tty: don't deadlock while flushing workqueue
[linux/fpc-iii.git] / mm / memory.c
blobf8b734a701635c524cab15db13003fea0091bc94
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
70 #include "internal.h"
72 #ifndef CONFIG_NEED_MULTIPLE_NODES
73 /* use the per-pgdat data instead for discontigmem - mbligh */
74 unsigned long max_mapnr;
75 struct page *mem_map;
77 EXPORT_SYMBOL(max_mapnr);
78 EXPORT_SYMBOL(mem_map);
79 #endif
81 unsigned long num_physpages;
83 * A number of key systems in x86 including ioremap() rely on the assumption
84 * that high_memory defines the upper bound on direct map memory, then end
85 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
86 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
87 * and ZONE_HIGHMEM.
89 void * high_memory;
91 EXPORT_SYMBOL(num_physpages);
92 EXPORT_SYMBOL(high_memory);
95 * Randomize the address space (stacks, mmaps, brk, etc.).
97 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
98 * as ancient (libc5 based) binaries can segfault. )
100 int randomize_va_space __read_mostly =
101 #ifdef CONFIG_COMPAT_BRK
103 #else
105 #endif
107 static int __init disable_randmaps(char *s)
109 randomize_va_space = 0;
110 return 1;
112 __setup("norandmaps", disable_randmaps);
114 unsigned long zero_pfn __read_mostly;
115 unsigned long highest_memmap_pfn __read_mostly;
118 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
120 static int __init init_zero_pfn(void)
122 zero_pfn = page_to_pfn(ZERO_PAGE(0));
123 return 0;
125 core_initcall(init_zero_pfn);
128 #if defined(SPLIT_RSS_COUNTING)
130 void sync_mm_rss(struct mm_struct *mm)
132 int i;
134 for (i = 0; i < NR_MM_COUNTERS; i++) {
135 if (current->rss_stat.count[i]) {
136 add_mm_counter(mm, i, current->rss_stat.count[i]);
137 current->rss_stat.count[i] = 0;
140 current->rss_stat.events = 0;
143 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
145 struct task_struct *task = current;
147 if (likely(task->mm == mm))
148 task->rss_stat.count[member] += val;
149 else
150 add_mm_counter(mm, member, val);
152 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
153 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
155 /* sync counter once per 64 page faults */
156 #define TASK_RSS_EVENTS_THRESH (64)
157 static void check_sync_rss_stat(struct task_struct *task)
159 if (unlikely(task != current))
160 return;
161 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
162 sync_mm_rss(task->mm);
164 #else /* SPLIT_RSS_COUNTING */
166 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
167 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
169 static void check_sync_rss_stat(struct task_struct *task)
173 #endif /* SPLIT_RSS_COUNTING */
175 #ifdef HAVE_GENERIC_MMU_GATHER
177 static int tlb_next_batch(struct mmu_gather *tlb)
179 struct mmu_gather_batch *batch;
181 batch = tlb->active;
182 if (batch->next) {
183 tlb->active = batch->next;
184 return 1;
187 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
188 return 0;
190 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
191 if (!batch)
192 return 0;
194 tlb->batch_count++;
195 batch->next = NULL;
196 batch->nr = 0;
197 batch->max = MAX_GATHER_BATCH;
199 tlb->active->next = batch;
200 tlb->active = batch;
202 return 1;
205 /* tlb_gather_mmu
206 * Called to initialize an (on-stack) mmu_gather structure for page-table
207 * tear-down from @mm. The @fullmm argument is used when @mm is without
208 * users and we're going to destroy the full address space (exit/execve).
210 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
212 tlb->mm = mm;
214 tlb->fullmm = fullmm;
215 tlb->need_flush_all = 0;
216 tlb->start = -1UL;
217 tlb->end = 0;
218 tlb->need_flush = 0;
219 tlb->fast_mode = (num_possible_cpus() == 1);
220 tlb->local.next = NULL;
221 tlb->local.nr = 0;
222 tlb->local.max = ARRAY_SIZE(tlb->__pages);
223 tlb->active = &tlb->local;
224 tlb->batch_count = 0;
226 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
227 tlb->batch = NULL;
228 #endif
231 void tlb_flush_mmu(struct mmu_gather *tlb)
233 struct mmu_gather_batch *batch;
235 if (!tlb->need_flush)
236 return;
237 tlb->need_flush = 0;
238 tlb_flush(tlb);
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb_table_flush(tlb);
241 #endif
243 if (tlb_fast_mode(tlb))
244 return;
246 for (batch = &tlb->local; batch; batch = batch->next) {
247 free_pages_and_swap_cache(batch->pages, batch->nr);
248 batch->nr = 0;
250 tlb->active = &tlb->local;
253 /* tlb_finish_mmu
254 * Called at the end of the shootdown operation to free up any resources
255 * that were required.
257 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
259 struct mmu_gather_batch *batch, *next;
261 tlb->start = start;
262 tlb->end = end;
263 tlb_flush_mmu(tlb);
265 /* keep the page table cache within bounds */
266 check_pgt_cache();
268 for (batch = tlb->local.next; batch; batch = next) {
269 next = batch->next;
270 free_pages((unsigned long)batch, 0);
272 tlb->local.next = NULL;
275 /* __tlb_remove_page
276 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
277 * handling the additional races in SMP caused by other CPUs caching valid
278 * mappings in their TLBs. Returns the number of free page slots left.
279 * When out of page slots we must call tlb_flush_mmu().
281 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
283 struct mmu_gather_batch *batch;
285 VM_BUG_ON(!tlb->need_flush);
287 if (tlb_fast_mode(tlb)) {
288 free_page_and_swap_cache(page);
289 return 1; /* avoid calling tlb_flush_mmu() */
292 batch = tlb->active;
293 batch->pages[batch->nr++] = page;
294 if (batch->nr == batch->max) {
295 if (!tlb_next_batch(tlb))
296 return 0;
297 batch = tlb->active;
299 VM_BUG_ON(batch->nr > batch->max);
301 return batch->max - batch->nr;
304 #endif /* HAVE_GENERIC_MMU_GATHER */
306 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
309 * See the comment near struct mmu_table_batch.
312 static void tlb_remove_table_smp_sync(void *arg)
314 /* Simply deliver the interrupt */
317 static void tlb_remove_table_one(void *table)
320 * This isn't an RCU grace period and hence the page-tables cannot be
321 * assumed to be actually RCU-freed.
323 * It is however sufficient for software page-table walkers that rely on
324 * IRQ disabling. See the comment near struct mmu_table_batch.
326 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
327 __tlb_remove_table(table);
330 static void tlb_remove_table_rcu(struct rcu_head *head)
332 struct mmu_table_batch *batch;
333 int i;
335 batch = container_of(head, struct mmu_table_batch, rcu);
337 for (i = 0; i < batch->nr; i++)
338 __tlb_remove_table(batch->tables[i]);
340 free_page((unsigned long)batch);
343 void tlb_table_flush(struct mmu_gather *tlb)
345 struct mmu_table_batch **batch = &tlb->batch;
347 if (*batch) {
348 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
349 *batch = NULL;
353 void tlb_remove_table(struct mmu_gather *tlb, void *table)
355 struct mmu_table_batch **batch = &tlb->batch;
357 tlb->need_flush = 1;
360 * When there's less then two users of this mm there cannot be a
361 * concurrent page-table walk.
363 if (atomic_read(&tlb->mm->mm_users) < 2) {
364 __tlb_remove_table(table);
365 return;
368 if (*batch == NULL) {
369 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
370 if (*batch == NULL) {
371 tlb_remove_table_one(table);
372 return;
374 (*batch)->nr = 0;
376 (*batch)->tables[(*batch)->nr++] = table;
377 if ((*batch)->nr == MAX_TABLE_BATCH)
378 tlb_table_flush(tlb);
381 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
384 * If a p?d_bad entry is found while walking page tables, report
385 * the error, before resetting entry to p?d_none. Usually (but
386 * very seldom) called out from the p?d_none_or_clear_bad macros.
389 void pgd_clear_bad(pgd_t *pgd)
391 pgd_ERROR(*pgd);
392 pgd_clear(pgd);
395 void pud_clear_bad(pud_t *pud)
397 pud_ERROR(*pud);
398 pud_clear(pud);
401 void pmd_clear_bad(pmd_t *pmd)
403 pmd_ERROR(*pmd);
404 pmd_clear(pmd);
408 * Note: this doesn't free the actual pages themselves. That
409 * has been handled earlier when unmapping all the memory regions.
411 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
412 unsigned long addr)
414 pgtable_t token = pmd_pgtable(*pmd);
415 pmd_clear(pmd);
416 pte_free_tlb(tlb, token, addr);
417 tlb->mm->nr_ptes--;
420 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
421 unsigned long addr, unsigned long end,
422 unsigned long floor, unsigned long ceiling)
424 pmd_t *pmd;
425 unsigned long next;
426 unsigned long start;
428 start = addr;
429 pmd = pmd_offset(pud, addr);
430 do {
431 next = pmd_addr_end(addr, end);
432 if (pmd_none_or_clear_bad(pmd))
433 continue;
434 free_pte_range(tlb, pmd, addr);
435 } while (pmd++, addr = next, addr != end);
437 start &= PUD_MASK;
438 if (start < floor)
439 return;
440 if (ceiling) {
441 ceiling &= PUD_MASK;
442 if (!ceiling)
443 return;
445 if (end - 1 > ceiling - 1)
446 return;
448 pmd = pmd_offset(pud, start);
449 pud_clear(pud);
450 pmd_free_tlb(tlb, pmd, start);
453 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
454 unsigned long addr, unsigned long end,
455 unsigned long floor, unsigned long ceiling)
457 pud_t *pud;
458 unsigned long next;
459 unsigned long start;
461 start = addr;
462 pud = pud_offset(pgd, addr);
463 do {
464 next = pud_addr_end(addr, end);
465 if (pud_none_or_clear_bad(pud))
466 continue;
467 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
468 } while (pud++, addr = next, addr != end);
470 start &= PGDIR_MASK;
471 if (start < floor)
472 return;
473 if (ceiling) {
474 ceiling &= PGDIR_MASK;
475 if (!ceiling)
476 return;
478 if (end - 1 > ceiling - 1)
479 return;
481 pud = pud_offset(pgd, start);
482 pgd_clear(pgd);
483 pud_free_tlb(tlb, pud, start);
487 * This function frees user-level page tables of a process.
489 * Must be called with pagetable lock held.
491 void free_pgd_range(struct mmu_gather *tlb,
492 unsigned long addr, unsigned long end,
493 unsigned long floor, unsigned long ceiling)
495 pgd_t *pgd;
496 unsigned long next;
499 * The next few lines have given us lots of grief...
501 * Why are we testing PMD* at this top level? Because often
502 * there will be no work to do at all, and we'd prefer not to
503 * go all the way down to the bottom just to discover that.
505 * Why all these "- 1"s? Because 0 represents both the bottom
506 * of the address space and the top of it (using -1 for the
507 * top wouldn't help much: the masks would do the wrong thing).
508 * The rule is that addr 0 and floor 0 refer to the bottom of
509 * the address space, but end 0 and ceiling 0 refer to the top
510 * Comparisons need to use "end - 1" and "ceiling - 1" (though
511 * that end 0 case should be mythical).
513 * Wherever addr is brought up or ceiling brought down, we must
514 * be careful to reject "the opposite 0" before it confuses the
515 * subsequent tests. But what about where end is brought down
516 * by PMD_SIZE below? no, end can't go down to 0 there.
518 * Whereas we round start (addr) and ceiling down, by different
519 * masks at different levels, in order to test whether a table
520 * now has no other vmas using it, so can be freed, we don't
521 * bother to round floor or end up - the tests don't need that.
524 addr &= PMD_MASK;
525 if (addr < floor) {
526 addr += PMD_SIZE;
527 if (!addr)
528 return;
530 if (ceiling) {
531 ceiling &= PMD_MASK;
532 if (!ceiling)
533 return;
535 if (end - 1 > ceiling - 1)
536 end -= PMD_SIZE;
537 if (addr > end - 1)
538 return;
540 pgd = pgd_offset(tlb->mm, addr);
541 do {
542 next = pgd_addr_end(addr, end);
543 if (pgd_none_or_clear_bad(pgd))
544 continue;
545 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
546 } while (pgd++, addr = next, addr != end);
549 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
550 unsigned long floor, unsigned long ceiling)
552 while (vma) {
553 struct vm_area_struct *next = vma->vm_next;
554 unsigned long addr = vma->vm_start;
557 * Hide vma from rmap and truncate_pagecache before freeing
558 * pgtables
560 unlink_anon_vmas(vma);
561 unlink_file_vma(vma);
563 if (is_vm_hugetlb_page(vma)) {
564 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
565 floor, next? next->vm_start: ceiling);
566 } else {
568 * Optimization: gather nearby vmas into one call down
570 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
571 && !is_vm_hugetlb_page(next)) {
572 vma = next;
573 next = vma->vm_next;
574 unlink_anon_vmas(vma);
575 unlink_file_vma(vma);
577 free_pgd_range(tlb, addr, vma->vm_end,
578 floor, next? next->vm_start: ceiling);
580 vma = next;
584 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
585 pmd_t *pmd, unsigned long address)
587 pgtable_t new = pte_alloc_one(mm, address);
588 int wait_split_huge_page;
589 if (!new)
590 return -ENOMEM;
593 * Ensure all pte setup (eg. pte page lock and page clearing) are
594 * visible before the pte is made visible to other CPUs by being
595 * put into page tables.
597 * The other side of the story is the pointer chasing in the page
598 * table walking code (when walking the page table without locking;
599 * ie. most of the time). Fortunately, these data accesses consist
600 * of a chain of data-dependent loads, meaning most CPUs (alpha
601 * being the notable exception) will already guarantee loads are
602 * seen in-order. See the alpha page table accessors for the
603 * smp_read_barrier_depends() barriers in page table walking code.
605 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
607 spin_lock(&mm->page_table_lock);
608 wait_split_huge_page = 0;
609 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
610 mm->nr_ptes++;
611 pmd_populate(mm, pmd, new);
612 new = NULL;
613 } else if (unlikely(pmd_trans_splitting(*pmd)))
614 wait_split_huge_page = 1;
615 spin_unlock(&mm->page_table_lock);
616 if (new)
617 pte_free(mm, new);
618 if (wait_split_huge_page)
619 wait_split_huge_page(vma->anon_vma, pmd);
620 return 0;
623 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
625 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
626 if (!new)
627 return -ENOMEM;
629 smp_wmb(); /* See comment in __pte_alloc */
631 spin_lock(&init_mm.page_table_lock);
632 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
633 pmd_populate_kernel(&init_mm, pmd, new);
634 new = NULL;
635 } else
636 VM_BUG_ON(pmd_trans_splitting(*pmd));
637 spin_unlock(&init_mm.page_table_lock);
638 if (new)
639 pte_free_kernel(&init_mm, new);
640 return 0;
643 static inline void init_rss_vec(int *rss)
645 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
648 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
650 int i;
652 if (current->mm == mm)
653 sync_mm_rss(mm);
654 for (i = 0; i < NR_MM_COUNTERS; i++)
655 if (rss[i])
656 add_mm_counter(mm, i, rss[i]);
660 * This function is called to print an error when a bad pte
661 * is found. For example, we might have a PFN-mapped pte in
662 * a region that doesn't allow it.
664 * The calling function must still handle the error.
666 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
667 pte_t pte, struct page *page)
669 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
670 pud_t *pud = pud_offset(pgd, addr);
671 pmd_t *pmd = pmd_offset(pud, addr);
672 struct address_space *mapping;
673 pgoff_t index;
674 static unsigned long resume;
675 static unsigned long nr_shown;
676 static unsigned long nr_unshown;
679 * Allow a burst of 60 reports, then keep quiet for that minute;
680 * or allow a steady drip of one report per second.
682 if (nr_shown == 60) {
683 if (time_before(jiffies, resume)) {
684 nr_unshown++;
685 return;
687 if (nr_unshown) {
688 printk(KERN_ALERT
689 "BUG: Bad page map: %lu messages suppressed\n",
690 nr_unshown);
691 nr_unshown = 0;
693 nr_shown = 0;
695 if (nr_shown++ == 0)
696 resume = jiffies + 60 * HZ;
698 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
699 index = linear_page_index(vma, addr);
701 printk(KERN_ALERT
702 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
703 current->comm,
704 (long long)pte_val(pte), (long long)pmd_val(*pmd));
705 if (page)
706 dump_page(page);
707 printk(KERN_ALERT
708 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
709 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
711 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
713 if (vma->vm_ops)
714 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
715 (unsigned long)vma->vm_ops->fault);
716 if (vma->vm_file && vma->vm_file->f_op)
717 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
718 (unsigned long)vma->vm_file->f_op->mmap);
719 dump_stack();
720 add_taint(TAINT_BAD_PAGE);
723 static inline bool is_cow_mapping(vm_flags_t flags)
725 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
729 * vm_normal_page -- This function gets the "struct page" associated with a pte.
731 * "Special" mappings do not wish to be associated with a "struct page" (either
732 * it doesn't exist, or it exists but they don't want to touch it). In this
733 * case, NULL is returned here. "Normal" mappings do have a struct page.
735 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
736 * pte bit, in which case this function is trivial. Secondly, an architecture
737 * may not have a spare pte bit, which requires a more complicated scheme,
738 * described below.
740 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
741 * special mapping (even if there are underlying and valid "struct pages").
742 * COWed pages of a VM_PFNMAP are always normal.
744 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
745 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
746 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
747 * mapping will always honor the rule
749 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
751 * And for normal mappings this is false.
753 * This restricts such mappings to be a linear translation from virtual address
754 * to pfn. To get around this restriction, we allow arbitrary mappings so long
755 * as the vma is not a COW mapping; in that case, we know that all ptes are
756 * special (because none can have been COWed).
759 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
761 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
762 * page" backing, however the difference is that _all_ pages with a struct
763 * page (that is, those where pfn_valid is true) are refcounted and considered
764 * normal pages by the VM. The disadvantage is that pages are refcounted
765 * (which can be slower and simply not an option for some PFNMAP users). The
766 * advantage is that we don't have to follow the strict linearity rule of
767 * PFNMAP mappings in order to support COWable mappings.
770 #ifdef __HAVE_ARCH_PTE_SPECIAL
771 # define HAVE_PTE_SPECIAL 1
772 #else
773 # define HAVE_PTE_SPECIAL 0
774 #endif
775 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
776 pte_t pte)
778 unsigned long pfn = pte_pfn(pte);
780 if (HAVE_PTE_SPECIAL) {
781 if (likely(!pte_special(pte)))
782 goto check_pfn;
783 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
784 return NULL;
785 if (!is_zero_pfn(pfn))
786 print_bad_pte(vma, addr, pte, NULL);
787 return NULL;
790 /* !HAVE_PTE_SPECIAL case follows: */
792 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
793 if (vma->vm_flags & VM_MIXEDMAP) {
794 if (!pfn_valid(pfn))
795 return NULL;
796 goto out;
797 } else {
798 unsigned long off;
799 off = (addr - vma->vm_start) >> PAGE_SHIFT;
800 if (pfn == vma->vm_pgoff + off)
801 return NULL;
802 if (!is_cow_mapping(vma->vm_flags))
803 return NULL;
807 if (is_zero_pfn(pfn))
808 return NULL;
809 check_pfn:
810 if (unlikely(pfn > highest_memmap_pfn)) {
811 print_bad_pte(vma, addr, pte, NULL);
812 return NULL;
816 * NOTE! We still have PageReserved() pages in the page tables.
817 * eg. VDSO mappings can cause them to exist.
819 out:
820 return pfn_to_page(pfn);
824 * copy one vm_area from one task to the other. Assumes the page tables
825 * already present in the new task to be cleared in the whole range
826 * covered by this vma.
829 static inline unsigned long
830 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
831 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
832 unsigned long addr, int *rss)
834 unsigned long vm_flags = vma->vm_flags;
835 pte_t pte = *src_pte;
836 struct page *page;
838 /* pte contains position in swap or file, so copy. */
839 if (unlikely(!pte_present(pte))) {
840 if (!pte_file(pte)) {
841 swp_entry_t entry = pte_to_swp_entry(pte);
843 if (swap_duplicate(entry) < 0)
844 return entry.val;
846 /* make sure dst_mm is on swapoff's mmlist. */
847 if (unlikely(list_empty(&dst_mm->mmlist))) {
848 spin_lock(&mmlist_lock);
849 if (list_empty(&dst_mm->mmlist))
850 list_add(&dst_mm->mmlist,
851 &src_mm->mmlist);
852 spin_unlock(&mmlist_lock);
854 if (likely(!non_swap_entry(entry)))
855 rss[MM_SWAPENTS]++;
856 else if (is_migration_entry(entry)) {
857 page = migration_entry_to_page(entry);
859 if (PageAnon(page))
860 rss[MM_ANONPAGES]++;
861 else
862 rss[MM_FILEPAGES]++;
864 if (is_write_migration_entry(entry) &&
865 is_cow_mapping(vm_flags)) {
867 * COW mappings require pages in both
868 * parent and child to be set to read.
870 make_migration_entry_read(&entry);
871 pte = swp_entry_to_pte(entry);
872 set_pte_at(src_mm, addr, src_pte, pte);
876 goto out_set_pte;
880 * If it's a COW mapping, write protect it both
881 * in the parent and the child
883 if (is_cow_mapping(vm_flags)) {
884 ptep_set_wrprotect(src_mm, addr, src_pte);
885 pte = pte_wrprotect(pte);
889 * If it's a shared mapping, mark it clean in
890 * the child
892 if (vm_flags & VM_SHARED)
893 pte = pte_mkclean(pte);
894 pte = pte_mkold(pte);
896 page = vm_normal_page(vma, addr, pte);
897 if (page) {
898 get_page(page);
899 page_dup_rmap(page);
900 if (PageAnon(page))
901 rss[MM_ANONPAGES]++;
902 else
903 rss[MM_FILEPAGES]++;
906 out_set_pte:
907 set_pte_at(dst_mm, addr, dst_pte, pte);
908 return 0;
911 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
912 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
913 unsigned long addr, unsigned long end)
915 pte_t *orig_src_pte, *orig_dst_pte;
916 pte_t *src_pte, *dst_pte;
917 spinlock_t *src_ptl, *dst_ptl;
918 int progress = 0;
919 int rss[NR_MM_COUNTERS];
920 swp_entry_t entry = (swp_entry_t){0};
922 again:
923 init_rss_vec(rss);
925 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
926 if (!dst_pte)
927 return -ENOMEM;
928 src_pte = pte_offset_map(src_pmd, addr);
929 src_ptl = pte_lockptr(src_mm, src_pmd);
930 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
931 orig_src_pte = src_pte;
932 orig_dst_pte = dst_pte;
933 arch_enter_lazy_mmu_mode();
935 do {
937 * We are holding two locks at this point - either of them
938 * could generate latencies in another task on another CPU.
940 if (progress >= 32) {
941 progress = 0;
942 if (need_resched() ||
943 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
944 break;
946 if (pte_none(*src_pte)) {
947 progress++;
948 continue;
950 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
951 vma, addr, rss);
952 if (entry.val)
953 break;
954 progress += 8;
955 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
957 arch_leave_lazy_mmu_mode();
958 spin_unlock(src_ptl);
959 pte_unmap(orig_src_pte);
960 add_mm_rss_vec(dst_mm, rss);
961 pte_unmap_unlock(orig_dst_pte, dst_ptl);
962 cond_resched();
964 if (entry.val) {
965 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
966 return -ENOMEM;
967 progress = 0;
969 if (addr != end)
970 goto again;
971 return 0;
974 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
975 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
976 unsigned long addr, unsigned long end)
978 pmd_t *src_pmd, *dst_pmd;
979 unsigned long next;
981 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
982 if (!dst_pmd)
983 return -ENOMEM;
984 src_pmd = pmd_offset(src_pud, addr);
985 do {
986 next = pmd_addr_end(addr, end);
987 if (pmd_trans_huge(*src_pmd)) {
988 int err;
989 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
990 err = copy_huge_pmd(dst_mm, src_mm,
991 dst_pmd, src_pmd, addr, vma);
992 if (err == -ENOMEM)
993 return -ENOMEM;
994 if (!err)
995 continue;
996 /* fall through */
998 if (pmd_none_or_clear_bad(src_pmd))
999 continue;
1000 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1001 vma, addr, next))
1002 return -ENOMEM;
1003 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1004 return 0;
1007 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1008 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1009 unsigned long addr, unsigned long end)
1011 pud_t *src_pud, *dst_pud;
1012 unsigned long next;
1014 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1015 if (!dst_pud)
1016 return -ENOMEM;
1017 src_pud = pud_offset(src_pgd, addr);
1018 do {
1019 next = pud_addr_end(addr, end);
1020 if (pud_none_or_clear_bad(src_pud))
1021 continue;
1022 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1023 vma, addr, next))
1024 return -ENOMEM;
1025 } while (dst_pud++, src_pud++, addr = next, addr != end);
1026 return 0;
1029 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1030 struct vm_area_struct *vma)
1032 pgd_t *src_pgd, *dst_pgd;
1033 unsigned long next;
1034 unsigned long addr = vma->vm_start;
1035 unsigned long end = vma->vm_end;
1036 unsigned long mmun_start; /* For mmu_notifiers */
1037 unsigned long mmun_end; /* For mmu_notifiers */
1038 bool is_cow;
1039 int ret;
1042 * Don't copy ptes where a page fault will fill them correctly.
1043 * Fork becomes much lighter when there are big shared or private
1044 * readonly mappings. The tradeoff is that copy_page_range is more
1045 * efficient than faulting.
1047 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1048 VM_PFNMAP | VM_MIXEDMAP))) {
1049 if (!vma->anon_vma)
1050 return 0;
1053 if (is_vm_hugetlb_page(vma))
1054 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1056 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1058 * We do not free on error cases below as remove_vma
1059 * gets called on error from higher level routine
1061 ret = track_pfn_copy(vma);
1062 if (ret)
1063 return ret;
1067 * We need to invalidate the secondary MMU mappings only when
1068 * there could be a permission downgrade on the ptes of the
1069 * parent mm. And a permission downgrade will only happen if
1070 * is_cow_mapping() returns true.
1072 is_cow = is_cow_mapping(vma->vm_flags);
1073 mmun_start = addr;
1074 mmun_end = end;
1075 if (is_cow)
1076 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1077 mmun_end);
1079 ret = 0;
1080 dst_pgd = pgd_offset(dst_mm, addr);
1081 src_pgd = pgd_offset(src_mm, addr);
1082 do {
1083 next = pgd_addr_end(addr, end);
1084 if (pgd_none_or_clear_bad(src_pgd))
1085 continue;
1086 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1087 vma, addr, next))) {
1088 ret = -ENOMEM;
1089 break;
1091 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1093 if (is_cow)
1094 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1095 return ret;
1098 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1099 struct vm_area_struct *vma, pmd_t *pmd,
1100 unsigned long addr, unsigned long end,
1101 struct zap_details *details)
1103 struct mm_struct *mm = tlb->mm;
1104 int force_flush = 0;
1105 int rss[NR_MM_COUNTERS];
1106 spinlock_t *ptl;
1107 pte_t *start_pte;
1108 pte_t *pte;
1110 again:
1111 init_rss_vec(rss);
1112 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1113 pte = start_pte;
1114 arch_enter_lazy_mmu_mode();
1115 do {
1116 pte_t ptent = *pte;
1117 if (pte_none(ptent)) {
1118 continue;
1121 if (pte_present(ptent)) {
1122 struct page *page;
1124 page = vm_normal_page(vma, addr, ptent);
1125 if (unlikely(details) && page) {
1127 * unmap_shared_mapping_pages() wants to
1128 * invalidate cache without truncating:
1129 * unmap shared but keep private pages.
1131 if (details->check_mapping &&
1132 details->check_mapping != page->mapping)
1133 continue;
1135 * Each page->index must be checked when
1136 * invalidating or truncating nonlinear.
1138 if (details->nonlinear_vma &&
1139 (page->index < details->first_index ||
1140 page->index > details->last_index))
1141 continue;
1143 ptent = ptep_get_and_clear_full(mm, addr, pte,
1144 tlb->fullmm);
1145 tlb_remove_tlb_entry(tlb, pte, addr);
1146 if (unlikely(!page))
1147 continue;
1148 if (unlikely(details) && details->nonlinear_vma
1149 && linear_page_index(details->nonlinear_vma,
1150 addr) != page->index)
1151 set_pte_at(mm, addr, pte,
1152 pgoff_to_pte(page->index));
1153 if (PageAnon(page))
1154 rss[MM_ANONPAGES]--;
1155 else {
1156 if (pte_dirty(ptent))
1157 set_page_dirty(page);
1158 if (pte_young(ptent) &&
1159 likely(!VM_SequentialReadHint(vma)))
1160 mark_page_accessed(page);
1161 rss[MM_FILEPAGES]--;
1163 page_remove_rmap(page);
1164 if (unlikely(page_mapcount(page) < 0))
1165 print_bad_pte(vma, addr, ptent, page);
1166 force_flush = !__tlb_remove_page(tlb, page);
1167 if (force_flush)
1168 break;
1169 continue;
1172 * If details->check_mapping, we leave swap entries;
1173 * if details->nonlinear_vma, we leave file entries.
1175 if (unlikely(details))
1176 continue;
1177 if (pte_file(ptent)) {
1178 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1179 print_bad_pte(vma, addr, ptent, NULL);
1180 } else {
1181 swp_entry_t entry = pte_to_swp_entry(ptent);
1183 if (!non_swap_entry(entry))
1184 rss[MM_SWAPENTS]--;
1185 else if (is_migration_entry(entry)) {
1186 struct page *page;
1188 page = migration_entry_to_page(entry);
1190 if (PageAnon(page))
1191 rss[MM_ANONPAGES]--;
1192 else
1193 rss[MM_FILEPAGES]--;
1195 if (unlikely(!free_swap_and_cache(entry)))
1196 print_bad_pte(vma, addr, ptent, NULL);
1198 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1199 } while (pte++, addr += PAGE_SIZE, addr != end);
1201 add_mm_rss_vec(mm, rss);
1202 arch_leave_lazy_mmu_mode();
1203 pte_unmap_unlock(start_pte, ptl);
1206 * mmu_gather ran out of room to batch pages, we break out of
1207 * the PTE lock to avoid doing the potential expensive TLB invalidate
1208 * and page-free while holding it.
1210 if (force_flush) {
1211 force_flush = 0;
1213 #ifdef HAVE_GENERIC_MMU_GATHER
1214 tlb->start = addr;
1215 tlb->end = end;
1216 #endif
1217 tlb_flush_mmu(tlb);
1218 if (addr != end)
1219 goto again;
1222 return addr;
1225 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1226 struct vm_area_struct *vma, pud_t *pud,
1227 unsigned long addr, unsigned long end,
1228 struct zap_details *details)
1230 pmd_t *pmd;
1231 unsigned long next;
1233 pmd = pmd_offset(pud, addr);
1234 do {
1235 next = pmd_addr_end(addr, end);
1236 if (pmd_trans_huge(*pmd)) {
1237 if (next - addr != HPAGE_PMD_SIZE) {
1238 #ifdef CONFIG_DEBUG_VM
1239 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1240 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1241 __func__, addr, end,
1242 vma->vm_start,
1243 vma->vm_end);
1244 BUG();
1246 #endif
1247 split_huge_page_pmd(vma, addr, pmd);
1248 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1249 goto next;
1250 /* fall through */
1253 * Here there can be other concurrent MADV_DONTNEED or
1254 * trans huge page faults running, and if the pmd is
1255 * none or trans huge it can change under us. This is
1256 * because MADV_DONTNEED holds the mmap_sem in read
1257 * mode.
1259 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1260 goto next;
1261 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1262 next:
1263 cond_resched();
1264 } while (pmd++, addr = next, addr != end);
1266 return addr;
1269 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1270 struct vm_area_struct *vma, pgd_t *pgd,
1271 unsigned long addr, unsigned long end,
1272 struct zap_details *details)
1274 pud_t *pud;
1275 unsigned long next;
1277 pud = pud_offset(pgd, addr);
1278 do {
1279 next = pud_addr_end(addr, end);
1280 if (pud_none_or_clear_bad(pud))
1281 continue;
1282 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1283 } while (pud++, addr = next, addr != end);
1285 return addr;
1288 static void unmap_page_range(struct mmu_gather *tlb,
1289 struct vm_area_struct *vma,
1290 unsigned long addr, unsigned long end,
1291 struct zap_details *details)
1293 pgd_t *pgd;
1294 unsigned long next;
1296 if (details && !details->check_mapping && !details->nonlinear_vma)
1297 details = NULL;
1299 BUG_ON(addr >= end);
1300 mem_cgroup_uncharge_start();
1301 tlb_start_vma(tlb, vma);
1302 pgd = pgd_offset(vma->vm_mm, addr);
1303 do {
1304 next = pgd_addr_end(addr, end);
1305 if (pgd_none_or_clear_bad(pgd))
1306 continue;
1307 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1308 } while (pgd++, addr = next, addr != end);
1309 tlb_end_vma(tlb, vma);
1310 mem_cgroup_uncharge_end();
1314 static void unmap_single_vma(struct mmu_gather *tlb,
1315 struct vm_area_struct *vma, unsigned long start_addr,
1316 unsigned long end_addr,
1317 struct zap_details *details)
1319 unsigned long start = max(vma->vm_start, start_addr);
1320 unsigned long end;
1322 if (start >= vma->vm_end)
1323 return;
1324 end = min(vma->vm_end, end_addr);
1325 if (end <= vma->vm_start)
1326 return;
1328 if (vma->vm_file)
1329 uprobe_munmap(vma, start, end);
1331 if (unlikely(vma->vm_flags & VM_PFNMAP))
1332 untrack_pfn(vma, 0, 0);
1334 if (start != end) {
1335 if (unlikely(is_vm_hugetlb_page(vma))) {
1337 * It is undesirable to test vma->vm_file as it
1338 * should be non-null for valid hugetlb area.
1339 * However, vm_file will be NULL in the error
1340 * cleanup path of do_mmap_pgoff. When
1341 * hugetlbfs ->mmap method fails,
1342 * do_mmap_pgoff() nullifies vma->vm_file
1343 * before calling this function to clean up.
1344 * Since no pte has actually been setup, it is
1345 * safe to do nothing in this case.
1347 if (vma->vm_file) {
1348 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1349 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1350 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1352 } else
1353 unmap_page_range(tlb, vma, start, end, details);
1358 * unmap_vmas - unmap a range of memory covered by a list of vma's
1359 * @tlb: address of the caller's struct mmu_gather
1360 * @vma: the starting vma
1361 * @start_addr: virtual address at which to start unmapping
1362 * @end_addr: virtual address at which to end unmapping
1364 * Unmap all pages in the vma list.
1366 * Only addresses between `start' and `end' will be unmapped.
1368 * The VMA list must be sorted in ascending virtual address order.
1370 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1371 * range after unmap_vmas() returns. So the only responsibility here is to
1372 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1373 * drops the lock and schedules.
1375 void unmap_vmas(struct mmu_gather *tlb,
1376 struct vm_area_struct *vma, unsigned long start_addr,
1377 unsigned long end_addr)
1379 struct mm_struct *mm = vma->vm_mm;
1381 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1382 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1383 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1384 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1388 * zap_page_range - remove user pages in a given range
1389 * @vma: vm_area_struct holding the applicable pages
1390 * @start: starting address of pages to zap
1391 * @size: number of bytes to zap
1392 * @details: details of nonlinear truncation or shared cache invalidation
1394 * Caller must protect the VMA list
1396 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1397 unsigned long size, struct zap_details *details)
1399 struct mm_struct *mm = vma->vm_mm;
1400 struct mmu_gather tlb;
1401 unsigned long end = start + size;
1403 lru_add_drain();
1404 tlb_gather_mmu(&tlb, mm, 0);
1405 update_hiwater_rss(mm);
1406 mmu_notifier_invalidate_range_start(mm, start, end);
1407 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1408 unmap_single_vma(&tlb, vma, start, end, details);
1409 mmu_notifier_invalidate_range_end(mm, start, end);
1410 tlb_finish_mmu(&tlb, start, end);
1414 * zap_page_range_single - remove user pages in a given range
1415 * @vma: vm_area_struct holding the applicable pages
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1418 * @details: details of nonlinear truncation or shared cache invalidation
1420 * The range must fit into one VMA.
1422 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1423 unsigned long size, struct zap_details *details)
1425 struct mm_struct *mm = vma->vm_mm;
1426 struct mmu_gather tlb;
1427 unsigned long end = address + size;
1429 lru_add_drain();
1430 tlb_gather_mmu(&tlb, mm, 0);
1431 update_hiwater_rss(mm);
1432 mmu_notifier_invalidate_range_start(mm, address, end);
1433 unmap_single_vma(&tlb, vma, address, end, details);
1434 mmu_notifier_invalidate_range_end(mm, address, end);
1435 tlb_finish_mmu(&tlb, address, end);
1439 * zap_vma_ptes - remove ptes mapping the vma
1440 * @vma: vm_area_struct holding ptes to be zapped
1441 * @address: starting address of pages to zap
1442 * @size: number of bytes to zap
1444 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1446 * The entire address range must be fully contained within the vma.
1448 * Returns 0 if successful.
1450 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1451 unsigned long size)
1453 if (address < vma->vm_start || address + size > vma->vm_end ||
1454 !(vma->vm_flags & VM_PFNMAP))
1455 return -1;
1456 zap_page_range_single(vma, address, size, NULL);
1457 return 0;
1459 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1462 * follow_page - look up a page descriptor from a user-virtual address
1463 * @vma: vm_area_struct mapping @address
1464 * @address: virtual address to look up
1465 * @flags: flags modifying lookup behaviour
1467 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1469 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1470 * an error pointer if there is a mapping to something not represented
1471 * by a page descriptor (see also vm_normal_page()).
1473 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1474 unsigned int flags)
1476 pgd_t *pgd;
1477 pud_t *pud;
1478 pmd_t *pmd;
1479 pte_t *ptep, pte;
1480 spinlock_t *ptl;
1481 struct page *page;
1482 struct mm_struct *mm = vma->vm_mm;
1484 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1485 if (!IS_ERR(page)) {
1486 BUG_ON(flags & FOLL_GET);
1487 goto out;
1490 page = NULL;
1491 pgd = pgd_offset(mm, address);
1492 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1493 goto no_page_table;
1495 pud = pud_offset(pgd, address);
1496 if (pud_none(*pud))
1497 goto no_page_table;
1498 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1499 BUG_ON(flags & FOLL_GET);
1500 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1501 goto out;
1503 if (unlikely(pud_bad(*pud)))
1504 goto no_page_table;
1506 pmd = pmd_offset(pud, address);
1507 if (pmd_none(*pmd))
1508 goto no_page_table;
1509 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1510 BUG_ON(flags & FOLL_GET);
1511 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1512 goto out;
1514 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1515 goto no_page_table;
1516 if (pmd_trans_huge(*pmd)) {
1517 if (flags & FOLL_SPLIT) {
1518 split_huge_page_pmd(vma, address, pmd);
1519 goto split_fallthrough;
1521 spin_lock(&mm->page_table_lock);
1522 if (likely(pmd_trans_huge(*pmd))) {
1523 if (unlikely(pmd_trans_splitting(*pmd))) {
1524 spin_unlock(&mm->page_table_lock);
1525 wait_split_huge_page(vma->anon_vma, pmd);
1526 } else {
1527 page = follow_trans_huge_pmd(vma, address,
1528 pmd, flags);
1529 spin_unlock(&mm->page_table_lock);
1530 goto out;
1532 } else
1533 spin_unlock(&mm->page_table_lock);
1534 /* fall through */
1536 split_fallthrough:
1537 if (unlikely(pmd_bad(*pmd)))
1538 goto no_page_table;
1540 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1542 pte = *ptep;
1543 if (!pte_present(pte))
1544 goto no_page;
1545 if ((flags & FOLL_NUMA) && pte_numa(pte))
1546 goto no_page;
1547 if ((flags & FOLL_WRITE) && !pte_write(pte))
1548 goto unlock;
1550 page = vm_normal_page(vma, address, pte);
1551 if (unlikely(!page)) {
1552 if ((flags & FOLL_DUMP) ||
1553 !is_zero_pfn(pte_pfn(pte)))
1554 goto bad_page;
1555 page = pte_page(pte);
1558 if (flags & FOLL_GET)
1559 get_page_foll(page);
1560 if (flags & FOLL_TOUCH) {
1561 if ((flags & FOLL_WRITE) &&
1562 !pte_dirty(pte) && !PageDirty(page))
1563 set_page_dirty(page);
1565 * pte_mkyoung() would be more correct here, but atomic care
1566 * is needed to avoid losing the dirty bit: it is easier to use
1567 * mark_page_accessed().
1569 mark_page_accessed(page);
1571 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1573 * The preliminary mapping check is mainly to avoid the
1574 * pointless overhead of lock_page on the ZERO_PAGE
1575 * which might bounce very badly if there is contention.
1577 * If the page is already locked, we don't need to
1578 * handle it now - vmscan will handle it later if and
1579 * when it attempts to reclaim the page.
1581 if (page->mapping && trylock_page(page)) {
1582 lru_add_drain(); /* push cached pages to LRU */
1584 * Because we lock page here, and migration is
1585 * blocked by the pte's page reference, and we
1586 * know the page is still mapped, we don't even
1587 * need to check for file-cache page truncation.
1589 mlock_vma_page(page);
1590 unlock_page(page);
1593 unlock:
1594 pte_unmap_unlock(ptep, ptl);
1595 out:
1596 return page;
1598 bad_page:
1599 pte_unmap_unlock(ptep, ptl);
1600 return ERR_PTR(-EFAULT);
1602 no_page:
1603 pte_unmap_unlock(ptep, ptl);
1604 if (!pte_none(pte))
1605 return page;
1607 no_page_table:
1609 * When core dumping an enormous anonymous area that nobody
1610 * has touched so far, we don't want to allocate unnecessary pages or
1611 * page tables. Return error instead of NULL to skip handle_mm_fault,
1612 * then get_dump_page() will return NULL to leave a hole in the dump.
1613 * But we can only make this optimization where a hole would surely
1614 * be zero-filled if handle_mm_fault() actually did handle it.
1616 if ((flags & FOLL_DUMP) &&
1617 (!vma->vm_ops || !vma->vm_ops->fault))
1618 return ERR_PTR(-EFAULT);
1619 return page;
1622 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1624 return stack_guard_page_start(vma, addr) ||
1625 stack_guard_page_end(vma, addr+PAGE_SIZE);
1629 * __get_user_pages() - pin user pages in memory
1630 * @tsk: task_struct of target task
1631 * @mm: mm_struct of target mm
1632 * @start: starting user address
1633 * @nr_pages: number of pages from start to pin
1634 * @gup_flags: flags modifying pin behaviour
1635 * @pages: array that receives pointers to the pages pinned.
1636 * Should be at least nr_pages long. Or NULL, if caller
1637 * only intends to ensure the pages are faulted in.
1638 * @vmas: array of pointers to vmas corresponding to each page.
1639 * Or NULL if the caller does not require them.
1640 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1642 * Returns number of pages pinned. This may be fewer than the number
1643 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1644 * were pinned, returns -errno. Each page returned must be released
1645 * with a put_page() call when it is finished with. vmas will only
1646 * remain valid while mmap_sem is held.
1648 * Must be called with mmap_sem held for read or write.
1650 * __get_user_pages walks a process's page tables and takes a reference to
1651 * each struct page that each user address corresponds to at a given
1652 * instant. That is, it takes the page that would be accessed if a user
1653 * thread accesses the given user virtual address at that instant.
1655 * This does not guarantee that the page exists in the user mappings when
1656 * __get_user_pages returns, and there may even be a completely different
1657 * page there in some cases (eg. if mmapped pagecache has been invalidated
1658 * and subsequently re faulted). However it does guarantee that the page
1659 * won't be freed completely. And mostly callers simply care that the page
1660 * contains data that was valid *at some point in time*. Typically, an IO
1661 * or similar operation cannot guarantee anything stronger anyway because
1662 * locks can't be held over the syscall boundary.
1664 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1665 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1666 * appropriate) must be called after the page is finished with, and
1667 * before put_page is called.
1669 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1670 * or mmap_sem contention, and if waiting is needed to pin all pages,
1671 * *@nonblocking will be set to 0.
1673 * In most cases, get_user_pages or get_user_pages_fast should be used
1674 * instead of __get_user_pages. __get_user_pages should be used only if
1675 * you need some special @gup_flags.
1677 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1678 unsigned long start, int nr_pages, unsigned int gup_flags,
1679 struct page **pages, struct vm_area_struct **vmas,
1680 int *nonblocking)
1682 int i;
1683 unsigned long vm_flags;
1685 if (nr_pages <= 0)
1686 return 0;
1688 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1691 * Require read or write permissions.
1692 * If FOLL_FORCE is set, we only require the "MAY" flags.
1694 vm_flags = (gup_flags & FOLL_WRITE) ?
1695 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1696 vm_flags &= (gup_flags & FOLL_FORCE) ?
1697 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1700 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1701 * would be called on PROT_NONE ranges. We must never invoke
1702 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1703 * page faults would unprotect the PROT_NONE ranges if
1704 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1705 * bitflag. So to avoid that, don't set FOLL_NUMA if
1706 * FOLL_FORCE is set.
1708 if (!(gup_flags & FOLL_FORCE))
1709 gup_flags |= FOLL_NUMA;
1711 i = 0;
1713 do {
1714 struct vm_area_struct *vma;
1716 vma = find_extend_vma(mm, start);
1717 if (!vma && in_gate_area(mm, start)) {
1718 unsigned long pg = start & PAGE_MASK;
1719 pgd_t *pgd;
1720 pud_t *pud;
1721 pmd_t *pmd;
1722 pte_t *pte;
1724 /* user gate pages are read-only */
1725 if (gup_flags & FOLL_WRITE)
1726 return i ? : -EFAULT;
1727 if (pg > TASK_SIZE)
1728 pgd = pgd_offset_k(pg);
1729 else
1730 pgd = pgd_offset_gate(mm, pg);
1731 BUG_ON(pgd_none(*pgd));
1732 pud = pud_offset(pgd, pg);
1733 BUG_ON(pud_none(*pud));
1734 pmd = pmd_offset(pud, pg);
1735 if (pmd_none(*pmd))
1736 return i ? : -EFAULT;
1737 VM_BUG_ON(pmd_trans_huge(*pmd));
1738 pte = pte_offset_map(pmd, pg);
1739 if (pte_none(*pte)) {
1740 pte_unmap(pte);
1741 return i ? : -EFAULT;
1743 vma = get_gate_vma(mm);
1744 if (pages) {
1745 struct page *page;
1747 page = vm_normal_page(vma, start, *pte);
1748 if (!page) {
1749 if (!(gup_flags & FOLL_DUMP) &&
1750 is_zero_pfn(pte_pfn(*pte)))
1751 page = pte_page(*pte);
1752 else {
1753 pte_unmap(pte);
1754 return i ? : -EFAULT;
1757 pages[i] = page;
1758 get_page(page);
1760 pte_unmap(pte);
1761 goto next_page;
1764 if (!vma ||
1765 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1766 !(vm_flags & vma->vm_flags))
1767 return i ? : -EFAULT;
1769 if (is_vm_hugetlb_page(vma)) {
1770 i = follow_hugetlb_page(mm, vma, pages, vmas,
1771 &start, &nr_pages, i, gup_flags);
1772 continue;
1775 do {
1776 struct page *page;
1777 unsigned int foll_flags = gup_flags;
1780 * If we have a pending SIGKILL, don't keep faulting
1781 * pages and potentially allocating memory.
1783 if (unlikely(fatal_signal_pending(current)))
1784 return i ? i : -ERESTARTSYS;
1786 cond_resched();
1787 while (!(page = follow_page(vma, start, foll_flags))) {
1788 int ret;
1789 unsigned int fault_flags = 0;
1791 /* For mlock, just skip the stack guard page. */
1792 if (foll_flags & FOLL_MLOCK) {
1793 if (stack_guard_page(vma, start))
1794 goto next_page;
1796 if (foll_flags & FOLL_WRITE)
1797 fault_flags |= FAULT_FLAG_WRITE;
1798 if (nonblocking)
1799 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1800 if (foll_flags & FOLL_NOWAIT)
1801 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1803 ret = handle_mm_fault(mm, vma, start,
1804 fault_flags);
1806 if (ret & VM_FAULT_ERROR) {
1807 if (ret & VM_FAULT_OOM)
1808 return i ? i : -ENOMEM;
1809 if (ret & (VM_FAULT_HWPOISON |
1810 VM_FAULT_HWPOISON_LARGE)) {
1811 if (i)
1812 return i;
1813 else if (gup_flags & FOLL_HWPOISON)
1814 return -EHWPOISON;
1815 else
1816 return -EFAULT;
1818 if (ret & VM_FAULT_SIGBUS)
1819 return i ? i : -EFAULT;
1820 BUG();
1823 if (tsk) {
1824 if (ret & VM_FAULT_MAJOR)
1825 tsk->maj_flt++;
1826 else
1827 tsk->min_flt++;
1830 if (ret & VM_FAULT_RETRY) {
1831 if (nonblocking)
1832 *nonblocking = 0;
1833 return i;
1837 * The VM_FAULT_WRITE bit tells us that
1838 * do_wp_page has broken COW when necessary,
1839 * even if maybe_mkwrite decided not to set
1840 * pte_write. We can thus safely do subsequent
1841 * page lookups as if they were reads. But only
1842 * do so when looping for pte_write is futile:
1843 * in some cases userspace may also be wanting
1844 * to write to the gotten user page, which a
1845 * read fault here might prevent (a readonly
1846 * page might get reCOWed by userspace write).
1848 if ((ret & VM_FAULT_WRITE) &&
1849 !(vma->vm_flags & VM_WRITE))
1850 foll_flags &= ~FOLL_WRITE;
1852 cond_resched();
1854 if (IS_ERR(page))
1855 return i ? i : PTR_ERR(page);
1856 if (pages) {
1857 pages[i] = page;
1859 flush_anon_page(vma, page, start);
1860 flush_dcache_page(page);
1862 next_page:
1863 if (vmas)
1864 vmas[i] = vma;
1865 i++;
1866 start += PAGE_SIZE;
1867 nr_pages--;
1868 } while (nr_pages && start < vma->vm_end);
1869 } while (nr_pages);
1870 return i;
1872 EXPORT_SYMBOL(__get_user_pages);
1875 * fixup_user_fault() - manually resolve a user page fault
1876 * @tsk: the task_struct to use for page fault accounting, or
1877 * NULL if faults are not to be recorded.
1878 * @mm: mm_struct of target mm
1879 * @address: user address
1880 * @fault_flags:flags to pass down to handle_mm_fault()
1882 * This is meant to be called in the specific scenario where for locking reasons
1883 * we try to access user memory in atomic context (within a pagefault_disable()
1884 * section), this returns -EFAULT, and we want to resolve the user fault before
1885 * trying again.
1887 * Typically this is meant to be used by the futex code.
1889 * The main difference with get_user_pages() is that this function will
1890 * unconditionally call handle_mm_fault() which will in turn perform all the
1891 * necessary SW fixup of the dirty and young bits in the PTE, while
1892 * handle_mm_fault() only guarantees to update these in the struct page.
1894 * This is important for some architectures where those bits also gate the
1895 * access permission to the page because they are maintained in software. On
1896 * such architectures, gup() will not be enough to make a subsequent access
1897 * succeed.
1899 * This should be called with the mm_sem held for read.
1901 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1902 unsigned long address, unsigned int fault_flags)
1904 struct vm_area_struct *vma;
1905 int ret;
1907 vma = find_extend_vma(mm, address);
1908 if (!vma || address < vma->vm_start)
1909 return -EFAULT;
1911 ret = handle_mm_fault(mm, vma, address, fault_flags);
1912 if (ret & VM_FAULT_ERROR) {
1913 if (ret & VM_FAULT_OOM)
1914 return -ENOMEM;
1915 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1916 return -EHWPOISON;
1917 if (ret & VM_FAULT_SIGBUS)
1918 return -EFAULT;
1919 BUG();
1921 if (tsk) {
1922 if (ret & VM_FAULT_MAJOR)
1923 tsk->maj_flt++;
1924 else
1925 tsk->min_flt++;
1927 return 0;
1931 * get_user_pages() - pin user pages in memory
1932 * @tsk: the task_struct to use for page fault accounting, or
1933 * NULL if faults are not to be recorded.
1934 * @mm: mm_struct of target mm
1935 * @start: starting user address
1936 * @nr_pages: number of pages from start to pin
1937 * @write: whether pages will be written to by the caller
1938 * @force: whether to force write access even if user mapping is
1939 * readonly. This will result in the page being COWed even
1940 * in MAP_SHARED mappings. You do not want this.
1941 * @pages: array that receives pointers to the pages pinned.
1942 * Should be at least nr_pages long. Or NULL, if caller
1943 * only intends to ensure the pages are faulted in.
1944 * @vmas: array of pointers to vmas corresponding to each page.
1945 * Or NULL if the caller does not require them.
1947 * Returns number of pages pinned. This may be fewer than the number
1948 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1949 * were pinned, returns -errno. Each page returned must be released
1950 * with a put_page() call when it is finished with. vmas will only
1951 * remain valid while mmap_sem is held.
1953 * Must be called with mmap_sem held for read or write.
1955 * get_user_pages walks a process's page tables and takes a reference to
1956 * each struct page that each user address corresponds to at a given
1957 * instant. That is, it takes the page that would be accessed if a user
1958 * thread accesses the given user virtual address at that instant.
1960 * This does not guarantee that the page exists in the user mappings when
1961 * get_user_pages returns, and there may even be a completely different
1962 * page there in some cases (eg. if mmapped pagecache has been invalidated
1963 * and subsequently re faulted). However it does guarantee that the page
1964 * won't be freed completely. And mostly callers simply care that the page
1965 * contains data that was valid *at some point in time*. Typically, an IO
1966 * or similar operation cannot guarantee anything stronger anyway because
1967 * locks can't be held over the syscall boundary.
1969 * If write=0, the page must not be written to. If the page is written to,
1970 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1971 * after the page is finished with, and before put_page is called.
1973 * get_user_pages is typically used for fewer-copy IO operations, to get a
1974 * handle on the memory by some means other than accesses via the user virtual
1975 * addresses. The pages may be submitted for DMA to devices or accessed via
1976 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1977 * use the correct cache flushing APIs.
1979 * See also get_user_pages_fast, for performance critical applications.
1981 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1982 unsigned long start, int nr_pages, int write, int force,
1983 struct page **pages, struct vm_area_struct **vmas)
1985 int flags = FOLL_TOUCH;
1987 if (pages)
1988 flags |= FOLL_GET;
1989 if (write)
1990 flags |= FOLL_WRITE;
1991 if (force)
1992 flags |= FOLL_FORCE;
1994 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1995 NULL);
1997 EXPORT_SYMBOL(get_user_pages);
2000 * get_dump_page() - pin user page in memory while writing it to core dump
2001 * @addr: user address
2003 * Returns struct page pointer of user page pinned for dump,
2004 * to be freed afterwards by page_cache_release() or put_page().
2006 * Returns NULL on any kind of failure - a hole must then be inserted into
2007 * the corefile, to preserve alignment with its headers; and also returns
2008 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2009 * allowing a hole to be left in the corefile to save diskspace.
2011 * Called without mmap_sem, but after all other threads have been killed.
2013 #ifdef CONFIG_ELF_CORE
2014 struct page *get_dump_page(unsigned long addr)
2016 struct vm_area_struct *vma;
2017 struct page *page;
2019 if (__get_user_pages(current, current->mm, addr, 1,
2020 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2021 NULL) < 1)
2022 return NULL;
2023 flush_cache_page(vma, addr, page_to_pfn(page));
2024 return page;
2026 #endif /* CONFIG_ELF_CORE */
2028 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2029 spinlock_t **ptl)
2031 pgd_t * pgd = pgd_offset(mm, addr);
2032 pud_t * pud = pud_alloc(mm, pgd, addr);
2033 if (pud) {
2034 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2035 if (pmd) {
2036 VM_BUG_ON(pmd_trans_huge(*pmd));
2037 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2040 return NULL;
2044 * This is the old fallback for page remapping.
2046 * For historical reasons, it only allows reserved pages. Only
2047 * old drivers should use this, and they needed to mark their
2048 * pages reserved for the old functions anyway.
2050 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2051 struct page *page, pgprot_t prot)
2053 struct mm_struct *mm = vma->vm_mm;
2054 int retval;
2055 pte_t *pte;
2056 spinlock_t *ptl;
2058 retval = -EINVAL;
2059 if (PageAnon(page))
2060 goto out;
2061 retval = -ENOMEM;
2062 flush_dcache_page(page);
2063 pte = get_locked_pte(mm, addr, &ptl);
2064 if (!pte)
2065 goto out;
2066 retval = -EBUSY;
2067 if (!pte_none(*pte))
2068 goto out_unlock;
2070 /* Ok, finally just insert the thing.. */
2071 get_page(page);
2072 inc_mm_counter_fast(mm, MM_FILEPAGES);
2073 page_add_file_rmap(page);
2074 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2076 retval = 0;
2077 pte_unmap_unlock(pte, ptl);
2078 return retval;
2079 out_unlock:
2080 pte_unmap_unlock(pte, ptl);
2081 out:
2082 return retval;
2086 * vm_insert_page - insert single page into user vma
2087 * @vma: user vma to map to
2088 * @addr: target user address of this page
2089 * @page: source kernel page
2091 * This allows drivers to insert individual pages they've allocated
2092 * into a user vma.
2094 * The page has to be a nice clean _individual_ kernel allocation.
2095 * If you allocate a compound page, you need to have marked it as
2096 * such (__GFP_COMP), or manually just split the page up yourself
2097 * (see split_page()).
2099 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2100 * took an arbitrary page protection parameter. This doesn't allow
2101 * that. Your vma protection will have to be set up correctly, which
2102 * means that if you want a shared writable mapping, you'd better
2103 * ask for a shared writable mapping!
2105 * The page does not need to be reserved.
2107 * Usually this function is called from f_op->mmap() handler
2108 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2109 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2110 * function from other places, for example from page-fault handler.
2112 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2113 struct page *page)
2115 if (addr < vma->vm_start || addr >= vma->vm_end)
2116 return -EFAULT;
2117 if (!page_count(page))
2118 return -EINVAL;
2119 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2120 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2121 BUG_ON(vma->vm_flags & VM_PFNMAP);
2122 vma->vm_flags |= VM_MIXEDMAP;
2124 return insert_page(vma, addr, page, vma->vm_page_prot);
2126 EXPORT_SYMBOL(vm_insert_page);
2128 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2129 unsigned long pfn, pgprot_t prot)
2131 struct mm_struct *mm = vma->vm_mm;
2132 int retval;
2133 pte_t *pte, entry;
2134 spinlock_t *ptl;
2136 retval = -ENOMEM;
2137 pte = get_locked_pte(mm, addr, &ptl);
2138 if (!pte)
2139 goto out;
2140 retval = -EBUSY;
2141 if (!pte_none(*pte))
2142 goto out_unlock;
2144 /* Ok, finally just insert the thing.. */
2145 entry = pte_mkspecial(pfn_pte(pfn, prot));
2146 set_pte_at(mm, addr, pte, entry);
2147 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2149 retval = 0;
2150 out_unlock:
2151 pte_unmap_unlock(pte, ptl);
2152 out:
2153 return retval;
2157 * vm_insert_pfn - insert single pfn into user vma
2158 * @vma: user vma to map to
2159 * @addr: target user address of this page
2160 * @pfn: source kernel pfn
2162 * Similar to vm_insert_page, this allows drivers to insert individual pages
2163 * they've allocated into a user vma. Same comments apply.
2165 * This function should only be called from a vm_ops->fault handler, and
2166 * in that case the handler should return NULL.
2168 * vma cannot be a COW mapping.
2170 * As this is called only for pages that do not currently exist, we
2171 * do not need to flush old virtual caches or the TLB.
2173 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2174 unsigned long pfn)
2176 int ret;
2177 pgprot_t pgprot = vma->vm_page_prot;
2179 * Technically, architectures with pte_special can avoid all these
2180 * restrictions (same for remap_pfn_range). However we would like
2181 * consistency in testing and feature parity among all, so we should
2182 * try to keep these invariants in place for everybody.
2184 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2185 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2186 (VM_PFNMAP|VM_MIXEDMAP));
2187 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2188 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2190 if (addr < vma->vm_start || addr >= vma->vm_end)
2191 return -EFAULT;
2192 if (track_pfn_insert(vma, &pgprot, pfn))
2193 return -EINVAL;
2195 ret = insert_pfn(vma, addr, pfn, pgprot);
2197 return ret;
2199 EXPORT_SYMBOL(vm_insert_pfn);
2201 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2202 unsigned long pfn)
2204 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2206 if (addr < vma->vm_start || addr >= vma->vm_end)
2207 return -EFAULT;
2210 * If we don't have pte special, then we have to use the pfn_valid()
2211 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2212 * refcount the page if pfn_valid is true (hence insert_page rather
2213 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2214 * without pte special, it would there be refcounted as a normal page.
2216 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2217 struct page *page;
2219 page = pfn_to_page(pfn);
2220 return insert_page(vma, addr, page, vma->vm_page_prot);
2222 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2224 EXPORT_SYMBOL(vm_insert_mixed);
2227 * maps a range of physical memory into the requested pages. the old
2228 * mappings are removed. any references to nonexistent pages results
2229 * in null mappings (currently treated as "copy-on-access")
2231 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2232 unsigned long addr, unsigned long end,
2233 unsigned long pfn, pgprot_t prot)
2235 pte_t *pte;
2236 spinlock_t *ptl;
2238 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2239 if (!pte)
2240 return -ENOMEM;
2241 arch_enter_lazy_mmu_mode();
2242 do {
2243 BUG_ON(!pte_none(*pte));
2244 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2245 pfn++;
2246 } while (pte++, addr += PAGE_SIZE, addr != end);
2247 arch_leave_lazy_mmu_mode();
2248 pte_unmap_unlock(pte - 1, ptl);
2249 return 0;
2252 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2253 unsigned long addr, unsigned long end,
2254 unsigned long pfn, pgprot_t prot)
2256 pmd_t *pmd;
2257 unsigned long next;
2259 pfn -= addr >> PAGE_SHIFT;
2260 pmd = pmd_alloc(mm, pud, addr);
2261 if (!pmd)
2262 return -ENOMEM;
2263 VM_BUG_ON(pmd_trans_huge(*pmd));
2264 do {
2265 next = pmd_addr_end(addr, end);
2266 if (remap_pte_range(mm, pmd, addr, next,
2267 pfn + (addr >> PAGE_SHIFT), prot))
2268 return -ENOMEM;
2269 } while (pmd++, addr = next, addr != end);
2270 return 0;
2273 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2274 unsigned long addr, unsigned long end,
2275 unsigned long pfn, pgprot_t prot)
2277 pud_t *pud;
2278 unsigned long next;
2280 pfn -= addr >> PAGE_SHIFT;
2281 pud = pud_alloc(mm, pgd, addr);
2282 if (!pud)
2283 return -ENOMEM;
2284 do {
2285 next = pud_addr_end(addr, end);
2286 if (remap_pmd_range(mm, pud, addr, next,
2287 pfn + (addr >> PAGE_SHIFT), prot))
2288 return -ENOMEM;
2289 } while (pud++, addr = next, addr != end);
2290 return 0;
2294 * remap_pfn_range - remap kernel memory to userspace
2295 * @vma: user vma to map to
2296 * @addr: target user address to start at
2297 * @pfn: physical address of kernel memory
2298 * @size: size of map area
2299 * @prot: page protection flags for this mapping
2301 * Note: this is only safe if the mm semaphore is held when called.
2303 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2304 unsigned long pfn, unsigned long size, pgprot_t prot)
2306 pgd_t *pgd;
2307 unsigned long next;
2308 unsigned long end = addr + PAGE_ALIGN(size);
2309 struct mm_struct *mm = vma->vm_mm;
2310 int err;
2313 * Physically remapped pages are special. Tell the
2314 * rest of the world about it:
2315 * VM_IO tells people not to look at these pages
2316 * (accesses can have side effects).
2317 * VM_PFNMAP tells the core MM that the base pages are just
2318 * raw PFN mappings, and do not have a "struct page" associated
2319 * with them.
2320 * VM_DONTEXPAND
2321 * Disable vma merging and expanding with mremap().
2322 * VM_DONTDUMP
2323 * Omit vma from core dump, even when VM_IO turned off.
2325 * There's a horrible special case to handle copy-on-write
2326 * behaviour that some programs depend on. We mark the "original"
2327 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2328 * See vm_normal_page() for details.
2330 if (is_cow_mapping(vma->vm_flags)) {
2331 if (addr != vma->vm_start || end != vma->vm_end)
2332 return -EINVAL;
2333 vma->vm_pgoff = pfn;
2336 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2337 if (err)
2338 return -EINVAL;
2340 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2342 BUG_ON(addr >= end);
2343 pfn -= addr >> PAGE_SHIFT;
2344 pgd = pgd_offset(mm, addr);
2345 flush_cache_range(vma, addr, end);
2346 do {
2347 next = pgd_addr_end(addr, end);
2348 err = remap_pud_range(mm, pgd, addr, next,
2349 pfn + (addr >> PAGE_SHIFT), prot);
2350 if (err)
2351 break;
2352 } while (pgd++, addr = next, addr != end);
2354 if (err)
2355 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2357 return err;
2359 EXPORT_SYMBOL(remap_pfn_range);
2361 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2362 unsigned long addr, unsigned long end,
2363 pte_fn_t fn, void *data)
2365 pte_t *pte;
2366 int err;
2367 pgtable_t token;
2368 spinlock_t *uninitialized_var(ptl);
2370 pte = (mm == &init_mm) ?
2371 pte_alloc_kernel(pmd, addr) :
2372 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2373 if (!pte)
2374 return -ENOMEM;
2376 BUG_ON(pmd_huge(*pmd));
2378 arch_enter_lazy_mmu_mode();
2380 token = pmd_pgtable(*pmd);
2382 do {
2383 err = fn(pte++, token, addr, data);
2384 if (err)
2385 break;
2386 } while (addr += PAGE_SIZE, addr != end);
2388 arch_leave_lazy_mmu_mode();
2390 if (mm != &init_mm)
2391 pte_unmap_unlock(pte-1, ptl);
2392 return err;
2395 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2396 unsigned long addr, unsigned long end,
2397 pte_fn_t fn, void *data)
2399 pmd_t *pmd;
2400 unsigned long next;
2401 int err;
2403 BUG_ON(pud_huge(*pud));
2405 pmd = pmd_alloc(mm, pud, addr);
2406 if (!pmd)
2407 return -ENOMEM;
2408 do {
2409 next = pmd_addr_end(addr, end);
2410 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2411 if (err)
2412 break;
2413 } while (pmd++, addr = next, addr != end);
2414 return err;
2417 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2418 unsigned long addr, unsigned long end,
2419 pte_fn_t fn, void *data)
2421 pud_t *pud;
2422 unsigned long next;
2423 int err;
2425 pud = pud_alloc(mm, pgd, addr);
2426 if (!pud)
2427 return -ENOMEM;
2428 do {
2429 next = pud_addr_end(addr, end);
2430 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2431 if (err)
2432 break;
2433 } while (pud++, addr = next, addr != end);
2434 return err;
2438 * Scan a region of virtual memory, filling in page tables as necessary
2439 * and calling a provided function on each leaf page table.
2441 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2442 unsigned long size, pte_fn_t fn, void *data)
2444 pgd_t *pgd;
2445 unsigned long next;
2446 unsigned long end = addr + size;
2447 int err;
2449 BUG_ON(addr >= end);
2450 pgd = pgd_offset(mm, addr);
2451 do {
2452 next = pgd_addr_end(addr, end);
2453 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2454 if (err)
2455 break;
2456 } while (pgd++, addr = next, addr != end);
2458 return err;
2460 EXPORT_SYMBOL_GPL(apply_to_page_range);
2463 * handle_pte_fault chooses page fault handler according to an entry
2464 * which was read non-atomically. Before making any commitment, on
2465 * those architectures or configurations (e.g. i386 with PAE) which
2466 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2467 * must check under lock before unmapping the pte and proceeding
2468 * (but do_wp_page is only called after already making such a check;
2469 * and do_anonymous_page can safely check later on).
2471 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2472 pte_t *page_table, pte_t orig_pte)
2474 int same = 1;
2475 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2476 if (sizeof(pte_t) > sizeof(unsigned long)) {
2477 spinlock_t *ptl = pte_lockptr(mm, pmd);
2478 spin_lock(ptl);
2479 same = pte_same(*page_table, orig_pte);
2480 spin_unlock(ptl);
2482 #endif
2483 pte_unmap(page_table);
2484 return same;
2487 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2490 * If the source page was a PFN mapping, we don't have
2491 * a "struct page" for it. We do a best-effort copy by
2492 * just copying from the original user address. If that
2493 * fails, we just zero-fill it. Live with it.
2495 if (unlikely(!src)) {
2496 void *kaddr = kmap_atomic(dst);
2497 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2500 * This really shouldn't fail, because the page is there
2501 * in the page tables. But it might just be unreadable,
2502 * in which case we just give up and fill the result with
2503 * zeroes.
2505 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2506 clear_page(kaddr);
2507 kunmap_atomic(kaddr);
2508 flush_dcache_page(dst);
2509 } else
2510 copy_user_highpage(dst, src, va, vma);
2514 * This routine handles present pages, when users try to write
2515 * to a shared page. It is done by copying the page to a new address
2516 * and decrementing the shared-page counter for the old page.
2518 * Note that this routine assumes that the protection checks have been
2519 * done by the caller (the low-level page fault routine in most cases).
2520 * Thus we can safely just mark it writable once we've done any necessary
2521 * COW.
2523 * We also mark the page dirty at this point even though the page will
2524 * change only once the write actually happens. This avoids a few races,
2525 * and potentially makes it more efficient.
2527 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2528 * but allow concurrent faults), with pte both mapped and locked.
2529 * We return with mmap_sem still held, but pte unmapped and unlocked.
2531 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2532 unsigned long address, pte_t *page_table, pmd_t *pmd,
2533 spinlock_t *ptl, pte_t orig_pte)
2534 __releases(ptl)
2536 struct page *old_page, *new_page = NULL;
2537 pte_t entry;
2538 int ret = 0;
2539 int page_mkwrite = 0;
2540 struct page *dirty_page = NULL;
2541 unsigned long mmun_start = 0; /* For mmu_notifiers */
2542 unsigned long mmun_end = 0; /* For mmu_notifiers */
2544 old_page = vm_normal_page(vma, address, orig_pte);
2545 if (!old_page) {
2547 * VM_MIXEDMAP !pfn_valid() case
2549 * We should not cow pages in a shared writeable mapping.
2550 * Just mark the pages writable as we can't do any dirty
2551 * accounting on raw pfn maps.
2553 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2554 (VM_WRITE|VM_SHARED))
2555 goto reuse;
2556 goto gotten;
2560 * Take out anonymous pages first, anonymous shared vmas are
2561 * not dirty accountable.
2563 if (PageAnon(old_page) && !PageKsm(old_page)) {
2564 if (!trylock_page(old_page)) {
2565 page_cache_get(old_page);
2566 pte_unmap_unlock(page_table, ptl);
2567 lock_page(old_page);
2568 page_table = pte_offset_map_lock(mm, pmd, address,
2569 &ptl);
2570 if (!pte_same(*page_table, orig_pte)) {
2571 unlock_page(old_page);
2572 goto unlock;
2574 page_cache_release(old_page);
2576 if (reuse_swap_page(old_page)) {
2578 * The page is all ours. Move it to our anon_vma so
2579 * the rmap code will not search our parent or siblings.
2580 * Protected against the rmap code by the page lock.
2582 page_move_anon_rmap(old_page, vma, address);
2583 unlock_page(old_page);
2584 goto reuse;
2586 unlock_page(old_page);
2587 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2588 (VM_WRITE|VM_SHARED))) {
2590 * Only catch write-faults on shared writable pages,
2591 * read-only shared pages can get COWed by
2592 * get_user_pages(.write=1, .force=1).
2594 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2595 struct vm_fault vmf;
2596 int tmp;
2598 vmf.virtual_address = (void __user *)(address &
2599 PAGE_MASK);
2600 vmf.pgoff = old_page->index;
2601 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2602 vmf.page = old_page;
2605 * Notify the address space that the page is about to
2606 * become writable so that it can prohibit this or wait
2607 * for the page to get into an appropriate state.
2609 * We do this without the lock held, so that it can
2610 * sleep if it needs to.
2612 page_cache_get(old_page);
2613 pte_unmap_unlock(page_table, ptl);
2615 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2616 if (unlikely(tmp &
2617 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2618 ret = tmp;
2619 goto unwritable_page;
2621 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2622 lock_page(old_page);
2623 if (!old_page->mapping) {
2624 ret = 0; /* retry the fault */
2625 unlock_page(old_page);
2626 goto unwritable_page;
2628 } else
2629 VM_BUG_ON(!PageLocked(old_page));
2632 * Since we dropped the lock we need to revalidate
2633 * the PTE as someone else may have changed it. If
2634 * they did, we just return, as we can count on the
2635 * MMU to tell us if they didn't also make it writable.
2637 page_table = pte_offset_map_lock(mm, pmd, address,
2638 &ptl);
2639 if (!pte_same(*page_table, orig_pte)) {
2640 unlock_page(old_page);
2641 goto unlock;
2644 page_mkwrite = 1;
2646 dirty_page = old_page;
2647 get_page(dirty_page);
2649 reuse:
2650 flush_cache_page(vma, address, pte_pfn(orig_pte));
2651 entry = pte_mkyoung(orig_pte);
2652 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2653 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2654 update_mmu_cache(vma, address, page_table);
2655 pte_unmap_unlock(page_table, ptl);
2656 ret |= VM_FAULT_WRITE;
2658 if (!dirty_page)
2659 return ret;
2662 * Yes, Virginia, this is actually required to prevent a race
2663 * with clear_page_dirty_for_io() from clearing the page dirty
2664 * bit after it clear all dirty ptes, but before a racing
2665 * do_wp_page installs a dirty pte.
2667 * __do_fault is protected similarly.
2669 if (!page_mkwrite) {
2670 wait_on_page_locked(dirty_page);
2671 set_page_dirty_balance(dirty_page, page_mkwrite);
2672 /* file_update_time outside page_lock */
2673 if (vma->vm_file)
2674 file_update_time(vma->vm_file);
2676 put_page(dirty_page);
2677 if (page_mkwrite) {
2678 struct address_space *mapping = dirty_page->mapping;
2680 set_page_dirty(dirty_page);
2681 unlock_page(dirty_page);
2682 page_cache_release(dirty_page);
2683 if (mapping) {
2685 * Some device drivers do not set page.mapping
2686 * but still dirty their pages
2688 balance_dirty_pages_ratelimited(mapping);
2692 return ret;
2696 * Ok, we need to copy. Oh, well..
2698 page_cache_get(old_page);
2699 gotten:
2700 pte_unmap_unlock(page_table, ptl);
2702 if (unlikely(anon_vma_prepare(vma)))
2703 goto oom;
2705 if (is_zero_pfn(pte_pfn(orig_pte))) {
2706 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2707 if (!new_page)
2708 goto oom;
2709 } else {
2710 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2711 if (!new_page)
2712 goto oom;
2713 cow_user_page(new_page, old_page, address, vma);
2715 __SetPageUptodate(new_page);
2717 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2718 goto oom_free_new;
2720 mmun_start = address & PAGE_MASK;
2721 mmun_end = mmun_start + PAGE_SIZE;
2722 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2725 * Re-check the pte - we dropped the lock
2727 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2728 if (likely(pte_same(*page_table, orig_pte))) {
2729 if (old_page) {
2730 if (!PageAnon(old_page)) {
2731 dec_mm_counter_fast(mm, MM_FILEPAGES);
2732 inc_mm_counter_fast(mm, MM_ANONPAGES);
2734 } else
2735 inc_mm_counter_fast(mm, MM_ANONPAGES);
2736 flush_cache_page(vma, address, pte_pfn(orig_pte));
2737 entry = mk_pte(new_page, vma->vm_page_prot);
2738 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2740 * Clear the pte entry and flush it first, before updating the
2741 * pte with the new entry. This will avoid a race condition
2742 * seen in the presence of one thread doing SMC and another
2743 * thread doing COW.
2745 ptep_clear_flush(vma, address, page_table);
2746 page_add_new_anon_rmap(new_page, vma, address);
2748 * We call the notify macro here because, when using secondary
2749 * mmu page tables (such as kvm shadow page tables), we want the
2750 * new page to be mapped directly into the secondary page table.
2752 set_pte_at_notify(mm, address, page_table, entry);
2753 update_mmu_cache(vma, address, page_table);
2754 if (old_page) {
2756 * Only after switching the pte to the new page may
2757 * we remove the mapcount here. Otherwise another
2758 * process may come and find the rmap count decremented
2759 * before the pte is switched to the new page, and
2760 * "reuse" the old page writing into it while our pte
2761 * here still points into it and can be read by other
2762 * threads.
2764 * The critical issue is to order this
2765 * page_remove_rmap with the ptp_clear_flush above.
2766 * Those stores are ordered by (if nothing else,)
2767 * the barrier present in the atomic_add_negative
2768 * in page_remove_rmap.
2770 * Then the TLB flush in ptep_clear_flush ensures that
2771 * no process can access the old page before the
2772 * decremented mapcount is visible. And the old page
2773 * cannot be reused until after the decremented
2774 * mapcount is visible. So transitively, TLBs to
2775 * old page will be flushed before it can be reused.
2777 page_remove_rmap(old_page);
2780 /* Free the old page.. */
2781 new_page = old_page;
2782 ret |= VM_FAULT_WRITE;
2783 } else
2784 mem_cgroup_uncharge_page(new_page);
2786 if (new_page)
2787 page_cache_release(new_page);
2788 unlock:
2789 pte_unmap_unlock(page_table, ptl);
2790 if (mmun_end > mmun_start)
2791 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2792 if (old_page) {
2794 * Don't let another task, with possibly unlocked vma,
2795 * keep the mlocked page.
2797 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2798 lock_page(old_page); /* LRU manipulation */
2799 munlock_vma_page(old_page);
2800 unlock_page(old_page);
2802 page_cache_release(old_page);
2804 return ret;
2805 oom_free_new:
2806 page_cache_release(new_page);
2807 oom:
2808 if (old_page)
2809 page_cache_release(old_page);
2810 return VM_FAULT_OOM;
2812 unwritable_page:
2813 page_cache_release(old_page);
2814 return ret;
2817 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2818 unsigned long start_addr, unsigned long end_addr,
2819 struct zap_details *details)
2821 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2824 static inline void unmap_mapping_range_tree(struct rb_root *root,
2825 struct zap_details *details)
2827 struct vm_area_struct *vma;
2828 pgoff_t vba, vea, zba, zea;
2830 vma_interval_tree_foreach(vma, root,
2831 details->first_index, details->last_index) {
2833 vba = vma->vm_pgoff;
2834 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2835 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2836 zba = details->first_index;
2837 if (zba < vba)
2838 zba = vba;
2839 zea = details->last_index;
2840 if (zea > vea)
2841 zea = vea;
2843 unmap_mapping_range_vma(vma,
2844 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2845 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2846 details);
2850 static inline void unmap_mapping_range_list(struct list_head *head,
2851 struct zap_details *details)
2853 struct vm_area_struct *vma;
2856 * In nonlinear VMAs there is no correspondence between virtual address
2857 * offset and file offset. So we must perform an exhaustive search
2858 * across *all* the pages in each nonlinear VMA, not just the pages
2859 * whose virtual address lies outside the file truncation point.
2861 list_for_each_entry(vma, head, shared.nonlinear) {
2862 details->nonlinear_vma = vma;
2863 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2868 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2869 * @mapping: the address space containing mmaps to be unmapped.
2870 * @holebegin: byte in first page to unmap, relative to the start of
2871 * the underlying file. This will be rounded down to a PAGE_SIZE
2872 * boundary. Note that this is different from truncate_pagecache(), which
2873 * must keep the partial page. In contrast, we must get rid of
2874 * partial pages.
2875 * @holelen: size of prospective hole in bytes. This will be rounded
2876 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2877 * end of the file.
2878 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2879 * but 0 when invalidating pagecache, don't throw away private data.
2881 void unmap_mapping_range(struct address_space *mapping,
2882 loff_t const holebegin, loff_t const holelen, int even_cows)
2884 struct zap_details details;
2885 pgoff_t hba = holebegin >> PAGE_SHIFT;
2886 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2888 /* Check for overflow. */
2889 if (sizeof(holelen) > sizeof(hlen)) {
2890 long long holeend =
2891 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2892 if (holeend & ~(long long)ULONG_MAX)
2893 hlen = ULONG_MAX - hba + 1;
2896 details.check_mapping = even_cows? NULL: mapping;
2897 details.nonlinear_vma = NULL;
2898 details.first_index = hba;
2899 details.last_index = hba + hlen - 1;
2900 if (details.last_index < details.first_index)
2901 details.last_index = ULONG_MAX;
2904 mutex_lock(&mapping->i_mmap_mutex);
2905 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2906 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2907 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2908 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2909 mutex_unlock(&mapping->i_mmap_mutex);
2911 EXPORT_SYMBOL(unmap_mapping_range);
2914 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2915 * but allow concurrent faults), and pte mapped but not yet locked.
2916 * We return with mmap_sem still held, but pte unmapped and unlocked.
2918 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2919 unsigned long address, pte_t *page_table, pmd_t *pmd,
2920 unsigned int flags, pte_t orig_pte)
2922 spinlock_t *ptl;
2923 struct page *page, *swapcache = NULL;
2924 swp_entry_t entry;
2925 pte_t pte;
2926 int locked;
2927 struct mem_cgroup *ptr;
2928 int exclusive = 0;
2929 int ret = 0;
2931 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2932 goto out;
2934 entry = pte_to_swp_entry(orig_pte);
2935 if (unlikely(non_swap_entry(entry))) {
2936 if (is_migration_entry(entry)) {
2937 migration_entry_wait(mm, pmd, address);
2938 } else if (is_hwpoison_entry(entry)) {
2939 ret = VM_FAULT_HWPOISON;
2940 } else {
2941 print_bad_pte(vma, address, orig_pte, NULL);
2942 ret = VM_FAULT_SIGBUS;
2944 goto out;
2946 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2947 page = lookup_swap_cache(entry);
2948 if (!page) {
2949 page = swapin_readahead(entry,
2950 GFP_HIGHUSER_MOVABLE, vma, address);
2951 if (!page) {
2953 * Back out if somebody else faulted in this pte
2954 * while we released the pte lock.
2956 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2957 if (likely(pte_same(*page_table, orig_pte)))
2958 ret = VM_FAULT_OOM;
2959 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2960 goto unlock;
2963 /* Had to read the page from swap area: Major fault */
2964 ret = VM_FAULT_MAJOR;
2965 count_vm_event(PGMAJFAULT);
2966 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2967 } else if (PageHWPoison(page)) {
2969 * hwpoisoned dirty swapcache pages are kept for killing
2970 * owner processes (which may be unknown at hwpoison time)
2972 ret = VM_FAULT_HWPOISON;
2973 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2974 goto out_release;
2977 locked = lock_page_or_retry(page, mm, flags);
2979 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2980 if (!locked) {
2981 ret |= VM_FAULT_RETRY;
2982 goto out_release;
2986 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2987 * release the swapcache from under us. The page pin, and pte_same
2988 * test below, are not enough to exclude that. Even if it is still
2989 * swapcache, we need to check that the page's swap has not changed.
2991 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2992 goto out_page;
2994 if (ksm_might_need_to_copy(page, vma, address)) {
2995 swapcache = page;
2996 page = ksm_does_need_to_copy(page, vma, address);
2998 if (unlikely(!page)) {
2999 ret = VM_FAULT_OOM;
3000 page = swapcache;
3001 swapcache = NULL;
3002 goto out_page;
3006 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3007 ret = VM_FAULT_OOM;
3008 goto out_page;
3012 * Back out if somebody else already faulted in this pte.
3014 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3015 if (unlikely(!pte_same(*page_table, orig_pte)))
3016 goto out_nomap;
3018 if (unlikely(!PageUptodate(page))) {
3019 ret = VM_FAULT_SIGBUS;
3020 goto out_nomap;
3024 * The page isn't present yet, go ahead with the fault.
3026 * Be careful about the sequence of operations here.
3027 * To get its accounting right, reuse_swap_page() must be called
3028 * while the page is counted on swap but not yet in mapcount i.e.
3029 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3030 * must be called after the swap_free(), or it will never succeed.
3031 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3032 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3033 * in page->private. In this case, a record in swap_cgroup is silently
3034 * discarded at swap_free().
3037 inc_mm_counter_fast(mm, MM_ANONPAGES);
3038 dec_mm_counter_fast(mm, MM_SWAPENTS);
3039 pte = mk_pte(page, vma->vm_page_prot);
3040 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3041 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3042 flags &= ~FAULT_FLAG_WRITE;
3043 ret |= VM_FAULT_WRITE;
3044 exclusive = 1;
3046 flush_icache_page(vma, page);
3047 set_pte_at(mm, address, page_table, pte);
3048 do_page_add_anon_rmap(page, vma, address, exclusive);
3049 /* It's better to call commit-charge after rmap is established */
3050 mem_cgroup_commit_charge_swapin(page, ptr);
3052 swap_free(entry);
3053 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3054 try_to_free_swap(page);
3055 unlock_page(page);
3056 if (swapcache) {
3058 * Hold the lock to avoid the swap entry to be reused
3059 * until we take the PT lock for the pte_same() check
3060 * (to avoid false positives from pte_same). For
3061 * further safety release the lock after the swap_free
3062 * so that the swap count won't change under a
3063 * parallel locked swapcache.
3065 unlock_page(swapcache);
3066 page_cache_release(swapcache);
3069 if (flags & FAULT_FLAG_WRITE) {
3070 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3071 if (ret & VM_FAULT_ERROR)
3072 ret &= VM_FAULT_ERROR;
3073 goto out;
3076 /* No need to invalidate - it was non-present before */
3077 update_mmu_cache(vma, address, page_table);
3078 unlock:
3079 pte_unmap_unlock(page_table, ptl);
3080 out:
3081 return ret;
3082 out_nomap:
3083 mem_cgroup_cancel_charge_swapin(ptr);
3084 pte_unmap_unlock(page_table, ptl);
3085 out_page:
3086 unlock_page(page);
3087 out_release:
3088 page_cache_release(page);
3089 if (swapcache) {
3090 unlock_page(swapcache);
3091 page_cache_release(swapcache);
3093 return ret;
3097 * This is like a special single-page "expand_{down|up}wards()",
3098 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3099 * doesn't hit another vma.
3101 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3103 address &= PAGE_MASK;
3104 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3105 struct vm_area_struct *prev = vma->vm_prev;
3108 * Is there a mapping abutting this one below?
3110 * That's only ok if it's the same stack mapping
3111 * that has gotten split..
3113 if (prev && prev->vm_end == address)
3114 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3116 expand_downwards(vma, address - PAGE_SIZE);
3118 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3119 struct vm_area_struct *next = vma->vm_next;
3121 /* As VM_GROWSDOWN but s/below/above/ */
3122 if (next && next->vm_start == address + PAGE_SIZE)
3123 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3125 expand_upwards(vma, address + PAGE_SIZE);
3127 return 0;
3131 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3132 * but allow concurrent faults), and pte mapped but not yet locked.
3133 * We return with mmap_sem still held, but pte unmapped and unlocked.
3135 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3136 unsigned long address, pte_t *page_table, pmd_t *pmd,
3137 unsigned int flags)
3139 struct page *page;
3140 spinlock_t *ptl;
3141 pte_t entry;
3143 pte_unmap(page_table);
3145 /* Check if we need to add a guard page to the stack */
3146 if (check_stack_guard_page(vma, address) < 0)
3147 return VM_FAULT_SIGBUS;
3149 /* Use the zero-page for reads */
3150 if (!(flags & FAULT_FLAG_WRITE)) {
3151 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3152 vma->vm_page_prot));
3153 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3154 if (!pte_none(*page_table))
3155 goto unlock;
3156 goto setpte;
3159 /* Allocate our own private page. */
3160 if (unlikely(anon_vma_prepare(vma)))
3161 goto oom;
3162 page = alloc_zeroed_user_highpage_movable(vma, address);
3163 if (!page)
3164 goto oom;
3165 __SetPageUptodate(page);
3167 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3168 goto oom_free_page;
3170 entry = mk_pte(page, vma->vm_page_prot);
3171 if (vma->vm_flags & VM_WRITE)
3172 entry = pte_mkwrite(pte_mkdirty(entry));
3174 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3175 if (!pte_none(*page_table))
3176 goto release;
3178 inc_mm_counter_fast(mm, MM_ANONPAGES);
3179 page_add_new_anon_rmap(page, vma, address);
3180 setpte:
3181 set_pte_at(mm, address, page_table, entry);
3183 /* No need to invalidate - it was non-present before */
3184 update_mmu_cache(vma, address, page_table);
3185 unlock:
3186 pte_unmap_unlock(page_table, ptl);
3187 return 0;
3188 release:
3189 mem_cgroup_uncharge_page(page);
3190 page_cache_release(page);
3191 goto unlock;
3192 oom_free_page:
3193 page_cache_release(page);
3194 oom:
3195 return VM_FAULT_OOM;
3199 * __do_fault() tries to create a new page mapping. It aggressively
3200 * tries to share with existing pages, but makes a separate copy if
3201 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3202 * the next page fault.
3204 * As this is called only for pages that do not currently exist, we
3205 * do not need to flush old virtual caches or the TLB.
3207 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3208 * but allow concurrent faults), and pte neither mapped nor locked.
3209 * We return with mmap_sem still held, but pte unmapped and unlocked.
3211 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3212 unsigned long address, pmd_t *pmd,
3213 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3215 pte_t *page_table;
3216 spinlock_t *ptl;
3217 struct page *page;
3218 struct page *cow_page;
3219 pte_t entry;
3220 int anon = 0;
3221 struct page *dirty_page = NULL;
3222 struct vm_fault vmf;
3223 int ret;
3224 int page_mkwrite = 0;
3227 * If we do COW later, allocate page befor taking lock_page()
3228 * on the file cache page. This will reduce lock holding time.
3230 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3232 if (unlikely(anon_vma_prepare(vma)))
3233 return VM_FAULT_OOM;
3235 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3236 if (!cow_page)
3237 return VM_FAULT_OOM;
3239 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3240 page_cache_release(cow_page);
3241 return VM_FAULT_OOM;
3243 } else
3244 cow_page = NULL;
3246 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3247 vmf.pgoff = pgoff;
3248 vmf.flags = flags;
3249 vmf.page = NULL;
3251 ret = vma->vm_ops->fault(vma, &vmf);
3252 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3253 VM_FAULT_RETRY)))
3254 goto uncharge_out;
3256 if (unlikely(PageHWPoison(vmf.page))) {
3257 if (ret & VM_FAULT_LOCKED)
3258 unlock_page(vmf.page);
3259 ret = VM_FAULT_HWPOISON;
3260 goto uncharge_out;
3264 * For consistency in subsequent calls, make the faulted page always
3265 * locked.
3267 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3268 lock_page(vmf.page);
3269 else
3270 VM_BUG_ON(!PageLocked(vmf.page));
3273 * Should we do an early C-O-W break?
3275 page = vmf.page;
3276 if (flags & FAULT_FLAG_WRITE) {
3277 if (!(vma->vm_flags & VM_SHARED)) {
3278 page = cow_page;
3279 anon = 1;
3280 copy_user_highpage(page, vmf.page, address, vma);
3281 __SetPageUptodate(page);
3282 } else {
3284 * If the page will be shareable, see if the backing
3285 * address space wants to know that the page is about
3286 * to become writable
3288 if (vma->vm_ops->page_mkwrite) {
3289 int tmp;
3291 unlock_page(page);
3292 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3293 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3294 if (unlikely(tmp &
3295 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3296 ret = tmp;
3297 goto unwritable_page;
3299 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3300 lock_page(page);
3301 if (!page->mapping) {
3302 ret = 0; /* retry the fault */
3303 unlock_page(page);
3304 goto unwritable_page;
3306 } else
3307 VM_BUG_ON(!PageLocked(page));
3308 page_mkwrite = 1;
3314 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3317 * This silly early PAGE_DIRTY setting removes a race
3318 * due to the bad i386 page protection. But it's valid
3319 * for other architectures too.
3321 * Note that if FAULT_FLAG_WRITE is set, we either now have
3322 * an exclusive copy of the page, or this is a shared mapping,
3323 * so we can make it writable and dirty to avoid having to
3324 * handle that later.
3326 /* Only go through if we didn't race with anybody else... */
3327 if (likely(pte_same(*page_table, orig_pte))) {
3328 flush_icache_page(vma, page);
3329 entry = mk_pte(page, vma->vm_page_prot);
3330 if (flags & FAULT_FLAG_WRITE)
3331 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3332 if (anon) {
3333 inc_mm_counter_fast(mm, MM_ANONPAGES);
3334 page_add_new_anon_rmap(page, vma, address);
3335 } else {
3336 inc_mm_counter_fast(mm, MM_FILEPAGES);
3337 page_add_file_rmap(page);
3338 if (flags & FAULT_FLAG_WRITE) {
3339 dirty_page = page;
3340 get_page(dirty_page);
3343 set_pte_at(mm, address, page_table, entry);
3345 /* no need to invalidate: a not-present page won't be cached */
3346 update_mmu_cache(vma, address, page_table);
3347 } else {
3348 if (cow_page)
3349 mem_cgroup_uncharge_page(cow_page);
3350 if (anon)
3351 page_cache_release(page);
3352 else
3353 anon = 1; /* no anon but release faulted_page */
3356 pte_unmap_unlock(page_table, ptl);
3358 if (dirty_page) {
3359 struct address_space *mapping = page->mapping;
3360 int dirtied = 0;
3362 if (set_page_dirty(dirty_page))
3363 dirtied = 1;
3364 unlock_page(dirty_page);
3365 put_page(dirty_page);
3366 if ((dirtied || page_mkwrite) && mapping) {
3368 * Some device drivers do not set page.mapping but still
3369 * dirty their pages
3371 balance_dirty_pages_ratelimited(mapping);
3374 /* file_update_time outside page_lock */
3375 if (vma->vm_file && !page_mkwrite)
3376 file_update_time(vma->vm_file);
3377 } else {
3378 unlock_page(vmf.page);
3379 if (anon)
3380 page_cache_release(vmf.page);
3383 return ret;
3385 unwritable_page:
3386 page_cache_release(page);
3387 return ret;
3388 uncharge_out:
3389 /* fs's fault handler get error */
3390 if (cow_page) {
3391 mem_cgroup_uncharge_page(cow_page);
3392 page_cache_release(cow_page);
3394 return ret;
3397 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3398 unsigned long address, pte_t *page_table, pmd_t *pmd,
3399 unsigned int flags, pte_t orig_pte)
3401 pgoff_t pgoff = (((address & PAGE_MASK)
3402 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3404 pte_unmap(page_table);
3405 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3409 * Fault of a previously existing named mapping. Repopulate the pte
3410 * from the encoded file_pte if possible. This enables swappable
3411 * nonlinear vmas.
3413 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3414 * but allow concurrent faults), and pte mapped but not yet locked.
3415 * We return with mmap_sem still held, but pte unmapped and unlocked.
3417 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3418 unsigned long address, pte_t *page_table, pmd_t *pmd,
3419 unsigned int flags, pte_t orig_pte)
3421 pgoff_t pgoff;
3423 flags |= FAULT_FLAG_NONLINEAR;
3425 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3426 return 0;
3428 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3430 * Page table corrupted: show pte and kill process.
3432 print_bad_pte(vma, address, orig_pte, NULL);
3433 return VM_FAULT_SIGBUS;
3436 pgoff = pte_to_pgoff(orig_pte);
3437 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3440 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3441 unsigned long addr, int current_nid)
3443 get_page(page);
3445 count_vm_numa_event(NUMA_HINT_FAULTS);
3446 if (current_nid == numa_node_id())
3447 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3449 return mpol_misplaced(page, vma, addr);
3452 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3453 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3455 struct page *page = NULL;
3456 spinlock_t *ptl;
3457 int current_nid = -1;
3458 int target_nid;
3459 bool migrated = false;
3462 * The "pte" at this point cannot be used safely without
3463 * validation through pte_unmap_same(). It's of NUMA type but
3464 * the pfn may be screwed if the read is non atomic.
3466 * ptep_modify_prot_start is not called as this is clearing
3467 * the _PAGE_NUMA bit and it is not really expected that there
3468 * would be concurrent hardware modifications to the PTE.
3470 ptl = pte_lockptr(mm, pmd);
3471 spin_lock(ptl);
3472 if (unlikely(!pte_same(*ptep, pte))) {
3473 pte_unmap_unlock(ptep, ptl);
3474 goto out;
3477 pte = pte_mknonnuma(pte);
3478 set_pte_at(mm, addr, ptep, pte);
3479 update_mmu_cache(vma, addr, ptep);
3481 page = vm_normal_page(vma, addr, pte);
3482 if (!page) {
3483 pte_unmap_unlock(ptep, ptl);
3484 return 0;
3487 current_nid = page_to_nid(page);
3488 target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3489 pte_unmap_unlock(ptep, ptl);
3490 if (target_nid == -1) {
3492 * Account for the fault against the current node if it not
3493 * being replaced regardless of where the page is located.
3495 current_nid = numa_node_id();
3496 put_page(page);
3497 goto out;
3500 /* Migrate to the requested node */
3501 migrated = migrate_misplaced_page(page, target_nid);
3502 if (migrated)
3503 current_nid = target_nid;
3505 out:
3506 if (current_nid != -1)
3507 task_numa_fault(current_nid, 1, migrated);
3508 return 0;
3511 /* NUMA hinting page fault entry point for regular pmds */
3512 #ifdef CONFIG_NUMA_BALANCING
3513 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3514 unsigned long addr, pmd_t *pmdp)
3516 pmd_t pmd;
3517 pte_t *pte, *orig_pte;
3518 unsigned long _addr = addr & PMD_MASK;
3519 unsigned long offset;
3520 spinlock_t *ptl;
3521 bool numa = false;
3522 int local_nid = numa_node_id();
3524 spin_lock(&mm->page_table_lock);
3525 pmd = *pmdp;
3526 if (pmd_numa(pmd)) {
3527 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3528 numa = true;
3530 spin_unlock(&mm->page_table_lock);
3532 if (!numa)
3533 return 0;
3535 /* we're in a page fault so some vma must be in the range */
3536 BUG_ON(!vma);
3537 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3538 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3539 VM_BUG_ON(offset >= PMD_SIZE);
3540 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3541 pte += offset >> PAGE_SHIFT;
3542 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3543 pte_t pteval = *pte;
3544 struct page *page;
3545 int curr_nid = local_nid;
3546 int target_nid;
3547 bool migrated;
3548 if (!pte_present(pteval))
3549 continue;
3550 if (!pte_numa(pteval))
3551 continue;
3552 if (addr >= vma->vm_end) {
3553 vma = find_vma(mm, addr);
3554 /* there's a pte present so there must be a vma */
3555 BUG_ON(!vma);
3556 BUG_ON(addr < vma->vm_start);
3558 if (pte_numa(pteval)) {
3559 pteval = pte_mknonnuma(pteval);
3560 set_pte_at(mm, addr, pte, pteval);
3562 page = vm_normal_page(vma, addr, pteval);
3563 if (unlikely(!page))
3564 continue;
3565 /* only check non-shared pages */
3566 if (unlikely(page_mapcount(page) != 1))
3567 continue;
3570 * Note that the NUMA fault is later accounted to either
3571 * the node that is currently running or where the page is
3572 * migrated to.
3574 curr_nid = local_nid;
3575 target_nid = numa_migrate_prep(page, vma, addr,
3576 page_to_nid(page));
3577 if (target_nid == -1) {
3578 put_page(page);
3579 continue;
3582 /* Migrate to the requested node */
3583 pte_unmap_unlock(pte, ptl);
3584 migrated = migrate_misplaced_page(page, target_nid);
3585 if (migrated)
3586 curr_nid = target_nid;
3587 task_numa_fault(curr_nid, 1, migrated);
3589 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3591 pte_unmap_unlock(orig_pte, ptl);
3593 return 0;
3595 #else
3596 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3597 unsigned long addr, pmd_t *pmdp)
3599 BUG();
3600 return 0;
3602 #endif /* CONFIG_NUMA_BALANCING */
3605 * These routines also need to handle stuff like marking pages dirty
3606 * and/or accessed for architectures that don't do it in hardware (most
3607 * RISC architectures). The early dirtying is also good on the i386.
3609 * There is also a hook called "update_mmu_cache()" that architectures
3610 * with external mmu caches can use to update those (ie the Sparc or
3611 * PowerPC hashed page tables that act as extended TLBs).
3613 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3614 * but allow concurrent faults), and pte mapped but not yet locked.
3615 * We return with mmap_sem still held, but pte unmapped and unlocked.
3617 int handle_pte_fault(struct mm_struct *mm,
3618 struct vm_area_struct *vma, unsigned long address,
3619 pte_t *pte, pmd_t *pmd, unsigned int flags)
3621 pte_t entry;
3622 spinlock_t *ptl;
3624 entry = *pte;
3625 if (!pte_present(entry)) {
3626 if (pte_none(entry)) {
3627 if (vma->vm_ops) {
3628 if (likely(vma->vm_ops->fault))
3629 return do_linear_fault(mm, vma, address,
3630 pte, pmd, flags, entry);
3632 return do_anonymous_page(mm, vma, address,
3633 pte, pmd, flags);
3635 if (pte_file(entry))
3636 return do_nonlinear_fault(mm, vma, address,
3637 pte, pmd, flags, entry);
3638 return do_swap_page(mm, vma, address,
3639 pte, pmd, flags, entry);
3642 if (pte_numa(entry))
3643 return do_numa_page(mm, vma, address, entry, pte, pmd);
3645 ptl = pte_lockptr(mm, pmd);
3646 spin_lock(ptl);
3647 if (unlikely(!pte_same(*pte, entry)))
3648 goto unlock;
3649 if (flags & FAULT_FLAG_WRITE) {
3650 if (!pte_write(entry))
3651 return do_wp_page(mm, vma, address,
3652 pte, pmd, ptl, entry);
3653 entry = pte_mkdirty(entry);
3655 entry = pte_mkyoung(entry);
3656 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3657 update_mmu_cache(vma, address, pte);
3658 } else {
3660 * This is needed only for protection faults but the arch code
3661 * is not yet telling us if this is a protection fault or not.
3662 * This still avoids useless tlb flushes for .text page faults
3663 * with threads.
3665 if (flags & FAULT_FLAG_WRITE)
3666 flush_tlb_fix_spurious_fault(vma, address);
3668 unlock:
3669 pte_unmap_unlock(pte, ptl);
3670 return 0;
3674 * By the time we get here, we already hold the mm semaphore
3676 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3677 unsigned long address, unsigned int flags)
3679 pgd_t *pgd;
3680 pud_t *pud;
3681 pmd_t *pmd;
3682 pte_t *pte;
3684 __set_current_state(TASK_RUNNING);
3686 count_vm_event(PGFAULT);
3687 mem_cgroup_count_vm_event(mm, PGFAULT);
3689 /* do counter updates before entering really critical section. */
3690 check_sync_rss_stat(current);
3692 if (unlikely(is_vm_hugetlb_page(vma)))
3693 return hugetlb_fault(mm, vma, address, flags);
3695 retry:
3696 pgd = pgd_offset(mm, address);
3697 pud = pud_alloc(mm, pgd, address);
3698 if (!pud)
3699 return VM_FAULT_OOM;
3700 pmd = pmd_alloc(mm, pud, address);
3701 if (!pmd)
3702 return VM_FAULT_OOM;
3703 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3704 if (!vma->vm_ops)
3705 return do_huge_pmd_anonymous_page(mm, vma, address,
3706 pmd, flags);
3707 } else {
3708 pmd_t orig_pmd = *pmd;
3709 int ret;
3711 barrier();
3712 if (pmd_trans_huge(orig_pmd)) {
3713 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3716 * If the pmd is splitting, return and retry the
3717 * the fault. Alternative: wait until the split
3718 * is done, and goto retry.
3720 if (pmd_trans_splitting(orig_pmd))
3721 return 0;
3723 if (pmd_numa(orig_pmd))
3724 return do_huge_pmd_numa_page(mm, vma, address,
3725 orig_pmd, pmd);
3727 if (dirty && !pmd_write(orig_pmd)) {
3728 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3729 orig_pmd);
3731 * If COW results in an oom, the huge pmd will
3732 * have been split, so retry the fault on the
3733 * pte for a smaller charge.
3735 if (unlikely(ret & VM_FAULT_OOM))
3736 goto retry;
3737 return ret;
3738 } else {
3739 huge_pmd_set_accessed(mm, vma, address, pmd,
3740 orig_pmd, dirty);
3743 return 0;
3747 if (pmd_numa(*pmd))
3748 return do_pmd_numa_page(mm, vma, address, pmd);
3751 * Use __pte_alloc instead of pte_alloc_map, because we can't
3752 * run pte_offset_map on the pmd, if an huge pmd could
3753 * materialize from under us from a different thread.
3755 if (unlikely(pmd_none(*pmd)) &&
3756 unlikely(__pte_alloc(mm, vma, pmd, address)))
3757 return VM_FAULT_OOM;
3758 /* if an huge pmd materialized from under us just retry later */
3759 if (unlikely(pmd_trans_huge(*pmd)))
3760 return 0;
3762 * A regular pmd is established and it can't morph into a huge pmd
3763 * from under us anymore at this point because we hold the mmap_sem
3764 * read mode and khugepaged takes it in write mode. So now it's
3765 * safe to run pte_offset_map().
3767 pte = pte_offset_map(pmd, address);
3769 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3772 #ifndef __PAGETABLE_PUD_FOLDED
3774 * Allocate page upper directory.
3775 * We've already handled the fast-path in-line.
3777 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3779 pud_t *new = pud_alloc_one(mm, address);
3780 if (!new)
3781 return -ENOMEM;
3783 smp_wmb(); /* See comment in __pte_alloc */
3785 spin_lock(&mm->page_table_lock);
3786 if (pgd_present(*pgd)) /* Another has populated it */
3787 pud_free(mm, new);
3788 else
3789 pgd_populate(mm, pgd, new);
3790 spin_unlock(&mm->page_table_lock);
3791 return 0;
3793 #endif /* __PAGETABLE_PUD_FOLDED */
3795 #ifndef __PAGETABLE_PMD_FOLDED
3797 * Allocate page middle directory.
3798 * We've already handled the fast-path in-line.
3800 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3802 pmd_t *new = pmd_alloc_one(mm, address);
3803 if (!new)
3804 return -ENOMEM;
3806 smp_wmb(); /* See comment in __pte_alloc */
3808 spin_lock(&mm->page_table_lock);
3809 #ifndef __ARCH_HAS_4LEVEL_HACK
3810 if (pud_present(*pud)) /* Another has populated it */
3811 pmd_free(mm, new);
3812 else
3813 pud_populate(mm, pud, new);
3814 #else
3815 if (pgd_present(*pud)) /* Another has populated it */
3816 pmd_free(mm, new);
3817 else
3818 pgd_populate(mm, pud, new);
3819 #endif /* __ARCH_HAS_4LEVEL_HACK */
3820 spin_unlock(&mm->page_table_lock);
3821 return 0;
3823 #endif /* __PAGETABLE_PMD_FOLDED */
3825 int make_pages_present(unsigned long addr, unsigned long end)
3827 int ret, len, write;
3828 struct vm_area_struct * vma;
3830 vma = find_vma(current->mm, addr);
3831 if (!vma)
3832 return -ENOMEM;
3834 * We want to touch writable mappings with a write fault in order
3835 * to break COW, except for shared mappings because these don't COW
3836 * and we would not want to dirty them for nothing.
3838 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3839 BUG_ON(addr >= end);
3840 BUG_ON(end > vma->vm_end);
3841 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3842 ret = get_user_pages(current, current->mm, addr,
3843 len, write, 0, NULL, NULL);
3844 if (ret < 0)
3845 return ret;
3846 return ret == len ? 0 : -EFAULT;
3849 #if !defined(__HAVE_ARCH_GATE_AREA)
3851 #if defined(AT_SYSINFO_EHDR)
3852 static struct vm_area_struct gate_vma;
3854 static int __init gate_vma_init(void)
3856 gate_vma.vm_mm = NULL;
3857 gate_vma.vm_start = FIXADDR_USER_START;
3858 gate_vma.vm_end = FIXADDR_USER_END;
3859 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3860 gate_vma.vm_page_prot = __P101;
3862 return 0;
3864 __initcall(gate_vma_init);
3865 #endif
3867 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3869 #ifdef AT_SYSINFO_EHDR
3870 return &gate_vma;
3871 #else
3872 return NULL;
3873 #endif
3876 int in_gate_area_no_mm(unsigned long addr)
3878 #ifdef AT_SYSINFO_EHDR
3879 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3880 return 1;
3881 #endif
3882 return 0;
3885 #endif /* __HAVE_ARCH_GATE_AREA */
3887 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3888 pte_t **ptepp, spinlock_t **ptlp)
3890 pgd_t *pgd;
3891 pud_t *pud;
3892 pmd_t *pmd;
3893 pte_t *ptep;
3895 pgd = pgd_offset(mm, address);
3896 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3897 goto out;
3899 pud = pud_offset(pgd, address);
3900 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3901 goto out;
3903 pmd = pmd_offset(pud, address);
3904 VM_BUG_ON(pmd_trans_huge(*pmd));
3905 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3906 goto out;
3908 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3909 if (pmd_huge(*pmd))
3910 goto out;
3912 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3913 if (!ptep)
3914 goto out;
3915 if (!pte_present(*ptep))
3916 goto unlock;
3917 *ptepp = ptep;
3918 return 0;
3919 unlock:
3920 pte_unmap_unlock(ptep, *ptlp);
3921 out:
3922 return -EINVAL;
3925 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3926 pte_t **ptepp, spinlock_t **ptlp)
3928 int res;
3930 /* (void) is needed to make gcc happy */
3931 (void) __cond_lock(*ptlp,
3932 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3933 return res;
3937 * follow_pfn - look up PFN at a user virtual address
3938 * @vma: memory mapping
3939 * @address: user virtual address
3940 * @pfn: location to store found PFN
3942 * Only IO mappings and raw PFN mappings are allowed.
3944 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3946 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3947 unsigned long *pfn)
3949 int ret = -EINVAL;
3950 spinlock_t *ptl;
3951 pte_t *ptep;
3953 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3954 return ret;
3956 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3957 if (ret)
3958 return ret;
3959 *pfn = pte_pfn(*ptep);
3960 pte_unmap_unlock(ptep, ptl);
3961 return 0;
3963 EXPORT_SYMBOL(follow_pfn);
3965 #ifdef CONFIG_HAVE_IOREMAP_PROT
3966 int follow_phys(struct vm_area_struct *vma,
3967 unsigned long address, unsigned int flags,
3968 unsigned long *prot, resource_size_t *phys)
3970 int ret = -EINVAL;
3971 pte_t *ptep, pte;
3972 spinlock_t *ptl;
3974 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3975 goto out;
3977 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3978 goto out;
3979 pte = *ptep;
3981 if ((flags & FOLL_WRITE) && !pte_write(pte))
3982 goto unlock;
3984 *prot = pgprot_val(pte_pgprot(pte));
3985 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3987 ret = 0;
3988 unlock:
3989 pte_unmap_unlock(ptep, ptl);
3990 out:
3991 return ret;
3994 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3995 void *buf, int len, int write)
3997 resource_size_t phys_addr;
3998 unsigned long prot = 0;
3999 void __iomem *maddr;
4000 int offset = addr & (PAGE_SIZE-1);
4002 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4003 return -EINVAL;
4005 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4006 if (write)
4007 memcpy_toio(maddr + offset, buf, len);
4008 else
4009 memcpy_fromio(buf, maddr + offset, len);
4010 iounmap(maddr);
4012 return len;
4014 #endif
4017 * Access another process' address space as given in mm. If non-NULL, use the
4018 * given task for page fault accounting.
4020 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4021 unsigned long addr, void *buf, int len, int write)
4023 struct vm_area_struct *vma;
4024 void *old_buf = buf;
4026 down_read(&mm->mmap_sem);
4027 /* ignore errors, just check how much was successfully transferred */
4028 while (len) {
4029 int bytes, ret, offset;
4030 void *maddr;
4031 struct page *page = NULL;
4033 ret = get_user_pages(tsk, mm, addr, 1,
4034 write, 1, &page, &vma);
4035 if (ret <= 0) {
4037 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4038 * we can access using slightly different code.
4040 #ifdef CONFIG_HAVE_IOREMAP_PROT
4041 vma = find_vma(mm, addr);
4042 if (!vma || vma->vm_start > addr)
4043 break;
4044 if (vma->vm_ops && vma->vm_ops->access)
4045 ret = vma->vm_ops->access(vma, addr, buf,
4046 len, write);
4047 if (ret <= 0)
4048 #endif
4049 break;
4050 bytes = ret;
4051 } else {
4052 bytes = len;
4053 offset = addr & (PAGE_SIZE-1);
4054 if (bytes > PAGE_SIZE-offset)
4055 bytes = PAGE_SIZE-offset;
4057 maddr = kmap(page);
4058 if (write) {
4059 copy_to_user_page(vma, page, addr,
4060 maddr + offset, buf, bytes);
4061 set_page_dirty_lock(page);
4062 } else {
4063 copy_from_user_page(vma, page, addr,
4064 buf, maddr + offset, bytes);
4066 kunmap(page);
4067 page_cache_release(page);
4069 len -= bytes;
4070 buf += bytes;
4071 addr += bytes;
4073 up_read(&mm->mmap_sem);
4075 return buf - old_buf;
4079 * access_remote_vm - access another process' address space
4080 * @mm: the mm_struct of the target address space
4081 * @addr: start address to access
4082 * @buf: source or destination buffer
4083 * @len: number of bytes to transfer
4084 * @write: whether the access is a write
4086 * The caller must hold a reference on @mm.
4088 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4089 void *buf, int len, int write)
4091 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4095 * Access another process' address space.
4096 * Source/target buffer must be kernel space,
4097 * Do not walk the page table directly, use get_user_pages
4099 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4100 void *buf, int len, int write)
4102 struct mm_struct *mm;
4103 int ret;
4105 mm = get_task_mm(tsk);
4106 if (!mm)
4107 return 0;
4109 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4110 mmput(mm);
4112 return ret;
4116 * Print the name of a VMA.
4118 void print_vma_addr(char *prefix, unsigned long ip)
4120 struct mm_struct *mm = current->mm;
4121 struct vm_area_struct *vma;
4124 * Do not print if we are in atomic
4125 * contexts (in exception stacks, etc.):
4127 if (preempt_count())
4128 return;
4130 down_read(&mm->mmap_sem);
4131 vma = find_vma(mm, ip);
4132 if (vma && vma->vm_file) {
4133 struct file *f = vma->vm_file;
4134 char *buf = (char *)__get_free_page(GFP_KERNEL);
4135 if (buf) {
4136 char *p;
4138 p = d_path(&f->f_path, buf, PAGE_SIZE);
4139 if (IS_ERR(p))
4140 p = "?";
4141 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4142 vma->vm_start,
4143 vma->vm_end - vma->vm_start);
4144 free_page((unsigned long)buf);
4147 up_read(&mm->mmap_sem);
4150 #ifdef CONFIG_PROVE_LOCKING
4151 void might_fault(void)
4154 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4155 * holding the mmap_sem, this is safe because kernel memory doesn't
4156 * get paged out, therefore we'll never actually fault, and the
4157 * below annotations will generate false positives.
4159 if (segment_eq(get_fs(), KERNEL_DS))
4160 return;
4162 might_sleep();
4164 * it would be nicer only to annotate paths which are not under
4165 * pagefault_disable, however that requires a larger audit and
4166 * providing helpers like get_user_atomic.
4168 if (!in_atomic() && current->mm)
4169 might_lock_read(&current->mm->mmap_sem);
4171 EXPORT_SYMBOL(might_fault);
4172 #endif
4174 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4175 static void clear_gigantic_page(struct page *page,
4176 unsigned long addr,
4177 unsigned int pages_per_huge_page)
4179 int i;
4180 struct page *p = page;
4182 might_sleep();
4183 for (i = 0; i < pages_per_huge_page;
4184 i++, p = mem_map_next(p, page, i)) {
4185 cond_resched();
4186 clear_user_highpage(p, addr + i * PAGE_SIZE);
4189 void clear_huge_page(struct page *page,
4190 unsigned long addr, unsigned int pages_per_huge_page)
4192 int i;
4194 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4195 clear_gigantic_page(page, addr, pages_per_huge_page);
4196 return;
4199 might_sleep();
4200 for (i = 0; i < pages_per_huge_page; i++) {
4201 cond_resched();
4202 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4206 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4207 unsigned long addr,
4208 struct vm_area_struct *vma,
4209 unsigned int pages_per_huge_page)
4211 int i;
4212 struct page *dst_base = dst;
4213 struct page *src_base = src;
4215 for (i = 0; i < pages_per_huge_page; ) {
4216 cond_resched();
4217 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4219 i++;
4220 dst = mem_map_next(dst, dst_base, i);
4221 src = mem_map_next(src, src_base, i);
4225 void copy_user_huge_page(struct page *dst, struct page *src,
4226 unsigned long addr, struct vm_area_struct *vma,
4227 unsigned int pages_per_huge_page)
4229 int i;
4231 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4232 copy_user_gigantic_page(dst, src, addr, vma,
4233 pages_per_huge_page);
4234 return;
4237 might_sleep();
4238 for (i = 0; i < pages_per_huge_page; i++) {
4239 cond_resched();
4240 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4243 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */