_hw_ctx *hctx;
2001 struct blk_mq_ctx *ctx;
2002 struct blk_mq_tag_set *set = q->tag_set;
2005 * Avoid others reading imcomplete hctx->cpumask through sysfs
2007 mutex_lock(&q->sysfs_lock);
2009 queue_for_each_hw_ctx(q, hctx, i) {
2010 cpumask_clear(hctx->cpumask);
2011 hctx->nr_ctx = 0;
2015 * Map software to hardware queues
2017 for_each_possible_cpu(i) {
2018 /* If the cpu isn't online, the cpu is mapped to first hctx */
2019 if (!cpumask_test_cpu(i, online_mask))
2020 continue;
2022 hctx_idx = q->mq_map[i];
2023 /* unmapped hw queue can be remapped after CPU topo changed */
2024 if (!set->tags[hctx_idx] &&
2025 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2027 * If tags initialization fail for some hctx,
2028 * that hctx won't be brought online. In this
2029 * case, remap the current ctx to hctx[0] which
2030 * is guaranteed to always have tags allocated
2032 q->mq_map[i] = 0;
2035 ctx = per_cpu_ptr(q->queue_ctx, i);
2036 hctx = blk_mq_map_queue(q, i);
2038 cpumask_set_cpu(i, hctx->cpumask);
2039 ctx->index_hw = hctx->nr_ctx;
2040 hctx->ctxs[hctx->nr_ctx++] = ctx;
2043 mutex_unlock(&q->sysfs_lock);
2045 queue_for_each_hw_ctx(q, hctx, i) {
2047 * If no software queues are mapped to this hardware queue,
2048 * disable it and free the request entries.
2050 if (!hctx->nr_ctx) {
2051 /* Never unmap queue 0. We need it as a
2052 * fallback in case of a new remap fails
2053 * allocation
2055 if (i && set->tags[i])
2056 blk_mq_free_map_and_requests(set, i);
2058 hctx->tags = NULL;
2059 continue;
2062 hctx->tags = set->tags[i];
2063 WARN_ON(!hctx->tags);
2066 * Set the map size to the number of mapped software queues.
2067 * This is more accurate and more efficient than looping
2068 * over all possibly mapped software queues.
2070 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2073 * Initialize batch roundrobin counts
2075 hctx->next_cpu = cpumask_first(hctx->cpumask);
2076 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2080 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2082 struct blk_mq_hw_ctx *hctx;
2083 int i;
2085 queue_for_each_hw_ctx(q, hctx, i) {
2086 if (shared)
2087 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2088 else
2089 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2093 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
2095 struct request_queue *q;
2097 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2098 blk_mq_freeze_queue(q);
2099 queue_set_hctx_shared(q, shared);
2100 blk_mq_unfreeze_queue(q);
2104 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2106 struct blk_mq_tag_set *set = q->tag_set;
2108 mutex_lock(&set->tag_list_lock);
2109 list_del_init(&q->tag_set_list);
2110 if (list_is_singular(&set->tag_list)) {
2111 /* just transitioned to unshared */
2112 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2113 /* update existing queue */
2114 blk_mq_update_tag_set_depth(set, false);
2116 mutex_unlock(&set->tag_list_lock);
2119 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2120 struct request_queue *q)
2122 q->tag_set = set;
2124 mutex_lock(&set->tag_list_lock);
2126 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2127 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2128 set->flags |= BLK_MQ_F_TAG_SHARED;
2129 /* update existing queue */
2130 blk_mq_update_tag_set_depth(set, true);
2132 if (set->flags & BLK_MQ_F_TAG_SHARED)
2133 queue_set_hctx_shared(q, true);
2134 list_add_tail(&q->tag_set_list, &set->tag_list);
2136 mutex_unlock(&set->tag_list_lock);
2140 * It is the actual release handler for mq, but we do it from
2141 * request queue's release handler for avoiding use-after-free
2142 * and headache because q->mq_kobj shouldn't have been introduced,
2143 * but we can't group ctx/kctx kobj without it.
2145 void blk_mq_release(struct request_queue *q)
2147 struct blk_mq_hw_ctx *hctx;
2148 unsigned int i;
2150 blk_mq_sched_teardown(q);
2152 /* hctx kobj stays in hctx */
2153 queue_for_each_hw_ctx(q, hctx, i) {
2154 if (!hctx)
2155 continue;
2156 kfree(hctx->ctxs);
2157 kfree(hctx);
2160 q->mq_map = NULL;
2162 kfree(q->queue_hw_ctx);
2164 /* ctx kobj stays in queue_ctx */
2165 free_percpu(q->queue_ctx);
2168 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2170 struct request_queue *uninit_q, *q;
2172 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2173 if (!uninit_q)
2174 return ERR_PTR(-ENOMEM);
2176 q = blk_mq_init_allocated_queue(set, uninit_q);
2177 if (IS_ERR(q))
2178 blk_cleanup_queue(uninit_q);
2180 return q;
2182 EXPORT_SYMBOL(blk_mq_init_queue);
2184 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2185 struct request_queue *q)
2187 int i, j;
2188 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2190 blk_mq_sysfs_unregister(q);
2191 for (i = 0; i < set->nr_hw_queues; i++) {
2192 int node;
2194 if (hctxs[i])
2195 continue;
2197 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2198 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2199 GFP_KERNEL, node);
2200 if (!hctxs[i])
2201 break;
2203 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2204 node)) {
2205 kfree(hctxs[i]);
2206 hctxs[i] = NULL;
2207 break;
2210 atomic_set(&hctxs[i]->nr_active, 0);
2211 hctxs[i]->numa_node = node;
2212 hctxs[i]->queue_num = i;
2214 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2215 free_cpumask_var(hctxs[i]->cpumask);
2216 kfree(hctxs[i]);
2217 hctxs[i] = NULL;
2218 break;
2220 blk_mq_hctx_kobj_init(hctxs[i]);
2222 for (j = i; j < q->nr_hw_queues; j++) {
2223 struct blk_mq_hw_ctx *hctx = hctxs[j];
2225 if (hctx) {
2226 if (hctx->tags)
2227 blk_mq_free_map_and_requests(set, j);
2228 blk_mq_exit_hctx(q, set, hctx, j);
2229 free_cpumask_var(hctx->cpumask);
2230 kobject_put(&hctx->kobj);
2231 kfree(hctx->ctxs);
2232 kfree(hctx);
2233 hctxs[j] = NULL;
2237 q->nr_hw_queues = i;
2238 blk_mq_sysfs_register(q);
2241 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2242 struct request_queue *q)
2244 /* mark the queue as mq asap */
2245 q->mq_ops = set->ops;
2247 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2248 if (!q->queue_ctx)
2249 goto err_exit;
2251 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2252 GFP_KERNEL, set->numa_node);
2253 if (!q->queue_hw_ctx)
2254 goto err_percpu;
2256 q->mq_map = set->mq_map;
2258 blk_mq_realloc_hw_ctxs(set, q);
2259 if (!q->nr_hw_queues)
2260 goto err_hctxs;
2262 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2263 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2265 q->nr_queues = nr_cpu_ids;
2267 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2269 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2270 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2272 q->sg_reserved_size = INT_MAX;
2274 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2275 INIT_LIST_HEAD(&q->requeue_list);
2276 spin_lock_init(&q->requeue_lock);
2278 if (q->nr_hw_queues > 1)
2279 blk_queue_make_request(q, blk_mq_make_request);
2280 else
2281 blk_queue_make_request(q, blk_sq_make_request);
2284 * Do this after blk_queue_make_request() overrides it...
2286 q->nr_requests = set->queue_depth;
2289 * Default to classic polling
2291 q->poll_nsec = -1;
2293 if (set->ops->complete)
2294 blk_queue_softirq_done(q, set->ops->complete);
2296 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2298 get_online_cpus();
2299 mutex_lock(&all_q_mutex);
2301 list_add_tail(&q->all_q_node, &all_q_list);
2302 blk_mq_add_queue_tag_set(set, q);
2303 blk_mq_map_swqueue(q, cpu_online_mask);
2305 mutex_unlock(&all_q_mutex);
2306 put_online_cpus();
2308 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2309 int ret;
2311 ret = blk_mq_sched_init(q);
2312 if (ret)
2313 return ERR_PTR(ret);
2316 return q;
2318 err_hctxs:
2319 kfree(q->queue_hw_ctx);
2320 err_percpu:
2321 free_percpu(q->queue_ctx);
2322 err_exit:
2323 q->mq_ops = NULL;
2324 return ERR_PTR(-ENOMEM);
2326 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2328 void blk_mq_free_queue(struct request_queue *q)
2330 struct blk_mq_tag_set *set = q->tag_set;
2332 mutex_lock(&all_q_mutex);
2333 list_del_init(&q->all_q_node);
2334 mutex_unlock(&all_q_mutex);
2336 wbt_exit(q);
2338 blk_mq_del_queue_tag_set(q);
2340 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2341 blk_mq_free_hw_queues(q, set);
2344 /* Basically redo blk_mq_init_queue with queue frozen */
2345 static void blk_mq_queue_reinit(struct request_queue *q,
2346 const struct cpumask *online_mask)
2348 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2350 blk_mq_sysfs_unregister(q);
2353 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2354 * we should change hctx numa_node according to new topology (this
2355 * involves free and re-allocate memory, worthy doing?)
2358 blk_mq_map_swqueue(q, online_mask);
2360 blk_mq_sysfs_register(q);
2364 * New online cpumask which is going to be set in this hotplug event.
2365 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2366 * one-by-one and dynamically allocating this could result in a failure.
2368 static struct cpumask cpuhp_online_new;
2370 static void blk_mq_queue_reinit_work(void)
2372 struct request_queue *q;
2374 mutex_lock(&all_q_mutex);
2376 * We need to freeze and reinit all existing queues. Freezing
2377 * involves synchronous wait for an RCU grace period and doing it
2378 * one by one may take a long time. Start freezing all queues in
2379 * one swoop and then wait for the completions so that freezing can
2380 * take place in parallel.
2382 list_for_each_entry(q, &all_q_list, all_q_node)
2383 blk_mq_freeze_queue_start(q);
2384 list_for_each_entry(q, &all_q_list, all_q_node)
2385 blk_mq_freeze_queue_wait(q);
2387 list_for_each_entry(q, &all_q_list, all_q_node)
2388 blk_mq_queue_reinit(q, &cpuhp_online_new);
2390 list_for_each_entry(q, &all_q_list, all_q_node)
2391 blk_mq_unfreeze_queue(q);
2393 mutex_unlock(&all_q_mutex);
2396 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2398 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2399 blk_mq_queue_reinit_work();
2400 return 0;
2404 * Before hotadded cpu starts handling requests, new mappings must be
2405 * established. Otherwise, these requests in hw queue might never be
2406 * dispatched.
2408 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2409 * for CPU0, and ctx1 for CPU1).
2411 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2412 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2414 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
2415 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2416 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
2417 * ignored.
2419 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2421 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2422 cpumask_set_cpu(cpu, &cpuhp_online_new);
2423 blk_mq_queue_reinit_work();
2424 return 0;
2427 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2429 int i;
2431 for (i = 0; i < set->nr_hw_queues; i++)
2432 if (!__blk_mq_alloc_rq_map(set, i))
2433 goto out_unwind;
2435 return 0;
2437 out_unwind:
2438 while (--i >= 0)
2439 blk_mq_free_rq_map(set->tags[i]);
2441 return -ENOMEM;
2445 * Allocate the request maps associated with this tag_set. Note that this
2446 * may reduce the depth asked for, if memory is tight. set->queue_depth
2447 * will be updated to reflect the allocated depth.
2449 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2451 unsigned int depth;
2452 int err;
2454 depth = set->queue_depth;
2455 do {
2456 err = __blk_mq_alloc_rq_maps(set);
2457 if (!err)
2458 break;
2460 set->queue_depth >>= 1;
2461 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2462 err = -ENOMEM;
2463 break;
2465 } while (set->queue_depth);
2467 if (!set->queue_depth || err) {
2468 pr_err("blk-mq: failed to allocate request map\n");
2469 return -ENOMEM;
2472 if (depth != set->queue_depth)
2473 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2474 depth, set->queue_depth);
2476 return 0;
2480 * Alloc a tag set to be associated with one or more request queues.
2481 * May fail with EINVAL for various error conditions. May adjust the
2482 * requested depth down, if if it too large. In that case, the set
2483 * value will be stored in set->queue_depth.
2485 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2487 int ret;
2489 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2491 if (!set->nr_hw_queues)
2492 return -EINVAL;
2493 if (!set->queue_depth)
2494 return -EINVAL;
2495 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2496 return -EINVAL;
2498 if (!set->ops->queue_rq)
2499 return -EINVAL;
2501 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2502 pr_info("blk-mq: reduced tag depth to %u\n",
2503 BLK_MQ_MAX_DEPTH);
2504 set->queue_depth = BLK_MQ_MAX_DEPTH;
2508 * If a crashdump is active, then we are potentially in a very
2509 * memory constrained environment. Limit us to 1 queue and
2510 * 64 tags to prevent using too much memory.
2512 if (is_kdump_kernel()) {
2513 set->nr_hw_queues = 1;
2514 set->queue_depth = min(64U, set->queue_depth);
2517 * There is no use for more h/w queues than cpus.
2519 if (set->nr_hw_queues > nr_cpu_ids)
2520 set->nr_hw_queues = nr_cpu_ids;
2522 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2523 GFP_KERNEL, set->numa_node);
2524 if (!set->tags)
2525 return -ENOMEM;
2527 ret = -ENOMEM;
2528 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2529 GFP_KERNEL, set->numa_node);
2530 if (!set->mq_map)
2531 goto out_free_tags;
2533 if (set->ops->map_queues)
2534 ret = set->ops->map_queues(set);
2535 else
2536 ret = blk_mq_map_queues(set);
2537 if (ret)
2538 goto out_free_mq_map;
2540 ret = blk_mq_alloc_rq_maps(set);
2541 if (ret)
2542 goto out_free_mq_map;
2544 mutex_init(&set->tag_list_lock);
2545 INIT_LIST_HEAD(&set->tag_list);
2547 return 0;
2549 out_free_mq_map:
2550 kfree(set->mq_map);
2551 set->mq_map = NULL;
2552 out_free_tags:
2553 kfree(set->tags);
2554 set->tags = NULL;
2555 return ret;
2557 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2559 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2561 int i;
2563 for (i = 0; i < nr_cpu_ids; i++)
2564 blk_mq_free_map_and_requests(set, i);
2566 kfree(set->mq_map);
2567 set->mq_map = NULL;
2569 kfree(set->tags);
2570 set->tags = NULL;
2572 EXPORT_SYMBOL(blk_mq_free_tag_set);
2574 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2576 struct blk_mq_tag_set *set = q->tag_set;
2577 struct blk_mq_hw_ctx *hctx;
2578 int i, ret;
2580 if (!set)
2581 return -EINVAL;
2583 blk_mq_freeze_queue(q);
2584 blk_mq_quiesce_queue(q);
2586 ret = 0;
2587 queue_for_each_hw_ctx(q, hctx, i) {
2588 if (!hctx->tags)
2589 continue;
2591 * If we're using an MQ scheduler, just update the scheduler
2592 * queue depth. This is similar to what the old code would do.
2594 if (!hctx->sched_tags) {
2595 ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
2596 min(nr, set->queue_depth),
2597 false);
2598 } else {
2599 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2600 nr, true);
2602 if (ret)
2603 break;
2606 if (!ret)
2607 q->nr_requests = nr;
2609 blk_mq_unfreeze_queue(q);
2610 blk_mq_start_stopped_hw_queues(q, true);
2612 return ret;
2615 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2617 struct request_queue *q;
2619 if (nr_hw_queues > nr_cpu_ids)
2620 nr_hw_queues = nr_cpu_ids;
2621 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2622 return;
2624 list_for_each_entry(q, &set->tag_list, tag_set_list)
2625 blk_mq_freeze_queue(q);
2627 set->nr_hw_queues = nr_hw_queues;
2628 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2629 blk_mq_realloc_hw_ctxs(set, q);
2632 * Manually set the make_request_fn as blk_queue_make_request
2633 * resets a lot of the queue settings.
2635 if (q->nr_hw_queues > 1)
2636 q->make_request_fn = blk_mq_make_request;
2637 else
2638 q->make_request_fn = blk_sq_make_request;
2640 blk_mq_queue_reinit(q, cpu_online_mask);
2643 list_for_each_entry(q, &set->tag_list, tag_set_list)
2644 blk_mq_unfreeze_queue(q);
2646 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2648 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2649 struct blk_mq_hw_ctx *hctx,
2650 struct request *rq)
2652 struct blk_rq_stat stat[2];
2653 unsigned long ret = 0;
2656 * If stats collection isn't on, don't sleep but turn it on for
2657 * future users
2659 if (!blk_stat_enable(q))
2660 return 0;
2663 * We don't have to do this once per IO, should optimize this
2664 * to just use the current window of stats until it changes
2666 memset(&stat, 0, sizeof(stat));
2667 blk_hctx_stat_get(hctx, stat);
2670 * As an optimistic guess, use half of the mean service time
2671 * for this type of request. We can (and should) make this smarter.
2672 * For instance, if the completion latencies are tight, we can
2673 * get closer than just half the mean. This is especially
2674 * important on devices where the completion latencies are longer
2675 * than ~10 usec.
2677 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2678 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2679 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2680 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2682 return ret;
2685 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2686 struct blk_mq_hw_ctx *hctx,
2687 struct request *rq)
2689 struct hrtimer_sleeper hs;
2690 enum hrtimer_mode mode;
2691 unsigned int nsecs;
2692 ktime_t kt;
2694 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2695 return false;
2698 * poll_nsec can be:
2700 * -1: don't ever hybrid sleep
2701 * 0: use half of prev avg
2702 * >0: use this specific value
2704 if (q->poll_nsec == -1)
2705 return false;
2706 else if (q->poll_nsec > 0)
2707 nsecs = q->poll_nsec;
2708 else
2709 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2711 if (!nsecs)
2712 return false;
2714 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2717 * This will be replaced with the stats tracking code, using
2718 * 'avg_completion_time / 2' as the pre-sleep target.
2720 kt = nsecs;
2722 mode = HRTIMER_MODE_REL;
2723 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2724 hrtimer_set_expires(&hs.timer, kt);
2726 hrtimer_init_sleeper(&hs, current);
2727 do {
2728 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2729 break;
2730 set_current_state(TASK_UNINTERRUPTIBLE);
2731 hrtimer_start_expires(&hs.timer, mode);
2732 if (hs.task)
2733 io_schedule();
2734 hrtimer_cancel(&hs.timer);
2735 mode = HRTIMER_MODE_ABS;
2736 } while (hs.task && !signal_pending(current));
2738 __set_current_state(TASK_RUNNING);
2739 destroy_hrtimer_on_stack(&hs.timer);
2740 return true;
2743 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2745 struct request_queue *q = hctx->queue;
2746 long state;
2749 * If we sleep, have the caller restart the poll loop to reset
2750 * the state. Like for the other success return cases, the
2751 * caller is responsible for checking if the IO completed. If
2752 * the IO isn't complete, we'll get called again and will go
2753 * straight to the busy poll loop.
2755 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2756 return true;
2758 hctx->poll_considered++;
2760 state = current->state;
2761 while (!need_resched()) {
2762 int ret;
2764 hctx->poll_invoked++;
2766 ret = q->mq_ops->poll(hctx, rq->tag);
2767 if (ret > 0) {
2768 hctx->poll_success++;
2769 set_current_state(TASK_RUNNING);
2770 return true;
2773 if (signal_pending_state(state, current))
2774 set_current_state(TASK_RUNNING);
2776 if (current->state == TASK_RUNNING)
2777 return true;
2778 if (ret < 0)
2779 break;
2780 cpu_relax();
2783 return false;
2786 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2788 struct blk_mq_hw_ctx *hctx;
2789 struct blk_plug *plug;
2790 struct request *rq;
2792 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2793 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2794 return false;
2796 plug = current->plug;
2797 if (plug)
2798 blk_flush_plug_list(plug, false);
2800 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2801 if (!blk_qc_t_is_internal(cookie))
2802 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2803 else
2804 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2806 return __blk_mq_poll(hctx, rq);
2808 EXPORT_SYMBOL_GPL(blk_mq_poll);
2810 void blk_mq_disable_hotplug(void)
2812 mutex_lock(&all_q_mutex);
2815 void blk_mq_enable_hotplug(void)
2817 mutex_unlock(&all_q_mutex);
2820 static int __init blk_mq_init(void)
2822 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2823 blk_mq_hctx_notify_dead);
2825 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2826 blk_mq_queue_reinit_prepare,
2827 blk_mq_queue_reinit_dead);
2828 return 0;
2830 subsys_initcall(blk_mq_init);