4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
72 #ifndef CONFIG_NEED_MULTIPLE_NODES
73 /* use the per-pgdat data instead for discontigmem - mbligh */
74 unsigned long max_mapnr
;
77 EXPORT_SYMBOL(max_mapnr
);
78 EXPORT_SYMBOL(mem_map
);
81 unsigned long num_physpages
;
83 * A number of key systems in x86 including ioremap() rely on the assumption
84 * that high_memory defines the upper bound on direct map memory, then end
85 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
86 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 EXPORT_SYMBOL(num_physpages
);
92 EXPORT_SYMBOL(high_memory
);
95 * Randomize the address space (stacks, mmaps, brk, etc.).
97 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
98 * as ancient (libc5 based) binaries can segfault. )
100 int randomize_va_space __read_mostly
=
101 #ifdef CONFIG_COMPAT_BRK
107 static int __init
disable_randmaps(char *s
)
109 randomize_va_space
= 0;
112 __setup("norandmaps", disable_randmaps
);
114 unsigned long zero_pfn __read_mostly
;
115 unsigned long highest_memmap_pfn __read_mostly
;
118 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
120 static int __init
init_zero_pfn(void)
122 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
125 core_initcall(init_zero_pfn
);
128 #if defined(SPLIT_RSS_COUNTING)
130 void sync_mm_rss(struct mm_struct
*mm
)
134 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
135 if (current
->rss_stat
.count
[i
]) {
136 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
137 current
->rss_stat
.count
[i
] = 0;
140 current
->rss_stat
.events
= 0;
143 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
145 struct task_struct
*task
= current
;
147 if (likely(task
->mm
== mm
))
148 task
->rss_stat
.count
[member
] += val
;
150 add_mm_counter(mm
, member
, val
);
152 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
153 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
155 /* sync counter once per 64 page faults */
156 #define TASK_RSS_EVENTS_THRESH (64)
157 static void check_sync_rss_stat(struct task_struct
*task
)
159 if (unlikely(task
!= current
))
161 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
162 sync_mm_rss(task
->mm
);
164 #else /* SPLIT_RSS_COUNTING */
166 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
167 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
169 static void check_sync_rss_stat(struct task_struct
*task
)
173 #endif /* SPLIT_RSS_COUNTING */
175 #ifdef HAVE_GENERIC_MMU_GATHER
177 static int tlb_next_batch(struct mmu_gather
*tlb
)
179 struct mmu_gather_batch
*batch
;
183 tlb
->active
= batch
->next
;
187 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
190 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
197 batch
->max
= MAX_GATHER_BATCH
;
199 tlb
->active
->next
= batch
;
206 * Called to initialize an (on-stack) mmu_gather structure for page-table
207 * tear-down from @mm. The @fullmm argument is used when @mm is without
208 * users and we're going to destroy the full address space (exit/execve).
210 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, bool fullmm
)
214 tlb
->fullmm
= fullmm
;
215 tlb
->need_flush_all
= 0;
219 tlb
->fast_mode
= (num_possible_cpus() == 1);
220 tlb
->local
.next
= NULL
;
222 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
223 tlb
->active
= &tlb
->local
;
224 tlb
->batch_count
= 0;
226 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 void tlb_flush_mmu(struct mmu_gather
*tlb
)
233 struct mmu_gather_batch
*batch
;
235 if (!tlb
->need_flush
)
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb_table_flush(tlb
);
243 if (tlb_fast_mode(tlb
))
246 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
247 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
250 tlb
->active
= &tlb
->local
;
254 * Called at the end of the shootdown operation to free up any resources
255 * that were required.
257 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
259 struct mmu_gather_batch
*batch
, *next
;
265 /* keep the page table cache within bounds */
268 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
270 free_pages((unsigned long)batch
, 0);
272 tlb
->local
.next
= NULL
;
276 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
277 * handling the additional races in SMP caused by other CPUs caching valid
278 * mappings in their TLBs. Returns the number of free page slots left.
279 * When out of page slots we must call tlb_flush_mmu().
281 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
283 struct mmu_gather_batch
*batch
;
285 VM_BUG_ON(!tlb
->need_flush
);
287 if (tlb_fast_mode(tlb
)) {
288 free_page_and_swap_cache(page
);
289 return 1; /* avoid calling tlb_flush_mmu() */
293 batch
->pages
[batch
->nr
++] = page
;
294 if (batch
->nr
== batch
->max
) {
295 if (!tlb_next_batch(tlb
))
299 VM_BUG_ON(batch
->nr
> batch
->max
);
301 return batch
->max
- batch
->nr
;
304 #endif /* HAVE_GENERIC_MMU_GATHER */
306 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
309 * See the comment near struct mmu_table_batch.
312 static void tlb_remove_table_smp_sync(void *arg
)
314 /* Simply deliver the interrupt */
317 static void tlb_remove_table_one(void *table
)
320 * This isn't an RCU grace period and hence the page-tables cannot be
321 * assumed to be actually RCU-freed.
323 * It is however sufficient for software page-table walkers that rely on
324 * IRQ disabling. See the comment near struct mmu_table_batch.
326 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
327 __tlb_remove_table(table
);
330 static void tlb_remove_table_rcu(struct rcu_head
*head
)
332 struct mmu_table_batch
*batch
;
335 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
337 for (i
= 0; i
< batch
->nr
; i
++)
338 __tlb_remove_table(batch
->tables
[i
]);
340 free_page((unsigned long)batch
);
343 void tlb_table_flush(struct mmu_gather
*tlb
)
345 struct mmu_table_batch
**batch
= &tlb
->batch
;
348 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
353 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
355 struct mmu_table_batch
**batch
= &tlb
->batch
;
360 * When there's less then two users of this mm there cannot be a
361 * concurrent page-table walk.
363 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
364 __tlb_remove_table(table
);
368 if (*batch
== NULL
) {
369 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
370 if (*batch
== NULL
) {
371 tlb_remove_table_one(table
);
376 (*batch
)->tables
[(*batch
)->nr
++] = table
;
377 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
378 tlb_table_flush(tlb
);
381 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
384 * If a p?d_bad entry is found while walking page tables, report
385 * the error, before resetting entry to p?d_none. Usually (but
386 * very seldom) called out from the p?d_none_or_clear_bad macros.
389 void pgd_clear_bad(pgd_t
*pgd
)
395 void pud_clear_bad(pud_t
*pud
)
401 void pmd_clear_bad(pmd_t
*pmd
)
408 * Note: this doesn't free the actual pages themselves. That
409 * has been handled earlier when unmapping all the memory regions.
411 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
414 pgtable_t token
= pmd_pgtable(*pmd
);
416 pte_free_tlb(tlb
, token
, addr
);
420 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
421 unsigned long addr
, unsigned long end
,
422 unsigned long floor
, unsigned long ceiling
)
429 pmd
= pmd_offset(pud
, addr
);
431 next
= pmd_addr_end(addr
, end
);
432 if (pmd_none_or_clear_bad(pmd
))
434 free_pte_range(tlb
, pmd
, addr
);
435 } while (pmd
++, addr
= next
, addr
!= end
);
445 if (end
- 1 > ceiling
- 1)
448 pmd
= pmd_offset(pud
, start
);
450 pmd_free_tlb(tlb
, pmd
, start
);
453 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
454 unsigned long addr
, unsigned long end
,
455 unsigned long floor
, unsigned long ceiling
)
462 pud
= pud_offset(pgd
, addr
);
464 next
= pud_addr_end(addr
, end
);
465 if (pud_none_or_clear_bad(pud
))
467 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
468 } while (pud
++, addr
= next
, addr
!= end
);
474 ceiling
&= PGDIR_MASK
;
478 if (end
- 1 > ceiling
- 1)
481 pud
= pud_offset(pgd
, start
);
483 pud_free_tlb(tlb
, pud
, start
);
487 * This function frees user-level page tables of a process.
489 * Must be called with pagetable lock held.
491 void free_pgd_range(struct mmu_gather
*tlb
,
492 unsigned long addr
, unsigned long end
,
493 unsigned long floor
, unsigned long ceiling
)
499 * The next few lines have given us lots of grief...
501 * Why are we testing PMD* at this top level? Because often
502 * there will be no work to do at all, and we'd prefer not to
503 * go all the way down to the bottom just to discover that.
505 * Why all these "- 1"s? Because 0 represents both the bottom
506 * of the address space and the top of it (using -1 for the
507 * top wouldn't help much: the masks would do the wrong thing).
508 * The rule is that addr 0 and floor 0 refer to the bottom of
509 * the address space, but end 0 and ceiling 0 refer to the top
510 * Comparisons need to use "end - 1" and "ceiling - 1" (though
511 * that end 0 case should be mythical).
513 * Wherever addr is brought up or ceiling brought down, we must
514 * be careful to reject "the opposite 0" before it confuses the
515 * subsequent tests. But what about where end is brought down
516 * by PMD_SIZE below? no, end can't go down to 0 there.
518 * Whereas we round start (addr) and ceiling down, by different
519 * masks at different levels, in order to test whether a table
520 * now has no other vmas using it, so can be freed, we don't
521 * bother to round floor or end up - the tests don't need that.
535 if (end
- 1 > ceiling
- 1)
540 pgd
= pgd_offset(tlb
->mm
, addr
);
542 next
= pgd_addr_end(addr
, end
);
543 if (pgd_none_or_clear_bad(pgd
))
545 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
546 } while (pgd
++, addr
= next
, addr
!= end
);
549 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
550 unsigned long floor
, unsigned long ceiling
)
553 struct vm_area_struct
*next
= vma
->vm_next
;
554 unsigned long addr
= vma
->vm_start
;
557 * Hide vma from rmap and truncate_pagecache before freeing
560 unlink_anon_vmas(vma
);
561 unlink_file_vma(vma
);
563 if (is_vm_hugetlb_page(vma
)) {
564 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
565 floor
, next
? next
->vm_start
: ceiling
);
568 * Optimization: gather nearby vmas into one call down
570 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
571 && !is_vm_hugetlb_page(next
)) {
574 unlink_anon_vmas(vma
);
575 unlink_file_vma(vma
);
577 free_pgd_range(tlb
, addr
, vma
->vm_end
,
578 floor
, next
? next
->vm_start
: ceiling
);
584 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
585 pmd_t
*pmd
, unsigned long address
)
587 pgtable_t
new = pte_alloc_one(mm
, address
);
588 int wait_split_huge_page
;
593 * Ensure all pte setup (eg. pte page lock and page clearing) are
594 * visible before the pte is made visible to other CPUs by being
595 * put into page tables.
597 * The other side of the story is the pointer chasing in the page
598 * table walking code (when walking the page table without locking;
599 * ie. most of the time). Fortunately, these data accesses consist
600 * of a chain of data-dependent loads, meaning most CPUs (alpha
601 * being the notable exception) will already guarantee loads are
602 * seen in-order. See the alpha page table accessors for the
603 * smp_read_barrier_depends() barriers in page table walking code.
605 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
607 spin_lock(&mm
->page_table_lock
);
608 wait_split_huge_page
= 0;
609 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
611 pmd_populate(mm
, pmd
, new);
613 } else if (unlikely(pmd_trans_splitting(*pmd
)))
614 wait_split_huge_page
= 1;
615 spin_unlock(&mm
->page_table_lock
);
618 if (wait_split_huge_page
)
619 wait_split_huge_page(vma
->anon_vma
, pmd
);
623 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
625 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
629 smp_wmb(); /* See comment in __pte_alloc */
631 spin_lock(&init_mm
.page_table_lock
);
632 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
633 pmd_populate_kernel(&init_mm
, pmd
, new);
636 VM_BUG_ON(pmd_trans_splitting(*pmd
));
637 spin_unlock(&init_mm
.page_table_lock
);
639 pte_free_kernel(&init_mm
, new);
643 static inline void init_rss_vec(int *rss
)
645 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
648 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
652 if (current
->mm
== mm
)
654 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
656 add_mm_counter(mm
, i
, rss
[i
]);
660 * This function is called to print an error when a bad pte
661 * is found. For example, we might have a PFN-mapped pte in
662 * a region that doesn't allow it.
664 * The calling function must still handle the error.
666 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
667 pte_t pte
, struct page
*page
)
669 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
670 pud_t
*pud
= pud_offset(pgd
, addr
);
671 pmd_t
*pmd
= pmd_offset(pud
, addr
);
672 struct address_space
*mapping
;
674 static unsigned long resume
;
675 static unsigned long nr_shown
;
676 static unsigned long nr_unshown
;
679 * Allow a burst of 60 reports, then keep quiet for that minute;
680 * or allow a steady drip of one report per second.
682 if (nr_shown
== 60) {
683 if (time_before(jiffies
, resume
)) {
689 "BUG: Bad page map: %lu messages suppressed\n",
696 resume
= jiffies
+ 60 * HZ
;
698 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
699 index
= linear_page_index(vma
, addr
);
702 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
704 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
708 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
709 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
711 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
714 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
715 (unsigned long)vma
->vm_ops
->fault
);
716 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
717 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
718 (unsigned long)vma
->vm_file
->f_op
->mmap
);
720 add_taint(TAINT_BAD_PAGE
);
723 static inline bool is_cow_mapping(vm_flags_t flags
)
725 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
729 * vm_normal_page -- This function gets the "struct page" associated with a pte.
731 * "Special" mappings do not wish to be associated with a "struct page" (either
732 * it doesn't exist, or it exists but they don't want to touch it). In this
733 * case, NULL is returned here. "Normal" mappings do have a struct page.
735 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
736 * pte bit, in which case this function is trivial. Secondly, an architecture
737 * may not have a spare pte bit, which requires a more complicated scheme,
740 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
741 * special mapping (even if there are underlying and valid "struct pages").
742 * COWed pages of a VM_PFNMAP are always normal.
744 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
745 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
746 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
747 * mapping will always honor the rule
749 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
751 * And for normal mappings this is false.
753 * This restricts such mappings to be a linear translation from virtual address
754 * to pfn. To get around this restriction, we allow arbitrary mappings so long
755 * as the vma is not a COW mapping; in that case, we know that all ptes are
756 * special (because none can have been COWed).
759 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
761 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
762 * page" backing, however the difference is that _all_ pages with a struct
763 * page (that is, those where pfn_valid is true) are refcounted and considered
764 * normal pages by the VM. The disadvantage is that pages are refcounted
765 * (which can be slower and simply not an option for some PFNMAP users). The
766 * advantage is that we don't have to follow the strict linearity rule of
767 * PFNMAP mappings in order to support COWable mappings.
770 #ifdef __HAVE_ARCH_PTE_SPECIAL
771 # define HAVE_PTE_SPECIAL 1
773 # define HAVE_PTE_SPECIAL 0
775 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
778 unsigned long pfn
= pte_pfn(pte
);
780 if (HAVE_PTE_SPECIAL
) {
781 if (likely(!pte_special(pte
)))
783 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
785 if (!is_zero_pfn(pfn
))
786 print_bad_pte(vma
, addr
, pte
, NULL
);
790 /* !HAVE_PTE_SPECIAL case follows: */
792 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
793 if (vma
->vm_flags
& VM_MIXEDMAP
) {
799 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
800 if (pfn
== vma
->vm_pgoff
+ off
)
802 if (!is_cow_mapping(vma
->vm_flags
))
807 if (is_zero_pfn(pfn
))
810 if (unlikely(pfn
> highest_memmap_pfn
)) {
811 print_bad_pte(vma
, addr
, pte
, NULL
);
816 * NOTE! We still have PageReserved() pages in the page tables.
817 * eg. VDSO mappings can cause them to exist.
820 return pfn_to_page(pfn
);
824 * copy one vm_area from one task to the other. Assumes the page tables
825 * already present in the new task to be cleared in the whole range
826 * covered by this vma.
829 static inline unsigned long
830 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
831 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
832 unsigned long addr
, int *rss
)
834 unsigned long vm_flags
= vma
->vm_flags
;
835 pte_t pte
= *src_pte
;
838 /* pte contains position in swap or file, so copy. */
839 if (unlikely(!pte_present(pte
))) {
840 if (!pte_file(pte
)) {
841 swp_entry_t entry
= pte_to_swp_entry(pte
);
843 if (swap_duplicate(entry
) < 0)
846 /* make sure dst_mm is on swapoff's mmlist. */
847 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
848 spin_lock(&mmlist_lock
);
849 if (list_empty(&dst_mm
->mmlist
))
850 list_add(&dst_mm
->mmlist
,
852 spin_unlock(&mmlist_lock
);
854 if (likely(!non_swap_entry(entry
)))
856 else if (is_migration_entry(entry
)) {
857 page
= migration_entry_to_page(entry
);
864 if (is_write_migration_entry(entry
) &&
865 is_cow_mapping(vm_flags
)) {
867 * COW mappings require pages in both
868 * parent and child to be set to read.
870 make_migration_entry_read(&entry
);
871 pte
= swp_entry_to_pte(entry
);
872 set_pte_at(src_mm
, addr
, src_pte
, pte
);
880 * If it's a COW mapping, write protect it both
881 * in the parent and the child
883 if (is_cow_mapping(vm_flags
)) {
884 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
885 pte
= pte_wrprotect(pte
);
889 * If it's a shared mapping, mark it clean in
892 if (vm_flags
& VM_SHARED
)
893 pte
= pte_mkclean(pte
);
894 pte
= pte_mkold(pte
);
896 page
= vm_normal_page(vma
, addr
, pte
);
907 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
911 int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
912 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
913 unsigned long addr
, unsigned long end
)
915 pte_t
*orig_src_pte
, *orig_dst_pte
;
916 pte_t
*src_pte
, *dst_pte
;
917 spinlock_t
*src_ptl
, *dst_ptl
;
919 int rss
[NR_MM_COUNTERS
];
920 swp_entry_t entry
= (swp_entry_t
){0};
925 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
928 src_pte
= pte_offset_map(src_pmd
, addr
);
929 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
930 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
931 orig_src_pte
= src_pte
;
932 orig_dst_pte
= dst_pte
;
933 arch_enter_lazy_mmu_mode();
937 * We are holding two locks at this point - either of them
938 * could generate latencies in another task on another CPU.
940 if (progress
>= 32) {
942 if (need_resched() ||
943 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
946 if (pte_none(*src_pte
)) {
950 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
955 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
957 arch_leave_lazy_mmu_mode();
958 spin_unlock(src_ptl
);
959 pte_unmap(orig_src_pte
);
960 add_mm_rss_vec(dst_mm
, rss
);
961 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
965 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
974 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
975 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
976 unsigned long addr
, unsigned long end
)
978 pmd_t
*src_pmd
, *dst_pmd
;
981 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
984 src_pmd
= pmd_offset(src_pud
, addr
);
986 next
= pmd_addr_end(addr
, end
);
987 if (pmd_trans_huge(*src_pmd
)) {
989 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
990 err
= copy_huge_pmd(dst_mm
, src_mm
,
991 dst_pmd
, src_pmd
, addr
, vma
);
998 if (pmd_none_or_clear_bad(src_pmd
))
1000 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1003 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1007 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1008 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1009 unsigned long addr
, unsigned long end
)
1011 pud_t
*src_pud
, *dst_pud
;
1014 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1017 src_pud
= pud_offset(src_pgd
, addr
);
1019 next
= pud_addr_end(addr
, end
);
1020 if (pud_none_or_clear_bad(src_pud
))
1022 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1025 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1029 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1030 struct vm_area_struct
*vma
)
1032 pgd_t
*src_pgd
, *dst_pgd
;
1034 unsigned long addr
= vma
->vm_start
;
1035 unsigned long end
= vma
->vm_end
;
1036 unsigned long mmun_start
; /* For mmu_notifiers */
1037 unsigned long mmun_end
; /* For mmu_notifiers */
1042 * Don't copy ptes where a page fault will fill them correctly.
1043 * Fork becomes much lighter when there are big shared or private
1044 * readonly mappings. The tradeoff is that copy_page_range is more
1045 * efficient than faulting.
1047 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1048 VM_PFNMAP
| VM_MIXEDMAP
))) {
1053 if (is_vm_hugetlb_page(vma
))
1054 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1056 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1058 * We do not free on error cases below as remove_vma
1059 * gets called on error from higher level routine
1061 ret
= track_pfn_copy(vma
);
1067 * We need to invalidate the secondary MMU mappings only when
1068 * there could be a permission downgrade on the ptes of the
1069 * parent mm. And a permission downgrade will only happen if
1070 * is_cow_mapping() returns true.
1072 is_cow
= is_cow_mapping(vma
->vm_flags
);
1076 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1080 dst_pgd
= pgd_offset(dst_mm
, addr
);
1081 src_pgd
= pgd_offset(src_mm
, addr
);
1083 next
= pgd_addr_end(addr
, end
);
1084 if (pgd_none_or_clear_bad(src_pgd
))
1086 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1087 vma
, addr
, next
))) {
1091 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1094 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1098 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1099 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1100 unsigned long addr
, unsigned long end
,
1101 struct zap_details
*details
)
1103 struct mm_struct
*mm
= tlb
->mm
;
1104 int force_flush
= 0;
1105 int rss
[NR_MM_COUNTERS
];
1112 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1114 arch_enter_lazy_mmu_mode();
1117 if (pte_none(ptent
)) {
1121 if (pte_present(ptent
)) {
1124 page
= vm_normal_page(vma
, addr
, ptent
);
1125 if (unlikely(details
) && page
) {
1127 * unmap_shared_mapping_pages() wants to
1128 * invalidate cache without truncating:
1129 * unmap shared but keep private pages.
1131 if (details
->check_mapping
&&
1132 details
->check_mapping
!= page
->mapping
)
1135 * Each page->index must be checked when
1136 * invalidating or truncating nonlinear.
1138 if (details
->nonlinear_vma
&&
1139 (page
->index
< details
->first_index
||
1140 page
->index
> details
->last_index
))
1143 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1145 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1146 if (unlikely(!page
))
1148 if (unlikely(details
) && details
->nonlinear_vma
1149 && linear_page_index(details
->nonlinear_vma
,
1150 addr
) != page
->index
)
1151 set_pte_at(mm
, addr
, pte
,
1152 pgoff_to_pte(page
->index
));
1154 rss
[MM_ANONPAGES
]--;
1156 if (pte_dirty(ptent
))
1157 set_page_dirty(page
);
1158 if (pte_young(ptent
) &&
1159 likely(!VM_SequentialReadHint(vma
)))
1160 mark_page_accessed(page
);
1161 rss
[MM_FILEPAGES
]--;
1163 page_remove_rmap(page
);
1164 if (unlikely(page_mapcount(page
) < 0))
1165 print_bad_pte(vma
, addr
, ptent
, page
);
1166 force_flush
= !__tlb_remove_page(tlb
, page
);
1172 * If details->check_mapping, we leave swap entries;
1173 * if details->nonlinear_vma, we leave file entries.
1175 if (unlikely(details
))
1177 if (pte_file(ptent
)) {
1178 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1179 print_bad_pte(vma
, addr
, ptent
, NULL
);
1181 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1183 if (!non_swap_entry(entry
))
1185 else if (is_migration_entry(entry
)) {
1188 page
= migration_entry_to_page(entry
);
1191 rss
[MM_ANONPAGES
]--;
1193 rss
[MM_FILEPAGES
]--;
1195 if (unlikely(!free_swap_and_cache(entry
)))
1196 print_bad_pte(vma
, addr
, ptent
, NULL
);
1198 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1199 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1201 add_mm_rss_vec(mm
, rss
);
1202 arch_leave_lazy_mmu_mode();
1203 pte_unmap_unlock(start_pte
, ptl
);
1206 * mmu_gather ran out of room to batch pages, we break out of
1207 * the PTE lock to avoid doing the potential expensive TLB invalidate
1208 * and page-free while holding it.
1213 #ifdef HAVE_GENERIC_MMU_GATHER
1225 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1226 struct vm_area_struct
*vma
, pud_t
*pud
,
1227 unsigned long addr
, unsigned long end
,
1228 struct zap_details
*details
)
1233 pmd
= pmd_offset(pud
, addr
);
1235 next
= pmd_addr_end(addr
, end
);
1236 if (pmd_trans_huge(*pmd
)) {
1237 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1238 #ifdef CONFIG_DEBUG_VM
1239 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1240 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1241 __func__
, addr
, end
,
1247 split_huge_page_pmd(vma
, addr
, pmd
);
1248 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1253 * Here there can be other concurrent MADV_DONTNEED or
1254 * trans huge page faults running, and if the pmd is
1255 * none or trans huge it can change under us. This is
1256 * because MADV_DONTNEED holds the mmap_sem in read
1259 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1261 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1264 } while (pmd
++, addr
= next
, addr
!= end
);
1269 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1270 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1271 unsigned long addr
, unsigned long end
,
1272 struct zap_details
*details
)
1277 pud
= pud_offset(pgd
, addr
);
1279 next
= pud_addr_end(addr
, end
);
1280 if (pud_none_or_clear_bad(pud
))
1282 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1283 } while (pud
++, addr
= next
, addr
!= end
);
1288 static void unmap_page_range(struct mmu_gather
*tlb
,
1289 struct vm_area_struct
*vma
,
1290 unsigned long addr
, unsigned long end
,
1291 struct zap_details
*details
)
1296 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1299 BUG_ON(addr
>= end
);
1300 mem_cgroup_uncharge_start();
1301 tlb_start_vma(tlb
, vma
);
1302 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1304 next
= pgd_addr_end(addr
, end
);
1305 if (pgd_none_or_clear_bad(pgd
))
1307 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1308 } while (pgd
++, addr
= next
, addr
!= end
);
1309 tlb_end_vma(tlb
, vma
);
1310 mem_cgroup_uncharge_end();
1314 static void unmap_single_vma(struct mmu_gather
*tlb
,
1315 struct vm_area_struct
*vma
, unsigned long start_addr
,
1316 unsigned long end_addr
,
1317 struct zap_details
*details
)
1319 unsigned long start
= max(vma
->vm_start
, start_addr
);
1322 if (start
>= vma
->vm_end
)
1324 end
= min(vma
->vm_end
, end_addr
);
1325 if (end
<= vma
->vm_start
)
1329 uprobe_munmap(vma
, start
, end
);
1331 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1332 untrack_pfn(vma
, 0, 0);
1335 if (unlikely(is_vm_hugetlb_page(vma
))) {
1337 * It is undesirable to test vma->vm_file as it
1338 * should be non-null for valid hugetlb area.
1339 * However, vm_file will be NULL in the error
1340 * cleanup path of do_mmap_pgoff. When
1341 * hugetlbfs ->mmap method fails,
1342 * do_mmap_pgoff() nullifies vma->vm_file
1343 * before calling this function to clean up.
1344 * Since no pte has actually been setup, it is
1345 * safe to do nothing in this case.
1348 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1349 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1350 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1353 unmap_page_range(tlb
, vma
, start
, end
, details
);
1358 * unmap_vmas - unmap a range of memory covered by a list of vma's
1359 * @tlb: address of the caller's struct mmu_gather
1360 * @vma: the starting vma
1361 * @start_addr: virtual address at which to start unmapping
1362 * @end_addr: virtual address at which to end unmapping
1364 * Unmap all pages in the vma list.
1366 * Only addresses between `start' and `end' will be unmapped.
1368 * The VMA list must be sorted in ascending virtual address order.
1370 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1371 * range after unmap_vmas() returns. So the only responsibility here is to
1372 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1373 * drops the lock and schedules.
1375 void unmap_vmas(struct mmu_gather
*tlb
,
1376 struct vm_area_struct
*vma
, unsigned long start_addr
,
1377 unsigned long end_addr
)
1379 struct mm_struct
*mm
= vma
->vm_mm
;
1381 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1382 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1383 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1384 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1388 * zap_page_range - remove user pages in a given range
1389 * @vma: vm_area_struct holding the applicable pages
1390 * @start: starting address of pages to zap
1391 * @size: number of bytes to zap
1392 * @details: details of nonlinear truncation or shared cache invalidation
1394 * Caller must protect the VMA list
1396 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1397 unsigned long size
, struct zap_details
*details
)
1399 struct mm_struct
*mm
= vma
->vm_mm
;
1400 struct mmu_gather tlb
;
1401 unsigned long end
= start
+ size
;
1404 tlb_gather_mmu(&tlb
, mm
, 0);
1405 update_hiwater_rss(mm
);
1406 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1407 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1408 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1409 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1410 tlb_finish_mmu(&tlb
, start
, end
);
1414 * zap_page_range_single - remove user pages in a given range
1415 * @vma: vm_area_struct holding the applicable pages
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1418 * @details: details of nonlinear truncation or shared cache invalidation
1420 * The range must fit into one VMA.
1422 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1423 unsigned long size
, struct zap_details
*details
)
1425 struct mm_struct
*mm
= vma
->vm_mm
;
1426 struct mmu_gather tlb
;
1427 unsigned long end
= address
+ size
;
1430 tlb_gather_mmu(&tlb
, mm
, 0);
1431 update_hiwater_rss(mm
);
1432 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1433 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1434 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1435 tlb_finish_mmu(&tlb
, address
, end
);
1439 * zap_vma_ptes - remove ptes mapping the vma
1440 * @vma: vm_area_struct holding ptes to be zapped
1441 * @address: starting address of pages to zap
1442 * @size: number of bytes to zap
1444 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1446 * The entire address range must be fully contained within the vma.
1448 * Returns 0 if successful.
1450 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1453 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1454 !(vma
->vm_flags
& VM_PFNMAP
))
1456 zap_page_range_single(vma
, address
, size
, NULL
);
1459 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1462 * follow_page - look up a page descriptor from a user-virtual address
1463 * @vma: vm_area_struct mapping @address
1464 * @address: virtual address to look up
1465 * @flags: flags modifying lookup behaviour
1467 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1469 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1470 * an error pointer if there is a mapping to something not represented
1471 * by a page descriptor (see also vm_normal_page()).
1473 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1482 struct mm_struct
*mm
= vma
->vm_mm
;
1484 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1485 if (!IS_ERR(page
)) {
1486 BUG_ON(flags
& FOLL_GET
);
1491 pgd
= pgd_offset(mm
, address
);
1492 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1495 pud
= pud_offset(pgd
, address
);
1498 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
1499 BUG_ON(flags
& FOLL_GET
);
1500 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1503 if (unlikely(pud_bad(*pud
)))
1506 pmd
= pmd_offset(pud
, address
);
1509 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
1510 BUG_ON(flags
& FOLL_GET
);
1511 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1514 if ((flags
& FOLL_NUMA
) && pmd_numa(*pmd
))
1516 if (pmd_trans_huge(*pmd
)) {
1517 if (flags
& FOLL_SPLIT
) {
1518 split_huge_page_pmd(vma
, address
, pmd
);
1519 goto split_fallthrough
;
1521 spin_lock(&mm
->page_table_lock
);
1522 if (likely(pmd_trans_huge(*pmd
))) {
1523 if (unlikely(pmd_trans_splitting(*pmd
))) {
1524 spin_unlock(&mm
->page_table_lock
);
1525 wait_split_huge_page(vma
->anon_vma
, pmd
);
1527 page
= follow_trans_huge_pmd(vma
, address
,
1529 spin_unlock(&mm
->page_table_lock
);
1533 spin_unlock(&mm
->page_table_lock
);
1537 if (unlikely(pmd_bad(*pmd
)))
1540 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1543 if (!pte_present(pte
))
1545 if ((flags
& FOLL_NUMA
) && pte_numa(pte
))
1547 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1550 page
= vm_normal_page(vma
, address
, pte
);
1551 if (unlikely(!page
)) {
1552 if ((flags
& FOLL_DUMP
) ||
1553 !is_zero_pfn(pte_pfn(pte
)))
1555 page
= pte_page(pte
);
1558 if (flags
& FOLL_GET
)
1559 get_page_foll(page
);
1560 if (flags
& FOLL_TOUCH
) {
1561 if ((flags
& FOLL_WRITE
) &&
1562 !pte_dirty(pte
) && !PageDirty(page
))
1563 set_page_dirty(page
);
1565 * pte_mkyoung() would be more correct here, but atomic care
1566 * is needed to avoid losing the dirty bit: it is easier to use
1567 * mark_page_accessed().
1569 mark_page_accessed(page
);
1571 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1573 * The preliminary mapping check is mainly to avoid the
1574 * pointless overhead of lock_page on the ZERO_PAGE
1575 * which might bounce very badly if there is contention.
1577 * If the page is already locked, we don't need to
1578 * handle it now - vmscan will handle it later if and
1579 * when it attempts to reclaim the page.
1581 if (page
->mapping
&& trylock_page(page
)) {
1582 lru_add_drain(); /* push cached pages to LRU */
1584 * Because we lock page here, and migration is
1585 * blocked by the pte's page reference, and we
1586 * know the page is still mapped, we don't even
1587 * need to check for file-cache page truncation.
1589 mlock_vma_page(page
);
1594 pte_unmap_unlock(ptep
, ptl
);
1599 pte_unmap_unlock(ptep
, ptl
);
1600 return ERR_PTR(-EFAULT
);
1603 pte_unmap_unlock(ptep
, ptl
);
1609 * When core dumping an enormous anonymous area that nobody
1610 * has touched so far, we don't want to allocate unnecessary pages or
1611 * page tables. Return error instead of NULL to skip handle_mm_fault,
1612 * then get_dump_page() will return NULL to leave a hole in the dump.
1613 * But we can only make this optimization where a hole would surely
1614 * be zero-filled if handle_mm_fault() actually did handle it.
1616 if ((flags
& FOLL_DUMP
) &&
1617 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1618 return ERR_PTR(-EFAULT
);
1622 static inline int stack_guard_page(struct vm_area_struct
*vma
, unsigned long addr
)
1624 return stack_guard_page_start(vma
, addr
) ||
1625 stack_guard_page_end(vma
, addr
+PAGE_SIZE
);
1629 * __get_user_pages() - pin user pages in memory
1630 * @tsk: task_struct of target task
1631 * @mm: mm_struct of target mm
1632 * @start: starting user address
1633 * @nr_pages: number of pages from start to pin
1634 * @gup_flags: flags modifying pin behaviour
1635 * @pages: array that receives pointers to the pages pinned.
1636 * Should be at least nr_pages long. Or NULL, if caller
1637 * only intends to ensure the pages are faulted in.
1638 * @vmas: array of pointers to vmas corresponding to each page.
1639 * Or NULL if the caller does not require them.
1640 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1642 * Returns number of pages pinned. This may be fewer than the number
1643 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1644 * were pinned, returns -errno. Each page returned must be released
1645 * with a put_page() call when it is finished with. vmas will only
1646 * remain valid while mmap_sem is held.
1648 * Must be called with mmap_sem held for read or write.
1650 * __get_user_pages walks a process's page tables and takes a reference to
1651 * each struct page that each user address corresponds to at a given
1652 * instant. That is, it takes the page that would be accessed if a user
1653 * thread accesses the given user virtual address at that instant.
1655 * This does not guarantee that the page exists in the user mappings when
1656 * __get_user_pages returns, and there may even be a completely different
1657 * page there in some cases (eg. if mmapped pagecache has been invalidated
1658 * and subsequently re faulted). However it does guarantee that the page
1659 * won't be freed completely. And mostly callers simply care that the page
1660 * contains data that was valid *at some point in time*. Typically, an IO
1661 * or similar operation cannot guarantee anything stronger anyway because
1662 * locks can't be held over the syscall boundary.
1664 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1665 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1666 * appropriate) must be called after the page is finished with, and
1667 * before put_page is called.
1669 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1670 * or mmap_sem contention, and if waiting is needed to pin all pages,
1671 * *@nonblocking will be set to 0.
1673 * In most cases, get_user_pages or get_user_pages_fast should be used
1674 * instead of __get_user_pages. __get_user_pages should be used only if
1675 * you need some special @gup_flags.
1677 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1678 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1679 struct page
**pages
, struct vm_area_struct
**vmas
,
1683 unsigned long vm_flags
;
1688 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1691 * Require read or write permissions.
1692 * If FOLL_FORCE is set, we only require the "MAY" flags.
1694 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1695 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1696 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1697 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1700 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1701 * would be called on PROT_NONE ranges. We must never invoke
1702 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1703 * page faults would unprotect the PROT_NONE ranges if
1704 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1705 * bitflag. So to avoid that, don't set FOLL_NUMA if
1706 * FOLL_FORCE is set.
1708 if (!(gup_flags
& FOLL_FORCE
))
1709 gup_flags
|= FOLL_NUMA
;
1714 struct vm_area_struct
*vma
;
1716 vma
= find_extend_vma(mm
, start
);
1717 if (!vma
&& in_gate_area(mm
, start
)) {
1718 unsigned long pg
= start
& PAGE_MASK
;
1724 /* user gate pages are read-only */
1725 if (gup_flags
& FOLL_WRITE
)
1726 return i
? : -EFAULT
;
1728 pgd
= pgd_offset_k(pg
);
1730 pgd
= pgd_offset_gate(mm
, pg
);
1731 BUG_ON(pgd_none(*pgd
));
1732 pud
= pud_offset(pgd
, pg
);
1733 BUG_ON(pud_none(*pud
));
1734 pmd
= pmd_offset(pud
, pg
);
1736 return i
? : -EFAULT
;
1737 VM_BUG_ON(pmd_trans_huge(*pmd
));
1738 pte
= pte_offset_map(pmd
, pg
);
1739 if (pte_none(*pte
)) {
1741 return i
? : -EFAULT
;
1743 vma
= get_gate_vma(mm
);
1747 page
= vm_normal_page(vma
, start
, *pte
);
1749 if (!(gup_flags
& FOLL_DUMP
) &&
1750 is_zero_pfn(pte_pfn(*pte
)))
1751 page
= pte_page(*pte
);
1754 return i
? : -EFAULT
;
1765 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1766 !(vm_flags
& vma
->vm_flags
))
1767 return i
? : -EFAULT
;
1769 if (is_vm_hugetlb_page(vma
)) {
1770 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1771 &start
, &nr_pages
, i
, gup_flags
);
1777 unsigned int foll_flags
= gup_flags
;
1780 * If we have a pending SIGKILL, don't keep faulting
1781 * pages and potentially allocating memory.
1783 if (unlikely(fatal_signal_pending(current
)))
1784 return i
? i
: -ERESTARTSYS
;
1787 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1789 unsigned int fault_flags
= 0;
1791 /* For mlock, just skip the stack guard page. */
1792 if (foll_flags
& FOLL_MLOCK
) {
1793 if (stack_guard_page(vma
, start
))
1796 if (foll_flags
& FOLL_WRITE
)
1797 fault_flags
|= FAULT_FLAG_WRITE
;
1799 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
1800 if (foll_flags
& FOLL_NOWAIT
)
1801 fault_flags
|= (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
);
1803 ret
= handle_mm_fault(mm
, vma
, start
,
1806 if (ret
& VM_FAULT_ERROR
) {
1807 if (ret
& VM_FAULT_OOM
)
1808 return i
? i
: -ENOMEM
;
1809 if (ret
& (VM_FAULT_HWPOISON
|
1810 VM_FAULT_HWPOISON_LARGE
)) {
1813 else if (gup_flags
& FOLL_HWPOISON
)
1818 if (ret
& VM_FAULT_SIGBUS
)
1819 return i
? i
: -EFAULT
;
1824 if (ret
& VM_FAULT_MAJOR
)
1830 if (ret
& VM_FAULT_RETRY
) {
1837 * The VM_FAULT_WRITE bit tells us that
1838 * do_wp_page has broken COW when necessary,
1839 * even if maybe_mkwrite decided not to set
1840 * pte_write. We can thus safely do subsequent
1841 * page lookups as if they were reads. But only
1842 * do so when looping for pte_write is futile:
1843 * in some cases userspace may also be wanting
1844 * to write to the gotten user page, which a
1845 * read fault here might prevent (a readonly
1846 * page might get reCOWed by userspace write).
1848 if ((ret
& VM_FAULT_WRITE
) &&
1849 !(vma
->vm_flags
& VM_WRITE
))
1850 foll_flags
&= ~FOLL_WRITE
;
1855 return i
? i
: PTR_ERR(page
);
1859 flush_anon_page(vma
, page
, start
);
1860 flush_dcache_page(page
);
1868 } while (nr_pages
&& start
< vma
->vm_end
);
1872 EXPORT_SYMBOL(__get_user_pages
);
1875 * fixup_user_fault() - manually resolve a user page fault
1876 * @tsk: the task_struct to use for page fault accounting, or
1877 * NULL if faults are not to be recorded.
1878 * @mm: mm_struct of target mm
1879 * @address: user address
1880 * @fault_flags:flags to pass down to handle_mm_fault()
1882 * This is meant to be called in the specific scenario where for locking reasons
1883 * we try to access user memory in atomic context (within a pagefault_disable()
1884 * section), this returns -EFAULT, and we want to resolve the user fault before
1887 * Typically this is meant to be used by the futex code.
1889 * The main difference with get_user_pages() is that this function will
1890 * unconditionally call handle_mm_fault() which will in turn perform all the
1891 * necessary SW fixup of the dirty and young bits in the PTE, while
1892 * handle_mm_fault() only guarantees to update these in the struct page.
1894 * This is important for some architectures where those bits also gate the
1895 * access permission to the page because they are maintained in software. On
1896 * such architectures, gup() will not be enough to make a subsequent access
1899 * This should be called with the mm_sem held for read.
1901 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
1902 unsigned long address
, unsigned int fault_flags
)
1904 struct vm_area_struct
*vma
;
1907 vma
= find_extend_vma(mm
, address
);
1908 if (!vma
|| address
< vma
->vm_start
)
1911 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
1912 if (ret
& VM_FAULT_ERROR
) {
1913 if (ret
& VM_FAULT_OOM
)
1915 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
1917 if (ret
& VM_FAULT_SIGBUS
)
1922 if (ret
& VM_FAULT_MAJOR
)
1931 * get_user_pages() - pin user pages in memory
1932 * @tsk: the task_struct to use for page fault accounting, or
1933 * NULL if faults are not to be recorded.
1934 * @mm: mm_struct of target mm
1935 * @start: starting user address
1936 * @nr_pages: number of pages from start to pin
1937 * @write: whether pages will be written to by the caller
1938 * @force: whether to force write access even if user mapping is
1939 * readonly. This will result in the page being COWed even
1940 * in MAP_SHARED mappings. You do not want this.
1941 * @pages: array that receives pointers to the pages pinned.
1942 * Should be at least nr_pages long. Or NULL, if caller
1943 * only intends to ensure the pages are faulted in.
1944 * @vmas: array of pointers to vmas corresponding to each page.
1945 * Or NULL if the caller does not require them.
1947 * Returns number of pages pinned. This may be fewer than the number
1948 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1949 * were pinned, returns -errno. Each page returned must be released
1950 * with a put_page() call when it is finished with. vmas will only
1951 * remain valid while mmap_sem is held.
1953 * Must be called with mmap_sem held for read or write.
1955 * get_user_pages walks a process's page tables and takes a reference to
1956 * each struct page that each user address corresponds to at a given
1957 * instant. That is, it takes the page that would be accessed if a user
1958 * thread accesses the given user virtual address at that instant.
1960 * This does not guarantee that the page exists in the user mappings when
1961 * get_user_pages returns, and there may even be a completely different
1962 * page there in some cases (eg. if mmapped pagecache has been invalidated
1963 * and subsequently re faulted). However it does guarantee that the page
1964 * won't be freed completely. And mostly callers simply care that the page
1965 * contains data that was valid *at some point in time*. Typically, an IO
1966 * or similar operation cannot guarantee anything stronger anyway because
1967 * locks can't be held over the syscall boundary.
1969 * If write=0, the page must not be written to. If the page is written to,
1970 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1971 * after the page is finished with, and before put_page is called.
1973 * get_user_pages is typically used for fewer-copy IO operations, to get a
1974 * handle on the memory by some means other than accesses via the user virtual
1975 * addresses. The pages may be submitted for DMA to devices or accessed via
1976 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1977 * use the correct cache flushing APIs.
1979 * See also get_user_pages_fast, for performance critical applications.
1981 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1982 unsigned long start
, int nr_pages
, int write
, int force
,
1983 struct page
**pages
, struct vm_area_struct
**vmas
)
1985 int flags
= FOLL_TOUCH
;
1990 flags
|= FOLL_WRITE
;
1992 flags
|= FOLL_FORCE
;
1994 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
1997 EXPORT_SYMBOL(get_user_pages
);
2000 * get_dump_page() - pin user page in memory while writing it to core dump
2001 * @addr: user address
2003 * Returns struct page pointer of user page pinned for dump,
2004 * to be freed afterwards by page_cache_release() or put_page().
2006 * Returns NULL on any kind of failure - a hole must then be inserted into
2007 * the corefile, to preserve alignment with its headers; and also returns
2008 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2009 * allowing a hole to be left in the corefile to save diskspace.
2011 * Called without mmap_sem, but after all other threads have been killed.
2013 #ifdef CONFIG_ELF_CORE
2014 struct page
*get_dump_page(unsigned long addr
)
2016 struct vm_area_struct
*vma
;
2019 if (__get_user_pages(current
, current
->mm
, addr
, 1,
2020 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
2023 flush_cache_page(vma
, addr
, page_to_pfn(page
));
2026 #endif /* CONFIG_ELF_CORE */
2028 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
2031 pgd_t
* pgd
= pgd_offset(mm
, addr
);
2032 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
2034 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
2036 VM_BUG_ON(pmd_trans_huge(*pmd
));
2037 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
2044 * This is the old fallback for page remapping.
2046 * For historical reasons, it only allows reserved pages. Only
2047 * old drivers should use this, and they needed to mark their
2048 * pages reserved for the old functions anyway.
2050 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2051 struct page
*page
, pgprot_t prot
)
2053 struct mm_struct
*mm
= vma
->vm_mm
;
2062 flush_dcache_page(page
);
2063 pte
= get_locked_pte(mm
, addr
, &ptl
);
2067 if (!pte_none(*pte
))
2070 /* Ok, finally just insert the thing.. */
2072 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2073 page_add_file_rmap(page
);
2074 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
2077 pte_unmap_unlock(pte
, ptl
);
2080 pte_unmap_unlock(pte
, ptl
);
2086 * vm_insert_page - insert single page into user vma
2087 * @vma: user vma to map to
2088 * @addr: target user address of this page
2089 * @page: source kernel page
2091 * This allows drivers to insert individual pages they've allocated
2094 * The page has to be a nice clean _individual_ kernel allocation.
2095 * If you allocate a compound page, you need to have marked it as
2096 * such (__GFP_COMP), or manually just split the page up yourself
2097 * (see split_page()).
2099 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2100 * took an arbitrary page protection parameter. This doesn't allow
2101 * that. Your vma protection will have to be set up correctly, which
2102 * means that if you want a shared writable mapping, you'd better
2103 * ask for a shared writable mapping!
2105 * The page does not need to be reserved.
2107 * Usually this function is called from f_op->mmap() handler
2108 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2109 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2110 * function from other places, for example from page-fault handler.
2112 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2115 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2117 if (!page_count(page
))
2119 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
2120 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
2121 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2122 vma
->vm_flags
|= VM_MIXEDMAP
;
2124 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2126 EXPORT_SYMBOL(vm_insert_page
);
2128 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2129 unsigned long pfn
, pgprot_t prot
)
2131 struct mm_struct
*mm
= vma
->vm_mm
;
2137 pte
= get_locked_pte(mm
, addr
, &ptl
);
2141 if (!pte_none(*pte
))
2144 /* Ok, finally just insert the thing.. */
2145 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
2146 set_pte_at(mm
, addr
, pte
, entry
);
2147 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
2151 pte_unmap_unlock(pte
, ptl
);
2157 * vm_insert_pfn - insert single pfn into user vma
2158 * @vma: user vma to map to
2159 * @addr: target user address of this page
2160 * @pfn: source kernel pfn
2162 * Similar to vm_insert_page, this allows drivers to insert individual pages
2163 * they've allocated into a user vma. Same comments apply.
2165 * This function should only be called from a vm_ops->fault handler, and
2166 * in that case the handler should return NULL.
2168 * vma cannot be a COW mapping.
2170 * As this is called only for pages that do not currently exist, we
2171 * do not need to flush old virtual caches or the TLB.
2173 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2177 pgprot_t pgprot
= vma
->vm_page_prot
;
2179 * Technically, architectures with pte_special can avoid all these
2180 * restrictions (same for remap_pfn_range). However we would like
2181 * consistency in testing and feature parity among all, so we should
2182 * try to keep these invariants in place for everybody.
2184 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2185 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
2186 (VM_PFNMAP
|VM_MIXEDMAP
));
2187 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2188 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2190 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2192 if (track_pfn_insert(vma
, &pgprot
, pfn
))
2195 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
2199 EXPORT_SYMBOL(vm_insert_pfn
);
2201 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
2204 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
2206 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2210 * If we don't have pte special, then we have to use the pfn_valid()
2211 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2212 * refcount the page if pfn_valid is true (hence insert_page rather
2213 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2214 * without pte special, it would there be refcounted as a normal page.
2216 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
2219 page
= pfn_to_page(pfn
);
2220 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2222 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
2224 EXPORT_SYMBOL(vm_insert_mixed
);
2227 * maps a range of physical memory into the requested pages. the old
2228 * mappings are removed. any references to nonexistent pages results
2229 * in null mappings (currently treated as "copy-on-access")
2231 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2232 unsigned long addr
, unsigned long end
,
2233 unsigned long pfn
, pgprot_t prot
)
2238 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2241 arch_enter_lazy_mmu_mode();
2243 BUG_ON(!pte_none(*pte
));
2244 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2246 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2247 arch_leave_lazy_mmu_mode();
2248 pte_unmap_unlock(pte
- 1, ptl
);
2252 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2253 unsigned long addr
, unsigned long end
,
2254 unsigned long pfn
, pgprot_t prot
)
2259 pfn
-= addr
>> PAGE_SHIFT
;
2260 pmd
= pmd_alloc(mm
, pud
, addr
);
2263 VM_BUG_ON(pmd_trans_huge(*pmd
));
2265 next
= pmd_addr_end(addr
, end
);
2266 if (remap_pte_range(mm
, pmd
, addr
, next
,
2267 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2269 } while (pmd
++, addr
= next
, addr
!= end
);
2273 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2274 unsigned long addr
, unsigned long end
,
2275 unsigned long pfn
, pgprot_t prot
)
2280 pfn
-= addr
>> PAGE_SHIFT
;
2281 pud
= pud_alloc(mm
, pgd
, addr
);
2285 next
= pud_addr_end(addr
, end
);
2286 if (remap_pmd_range(mm
, pud
, addr
, next
,
2287 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2289 } while (pud
++, addr
= next
, addr
!= end
);
2294 * remap_pfn_range - remap kernel memory to userspace
2295 * @vma: user vma to map to
2296 * @addr: target user address to start at
2297 * @pfn: physical address of kernel memory
2298 * @size: size of map area
2299 * @prot: page protection flags for this mapping
2301 * Note: this is only safe if the mm semaphore is held when called.
2303 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2304 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2308 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2309 struct mm_struct
*mm
= vma
->vm_mm
;
2313 * Physically remapped pages are special. Tell the
2314 * rest of the world about it:
2315 * VM_IO tells people not to look at these pages
2316 * (accesses can have side effects).
2317 * VM_PFNMAP tells the core MM that the base pages are just
2318 * raw PFN mappings, and do not have a "struct page" associated
2321 * Disable vma merging and expanding with mremap().
2323 * Omit vma from core dump, even when VM_IO turned off.
2325 * There's a horrible special case to handle copy-on-write
2326 * behaviour that some programs depend on. We mark the "original"
2327 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2328 * See vm_normal_page() for details.
2330 if (is_cow_mapping(vma
->vm_flags
)) {
2331 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2333 vma
->vm_pgoff
= pfn
;
2336 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
2340 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2342 BUG_ON(addr
>= end
);
2343 pfn
-= addr
>> PAGE_SHIFT
;
2344 pgd
= pgd_offset(mm
, addr
);
2345 flush_cache_range(vma
, addr
, end
);
2347 next
= pgd_addr_end(addr
, end
);
2348 err
= remap_pud_range(mm
, pgd
, addr
, next
,
2349 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2352 } while (pgd
++, addr
= next
, addr
!= end
);
2355 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
2359 EXPORT_SYMBOL(remap_pfn_range
);
2361 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2362 unsigned long addr
, unsigned long end
,
2363 pte_fn_t fn
, void *data
)
2368 spinlock_t
*uninitialized_var(ptl
);
2370 pte
= (mm
== &init_mm
) ?
2371 pte_alloc_kernel(pmd
, addr
) :
2372 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2376 BUG_ON(pmd_huge(*pmd
));
2378 arch_enter_lazy_mmu_mode();
2380 token
= pmd_pgtable(*pmd
);
2383 err
= fn(pte
++, token
, addr
, data
);
2386 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2388 arch_leave_lazy_mmu_mode();
2391 pte_unmap_unlock(pte
-1, ptl
);
2395 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2396 unsigned long addr
, unsigned long end
,
2397 pte_fn_t fn
, void *data
)
2403 BUG_ON(pud_huge(*pud
));
2405 pmd
= pmd_alloc(mm
, pud
, addr
);
2409 next
= pmd_addr_end(addr
, end
);
2410 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2413 } while (pmd
++, addr
= next
, addr
!= end
);
2417 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2418 unsigned long addr
, unsigned long end
,
2419 pte_fn_t fn
, void *data
)
2425 pud
= pud_alloc(mm
, pgd
, addr
);
2429 next
= pud_addr_end(addr
, end
);
2430 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2433 } while (pud
++, addr
= next
, addr
!= end
);
2438 * Scan a region of virtual memory, filling in page tables as necessary
2439 * and calling a provided function on each leaf page table.
2441 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2442 unsigned long size
, pte_fn_t fn
, void *data
)
2446 unsigned long end
= addr
+ size
;
2449 BUG_ON(addr
>= end
);
2450 pgd
= pgd_offset(mm
, addr
);
2452 next
= pgd_addr_end(addr
, end
);
2453 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2456 } while (pgd
++, addr
= next
, addr
!= end
);
2460 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2463 * handle_pte_fault chooses page fault handler according to an entry
2464 * which was read non-atomically. Before making any commitment, on
2465 * those architectures or configurations (e.g. i386 with PAE) which
2466 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2467 * must check under lock before unmapping the pte and proceeding
2468 * (but do_wp_page is only called after already making such a check;
2469 * and do_anonymous_page can safely check later on).
2471 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2472 pte_t
*page_table
, pte_t orig_pte
)
2475 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2476 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2477 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2479 same
= pte_same(*page_table
, orig_pte
);
2483 pte_unmap(page_table
);
2487 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2490 * If the source page was a PFN mapping, we don't have
2491 * a "struct page" for it. We do a best-effort copy by
2492 * just copying from the original user address. If that
2493 * fails, we just zero-fill it. Live with it.
2495 if (unlikely(!src
)) {
2496 void *kaddr
= kmap_atomic(dst
);
2497 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2500 * This really shouldn't fail, because the page is there
2501 * in the page tables. But it might just be unreadable,
2502 * in which case we just give up and fill the result with
2505 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2507 kunmap_atomic(kaddr
);
2508 flush_dcache_page(dst
);
2510 copy_user_highpage(dst
, src
, va
, vma
);
2514 * This routine handles present pages, when users try to write
2515 * to a shared page. It is done by copying the page to a new address
2516 * and decrementing the shared-page counter for the old page.
2518 * Note that this routine assumes that the protection checks have been
2519 * done by the caller (the low-level page fault routine in most cases).
2520 * Thus we can safely just mark it writable once we've done any necessary
2523 * We also mark the page dirty at this point even though the page will
2524 * change only once the write actually happens. This avoids a few races,
2525 * and potentially makes it more efficient.
2527 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2528 * but allow concurrent faults), with pte both mapped and locked.
2529 * We return with mmap_sem still held, but pte unmapped and unlocked.
2531 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2532 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2533 spinlock_t
*ptl
, pte_t orig_pte
)
2536 struct page
*old_page
, *new_page
= NULL
;
2539 int page_mkwrite
= 0;
2540 struct page
*dirty_page
= NULL
;
2541 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2542 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2544 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2547 * VM_MIXEDMAP !pfn_valid() case
2549 * We should not cow pages in a shared writeable mapping.
2550 * Just mark the pages writable as we can't do any dirty
2551 * accounting on raw pfn maps.
2553 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2554 (VM_WRITE
|VM_SHARED
))
2560 * Take out anonymous pages first, anonymous shared vmas are
2561 * not dirty accountable.
2563 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2564 if (!trylock_page(old_page
)) {
2565 page_cache_get(old_page
);
2566 pte_unmap_unlock(page_table
, ptl
);
2567 lock_page(old_page
);
2568 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2570 if (!pte_same(*page_table
, orig_pte
)) {
2571 unlock_page(old_page
);
2574 page_cache_release(old_page
);
2576 if (reuse_swap_page(old_page
)) {
2578 * The page is all ours. Move it to our anon_vma so
2579 * the rmap code will not search our parent or siblings.
2580 * Protected against the rmap code by the page lock.
2582 page_move_anon_rmap(old_page
, vma
, address
);
2583 unlock_page(old_page
);
2586 unlock_page(old_page
);
2587 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2588 (VM_WRITE
|VM_SHARED
))) {
2590 * Only catch write-faults on shared writable pages,
2591 * read-only shared pages can get COWed by
2592 * get_user_pages(.write=1, .force=1).
2594 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2595 struct vm_fault vmf
;
2598 vmf
.virtual_address
= (void __user
*)(address
&
2600 vmf
.pgoff
= old_page
->index
;
2601 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2602 vmf
.page
= old_page
;
2605 * Notify the address space that the page is about to
2606 * become writable so that it can prohibit this or wait
2607 * for the page to get into an appropriate state.
2609 * We do this without the lock held, so that it can
2610 * sleep if it needs to.
2612 page_cache_get(old_page
);
2613 pte_unmap_unlock(page_table
, ptl
);
2615 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2617 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2619 goto unwritable_page
;
2621 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2622 lock_page(old_page
);
2623 if (!old_page
->mapping
) {
2624 ret
= 0; /* retry the fault */
2625 unlock_page(old_page
);
2626 goto unwritable_page
;
2629 VM_BUG_ON(!PageLocked(old_page
));
2632 * Since we dropped the lock we need to revalidate
2633 * the PTE as someone else may have changed it. If
2634 * they did, we just return, as we can count on the
2635 * MMU to tell us if they didn't also make it writable.
2637 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2639 if (!pte_same(*page_table
, orig_pte
)) {
2640 unlock_page(old_page
);
2646 dirty_page
= old_page
;
2647 get_page(dirty_page
);
2650 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2651 entry
= pte_mkyoung(orig_pte
);
2652 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2653 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2654 update_mmu_cache(vma
, address
, page_table
);
2655 pte_unmap_unlock(page_table
, ptl
);
2656 ret
|= VM_FAULT_WRITE
;
2662 * Yes, Virginia, this is actually required to prevent a race
2663 * with clear_page_dirty_for_io() from clearing the page dirty
2664 * bit after it clear all dirty ptes, but before a racing
2665 * do_wp_page installs a dirty pte.
2667 * __do_fault is protected similarly.
2669 if (!page_mkwrite
) {
2670 wait_on_page_locked(dirty_page
);
2671 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2672 /* file_update_time outside page_lock */
2674 file_update_time(vma
->vm_file
);
2676 put_page(dirty_page
);
2678 struct address_space
*mapping
= dirty_page
->mapping
;
2680 set_page_dirty(dirty_page
);
2681 unlock_page(dirty_page
);
2682 page_cache_release(dirty_page
);
2685 * Some device drivers do not set page.mapping
2686 * but still dirty their pages
2688 balance_dirty_pages_ratelimited(mapping
);
2696 * Ok, we need to copy. Oh, well..
2698 page_cache_get(old_page
);
2700 pte_unmap_unlock(page_table
, ptl
);
2702 if (unlikely(anon_vma_prepare(vma
)))
2705 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2706 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2710 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2713 cow_user_page(new_page
, old_page
, address
, vma
);
2715 __SetPageUptodate(new_page
);
2717 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2720 mmun_start
= address
& PAGE_MASK
;
2721 mmun_end
= mmun_start
+ PAGE_SIZE
;
2722 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2725 * Re-check the pte - we dropped the lock
2727 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2728 if (likely(pte_same(*page_table
, orig_pte
))) {
2730 if (!PageAnon(old_page
)) {
2731 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2732 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2735 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2736 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2737 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2738 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2740 * Clear the pte entry and flush it first, before updating the
2741 * pte with the new entry. This will avoid a race condition
2742 * seen in the presence of one thread doing SMC and another
2745 ptep_clear_flush(vma
, address
, page_table
);
2746 page_add_new_anon_rmap(new_page
, vma
, address
);
2748 * We call the notify macro here because, when using secondary
2749 * mmu page tables (such as kvm shadow page tables), we want the
2750 * new page to be mapped directly into the secondary page table.
2752 set_pte_at_notify(mm
, address
, page_table
, entry
);
2753 update_mmu_cache(vma
, address
, page_table
);
2756 * Only after switching the pte to the new page may
2757 * we remove the mapcount here. Otherwise another
2758 * process may come and find the rmap count decremented
2759 * before the pte is switched to the new page, and
2760 * "reuse" the old page writing into it while our pte
2761 * here still points into it and can be read by other
2764 * The critical issue is to order this
2765 * page_remove_rmap with the ptp_clear_flush above.
2766 * Those stores are ordered by (if nothing else,)
2767 * the barrier present in the atomic_add_negative
2768 * in page_remove_rmap.
2770 * Then the TLB flush in ptep_clear_flush ensures that
2771 * no process can access the old page before the
2772 * decremented mapcount is visible. And the old page
2773 * cannot be reused until after the decremented
2774 * mapcount is visible. So transitively, TLBs to
2775 * old page will be flushed before it can be reused.
2777 page_remove_rmap(old_page
);
2780 /* Free the old page.. */
2781 new_page
= old_page
;
2782 ret
|= VM_FAULT_WRITE
;
2784 mem_cgroup_uncharge_page(new_page
);
2787 page_cache_release(new_page
);
2789 pte_unmap_unlock(page_table
, ptl
);
2790 if (mmun_end
> mmun_start
)
2791 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2794 * Don't let another task, with possibly unlocked vma,
2795 * keep the mlocked page.
2797 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2798 lock_page(old_page
); /* LRU manipulation */
2799 munlock_vma_page(old_page
);
2800 unlock_page(old_page
);
2802 page_cache_release(old_page
);
2806 page_cache_release(new_page
);
2809 page_cache_release(old_page
);
2810 return VM_FAULT_OOM
;
2813 page_cache_release(old_page
);
2817 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2818 unsigned long start_addr
, unsigned long end_addr
,
2819 struct zap_details
*details
)
2821 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2824 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2825 struct zap_details
*details
)
2827 struct vm_area_struct
*vma
;
2828 pgoff_t vba
, vea
, zba
, zea
;
2830 vma_interval_tree_foreach(vma
, root
,
2831 details
->first_index
, details
->last_index
) {
2833 vba
= vma
->vm_pgoff
;
2834 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2835 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2836 zba
= details
->first_index
;
2839 zea
= details
->last_index
;
2843 unmap_mapping_range_vma(vma
,
2844 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2845 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2850 static inline void unmap_mapping_range_list(struct list_head
*head
,
2851 struct zap_details
*details
)
2853 struct vm_area_struct
*vma
;
2856 * In nonlinear VMAs there is no correspondence between virtual address
2857 * offset and file offset. So we must perform an exhaustive search
2858 * across *all* the pages in each nonlinear VMA, not just the pages
2859 * whose virtual address lies outside the file truncation point.
2861 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2862 details
->nonlinear_vma
= vma
;
2863 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2868 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2869 * @mapping: the address space containing mmaps to be unmapped.
2870 * @holebegin: byte in first page to unmap, relative to the start of
2871 * the underlying file. This will be rounded down to a PAGE_SIZE
2872 * boundary. Note that this is different from truncate_pagecache(), which
2873 * must keep the partial page. In contrast, we must get rid of
2875 * @holelen: size of prospective hole in bytes. This will be rounded
2876 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2878 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2879 * but 0 when invalidating pagecache, don't throw away private data.
2881 void unmap_mapping_range(struct address_space
*mapping
,
2882 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2884 struct zap_details details
;
2885 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2886 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2888 /* Check for overflow. */
2889 if (sizeof(holelen
) > sizeof(hlen
)) {
2891 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2892 if (holeend
& ~(long long)ULONG_MAX
)
2893 hlen
= ULONG_MAX
- hba
+ 1;
2896 details
.check_mapping
= even_cows
? NULL
: mapping
;
2897 details
.nonlinear_vma
= NULL
;
2898 details
.first_index
= hba
;
2899 details
.last_index
= hba
+ hlen
- 1;
2900 if (details
.last_index
< details
.first_index
)
2901 details
.last_index
= ULONG_MAX
;
2904 mutex_lock(&mapping
->i_mmap_mutex
);
2905 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2906 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2907 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2908 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2909 mutex_unlock(&mapping
->i_mmap_mutex
);
2911 EXPORT_SYMBOL(unmap_mapping_range
);
2914 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2915 * but allow concurrent faults), and pte mapped but not yet locked.
2916 * We return with mmap_sem still held, but pte unmapped and unlocked.
2918 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2919 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2920 unsigned int flags
, pte_t orig_pte
)
2923 struct page
*page
, *swapcache
= NULL
;
2927 struct mem_cgroup
*ptr
;
2931 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2934 entry
= pte_to_swp_entry(orig_pte
);
2935 if (unlikely(non_swap_entry(entry
))) {
2936 if (is_migration_entry(entry
)) {
2937 migration_entry_wait(mm
, pmd
, address
);
2938 } else if (is_hwpoison_entry(entry
)) {
2939 ret
= VM_FAULT_HWPOISON
;
2941 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2942 ret
= VM_FAULT_SIGBUS
;
2946 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2947 page
= lookup_swap_cache(entry
);
2949 page
= swapin_readahead(entry
,
2950 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2953 * Back out if somebody else faulted in this pte
2954 * while we released the pte lock.
2956 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2957 if (likely(pte_same(*page_table
, orig_pte
)))
2959 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2963 /* Had to read the page from swap area: Major fault */
2964 ret
= VM_FAULT_MAJOR
;
2965 count_vm_event(PGMAJFAULT
);
2966 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2967 } else if (PageHWPoison(page
)) {
2969 * hwpoisoned dirty swapcache pages are kept for killing
2970 * owner processes (which may be unknown at hwpoison time)
2972 ret
= VM_FAULT_HWPOISON
;
2973 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2977 locked
= lock_page_or_retry(page
, mm
, flags
);
2979 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2981 ret
|= VM_FAULT_RETRY
;
2986 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2987 * release the swapcache from under us. The page pin, and pte_same
2988 * test below, are not enough to exclude that. Even if it is still
2989 * swapcache, we need to check that the page's swap has not changed.
2991 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2994 if (ksm_might_need_to_copy(page
, vma
, address
)) {
2996 page
= ksm_does_need_to_copy(page
, vma
, address
);
2998 if (unlikely(!page
)) {
3006 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
3012 * Back out if somebody else already faulted in this pte.
3014 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3015 if (unlikely(!pte_same(*page_table
, orig_pte
)))
3018 if (unlikely(!PageUptodate(page
))) {
3019 ret
= VM_FAULT_SIGBUS
;
3024 * The page isn't present yet, go ahead with the fault.
3026 * Be careful about the sequence of operations here.
3027 * To get its accounting right, reuse_swap_page() must be called
3028 * while the page is counted on swap but not yet in mapcount i.e.
3029 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3030 * must be called after the swap_free(), or it will never succeed.
3031 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3032 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3033 * in page->private. In this case, a record in swap_cgroup is silently
3034 * discarded at swap_free().
3037 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3038 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
3039 pte
= mk_pte(page
, vma
->vm_page_prot
);
3040 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
3041 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3042 flags
&= ~FAULT_FLAG_WRITE
;
3043 ret
|= VM_FAULT_WRITE
;
3046 flush_icache_page(vma
, page
);
3047 set_pte_at(mm
, address
, page_table
, pte
);
3048 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
3049 /* It's better to call commit-charge after rmap is established */
3050 mem_cgroup_commit_charge_swapin(page
, ptr
);
3053 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3054 try_to_free_swap(page
);
3058 * Hold the lock to avoid the swap entry to be reused
3059 * until we take the PT lock for the pte_same() check
3060 * (to avoid false positives from pte_same). For
3061 * further safety release the lock after the swap_free
3062 * so that the swap count won't change under a
3063 * parallel locked swapcache.
3065 unlock_page(swapcache
);
3066 page_cache_release(swapcache
);
3069 if (flags
& FAULT_FLAG_WRITE
) {
3070 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
3071 if (ret
& VM_FAULT_ERROR
)
3072 ret
&= VM_FAULT_ERROR
;
3076 /* No need to invalidate - it was non-present before */
3077 update_mmu_cache(vma
, address
, page_table
);
3079 pte_unmap_unlock(page_table
, ptl
);
3083 mem_cgroup_cancel_charge_swapin(ptr
);
3084 pte_unmap_unlock(page_table
, ptl
);
3088 page_cache_release(page
);
3090 unlock_page(swapcache
);
3091 page_cache_release(swapcache
);
3097 * This is like a special single-page "expand_{down|up}wards()",
3098 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3099 * doesn't hit another vma.
3101 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
3103 address
&= PAGE_MASK
;
3104 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
3105 struct vm_area_struct
*prev
= vma
->vm_prev
;
3108 * Is there a mapping abutting this one below?
3110 * That's only ok if it's the same stack mapping
3111 * that has gotten split..
3113 if (prev
&& prev
->vm_end
== address
)
3114 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
3116 expand_downwards(vma
, address
- PAGE_SIZE
);
3118 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
3119 struct vm_area_struct
*next
= vma
->vm_next
;
3121 /* As VM_GROWSDOWN but s/below/above/ */
3122 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
3123 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
3125 expand_upwards(vma
, address
+ PAGE_SIZE
);
3131 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3132 * but allow concurrent faults), and pte mapped but not yet locked.
3133 * We return with mmap_sem still held, but pte unmapped and unlocked.
3135 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3136 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3143 pte_unmap(page_table
);
3145 /* Check if we need to add a guard page to the stack */
3146 if (check_stack_guard_page(vma
, address
) < 0)
3147 return VM_FAULT_SIGBUS
;
3149 /* Use the zero-page for reads */
3150 if (!(flags
& FAULT_FLAG_WRITE
)) {
3151 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
3152 vma
->vm_page_prot
));
3153 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3154 if (!pte_none(*page_table
))
3159 /* Allocate our own private page. */
3160 if (unlikely(anon_vma_prepare(vma
)))
3162 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
3165 __SetPageUptodate(page
);
3167 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
3170 entry
= mk_pte(page
, vma
->vm_page_prot
);
3171 if (vma
->vm_flags
& VM_WRITE
)
3172 entry
= pte_mkwrite(pte_mkdirty(entry
));
3174 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3175 if (!pte_none(*page_table
))
3178 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3179 page_add_new_anon_rmap(page
, vma
, address
);
3181 set_pte_at(mm
, address
, page_table
, entry
);
3183 /* No need to invalidate - it was non-present before */
3184 update_mmu_cache(vma
, address
, page_table
);
3186 pte_unmap_unlock(page_table
, ptl
);
3189 mem_cgroup_uncharge_page(page
);
3190 page_cache_release(page
);
3193 page_cache_release(page
);
3195 return VM_FAULT_OOM
;
3199 * __do_fault() tries to create a new page mapping. It aggressively
3200 * tries to share with existing pages, but makes a separate copy if
3201 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3202 * the next page fault.
3204 * As this is called only for pages that do not currently exist, we
3205 * do not need to flush old virtual caches or the TLB.
3207 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3208 * but allow concurrent faults), and pte neither mapped nor locked.
3209 * We return with mmap_sem still held, but pte unmapped and unlocked.
3211 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3212 unsigned long address
, pmd_t
*pmd
,
3213 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3218 struct page
*cow_page
;
3221 struct page
*dirty_page
= NULL
;
3222 struct vm_fault vmf
;
3224 int page_mkwrite
= 0;
3227 * If we do COW later, allocate page befor taking lock_page()
3228 * on the file cache page. This will reduce lock holding time.
3230 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3232 if (unlikely(anon_vma_prepare(vma
)))
3233 return VM_FAULT_OOM
;
3235 cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
3237 return VM_FAULT_OOM
;
3239 if (mem_cgroup_newpage_charge(cow_page
, mm
, GFP_KERNEL
)) {
3240 page_cache_release(cow_page
);
3241 return VM_FAULT_OOM
;
3246 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
3251 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
3252 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3256 if (unlikely(PageHWPoison(vmf
.page
))) {
3257 if (ret
& VM_FAULT_LOCKED
)
3258 unlock_page(vmf
.page
);
3259 ret
= VM_FAULT_HWPOISON
;
3264 * For consistency in subsequent calls, make the faulted page always
3267 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3268 lock_page(vmf
.page
);
3270 VM_BUG_ON(!PageLocked(vmf
.page
));
3273 * Should we do an early C-O-W break?
3276 if (flags
& FAULT_FLAG_WRITE
) {
3277 if (!(vma
->vm_flags
& VM_SHARED
)) {
3280 copy_user_highpage(page
, vmf
.page
, address
, vma
);
3281 __SetPageUptodate(page
);
3284 * If the page will be shareable, see if the backing
3285 * address space wants to know that the page is about
3286 * to become writable
3288 if (vma
->vm_ops
->page_mkwrite
) {
3292 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
3293 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
3295 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
3297 goto unwritable_page
;
3299 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
3301 if (!page
->mapping
) {
3302 ret
= 0; /* retry the fault */
3304 goto unwritable_page
;
3307 VM_BUG_ON(!PageLocked(page
));
3314 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3317 * This silly early PAGE_DIRTY setting removes a race
3318 * due to the bad i386 page protection. But it's valid
3319 * for other architectures too.
3321 * Note that if FAULT_FLAG_WRITE is set, we either now have
3322 * an exclusive copy of the page, or this is a shared mapping,
3323 * so we can make it writable and dirty to avoid having to
3324 * handle that later.
3326 /* Only go through if we didn't race with anybody else... */
3327 if (likely(pte_same(*page_table
, orig_pte
))) {
3328 flush_icache_page(vma
, page
);
3329 entry
= mk_pte(page
, vma
->vm_page_prot
);
3330 if (flags
& FAULT_FLAG_WRITE
)
3331 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3333 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3334 page_add_new_anon_rmap(page
, vma
, address
);
3336 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
3337 page_add_file_rmap(page
);
3338 if (flags
& FAULT_FLAG_WRITE
) {
3340 get_page(dirty_page
);
3343 set_pte_at(mm
, address
, page_table
, entry
);
3345 /* no need to invalidate: a not-present page won't be cached */
3346 update_mmu_cache(vma
, address
, page_table
);
3349 mem_cgroup_uncharge_page(cow_page
);
3351 page_cache_release(page
);
3353 anon
= 1; /* no anon but release faulted_page */
3356 pte_unmap_unlock(page_table
, ptl
);
3359 struct address_space
*mapping
= page
->mapping
;
3362 if (set_page_dirty(dirty_page
))
3364 unlock_page(dirty_page
);
3365 put_page(dirty_page
);
3366 if ((dirtied
|| page_mkwrite
) && mapping
) {
3368 * Some device drivers do not set page.mapping but still
3371 balance_dirty_pages_ratelimited(mapping
);
3374 /* file_update_time outside page_lock */
3375 if (vma
->vm_file
&& !page_mkwrite
)
3376 file_update_time(vma
->vm_file
);
3378 unlock_page(vmf
.page
);
3380 page_cache_release(vmf
.page
);
3386 page_cache_release(page
);
3389 /* fs's fault handler get error */
3391 mem_cgroup_uncharge_page(cow_page
);
3392 page_cache_release(cow_page
);
3397 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3398 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3399 unsigned int flags
, pte_t orig_pte
)
3401 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3402 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3404 pte_unmap(page_table
);
3405 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3409 * Fault of a previously existing named mapping. Repopulate the pte
3410 * from the encoded file_pte if possible. This enables swappable
3413 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3414 * but allow concurrent faults), and pte mapped but not yet locked.
3415 * We return with mmap_sem still held, but pte unmapped and unlocked.
3417 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3418 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3419 unsigned int flags
, pte_t orig_pte
)
3423 flags
|= FAULT_FLAG_NONLINEAR
;
3425 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3428 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3430 * Page table corrupted: show pte and kill process.
3432 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3433 return VM_FAULT_SIGBUS
;
3436 pgoff
= pte_to_pgoff(orig_pte
);
3437 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3440 int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3441 unsigned long addr
, int current_nid
)
3445 count_vm_numa_event(NUMA_HINT_FAULTS
);
3446 if (current_nid
== numa_node_id())
3447 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3449 return mpol_misplaced(page
, vma
, addr
);
3452 int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3453 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3455 struct page
*page
= NULL
;
3457 int current_nid
= -1;
3459 bool migrated
= false;
3462 * The "pte" at this point cannot be used safely without
3463 * validation through pte_unmap_same(). It's of NUMA type but
3464 * the pfn may be screwed if the read is non atomic.
3466 * ptep_modify_prot_start is not called as this is clearing
3467 * the _PAGE_NUMA bit and it is not really expected that there
3468 * would be concurrent hardware modifications to the PTE.
3470 ptl
= pte_lockptr(mm
, pmd
);
3472 if (unlikely(!pte_same(*ptep
, pte
))) {
3473 pte_unmap_unlock(ptep
, ptl
);
3477 pte
= pte_mknonnuma(pte
);
3478 set_pte_at(mm
, addr
, ptep
, pte
);
3479 update_mmu_cache(vma
, addr
, ptep
);
3481 page
= vm_normal_page(vma
, addr
, pte
);
3483 pte_unmap_unlock(ptep
, ptl
);
3487 current_nid
= page_to_nid(page
);
3488 target_nid
= numa_migrate_prep(page
, vma
, addr
, current_nid
);
3489 pte_unmap_unlock(ptep
, ptl
);
3490 if (target_nid
== -1) {
3492 * Account for the fault against the current node if it not
3493 * being replaced regardless of where the page is located.
3495 current_nid
= numa_node_id();
3500 /* Migrate to the requested node */
3501 migrated
= migrate_misplaced_page(page
, target_nid
);
3503 current_nid
= target_nid
;
3506 if (current_nid
!= -1)
3507 task_numa_fault(current_nid
, 1, migrated
);
3511 /* NUMA hinting page fault entry point for regular pmds */
3512 #ifdef CONFIG_NUMA_BALANCING
3513 static int do_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3514 unsigned long addr
, pmd_t
*pmdp
)
3517 pte_t
*pte
, *orig_pte
;
3518 unsigned long _addr
= addr
& PMD_MASK
;
3519 unsigned long offset
;
3522 int local_nid
= numa_node_id();
3524 spin_lock(&mm
->page_table_lock
);
3526 if (pmd_numa(pmd
)) {
3527 set_pmd_at(mm
, _addr
, pmdp
, pmd_mknonnuma(pmd
));
3530 spin_unlock(&mm
->page_table_lock
);
3535 /* we're in a page fault so some vma must be in the range */
3537 BUG_ON(vma
->vm_start
>= _addr
+ PMD_SIZE
);
3538 offset
= max(_addr
, vma
->vm_start
) & ~PMD_MASK
;
3539 VM_BUG_ON(offset
>= PMD_SIZE
);
3540 orig_pte
= pte
= pte_offset_map_lock(mm
, pmdp
, _addr
, &ptl
);
3541 pte
+= offset
>> PAGE_SHIFT
;
3542 for (addr
= _addr
+ offset
; addr
< _addr
+ PMD_SIZE
; pte
++, addr
+= PAGE_SIZE
) {
3543 pte_t pteval
= *pte
;
3545 int curr_nid
= local_nid
;
3548 if (!pte_present(pteval
))
3550 if (!pte_numa(pteval
))
3552 if (addr
>= vma
->vm_end
) {
3553 vma
= find_vma(mm
, addr
);
3554 /* there's a pte present so there must be a vma */
3556 BUG_ON(addr
< vma
->vm_start
);
3558 if (pte_numa(pteval
)) {
3559 pteval
= pte_mknonnuma(pteval
);
3560 set_pte_at(mm
, addr
, pte
, pteval
);
3562 page
= vm_normal_page(vma
, addr
, pteval
);
3563 if (unlikely(!page
))
3565 /* only check non-shared pages */
3566 if (unlikely(page_mapcount(page
) != 1))
3570 * Note that the NUMA fault is later accounted to either
3571 * the node that is currently running or where the page is
3574 curr_nid
= local_nid
;
3575 target_nid
= numa_migrate_prep(page
, vma
, addr
,
3577 if (target_nid
== -1) {
3582 /* Migrate to the requested node */
3583 pte_unmap_unlock(pte
, ptl
);
3584 migrated
= migrate_misplaced_page(page
, target_nid
);
3586 curr_nid
= target_nid
;
3587 task_numa_fault(curr_nid
, 1, migrated
);
3589 pte
= pte_offset_map_lock(mm
, pmdp
, addr
, &ptl
);
3591 pte_unmap_unlock(orig_pte
, ptl
);
3596 static int do_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3597 unsigned long addr
, pmd_t
*pmdp
)
3602 #endif /* CONFIG_NUMA_BALANCING */
3605 * These routines also need to handle stuff like marking pages dirty
3606 * and/or accessed for architectures that don't do it in hardware (most
3607 * RISC architectures). The early dirtying is also good on the i386.
3609 * There is also a hook called "update_mmu_cache()" that architectures
3610 * with external mmu caches can use to update those (ie the Sparc or
3611 * PowerPC hashed page tables that act as extended TLBs).
3613 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3614 * but allow concurrent faults), and pte mapped but not yet locked.
3615 * We return with mmap_sem still held, but pte unmapped and unlocked.
3617 int handle_pte_fault(struct mm_struct
*mm
,
3618 struct vm_area_struct
*vma
, unsigned long address
,
3619 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3625 if (!pte_present(entry
)) {
3626 if (pte_none(entry
)) {
3628 if (likely(vma
->vm_ops
->fault
))
3629 return do_linear_fault(mm
, vma
, address
,
3630 pte
, pmd
, flags
, entry
);
3632 return do_anonymous_page(mm
, vma
, address
,
3635 if (pte_file(entry
))
3636 return do_nonlinear_fault(mm
, vma
, address
,
3637 pte
, pmd
, flags
, entry
);
3638 return do_swap_page(mm
, vma
, address
,
3639 pte
, pmd
, flags
, entry
);
3642 if (pte_numa(entry
))
3643 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3645 ptl
= pte_lockptr(mm
, pmd
);
3647 if (unlikely(!pte_same(*pte
, entry
)))
3649 if (flags
& FAULT_FLAG_WRITE
) {
3650 if (!pte_write(entry
))
3651 return do_wp_page(mm
, vma
, address
,
3652 pte
, pmd
, ptl
, entry
);
3653 entry
= pte_mkdirty(entry
);
3655 entry
= pte_mkyoung(entry
);
3656 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3657 update_mmu_cache(vma
, address
, pte
);
3660 * This is needed only for protection faults but the arch code
3661 * is not yet telling us if this is a protection fault or not.
3662 * This still avoids useless tlb flushes for .text page faults
3665 if (flags
& FAULT_FLAG_WRITE
)
3666 flush_tlb_fix_spurious_fault(vma
, address
);
3669 pte_unmap_unlock(pte
, ptl
);
3674 * By the time we get here, we already hold the mm semaphore
3676 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3677 unsigned long address
, unsigned int flags
)
3684 __set_current_state(TASK_RUNNING
);
3686 count_vm_event(PGFAULT
);
3687 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3689 /* do counter updates before entering really critical section. */
3690 check_sync_rss_stat(current
);
3692 if (unlikely(is_vm_hugetlb_page(vma
)))
3693 return hugetlb_fault(mm
, vma
, address
, flags
);
3696 pgd
= pgd_offset(mm
, address
);
3697 pud
= pud_alloc(mm
, pgd
, address
);
3699 return VM_FAULT_OOM
;
3700 pmd
= pmd_alloc(mm
, pud
, address
);
3702 return VM_FAULT_OOM
;
3703 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3705 return do_huge_pmd_anonymous_page(mm
, vma
, address
,
3708 pmd_t orig_pmd
= *pmd
;
3712 if (pmd_trans_huge(orig_pmd
)) {
3713 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3716 * If the pmd is splitting, return and retry the
3717 * the fault. Alternative: wait until the split
3718 * is done, and goto retry.
3720 if (pmd_trans_splitting(orig_pmd
))
3723 if (pmd_numa(orig_pmd
))
3724 return do_huge_pmd_numa_page(mm
, vma
, address
,
3727 if (dirty
&& !pmd_write(orig_pmd
)) {
3728 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3731 * If COW results in an oom, the huge pmd will
3732 * have been split, so retry the fault on the
3733 * pte for a smaller charge.
3735 if (unlikely(ret
& VM_FAULT_OOM
))
3739 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3748 return do_pmd_numa_page(mm
, vma
, address
, pmd
);
3751 * Use __pte_alloc instead of pte_alloc_map, because we can't
3752 * run pte_offset_map on the pmd, if an huge pmd could
3753 * materialize from under us from a different thread.
3755 if (unlikely(pmd_none(*pmd
)) &&
3756 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3757 return VM_FAULT_OOM
;
3758 /* if an huge pmd materialized from under us just retry later */
3759 if (unlikely(pmd_trans_huge(*pmd
)))
3762 * A regular pmd is established and it can't morph into a huge pmd
3763 * from under us anymore at this point because we hold the mmap_sem
3764 * read mode and khugepaged takes it in write mode. So now it's
3765 * safe to run pte_offset_map().
3767 pte
= pte_offset_map(pmd
, address
);
3769 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3772 #ifndef __PAGETABLE_PUD_FOLDED
3774 * Allocate page upper directory.
3775 * We've already handled the fast-path in-line.
3777 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3779 pud_t
*new = pud_alloc_one(mm
, address
);
3783 smp_wmb(); /* See comment in __pte_alloc */
3785 spin_lock(&mm
->page_table_lock
);
3786 if (pgd_present(*pgd
)) /* Another has populated it */
3789 pgd_populate(mm
, pgd
, new);
3790 spin_unlock(&mm
->page_table_lock
);
3793 #endif /* __PAGETABLE_PUD_FOLDED */
3795 #ifndef __PAGETABLE_PMD_FOLDED
3797 * Allocate page middle directory.
3798 * We've already handled the fast-path in-line.
3800 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3802 pmd_t
*new = pmd_alloc_one(mm
, address
);
3806 smp_wmb(); /* See comment in __pte_alloc */
3808 spin_lock(&mm
->page_table_lock
);
3809 #ifndef __ARCH_HAS_4LEVEL_HACK
3810 if (pud_present(*pud
)) /* Another has populated it */
3813 pud_populate(mm
, pud
, new);
3815 if (pgd_present(*pud
)) /* Another has populated it */
3818 pgd_populate(mm
, pud
, new);
3819 #endif /* __ARCH_HAS_4LEVEL_HACK */
3820 spin_unlock(&mm
->page_table_lock
);
3823 #endif /* __PAGETABLE_PMD_FOLDED */
3825 int make_pages_present(unsigned long addr
, unsigned long end
)
3827 int ret
, len
, write
;
3828 struct vm_area_struct
* vma
;
3830 vma
= find_vma(current
->mm
, addr
);
3834 * We want to touch writable mappings with a write fault in order
3835 * to break COW, except for shared mappings because these don't COW
3836 * and we would not want to dirty them for nothing.
3838 write
= (vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
;
3839 BUG_ON(addr
>= end
);
3840 BUG_ON(end
> vma
->vm_end
);
3841 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3842 ret
= get_user_pages(current
, current
->mm
, addr
,
3843 len
, write
, 0, NULL
, NULL
);
3846 return ret
== len
? 0 : -EFAULT
;
3849 #if !defined(__HAVE_ARCH_GATE_AREA)
3851 #if defined(AT_SYSINFO_EHDR)
3852 static struct vm_area_struct gate_vma
;
3854 static int __init
gate_vma_init(void)
3856 gate_vma
.vm_mm
= NULL
;
3857 gate_vma
.vm_start
= FIXADDR_USER_START
;
3858 gate_vma
.vm_end
= FIXADDR_USER_END
;
3859 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3860 gate_vma
.vm_page_prot
= __P101
;
3864 __initcall(gate_vma_init
);
3867 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
3869 #ifdef AT_SYSINFO_EHDR
3876 int in_gate_area_no_mm(unsigned long addr
)
3878 #ifdef AT_SYSINFO_EHDR
3879 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3885 #endif /* __HAVE_ARCH_GATE_AREA */
3887 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3888 pte_t
**ptepp
, spinlock_t
**ptlp
)
3895 pgd
= pgd_offset(mm
, address
);
3896 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3899 pud
= pud_offset(pgd
, address
);
3900 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3903 pmd
= pmd_offset(pud
, address
);
3904 VM_BUG_ON(pmd_trans_huge(*pmd
));
3905 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3908 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3912 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3915 if (!pte_present(*ptep
))
3920 pte_unmap_unlock(ptep
, *ptlp
);
3925 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3926 pte_t
**ptepp
, spinlock_t
**ptlp
)
3930 /* (void) is needed to make gcc happy */
3931 (void) __cond_lock(*ptlp
,
3932 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3937 * follow_pfn - look up PFN at a user virtual address
3938 * @vma: memory mapping
3939 * @address: user virtual address
3940 * @pfn: location to store found PFN
3942 * Only IO mappings and raw PFN mappings are allowed.
3944 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3946 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3953 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3956 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3959 *pfn
= pte_pfn(*ptep
);
3960 pte_unmap_unlock(ptep
, ptl
);
3963 EXPORT_SYMBOL(follow_pfn
);
3965 #ifdef CONFIG_HAVE_IOREMAP_PROT
3966 int follow_phys(struct vm_area_struct
*vma
,
3967 unsigned long address
, unsigned int flags
,
3968 unsigned long *prot
, resource_size_t
*phys
)
3974 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3977 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3981 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3984 *prot
= pgprot_val(pte_pgprot(pte
));
3985 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3989 pte_unmap_unlock(ptep
, ptl
);
3994 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3995 void *buf
, int len
, int write
)
3997 resource_size_t phys_addr
;
3998 unsigned long prot
= 0;
3999 void __iomem
*maddr
;
4000 int offset
= addr
& (PAGE_SIZE
-1);
4002 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4005 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
4007 memcpy_toio(maddr
+ offset
, buf
, len
);
4009 memcpy_fromio(buf
, maddr
+ offset
, len
);
4017 * Access another process' address space as given in mm. If non-NULL, use the
4018 * given task for page fault accounting.
4020 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4021 unsigned long addr
, void *buf
, int len
, int write
)
4023 struct vm_area_struct
*vma
;
4024 void *old_buf
= buf
;
4026 down_read(&mm
->mmap_sem
);
4027 /* ignore errors, just check how much was successfully transferred */
4029 int bytes
, ret
, offset
;
4031 struct page
*page
= NULL
;
4033 ret
= get_user_pages(tsk
, mm
, addr
, 1,
4034 write
, 1, &page
, &vma
);
4037 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4038 * we can access using slightly different code.
4040 #ifdef CONFIG_HAVE_IOREMAP_PROT
4041 vma
= find_vma(mm
, addr
);
4042 if (!vma
|| vma
->vm_start
> addr
)
4044 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4045 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4053 offset
= addr
& (PAGE_SIZE
-1);
4054 if (bytes
> PAGE_SIZE
-offset
)
4055 bytes
= PAGE_SIZE
-offset
;
4059 copy_to_user_page(vma
, page
, addr
,
4060 maddr
+ offset
, buf
, bytes
);
4061 set_page_dirty_lock(page
);
4063 copy_from_user_page(vma
, page
, addr
,
4064 buf
, maddr
+ offset
, bytes
);
4067 page_cache_release(page
);
4073 up_read(&mm
->mmap_sem
);
4075 return buf
- old_buf
;
4079 * access_remote_vm - access another process' address space
4080 * @mm: the mm_struct of the target address space
4081 * @addr: start address to access
4082 * @buf: source or destination buffer
4083 * @len: number of bytes to transfer
4084 * @write: whether the access is a write
4086 * The caller must hold a reference on @mm.
4088 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4089 void *buf
, int len
, int write
)
4091 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
4095 * Access another process' address space.
4096 * Source/target buffer must be kernel space,
4097 * Do not walk the page table directly, use get_user_pages
4099 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4100 void *buf
, int len
, int write
)
4102 struct mm_struct
*mm
;
4105 mm
= get_task_mm(tsk
);
4109 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
4116 * Print the name of a VMA.
4118 void print_vma_addr(char *prefix
, unsigned long ip
)
4120 struct mm_struct
*mm
= current
->mm
;
4121 struct vm_area_struct
*vma
;
4124 * Do not print if we are in atomic
4125 * contexts (in exception stacks, etc.):
4127 if (preempt_count())
4130 down_read(&mm
->mmap_sem
);
4131 vma
= find_vma(mm
, ip
);
4132 if (vma
&& vma
->vm_file
) {
4133 struct file
*f
= vma
->vm_file
;
4134 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4138 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
4141 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4143 vma
->vm_end
- vma
->vm_start
);
4144 free_page((unsigned long)buf
);
4147 up_read(&mm
->mmap_sem
);
4150 #ifdef CONFIG_PROVE_LOCKING
4151 void might_fault(void)
4154 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4155 * holding the mmap_sem, this is safe because kernel memory doesn't
4156 * get paged out, therefore we'll never actually fault, and the
4157 * below annotations will generate false positives.
4159 if (segment_eq(get_fs(), KERNEL_DS
))
4164 * it would be nicer only to annotate paths which are not under
4165 * pagefault_disable, however that requires a larger audit and
4166 * providing helpers like get_user_atomic.
4168 if (!in_atomic() && current
->mm
)
4169 might_lock_read(¤t
->mm
->mmap_sem
);
4171 EXPORT_SYMBOL(might_fault
);
4174 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4175 static void clear_gigantic_page(struct page
*page
,
4177 unsigned int pages_per_huge_page
)
4180 struct page
*p
= page
;
4183 for (i
= 0; i
< pages_per_huge_page
;
4184 i
++, p
= mem_map_next(p
, page
, i
)) {
4186 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4189 void clear_huge_page(struct page
*page
,
4190 unsigned long addr
, unsigned int pages_per_huge_page
)
4194 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4195 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4200 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4202 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4206 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4208 struct vm_area_struct
*vma
,
4209 unsigned int pages_per_huge_page
)
4212 struct page
*dst_base
= dst
;
4213 struct page
*src_base
= src
;
4215 for (i
= 0; i
< pages_per_huge_page
; ) {
4217 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4220 dst
= mem_map_next(dst
, dst_base
, i
);
4221 src
= mem_map_next(src
, src_base
, i
);
4225 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4226 unsigned long addr
, struct vm_area_struct
*vma
,
4227 unsigned int pages_per_huge_page
)
4231 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4232 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4233 pages_per_huge_page
);
4238 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4240 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4243 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */