iwlwifi: Fix TKIP update key and get_free_ucode_key
[linux/fpc-iii.git] / drivers / usb / core / hcd.c
blobe52ed1663b3c566ae5d0aa53799faa46f2f00324
1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
42 #include <linux/usb.h>
44 #include "usb.h"
45 #include "hcd.h"
46 #include "hub.h"
49 /*-------------------------------------------------------------------------*/
52 * USB Host Controller Driver framework
54 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
55 * HCD-specific behaviors/bugs.
57 * This does error checks, tracks devices and urbs, and delegates to a
58 * "hc_driver" only for code (and data) that really needs to know about
59 * hardware differences. That includes root hub registers, i/o queues,
60 * and so on ... but as little else as possible.
62 * Shared code includes most of the "root hub" code (these are emulated,
63 * though each HC's hardware works differently) and PCI glue, plus request
64 * tracking overhead. The HCD code should only block on spinlocks or on
65 * hardware handshaking; blocking on software events (such as other kernel
66 * threads releasing resources, or completing actions) is all generic.
68 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
69 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
70 * only by the hub driver ... and that neither should be seen or used by
71 * usb client device drivers.
73 * Contributors of ideas or unattributed patches include: David Brownell,
74 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
76 * HISTORY:
77 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
78 * associated cleanup. "usb_hcd" still != "usb_bus".
79 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
82 /*-------------------------------------------------------------------------*/
84 /* host controllers we manage */
85 LIST_HEAD (usb_bus_list);
86 EXPORT_SYMBOL_GPL (usb_bus_list);
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS 64
90 struct usb_busmap {
91 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
93 static struct usb_busmap busmap;
95 /* used when updating list of hcds */
96 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
97 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
99 /* used for controlling access to virtual root hubs */
100 static DEFINE_SPINLOCK(hcd_root_hub_lock);
102 /* used when updating an endpoint's URB list */
103 static DEFINE_SPINLOCK(hcd_urb_list_lock);
105 /* wait queue for synchronous unlinks */
106 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
108 static inline int is_root_hub(struct usb_device *udev)
110 return (udev->parent == NULL);
113 /*-------------------------------------------------------------------------*/
116 * Sharable chunks of root hub code.
119 /*-------------------------------------------------------------------------*/
121 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
122 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
124 /* usb 2.0 root hub device descriptor */
125 static const u8 usb2_rh_dev_descriptor [18] = {
126 0x12, /* __u8 bLength; */
127 0x01, /* __u8 bDescriptorType; Device */
128 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
130 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
131 0x00, /* __u8 bDeviceSubClass; */
132 0x01, /* __u8 bDeviceProtocol; [ usb 2.0 single TT ]*/
133 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
135 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
136 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
137 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
139 0x03, /* __u8 iManufacturer; */
140 0x02, /* __u8 iProduct; */
141 0x01, /* __u8 iSerialNumber; */
142 0x01 /* __u8 bNumConfigurations; */
145 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
147 /* usb 1.1 root hub device descriptor */
148 static const u8 usb11_rh_dev_descriptor [18] = {
149 0x12, /* __u8 bLength; */
150 0x01, /* __u8 bDescriptorType; Device */
151 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
153 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
154 0x00, /* __u8 bDeviceSubClass; */
155 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
156 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
158 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
159 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
160 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
162 0x03, /* __u8 iManufacturer; */
163 0x02, /* __u8 iProduct; */
164 0x01, /* __u8 iSerialNumber; */
165 0x01 /* __u8 bNumConfigurations; */
169 /*-------------------------------------------------------------------------*/
171 /* Configuration descriptors for our root hubs */
173 static const u8 fs_rh_config_descriptor [] = {
175 /* one configuration */
176 0x09, /* __u8 bLength; */
177 0x02, /* __u8 bDescriptorType; Configuration */
178 0x19, 0x00, /* __le16 wTotalLength; */
179 0x01, /* __u8 bNumInterfaces; (1) */
180 0x01, /* __u8 bConfigurationValue; */
181 0x00, /* __u8 iConfiguration; */
182 0xc0, /* __u8 bmAttributes;
183 Bit 7: must be set,
184 6: Self-powered,
185 5: Remote wakeup,
186 4..0: resvd */
187 0x00, /* __u8 MaxPower; */
189 /* USB 1.1:
190 * USB 2.0, single TT organization (mandatory):
191 * one interface, protocol 0
193 * USB 2.0, multiple TT organization (optional):
194 * two interfaces, protocols 1 (like single TT)
195 * and 2 (multiple TT mode) ... config is
196 * sometimes settable
197 * NOT IMPLEMENTED
200 /* one interface */
201 0x09, /* __u8 if_bLength; */
202 0x04, /* __u8 if_bDescriptorType; Interface */
203 0x00, /* __u8 if_bInterfaceNumber; */
204 0x00, /* __u8 if_bAlternateSetting; */
205 0x01, /* __u8 if_bNumEndpoints; */
206 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
207 0x00, /* __u8 if_bInterfaceSubClass; */
208 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
209 0x00, /* __u8 if_iInterface; */
211 /* one endpoint (status change endpoint) */
212 0x07, /* __u8 ep_bLength; */
213 0x05, /* __u8 ep_bDescriptorType; Endpoint */
214 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
215 0x03, /* __u8 ep_bmAttributes; Interrupt */
216 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
217 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
220 static const u8 hs_rh_config_descriptor [] = {
222 /* one configuration */
223 0x09, /* __u8 bLength; */
224 0x02, /* __u8 bDescriptorType; Configuration */
225 0x19, 0x00, /* __le16 wTotalLength; */
226 0x01, /* __u8 bNumInterfaces; (1) */
227 0x01, /* __u8 bConfigurationValue; */
228 0x00, /* __u8 iConfiguration; */
229 0xc0, /* __u8 bmAttributes;
230 Bit 7: must be set,
231 6: Self-powered,
232 5: Remote wakeup,
233 4..0: resvd */
234 0x00, /* __u8 MaxPower; */
236 /* USB 1.1:
237 * USB 2.0, single TT organization (mandatory):
238 * one interface, protocol 0
240 * USB 2.0, multiple TT organization (optional):
241 * two interfaces, protocols 1 (like single TT)
242 * and 2 (multiple TT mode) ... config is
243 * sometimes settable
244 * NOT IMPLEMENTED
247 /* one interface */
248 0x09, /* __u8 if_bLength; */
249 0x04, /* __u8 if_bDescriptorType; Interface */
250 0x00, /* __u8 if_bInterfaceNumber; */
251 0x00, /* __u8 if_bAlternateSetting; */
252 0x01, /* __u8 if_bNumEndpoints; */
253 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
254 0x00, /* __u8 if_bInterfaceSubClass; */
255 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
256 0x00, /* __u8 if_iInterface; */
258 /* one endpoint (status change endpoint) */
259 0x07, /* __u8 ep_bLength; */
260 0x05, /* __u8 ep_bDescriptorType; Endpoint */
261 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
262 0x03, /* __u8 ep_bmAttributes; Interrupt */
263 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
264 * see hub.c:hub_configure() for details. */
265 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
266 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
269 /*-------------------------------------------------------------------------*/
272 * helper routine for returning string descriptors in UTF-16LE
273 * input can actually be ISO-8859-1; ASCII is its 7-bit subset
275 static int ascii2utf (char *s, u8 *utf, int utfmax)
277 int retval;
279 for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
280 *utf++ = *s++;
281 *utf++ = 0;
283 if (utfmax > 0) {
284 *utf = *s;
285 ++retval;
287 return retval;
291 * rh_string - provides manufacturer, product and serial strings for root hub
292 * @id: the string ID number (1: serial number, 2: product, 3: vendor)
293 * @hcd: the host controller for this root hub
294 * @type: string describing our driver
295 * @data: return packet in UTF-16 LE
296 * @len: length of the return packet
298 * Produces either a manufacturer, product or serial number string for the
299 * virtual root hub device.
301 static int rh_string (
302 int id,
303 struct usb_hcd *hcd,
304 u8 *data,
305 int len
307 char buf [100];
309 // language ids
310 if (id == 0) {
311 buf[0] = 4; buf[1] = 3; /* 4 bytes string data */
312 buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */
313 len = min (len, 4);
314 memcpy (data, buf, len);
315 return len;
317 // serial number
318 } else if (id == 1) {
319 strlcpy (buf, hcd->self.bus_name, sizeof buf);
321 // product description
322 } else if (id == 2) {
323 strlcpy (buf, hcd->product_desc, sizeof buf);
325 // id 3 == vendor description
326 } else if (id == 3) {
327 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
328 init_utsname()->release, hcd->driver->description);
330 // unsupported IDs --> "protocol stall"
331 } else
332 return -EPIPE;
334 switch (len) { /* All cases fall through */
335 default:
336 len = 2 + ascii2utf (buf, data + 2, len - 2);
337 case 2:
338 data [1] = 3; /* type == string */
339 case 1:
340 data [0] = 2 * (strlen (buf) + 1);
341 case 0:
342 ; /* Compiler wants a statement here */
344 return len;
348 /* Root hub control transfers execute synchronously */
349 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
351 struct usb_ctrlrequest *cmd;
352 u16 typeReq, wValue, wIndex, wLength;
353 u8 *ubuf = urb->transfer_buffer;
354 u8 tbuf [sizeof (struct usb_hub_descriptor)]
355 __attribute__((aligned(4)));
356 const u8 *bufp = tbuf;
357 int len = 0;
358 int patch_wakeup = 0;
359 int status;
360 int n;
362 might_sleep();
364 spin_lock_irq(&hcd_root_hub_lock);
365 status = usb_hcd_link_urb_to_ep(hcd, urb);
366 spin_unlock_irq(&hcd_root_hub_lock);
367 if (status)
368 return status;
369 urb->hcpriv = hcd; /* Indicate it's queued */
371 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
372 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
373 wValue = le16_to_cpu (cmd->wValue);
374 wIndex = le16_to_cpu (cmd->wIndex);
375 wLength = le16_to_cpu (cmd->wLength);
377 if (wLength > urb->transfer_buffer_length)
378 goto error;
380 urb->actual_length = 0;
381 switch (typeReq) {
383 /* DEVICE REQUESTS */
385 /* The root hub's remote wakeup enable bit is implemented using
386 * driver model wakeup flags. If this system supports wakeup
387 * through USB, userspace may change the default "allow wakeup"
388 * policy through sysfs or these calls.
390 * Most root hubs support wakeup from downstream devices, for
391 * runtime power management (disabling USB clocks and reducing
392 * VBUS power usage). However, not all of them do so; silicon,
393 * board, and BIOS bugs here are not uncommon, so these can't
394 * be treated quite like external hubs.
396 * Likewise, not all root hubs will pass wakeup events upstream,
397 * to wake up the whole system. So don't assume root hub and
398 * controller capabilities are identical.
401 case DeviceRequest | USB_REQ_GET_STATUS:
402 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
403 << USB_DEVICE_REMOTE_WAKEUP)
404 | (1 << USB_DEVICE_SELF_POWERED);
405 tbuf [1] = 0;
406 len = 2;
407 break;
408 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
409 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
410 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
411 else
412 goto error;
413 break;
414 case DeviceOutRequest | USB_REQ_SET_FEATURE:
415 if (device_can_wakeup(&hcd->self.root_hub->dev)
416 && wValue == USB_DEVICE_REMOTE_WAKEUP)
417 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
418 else
419 goto error;
420 break;
421 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
422 tbuf [0] = 1;
423 len = 1;
424 /* FALLTHROUGH */
425 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
426 break;
427 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
428 switch (wValue & 0xff00) {
429 case USB_DT_DEVICE << 8:
430 if (hcd->driver->flags & HCD_USB2)
431 bufp = usb2_rh_dev_descriptor;
432 else if (hcd->driver->flags & HCD_USB11)
433 bufp = usb11_rh_dev_descriptor;
434 else
435 goto error;
436 len = 18;
437 break;
438 case USB_DT_CONFIG << 8:
439 if (hcd->driver->flags & HCD_USB2) {
440 bufp = hs_rh_config_descriptor;
441 len = sizeof hs_rh_config_descriptor;
442 } else {
443 bufp = fs_rh_config_descriptor;
444 len = sizeof fs_rh_config_descriptor;
446 if (device_can_wakeup(&hcd->self.root_hub->dev))
447 patch_wakeup = 1;
448 break;
449 case USB_DT_STRING << 8:
450 n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
451 if (n < 0)
452 goto error;
453 urb->actual_length = n;
454 break;
455 default:
456 goto error;
458 break;
459 case DeviceRequest | USB_REQ_GET_INTERFACE:
460 tbuf [0] = 0;
461 len = 1;
462 /* FALLTHROUGH */
463 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
464 break;
465 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
466 // wValue == urb->dev->devaddr
467 dev_dbg (hcd->self.controller, "root hub device address %d\n",
468 wValue);
469 break;
471 /* INTERFACE REQUESTS (no defined feature/status flags) */
473 /* ENDPOINT REQUESTS */
475 case EndpointRequest | USB_REQ_GET_STATUS:
476 // ENDPOINT_HALT flag
477 tbuf [0] = 0;
478 tbuf [1] = 0;
479 len = 2;
480 /* FALLTHROUGH */
481 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
482 case EndpointOutRequest | USB_REQ_SET_FEATURE:
483 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
484 break;
486 /* CLASS REQUESTS (and errors) */
488 default:
489 /* non-generic request */
490 switch (typeReq) {
491 case GetHubStatus:
492 case GetPortStatus:
493 len = 4;
494 break;
495 case GetHubDescriptor:
496 len = sizeof (struct usb_hub_descriptor);
497 break;
499 status = hcd->driver->hub_control (hcd,
500 typeReq, wValue, wIndex,
501 tbuf, wLength);
502 break;
503 error:
504 /* "protocol stall" on error */
505 status = -EPIPE;
508 if (status) {
509 len = 0;
510 if (status != -EPIPE) {
511 dev_dbg (hcd->self.controller,
512 "CTRL: TypeReq=0x%x val=0x%x "
513 "idx=0x%x len=%d ==> %d\n",
514 typeReq, wValue, wIndex,
515 wLength, status);
518 if (len) {
519 if (urb->transfer_buffer_length < len)
520 len = urb->transfer_buffer_length;
521 urb->actual_length = len;
522 // always USB_DIR_IN, toward host
523 memcpy (ubuf, bufp, len);
525 /* report whether RH hardware supports remote wakeup */
526 if (patch_wakeup &&
527 len > offsetof (struct usb_config_descriptor,
528 bmAttributes))
529 ((struct usb_config_descriptor *)ubuf)->bmAttributes
530 |= USB_CONFIG_ATT_WAKEUP;
533 /* any errors get returned through the urb completion */
534 spin_lock_irq(&hcd_root_hub_lock);
535 usb_hcd_unlink_urb_from_ep(hcd, urb);
537 /* This peculiar use of spinlocks echoes what real HC drivers do.
538 * Avoiding calls to local_irq_disable/enable makes the code
539 * RT-friendly.
541 spin_unlock(&hcd_root_hub_lock);
542 usb_hcd_giveback_urb(hcd, urb, status);
543 spin_lock(&hcd_root_hub_lock);
545 spin_unlock_irq(&hcd_root_hub_lock);
546 return 0;
549 /*-------------------------------------------------------------------------*/
552 * Root Hub interrupt transfers are polled using a timer if the
553 * driver requests it; otherwise the driver is responsible for
554 * calling usb_hcd_poll_rh_status() when an event occurs.
556 * Completions are called in_interrupt(), but they may or may not
557 * be in_irq().
559 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
561 struct urb *urb;
562 int length;
563 unsigned long flags;
564 char buffer[4]; /* Any root hubs with > 31 ports? */
566 if (unlikely(!hcd->rh_registered))
567 return;
568 if (!hcd->uses_new_polling && !hcd->status_urb)
569 return;
571 length = hcd->driver->hub_status_data(hcd, buffer);
572 if (length > 0) {
574 /* try to complete the status urb */
575 spin_lock_irqsave(&hcd_root_hub_lock, flags);
576 urb = hcd->status_urb;
577 if (urb) {
578 hcd->poll_pending = 0;
579 hcd->status_urb = NULL;
580 urb->actual_length = length;
581 memcpy(urb->transfer_buffer, buffer, length);
583 usb_hcd_unlink_urb_from_ep(hcd, urb);
584 spin_unlock(&hcd_root_hub_lock);
585 usb_hcd_giveback_urb(hcd, urb, 0);
586 spin_lock(&hcd_root_hub_lock);
587 } else {
588 length = 0;
589 hcd->poll_pending = 1;
591 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
594 /* The USB 2.0 spec says 256 ms. This is close enough and won't
595 * exceed that limit if HZ is 100. The math is more clunky than
596 * maybe expected, this is to make sure that all timers for USB devices
597 * fire at the same time to give the CPU a break inbetween */
598 if (hcd->uses_new_polling ? hcd->poll_rh :
599 (length == 0 && hcd->status_urb != NULL))
600 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
602 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
604 /* timer callback */
605 static void rh_timer_func (unsigned long _hcd)
607 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
610 /*-------------------------------------------------------------------------*/
612 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
614 int retval;
615 unsigned long flags;
616 int len = 1 + (urb->dev->maxchild / 8);
618 spin_lock_irqsave (&hcd_root_hub_lock, flags);
619 if (hcd->status_urb || urb->transfer_buffer_length < len) {
620 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
621 retval = -EINVAL;
622 goto done;
625 retval = usb_hcd_link_urb_to_ep(hcd, urb);
626 if (retval)
627 goto done;
629 hcd->status_urb = urb;
630 urb->hcpriv = hcd; /* indicate it's queued */
631 if (!hcd->uses_new_polling)
632 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
634 /* If a status change has already occurred, report it ASAP */
635 else if (hcd->poll_pending)
636 mod_timer(&hcd->rh_timer, jiffies);
637 retval = 0;
638 done:
639 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
640 return retval;
643 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
645 if (usb_endpoint_xfer_int(&urb->ep->desc))
646 return rh_queue_status (hcd, urb);
647 if (usb_endpoint_xfer_control(&urb->ep->desc))
648 return rh_call_control (hcd, urb);
649 return -EINVAL;
652 /*-------------------------------------------------------------------------*/
654 /* Unlinks of root-hub control URBs are legal, but they don't do anything
655 * since these URBs always execute synchronously.
657 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
659 unsigned long flags;
660 int rc;
662 spin_lock_irqsave(&hcd_root_hub_lock, flags);
663 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
664 if (rc)
665 goto done;
667 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
668 ; /* Do nothing */
670 } else { /* Status URB */
671 if (!hcd->uses_new_polling)
672 del_timer (&hcd->rh_timer);
673 if (urb == hcd->status_urb) {
674 hcd->status_urb = NULL;
675 usb_hcd_unlink_urb_from_ep(hcd, urb);
677 spin_unlock(&hcd_root_hub_lock);
678 usb_hcd_giveback_urb(hcd, urb, status);
679 spin_lock(&hcd_root_hub_lock);
682 done:
683 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
684 return rc;
690 * Show & store the current value of authorized_default
692 static ssize_t usb_host_authorized_default_show(struct device *dev,
693 struct device_attribute *attr,
694 char *buf)
696 struct usb_device *rh_usb_dev = to_usb_device(dev);
697 struct usb_bus *usb_bus = rh_usb_dev->bus;
698 struct usb_hcd *usb_hcd;
700 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
701 return -ENODEV;
702 usb_hcd = bus_to_hcd(usb_bus);
703 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
706 static ssize_t usb_host_authorized_default_store(struct device *dev,
707 struct device_attribute *attr,
708 const char *buf, size_t size)
710 ssize_t result;
711 unsigned val;
712 struct usb_device *rh_usb_dev = to_usb_device(dev);
713 struct usb_bus *usb_bus = rh_usb_dev->bus;
714 struct usb_hcd *usb_hcd;
716 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
717 return -ENODEV;
718 usb_hcd = bus_to_hcd(usb_bus);
719 result = sscanf(buf, "%u\n", &val);
720 if (result == 1) {
721 usb_hcd->authorized_default = val? 1 : 0;
722 result = size;
724 else
725 result = -EINVAL;
726 return result;
729 static DEVICE_ATTR(authorized_default, 0644,
730 usb_host_authorized_default_show,
731 usb_host_authorized_default_store);
734 /* Group all the USB bus attributes */
735 static struct attribute *usb_bus_attrs[] = {
736 &dev_attr_authorized_default.attr,
737 NULL,
740 static struct attribute_group usb_bus_attr_group = {
741 .name = NULL, /* we want them in the same directory */
742 .attrs = usb_bus_attrs,
747 /*-------------------------------------------------------------------------*/
749 static struct class *usb_host_class;
751 int usb_host_init(void)
753 int retval = 0;
755 usb_host_class = class_create(THIS_MODULE, "usb_host");
756 if (IS_ERR(usb_host_class))
757 retval = PTR_ERR(usb_host_class);
758 return retval;
761 void usb_host_cleanup(void)
763 class_destroy(usb_host_class);
767 * usb_bus_init - shared initialization code
768 * @bus: the bus structure being initialized
770 * This code is used to initialize a usb_bus structure, memory for which is
771 * separately managed.
773 static void usb_bus_init (struct usb_bus *bus)
775 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
777 bus->devnum_next = 1;
779 bus->root_hub = NULL;
780 bus->busnum = -1;
781 bus->bandwidth_allocated = 0;
782 bus->bandwidth_int_reqs = 0;
783 bus->bandwidth_isoc_reqs = 0;
785 INIT_LIST_HEAD (&bus->bus_list);
788 /*-------------------------------------------------------------------------*/
791 * usb_register_bus - registers the USB host controller with the usb core
792 * @bus: pointer to the bus to register
793 * Context: !in_interrupt()
795 * Assigns a bus number, and links the controller into usbcore data
796 * structures so that it can be seen by scanning the bus list.
798 static int usb_register_bus(struct usb_bus *bus)
800 int result = -E2BIG;
801 int busnum;
803 mutex_lock(&usb_bus_list_lock);
804 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
805 if (busnum >= USB_MAXBUS) {
806 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
807 goto error_find_busnum;
809 set_bit (busnum, busmap.busmap);
810 bus->busnum = busnum;
812 bus->dev = device_create(usb_host_class, bus->controller, MKDEV(0, 0),
813 "usb_host%d", busnum);
814 result = PTR_ERR(bus->dev);
815 if (IS_ERR(bus->dev))
816 goto error_create_class_dev;
817 dev_set_drvdata(bus->dev, bus);
819 /* Add it to the local list of buses */
820 list_add (&bus->bus_list, &usb_bus_list);
821 mutex_unlock(&usb_bus_list_lock);
823 usb_notify_add_bus(bus);
825 dev_info (bus->controller, "new USB bus registered, assigned bus "
826 "number %d\n", bus->busnum);
827 return 0;
829 error_create_class_dev:
830 clear_bit(busnum, busmap.busmap);
831 error_find_busnum:
832 mutex_unlock(&usb_bus_list_lock);
833 return result;
837 * usb_deregister_bus - deregisters the USB host controller
838 * @bus: pointer to the bus to deregister
839 * Context: !in_interrupt()
841 * Recycles the bus number, and unlinks the controller from usbcore data
842 * structures so that it won't be seen by scanning the bus list.
844 static void usb_deregister_bus (struct usb_bus *bus)
846 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
849 * NOTE: make sure that all the devices are removed by the
850 * controller code, as well as having it call this when cleaning
851 * itself up
853 mutex_lock(&usb_bus_list_lock);
854 list_del (&bus->bus_list);
855 mutex_unlock(&usb_bus_list_lock);
857 usb_notify_remove_bus(bus);
859 clear_bit (bus->busnum, busmap.busmap);
861 device_unregister(bus->dev);
865 * register_root_hub - called by usb_add_hcd() to register a root hub
866 * @hcd: host controller for this root hub
868 * This function registers the root hub with the USB subsystem. It sets up
869 * the device properly in the device tree and then calls usb_new_device()
870 * to register the usb device. It also assigns the root hub's USB address
871 * (always 1).
873 static int register_root_hub(struct usb_hcd *hcd)
875 struct device *parent_dev = hcd->self.controller;
876 struct usb_device *usb_dev = hcd->self.root_hub;
877 const int devnum = 1;
878 int retval;
880 usb_dev->devnum = devnum;
881 usb_dev->bus->devnum_next = devnum + 1;
882 memset (&usb_dev->bus->devmap.devicemap, 0,
883 sizeof usb_dev->bus->devmap.devicemap);
884 set_bit (devnum, usb_dev->bus->devmap.devicemap);
885 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
887 mutex_lock(&usb_bus_list_lock);
889 usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
890 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
891 if (retval != sizeof usb_dev->descriptor) {
892 mutex_unlock(&usb_bus_list_lock);
893 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
894 usb_dev->dev.bus_id, retval);
895 return (retval < 0) ? retval : -EMSGSIZE;
898 retval = usb_new_device (usb_dev);
899 if (retval) {
900 dev_err (parent_dev, "can't register root hub for %s, %d\n",
901 usb_dev->dev.bus_id, retval);
903 mutex_unlock(&usb_bus_list_lock);
905 if (retval == 0) {
906 spin_lock_irq (&hcd_root_hub_lock);
907 hcd->rh_registered = 1;
908 spin_unlock_irq (&hcd_root_hub_lock);
910 /* Did the HC die before the root hub was registered? */
911 if (hcd->state == HC_STATE_HALT)
912 usb_hc_died (hcd); /* This time clean up */
915 return retval;
918 void usb_enable_root_hub_irq (struct usb_bus *bus)
920 struct usb_hcd *hcd;
922 hcd = container_of (bus, struct usb_hcd, self);
923 if (hcd->driver->hub_irq_enable && hcd->state != HC_STATE_HALT)
924 hcd->driver->hub_irq_enable (hcd);
928 /*-------------------------------------------------------------------------*/
931 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
932 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
933 * @is_input: true iff the transaction sends data to the host
934 * @isoc: true for isochronous transactions, false for interrupt ones
935 * @bytecount: how many bytes in the transaction.
937 * Returns approximate bus time in nanoseconds for a periodic transaction.
938 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
939 * scheduled in software, this function is only used for such scheduling.
941 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
943 unsigned long tmp;
945 switch (speed) {
946 case USB_SPEED_LOW: /* INTR only */
947 if (is_input) {
948 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
949 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
950 } else {
951 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
952 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
954 case USB_SPEED_FULL: /* ISOC or INTR */
955 if (isoc) {
956 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
957 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
958 } else {
959 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
960 return (9107L + BW_HOST_DELAY + tmp);
962 case USB_SPEED_HIGH: /* ISOC or INTR */
963 // FIXME adjust for input vs output
964 if (isoc)
965 tmp = HS_NSECS_ISO (bytecount);
966 else
967 tmp = HS_NSECS (bytecount);
968 return tmp;
969 default:
970 pr_debug ("%s: bogus device speed!\n", usbcore_name);
971 return -1;
974 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
977 /*-------------------------------------------------------------------------*/
980 * Generic HC operations.
983 /*-------------------------------------------------------------------------*/
986 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
987 * @hcd: host controller to which @urb was submitted
988 * @urb: URB being submitted
990 * Host controller drivers should call this routine in their enqueue()
991 * method. The HCD's private spinlock must be held and interrupts must
992 * be disabled. The actions carried out here are required for URB
993 * submission, as well as for endpoint shutdown and for usb_kill_urb.
995 * Returns 0 for no error, otherwise a negative error code (in which case
996 * the enqueue() method must fail). If no error occurs but enqueue() fails
997 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
998 * the private spinlock and returning.
1000 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1002 int rc = 0;
1004 spin_lock(&hcd_urb_list_lock);
1006 /* Check that the URB isn't being killed */
1007 if (unlikely(urb->reject)) {
1008 rc = -EPERM;
1009 goto done;
1012 if (unlikely(!urb->ep->enabled)) {
1013 rc = -ENOENT;
1014 goto done;
1017 if (unlikely(!urb->dev->can_submit)) {
1018 rc = -EHOSTUNREACH;
1019 goto done;
1023 * Check the host controller's state and add the URB to the
1024 * endpoint's queue.
1026 switch (hcd->state) {
1027 case HC_STATE_RUNNING:
1028 case HC_STATE_RESUMING:
1029 urb->unlinked = 0;
1030 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1031 break;
1032 default:
1033 rc = -ESHUTDOWN;
1034 goto done;
1036 done:
1037 spin_unlock(&hcd_urb_list_lock);
1038 return rc;
1040 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1043 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1044 * @hcd: host controller to which @urb was submitted
1045 * @urb: URB being checked for unlinkability
1046 * @status: error code to store in @urb if the unlink succeeds
1048 * Host controller drivers should call this routine in their dequeue()
1049 * method. The HCD's private spinlock must be held and interrupts must
1050 * be disabled. The actions carried out here are required for making
1051 * sure than an unlink is valid.
1053 * Returns 0 for no error, otherwise a negative error code (in which case
1054 * the dequeue() method must fail). The possible error codes are:
1056 * -EIDRM: @urb was not submitted or has already completed.
1057 * The completion function may not have been called yet.
1059 * -EBUSY: @urb has already been unlinked.
1061 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1062 int status)
1064 struct list_head *tmp;
1066 /* insist the urb is still queued */
1067 list_for_each(tmp, &urb->ep->urb_list) {
1068 if (tmp == &urb->urb_list)
1069 break;
1071 if (tmp != &urb->urb_list)
1072 return -EIDRM;
1074 /* Any status except -EINPROGRESS means something already started to
1075 * unlink this URB from the hardware. So there's no more work to do.
1077 if (urb->unlinked)
1078 return -EBUSY;
1079 urb->unlinked = status;
1081 /* IRQ setup can easily be broken so that USB controllers
1082 * never get completion IRQs ... maybe even the ones we need to
1083 * finish unlinking the initial failed usb_set_address()
1084 * or device descriptor fetch.
1086 if (!test_bit(HCD_FLAG_SAW_IRQ, &hcd->flags) &&
1087 !is_root_hub(urb->dev)) {
1088 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1089 "Controller is probably using the wrong IRQ.\n");
1090 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1093 return 0;
1095 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1098 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1099 * @hcd: host controller to which @urb was submitted
1100 * @urb: URB being unlinked
1102 * Host controller drivers should call this routine before calling
1103 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1104 * interrupts must be disabled. The actions carried out here are required
1105 * for URB completion.
1107 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1109 /* clear all state linking urb to this dev (and hcd) */
1110 spin_lock(&hcd_urb_list_lock);
1111 list_del_init(&urb->urb_list);
1112 spin_unlock(&hcd_urb_list_lock);
1114 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1117 * Some usb host controllers can only perform dma using a small SRAM area.
1118 * The usb core itself is however optimized for host controllers that can dma
1119 * using regular system memory - like pci devices doing bus mastering.
1121 * To support host controllers with limited dma capabilites we provide dma
1122 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1123 * For this to work properly the host controller code must first use the
1124 * function dma_declare_coherent_memory() to point out which memory area
1125 * that should be used for dma allocations.
1127 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1128 * dma using dma_alloc_coherent() which in turn allocates from the memory
1129 * area pointed out with dma_declare_coherent_memory().
1131 * So, to summarize...
1133 * - We need "local" memory, canonical example being
1134 * a small SRAM on a discrete controller being the
1135 * only memory that the controller can read ...
1136 * (a) "normal" kernel memory is no good, and
1137 * (b) there's not enough to share
1139 * - The only *portable* hook for such stuff in the
1140 * DMA framework is dma_declare_coherent_memory()
1142 * - So we use that, even though the primary requirement
1143 * is that the memory be "local" (hence addressible
1144 * by that device), not "coherent".
1148 static int hcd_alloc_coherent(struct usb_bus *bus,
1149 gfp_t mem_flags, dma_addr_t *dma_handle,
1150 void **vaddr_handle, size_t size,
1151 enum dma_data_direction dir)
1153 unsigned char *vaddr;
1155 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1156 mem_flags, dma_handle);
1157 if (!vaddr)
1158 return -ENOMEM;
1161 * Store the virtual address of the buffer at the end
1162 * of the allocated dma buffer. The size of the buffer
1163 * may be uneven so use unaligned functions instead
1164 * of just rounding up. It makes sense to optimize for
1165 * memory footprint over access speed since the amount
1166 * of memory available for dma may be limited.
1168 put_unaligned((unsigned long)*vaddr_handle,
1169 (unsigned long *)(vaddr + size));
1171 if (dir == DMA_TO_DEVICE)
1172 memcpy(vaddr, *vaddr_handle, size);
1174 *vaddr_handle = vaddr;
1175 return 0;
1178 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1179 void **vaddr_handle, size_t size,
1180 enum dma_data_direction dir)
1182 unsigned char *vaddr = *vaddr_handle;
1184 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1186 if (dir == DMA_FROM_DEVICE)
1187 memcpy(vaddr, *vaddr_handle, size);
1189 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1191 *vaddr_handle = vaddr;
1192 *dma_handle = 0;
1195 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1196 gfp_t mem_flags)
1198 enum dma_data_direction dir;
1199 int ret = 0;
1201 /* Map the URB's buffers for DMA access.
1202 * Lower level HCD code should use *_dma exclusively,
1203 * unless it uses pio or talks to another transport.
1205 if (is_root_hub(urb->dev))
1206 return 0;
1208 if (usb_endpoint_xfer_control(&urb->ep->desc)
1209 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1210 if (hcd->self.uses_dma)
1211 urb->setup_dma = dma_map_single(
1212 hcd->self.controller,
1213 urb->setup_packet,
1214 sizeof(struct usb_ctrlrequest),
1215 DMA_TO_DEVICE);
1216 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1217 ret = hcd_alloc_coherent(
1218 urb->dev->bus, mem_flags,
1219 &urb->setup_dma,
1220 (void **)&urb->setup_packet,
1221 sizeof(struct usb_ctrlrequest),
1222 DMA_TO_DEVICE);
1225 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1226 if (ret == 0 && urb->transfer_buffer_length != 0
1227 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1228 if (hcd->self.uses_dma)
1229 urb->transfer_dma = dma_map_single (
1230 hcd->self.controller,
1231 urb->transfer_buffer,
1232 urb->transfer_buffer_length,
1233 dir);
1234 else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1235 ret = hcd_alloc_coherent(
1236 urb->dev->bus, mem_flags,
1237 &urb->transfer_dma,
1238 &urb->transfer_buffer,
1239 urb->transfer_buffer_length,
1240 dir);
1242 if (ret && usb_endpoint_xfer_control(&urb->ep->desc)
1243 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
1244 hcd_free_coherent(urb->dev->bus,
1245 &urb->setup_dma,
1246 (void **)&urb->setup_packet,
1247 sizeof(struct usb_ctrlrequest),
1248 DMA_TO_DEVICE);
1251 return ret;
1254 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1256 enum dma_data_direction dir;
1258 if (is_root_hub(urb->dev))
1259 return;
1261 if (usb_endpoint_xfer_control(&urb->ep->desc)
1262 && !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
1263 if (hcd->self.uses_dma)
1264 dma_unmap_single(hcd->self.controller, urb->setup_dma,
1265 sizeof(struct usb_ctrlrequest),
1266 DMA_TO_DEVICE);
1267 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1268 hcd_free_coherent(urb->dev->bus, &urb->setup_dma,
1269 (void **)&urb->setup_packet,
1270 sizeof(struct usb_ctrlrequest),
1271 DMA_TO_DEVICE);
1274 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1275 if (urb->transfer_buffer_length != 0
1276 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1277 if (hcd->self.uses_dma)
1278 dma_unmap_single(hcd->self.controller,
1279 urb->transfer_dma,
1280 urb->transfer_buffer_length,
1281 dir);
1282 else if (hcd->driver->flags & HCD_LOCAL_MEM)
1283 hcd_free_coherent(urb->dev->bus, &urb->transfer_dma,
1284 &urb->transfer_buffer,
1285 urb->transfer_buffer_length,
1286 dir);
1290 /*-------------------------------------------------------------------------*/
1292 /* may be called in any context with a valid urb->dev usecount
1293 * caller surrenders "ownership" of urb
1294 * expects usb_submit_urb() to have sanity checked and conditioned all
1295 * inputs in the urb
1297 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1299 int status;
1300 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1302 /* increment urb's reference count as part of giving it to the HCD
1303 * (which will control it). HCD guarantees that it either returns
1304 * an error or calls giveback(), but not both.
1306 usb_get_urb(urb);
1307 atomic_inc(&urb->use_count);
1308 atomic_inc(&urb->dev->urbnum);
1309 usbmon_urb_submit(&hcd->self, urb);
1311 /* NOTE requirements on root-hub callers (usbfs and the hub
1312 * driver, for now): URBs' urb->transfer_buffer must be
1313 * valid and usb_buffer_{sync,unmap}() not be needed, since
1314 * they could clobber root hub response data. Also, control
1315 * URBs must be submitted in process context with interrupts
1316 * enabled.
1318 status = map_urb_for_dma(hcd, urb, mem_flags);
1319 if (unlikely(status)) {
1320 usbmon_urb_submit_error(&hcd->self, urb, status);
1321 goto error;
1324 if (is_root_hub(urb->dev))
1325 status = rh_urb_enqueue(hcd, urb);
1326 else
1327 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1329 if (unlikely(status)) {
1330 usbmon_urb_submit_error(&hcd->self, urb, status);
1331 unmap_urb_for_dma(hcd, urb);
1332 error:
1333 urb->hcpriv = NULL;
1334 INIT_LIST_HEAD(&urb->urb_list);
1335 atomic_dec(&urb->use_count);
1336 atomic_dec(&urb->dev->urbnum);
1337 if (urb->reject)
1338 wake_up(&usb_kill_urb_queue);
1339 usb_put_urb(urb);
1341 return status;
1344 /*-------------------------------------------------------------------------*/
1346 /* this makes the hcd giveback() the urb more quickly, by kicking it
1347 * off hardware queues (which may take a while) and returning it as
1348 * soon as practical. we've already set up the urb's return status,
1349 * but we can't know if the callback completed already.
1351 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1353 int value;
1355 if (is_root_hub(urb->dev))
1356 value = usb_rh_urb_dequeue(hcd, urb, status);
1357 else {
1359 /* The only reason an HCD might fail this call is if
1360 * it has not yet fully queued the urb to begin with.
1361 * Such failures should be harmless. */
1362 value = hcd->driver->urb_dequeue(hcd, urb, status);
1364 return value;
1368 * called in any context
1370 * caller guarantees urb won't be recycled till both unlink()
1371 * and the urb's completion function return
1373 int usb_hcd_unlink_urb (struct urb *urb, int status)
1375 struct usb_hcd *hcd;
1376 int retval;
1378 hcd = bus_to_hcd(urb->dev->bus);
1379 retval = unlink1(hcd, urb, status);
1381 if (retval == 0)
1382 retval = -EINPROGRESS;
1383 else if (retval != -EIDRM && retval != -EBUSY)
1384 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1385 urb, retval);
1386 return retval;
1389 /*-------------------------------------------------------------------------*/
1392 * usb_hcd_giveback_urb - return URB from HCD to device driver
1393 * @hcd: host controller returning the URB
1394 * @urb: urb being returned to the USB device driver.
1395 * @status: completion status code for the URB.
1396 * Context: in_interrupt()
1398 * This hands the URB from HCD to its USB device driver, using its
1399 * completion function. The HCD has freed all per-urb resources
1400 * (and is done using urb->hcpriv). It also released all HCD locks;
1401 * the device driver won't cause problems if it frees, modifies,
1402 * or resubmits this URB.
1404 * If @urb was unlinked, the value of @status will be overridden by
1405 * @urb->unlinked. Erroneous short transfers are detected in case
1406 * the HCD hasn't checked for them.
1408 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1410 urb->hcpriv = NULL;
1411 if (unlikely(urb->unlinked))
1412 status = urb->unlinked;
1413 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1414 urb->actual_length < urb->transfer_buffer_length &&
1415 !status))
1416 status = -EREMOTEIO;
1418 unmap_urb_for_dma(hcd, urb);
1419 usbmon_urb_complete(&hcd->self, urb, status);
1420 usb_unanchor_urb(urb);
1422 /* pass ownership to the completion handler */
1423 urb->status = status;
1424 urb->complete (urb);
1425 atomic_dec (&urb->use_count);
1426 if (unlikely (urb->reject))
1427 wake_up (&usb_kill_urb_queue);
1428 usb_put_urb (urb);
1430 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1432 /*-------------------------------------------------------------------------*/
1434 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1435 * queue to drain completely. The caller must first insure that no more
1436 * URBs can be submitted for this endpoint.
1438 void usb_hcd_flush_endpoint(struct usb_device *udev,
1439 struct usb_host_endpoint *ep)
1441 struct usb_hcd *hcd;
1442 struct urb *urb;
1444 if (!ep)
1445 return;
1446 might_sleep();
1447 hcd = bus_to_hcd(udev->bus);
1449 /* No more submits can occur */
1450 spin_lock_irq(&hcd_urb_list_lock);
1451 rescan:
1452 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1453 int is_in;
1455 if (urb->unlinked)
1456 continue;
1457 usb_get_urb (urb);
1458 is_in = usb_urb_dir_in(urb);
1459 spin_unlock(&hcd_urb_list_lock);
1461 /* kick hcd */
1462 unlink1(hcd, urb, -ESHUTDOWN);
1463 dev_dbg (hcd->self.controller,
1464 "shutdown urb %p ep%d%s%s\n",
1465 urb, usb_endpoint_num(&ep->desc),
1466 is_in ? "in" : "out",
1467 ({ char *s;
1469 switch (usb_endpoint_type(&ep->desc)) {
1470 case USB_ENDPOINT_XFER_CONTROL:
1471 s = ""; break;
1472 case USB_ENDPOINT_XFER_BULK:
1473 s = "-bulk"; break;
1474 case USB_ENDPOINT_XFER_INT:
1475 s = "-intr"; break;
1476 default:
1477 s = "-iso"; break;
1480 }));
1481 usb_put_urb (urb);
1483 /* list contents may have changed */
1484 spin_lock(&hcd_urb_list_lock);
1485 goto rescan;
1487 spin_unlock_irq(&hcd_urb_list_lock);
1489 /* Wait until the endpoint queue is completely empty */
1490 while (!list_empty (&ep->urb_list)) {
1491 spin_lock_irq(&hcd_urb_list_lock);
1493 /* The list may have changed while we acquired the spinlock */
1494 urb = NULL;
1495 if (!list_empty (&ep->urb_list)) {
1496 urb = list_entry (ep->urb_list.prev, struct urb,
1497 urb_list);
1498 usb_get_urb (urb);
1500 spin_unlock_irq(&hcd_urb_list_lock);
1502 if (urb) {
1503 usb_kill_urb (urb);
1504 usb_put_urb (urb);
1509 /* Disables the endpoint: synchronizes with the hcd to make sure all
1510 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1511 * have been called previously. Use for set_configuration, set_interface,
1512 * driver removal, physical disconnect.
1514 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1515 * type, maxpacket size, toggle, halt status, and scheduling.
1517 void usb_hcd_disable_endpoint(struct usb_device *udev,
1518 struct usb_host_endpoint *ep)
1520 struct usb_hcd *hcd;
1522 might_sleep();
1523 hcd = bus_to_hcd(udev->bus);
1524 if (hcd->driver->endpoint_disable)
1525 hcd->driver->endpoint_disable(hcd, ep);
1528 /*-------------------------------------------------------------------------*/
1530 /* called in any context */
1531 int usb_hcd_get_frame_number (struct usb_device *udev)
1533 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1535 if (!HC_IS_RUNNING (hcd->state))
1536 return -ESHUTDOWN;
1537 return hcd->driver->get_frame_number (hcd);
1540 /*-------------------------------------------------------------------------*/
1542 #ifdef CONFIG_PM
1544 int hcd_bus_suspend(struct usb_device *rhdev)
1546 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1547 int status;
1548 int old_state = hcd->state;
1550 dev_dbg(&rhdev->dev, "bus %s%s\n",
1551 rhdev->auto_pm ? "auto-" : "", "suspend");
1552 if (!hcd->driver->bus_suspend) {
1553 status = -ENOENT;
1554 } else {
1555 hcd->state = HC_STATE_QUIESCING;
1556 status = hcd->driver->bus_suspend(hcd);
1558 if (status == 0) {
1559 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1560 hcd->state = HC_STATE_SUSPENDED;
1561 } else {
1562 hcd->state = old_state;
1563 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1564 "suspend", status);
1566 return status;
1569 int hcd_bus_resume(struct usb_device *rhdev)
1571 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1572 int status;
1573 int old_state = hcd->state;
1575 dev_dbg(&rhdev->dev, "usb %s%s\n",
1576 rhdev->auto_pm ? "auto-" : "", "resume");
1577 if (!hcd->driver->bus_resume)
1578 return -ENOENT;
1579 if (hcd->state == HC_STATE_RUNNING)
1580 return 0;
1582 hcd->state = HC_STATE_RESUMING;
1583 status = hcd->driver->bus_resume(hcd);
1584 if (status == 0) {
1585 /* TRSMRCY = 10 msec */
1586 msleep(10);
1587 usb_set_device_state(rhdev, rhdev->actconfig
1588 ? USB_STATE_CONFIGURED
1589 : USB_STATE_ADDRESS);
1590 hcd->state = HC_STATE_RUNNING;
1591 } else {
1592 hcd->state = old_state;
1593 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1594 "resume", status);
1595 if (status != -ESHUTDOWN)
1596 usb_hc_died(hcd);
1598 return status;
1601 /* Workqueue routine for root-hub remote wakeup */
1602 static void hcd_resume_work(struct work_struct *work)
1604 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
1605 struct usb_device *udev = hcd->self.root_hub;
1607 usb_lock_device(udev);
1608 usb_mark_last_busy(udev);
1609 usb_external_resume_device(udev);
1610 usb_unlock_device(udev);
1614 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
1615 * @hcd: host controller for this root hub
1617 * The USB host controller calls this function when its root hub is
1618 * suspended (with the remote wakeup feature enabled) and a remote
1619 * wakeup request is received. The routine submits a workqueue request
1620 * to resume the root hub (that is, manage its downstream ports again).
1622 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
1624 unsigned long flags;
1626 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1627 if (hcd->rh_registered)
1628 queue_work(ksuspend_usb_wq, &hcd->wakeup_work);
1629 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1631 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
1633 #endif
1635 /*-------------------------------------------------------------------------*/
1637 #ifdef CONFIG_USB_OTG
1640 * usb_bus_start_enum - start immediate enumeration (for OTG)
1641 * @bus: the bus (must use hcd framework)
1642 * @port_num: 1-based number of port; usually bus->otg_port
1643 * Context: in_interrupt()
1645 * Starts enumeration, with an immediate reset followed later by
1646 * khubd identifying and possibly configuring the device.
1647 * This is needed by OTG controller drivers, where it helps meet
1648 * HNP protocol timing requirements for starting a port reset.
1650 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
1652 struct usb_hcd *hcd;
1653 int status = -EOPNOTSUPP;
1655 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
1656 * boards with root hubs hooked up to internal devices (instead of
1657 * just the OTG port) may need more attention to resetting...
1659 hcd = container_of (bus, struct usb_hcd, self);
1660 if (port_num && hcd->driver->start_port_reset)
1661 status = hcd->driver->start_port_reset(hcd, port_num);
1663 /* run khubd shortly after (first) root port reset finishes;
1664 * it may issue others, until at least 50 msecs have passed.
1666 if (status == 0)
1667 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
1668 return status;
1670 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
1672 #endif
1674 /*-------------------------------------------------------------------------*/
1677 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
1678 * @irq: the IRQ being raised
1679 * @__hcd: pointer to the HCD whose IRQ is being signaled
1680 * @r: saved hardware registers
1682 * If the controller isn't HALTed, calls the driver's irq handler.
1683 * Checks whether the controller is now dead.
1685 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
1687 struct usb_hcd *hcd = __hcd;
1688 int start = hcd->state;
1690 if (unlikely(start == HC_STATE_HALT ||
1691 !test_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags)))
1692 return IRQ_NONE;
1693 if (hcd->driver->irq (hcd) == IRQ_NONE)
1694 return IRQ_NONE;
1696 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1698 if (unlikely(hcd->state == HC_STATE_HALT))
1699 usb_hc_died (hcd);
1700 return IRQ_HANDLED;
1703 /*-------------------------------------------------------------------------*/
1706 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
1707 * @hcd: pointer to the HCD representing the controller
1709 * This is called by bus glue to report a USB host controller that died
1710 * while operations may still have been pending. It's called automatically
1711 * by the PCI glue, so only glue for non-PCI busses should need to call it.
1713 void usb_hc_died (struct usb_hcd *hcd)
1715 unsigned long flags;
1717 dev_err (hcd->self.controller, "HC died; cleaning up\n");
1719 spin_lock_irqsave (&hcd_root_hub_lock, flags);
1720 if (hcd->rh_registered) {
1721 hcd->poll_rh = 0;
1723 /* make khubd clean up old urbs and devices */
1724 usb_set_device_state (hcd->self.root_hub,
1725 USB_STATE_NOTATTACHED);
1726 usb_kick_khubd (hcd->self.root_hub);
1728 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
1730 EXPORT_SYMBOL_GPL (usb_hc_died);
1732 /*-------------------------------------------------------------------------*/
1735 * usb_create_hcd - create and initialize an HCD structure
1736 * @driver: HC driver that will use this hcd
1737 * @dev: device for this HC, stored in hcd->self.controller
1738 * @bus_name: value to store in hcd->self.bus_name
1739 * Context: !in_interrupt()
1741 * Allocate a struct usb_hcd, with extra space at the end for the
1742 * HC driver's private data. Initialize the generic members of the
1743 * hcd structure.
1745 * If memory is unavailable, returns NULL.
1747 struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
1748 struct device *dev, char *bus_name)
1750 struct usb_hcd *hcd;
1752 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
1753 if (!hcd) {
1754 dev_dbg (dev, "hcd alloc failed\n");
1755 return NULL;
1757 dev_set_drvdata(dev, hcd);
1758 kref_init(&hcd->kref);
1760 usb_bus_init(&hcd->self);
1761 hcd->self.controller = dev;
1762 hcd->self.bus_name = bus_name;
1763 hcd->self.uses_dma = (dev->dma_mask != NULL);
1765 init_timer(&hcd->rh_timer);
1766 hcd->rh_timer.function = rh_timer_func;
1767 hcd->rh_timer.data = (unsigned long) hcd;
1768 #ifdef CONFIG_PM
1769 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
1770 #endif
1772 hcd->driver = driver;
1773 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
1774 "USB Host Controller";
1775 return hcd;
1777 EXPORT_SYMBOL_GPL(usb_create_hcd);
1779 static void hcd_release (struct kref *kref)
1781 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
1783 kfree(hcd);
1786 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
1788 if (hcd)
1789 kref_get (&hcd->kref);
1790 return hcd;
1792 EXPORT_SYMBOL_GPL(usb_get_hcd);
1794 void usb_put_hcd (struct usb_hcd *hcd)
1796 if (hcd)
1797 kref_put (&hcd->kref, hcd_release);
1799 EXPORT_SYMBOL_GPL(usb_put_hcd);
1802 * usb_add_hcd - finish generic HCD structure initialization and register
1803 * @hcd: the usb_hcd structure to initialize
1804 * @irqnum: Interrupt line to allocate
1805 * @irqflags: Interrupt type flags
1807 * Finish the remaining parts of generic HCD initialization: allocate the
1808 * buffers of consistent memory, register the bus, request the IRQ line,
1809 * and call the driver's reset() and start() routines.
1811 int usb_add_hcd(struct usb_hcd *hcd,
1812 unsigned int irqnum, unsigned long irqflags)
1814 int retval;
1815 struct usb_device *rhdev;
1817 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
1819 hcd->authorized_default = hcd->wireless? 0 : 1;
1820 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1822 /* HC is in reset state, but accessible. Now do the one-time init,
1823 * bottom up so that hcds can customize the root hubs before khubd
1824 * starts talking to them. (Note, bus id is assigned early too.)
1826 if ((retval = hcd_buffer_create(hcd)) != 0) {
1827 dev_dbg(hcd->self.controller, "pool alloc failed\n");
1828 return retval;
1831 if ((retval = usb_register_bus(&hcd->self)) < 0)
1832 goto err_register_bus;
1834 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
1835 dev_err(hcd->self.controller, "unable to allocate root hub\n");
1836 retval = -ENOMEM;
1837 goto err_allocate_root_hub;
1839 rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
1840 USB_SPEED_FULL;
1841 hcd->self.root_hub = rhdev;
1843 /* wakeup flag init defaults to "everything works" for root hubs,
1844 * but drivers can override it in reset() if needed, along with
1845 * recording the overall controller's system wakeup capability.
1847 device_init_wakeup(&rhdev->dev, 1);
1849 /* "reset" is misnamed; its role is now one-time init. the controller
1850 * should already have been reset (and boot firmware kicked off etc).
1852 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
1853 dev_err(hcd->self.controller, "can't setup\n");
1854 goto err_hcd_driver_setup;
1857 /* NOTE: root hub and controller capabilities may not be the same */
1858 if (device_can_wakeup(hcd->self.controller)
1859 && device_can_wakeup(&hcd->self.root_hub->dev))
1860 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
1862 /* enable irqs just before we start the controller */
1863 if (hcd->driver->irq) {
1864 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
1865 hcd->driver->description, hcd->self.busnum);
1866 if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
1867 hcd->irq_descr, hcd)) != 0) {
1868 dev_err(hcd->self.controller,
1869 "request interrupt %d failed\n", irqnum);
1870 goto err_request_irq;
1872 hcd->irq = irqnum;
1873 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
1874 (hcd->driver->flags & HCD_MEMORY) ?
1875 "io mem" : "io base",
1876 (unsigned long long)hcd->rsrc_start);
1877 } else {
1878 hcd->irq = -1;
1879 if (hcd->rsrc_start)
1880 dev_info(hcd->self.controller, "%s 0x%08llx\n",
1881 (hcd->driver->flags & HCD_MEMORY) ?
1882 "io mem" : "io base",
1883 (unsigned long long)hcd->rsrc_start);
1886 if ((retval = hcd->driver->start(hcd)) < 0) {
1887 dev_err(hcd->self.controller, "startup error %d\n", retval);
1888 goto err_hcd_driver_start;
1891 /* starting here, usbcore will pay attention to this root hub */
1892 rhdev->bus_mA = min(500u, hcd->power_budget);
1893 if ((retval = register_root_hub(hcd)) != 0)
1894 goto err_register_root_hub;
1896 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
1897 if (retval < 0) {
1898 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
1899 retval);
1900 goto error_create_attr_group;
1902 if (hcd->uses_new_polling && hcd->poll_rh)
1903 usb_hcd_poll_rh_status(hcd);
1904 return retval;
1906 error_create_attr_group:
1907 mutex_lock(&usb_bus_list_lock);
1908 usb_disconnect(&hcd->self.root_hub);
1909 mutex_unlock(&usb_bus_list_lock);
1910 err_register_root_hub:
1911 hcd->driver->stop(hcd);
1912 err_hcd_driver_start:
1913 if (hcd->irq >= 0)
1914 free_irq(irqnum, hcd);
1915 err_request_irq:
1916 err_hcd_driver_setup:
1917 hcd->self.root_hub = NULL;
1918 usb_put_dev(rhdev);
1919 err_allocate_root_hub:
1920 usb_deregister_bus(&hcd->self);
1921 err_register_bus:
1922 hcd_buffer_destroy(hcd);
1923 return retval;
1925 EXPORT_SYMBOL_GPL(usb_add_hcd);
1928 * usb_remove_hcd - shutdown processing for generic HCDs
1929 * @hcd: the usb_hcd structure to remove
1930 * Context: !in_interrupt()
1932 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
1933 * invoking the HCD's stop() method.
1935 void usb_remove_hcd(struct usb_hcd *hcd)
1937 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
1939 if (HC_IS_RUNNING (hcd->state))
1940 hcd->state = HC_STATE_QUIESCING;
1942 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
1943 spin_lock_irq (&hcd_root_hub_lock);
1944 hcd->rh_registered = 0;
1945 spin_unlock_irq (&hcd_root_hub_lock);
1947 #ifdef CONFIG_PM
1948 cancel_work_sync(&hcd->wakeup_work);
1949 #endif
1951 sysfs_remove_group(&hcd->self.root_hub->dev.kobj, &usb_bus_attr_group);
1952 mutex_lock(&usb_bus_list_lock);
1953 usb_disconnect(&hcd->self.root_hub);
1954 mutex_unlock(&usb_bus_list_lock);
1956 hcd->driver->stop(hcd);
1957 hcd->state = HC_STATE_HALT;
1959 hcd->poll_rh = 0;
1960 del_timer_sync(&hcd->rh_timer);
1962 if (hcd->irq >= 0)
1963 free_irq(hcd->irq, hcd);
1964 usb_deregister_bus(&hcd->self);
1965 hcd_buffer_destroy(hcd);
1967 EXPORT_SYMBOL_GPL(usb_remove_hcd);
1969 void
1970 usb_hcd_platform_shutdown(struct platform_device* dev)
1972 struct usb_hcd *hcd = platform_get_drvdata(dev);
1974 if (hcd->driver->shutdown)
1975 hcd->driver->shutdown(hcd);
1977 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
1979 /*-------------------------------------------------------------------------*/
1981 #if defined(CONFIG_USB_MON)
1983 struct usb_mon_operations *mon_ops;
1986 * The registration is unlocked.
1987 * We do it this way because we do not want to lock in hot paths.
1989 * Notice that the code is minimally error-proof. Because usbmon needs
1990 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
1993 int usb_mon_register (struct usb_mon_operations *ops)
1996 if (mon_ops)
1997 return -EBUSY;
1999 mon_ops = ops;
2000 mb();
2001 return 0;
2003 EXPORT_SYMBOL_GPL (usb_mon_register);
2005 void usb_mon_deregister (void)
2008 if (mon_ops == NULL) {
2009 printk(KERN_ERR "USB: monitor was not registered\n");
2010 return;
2012 mon_ops = NULL;
2013 mb();
2015 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2017 #endif /* CONFIG_USB_MON */