arm64: alternatives: add enable parameter to conditional asm macros
[linux/fpc-iii.git] / kernel / locking / qspinlock_paravirt.h
blob04ab18151cc8fa174a5859124ee07c144f33d505
1 #ifndef _GEN_PV_LOCK_SLOWPATH
2 #error "do not include this file"
3 #endif
5 #include <linux/hash.h>
6 #include <linux/bootmem.h>
8 /*
9 * Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
10 * of spinning them.
12 * This relies on the architecture to provide two paravirt hypercalls:
14 * pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
15 * pv_kick(cpu) -- wakes a suspended vcpu
17 * Using these we implement __pv_queued_spin_lock_slowpath() and
18 * __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
19 * native_queued_spin_unlock().
22 #define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET)
24 enum vcpu_state {
25 vcpu_running = 0,
26 vcpu_halted,
29 struct pv_node {
30 struct mcs_spinlock mcs;
31 struct mcs_spinlock __res[3];
33 int cpu;
34 u8 state;
38 * Lock and MCS node addresses hash table for fast lookup
40 * Hashing is done on a per-cacheline basis to minimize the need to access
41 * more than one cacheline.
43 * Dynamically allocate a hash table big enough to hold at least 4X the
44 * number of possible cpus in the system. Allocation is done on page
45 * granularity. So the minimum number of hash buckets should be at least
46 * 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
48 * Since we should not be holding locks from NMI context (very rare indeed) the
49 * max load factor is 0.75, which is around the point where open addressing
50 * breaks down.
53 struct pv_hash_entry {
54 struct qspinlock *lock;
55 struct pv_node *node;
58 #define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
59 #define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry))
61 static struct pv_hash_entry *pv_lock_hash;
62 static unsigned int pv_lock_hash_bits __read_mostly;
65 * Allocate memory for the PV qspinlock hash buckets
67 * This function should be called from the paravirt spinlock initialization
68 * routine.
70 void __init __pv_init_lock_hash(void)
72 int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
74 if (pv_hash_size < PV_HE_MIN)
75 pv_hash_size = PV_HE_MIN;
78 * Allocate space from bootmem which should be page-size aligned
79 * and hence cacheline aligned.
81 pv_lock_hash = alloc_large_system_hash("PV qspinlock",
82 sizeof(struct pv_hash_entry),
83 pv_hash_size, 0, HASH_EARLY,
84 &pv_lock_hash_bits, NULL,
85 pv_hash_size, pv_hash_size);
88 #define for_each_hash_entry(he, offset, hash) \
89 for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \
90 offset < (1 << pv_lock_hash_bits); \
91 offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
93 static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
95 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
96 struct pv_hash_entry *he;
98 for_each_hash_entry(he, offset, hash) {
99 if (!cmpxchg(&he->lock, NULL, lock)) {
100 WRITE_ONCE(he->node, node);
101 return &he->lock;
105 * Hard assume there is a free entry for us.
107 * This is guaranteed by ensuring every blocked lock only ever consumes
108 * a single entry, and since we only have 4 nesting levels per CPU
109 * and allocated 4*nr_possible_cpus(), this must be so.
111 * The single entry is guaranteed by having the lock owner unhash
112 * before it releases.
114 BUG();
117 static struct pv_node *pv_unhash(struct qspinlock *lock)
119 unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
120 struct pv_hash_entry *he;
121 struct pv_node *node;
123 for_each_hash_entry(he, offset, hash) {
124 if (READ_ONCE(he->lock) == lock) {
125 node = READ_ONCE(he->node);
126 WRITE_ONCE(he->lock, NULL);
127 return node;
131 * Hard assume we'll find an entry.
133 * This guarantees a limited lookup time and is itself guaranteed by
134 * having the lock owner do the unhash -- IFF the unlock sees the
135 * SLOW flag, there MUST be a hash entry.
137 BUG();
141 * Initialize the PV part of the mcs_spinlock node.
143 static void pv_init_node(struct mcs_spinlock *node)
145 struct pv_node *pn = (struct pv_node *)node;
147 BUILD_BUG_ON(sizeof(struct pv_node) > 5*sizeof(struct mcs_spinlock));
149 pn->cpu = smp_processor_id();
150 pn->state = vcpu_running;
154 * Wait for node->locked to become true, halt the vcpu after a short spin.
155 * pv_kick_node() is used to wake the vcpu again.
157 static void pv_wait_node(struct mcs_spinlock *node)
159 struct pv_node *pn = (struct pv_node *)node;
160 int loop;
162 for (;;) {
163 for (loop = SPIN_THRESHOLD; loop; loop--) {
164 if (READ_ONCE(node->locked))
165 return;
166 cpu_relax();
170 * Order pn->state vs pn->locked thusly:
172 * [S] pn->state = vcpu_halted [S] next->locked = 1
173 * MB MB
174 * [L] pn->locked [RmW] pn->state = vcpu_running
176 * Matches the xchg() from pv_kick_node().
178 smp_store_mb(pn->state, vcpu_halted);
180 if (!READ_ONCE(node->locked))
181 pv_wait(&pn->state, vcpu_halted);
184 * Reset the vCPU state to avoid unncessary CPU kicking
186 WRITE_ONCE(pn->state, vcpu_running);
189 * If the locked flag is still not set after wakeup, it is a
190 * spurious wakeup and the vCPU should wait again. However,
191 * there is a pretty high overhead for CPU halting and kicking.
192 * So it is better to spin for a while in the hope that the
193 * MCS lock will be released soon.
197 * By now our node->locked should be 1 and our caller will not actually
198 * spin-wait for it. We do however rely on our caller to do a
199 * load-acquire for us.
204 * Called after setting next->locked = 1, used to wake those stuck in
205 * pv_wait_node().
207 static void pv_kick_node(struct mcs_spinlock *node)
209 struct pv_node *pn = (struct pv_node *)node;
212 * Note that because node->locked is already set, this actual
213 * mcs_spinlock entry could be re-used already.
215 * This should be fine however, kicking people for no reason is
216 * harmless.
218 * See the comment in pv_wait_node().
220 if (xchg(&pn->state, vcpu_running) == vcpu_halted)
221 pv_kick(pn->cpu);
225 * Wait for l->locked to become clear; halt the vcpu after a short spin.
226 * __pv_queued_spin_unlock() will wake us.
228 static void pv_wait_head(struct qspinlock *lock, struct mcs_spinlock *node)
230 struct pv_node *pn = (struct pv_node *)node;
231 struct __qspinlock *l = (void *)lock;
232 struct qspinlock **lp = NULL;
233 int loop;
235 for (;;) {
236 for (loop = SPIN_THRESHOLD; loop; loop--) {
237 if (!READ_ONCE(l->locked))
238 return;
239 cpu_relax();
242 WRITE_ONCE(pn->state, vcpu_halted);
243 if (!lp) { /* ONCE */
244 lp = pv_hash(lock, pn);
246 * lp must be set before setting _Q_SLOW_VAL
248 * [S] lp = lock [RmW] l = l->locked = 0
249 * MB MB
250 * [S] l->locked = _Q_SLOW_VAL [L] lp
252 * Matches the cmpxchg() in __pv_queued_spin_unlock().
254 if (!cmpxchg(&l->locked, _Q_LOCKED_VAL, _Q_SLOW_VAL)) {
256 * The lock is free and _Q_SLOW_VAL has never
257 * been set. Therefore we need to unhash before
258 * getting the lock.
260 WRITE_ONCE(*lp, NULL);
261 return;
264 pv_wait(&l->locked, _Q_SLOW_VAL);
267 * The unlocker should have freed the lock before kicking the
268 * CPU. So if the lock is still not free, it is a spurious
269 * wakeup and so the vCPU should wait again after spinning for
270 * a while.
275 * Lock is unlocked now; the caller will acquire it without waiting.
276 * As with pv_wait_node() we rely on the caller to do a load-acquire
277 * for us.
282 * PV version of the unlock function to be used in stead of
283 * queued_spin_unlock().
285 __visible void __pv_queued_spin_unlock(struct qspinlock *lock)
287 struct __qspinlock *l = (void *)lock;
288 struct pv_node *node;
291 * We must not unlock if SLOW, because in that case we must first
292 * unhash. Otherwise it would be possible to have multiple @lock
293 * entries, which would be BAD.
295 if (likely(cmpxchg(&l->locked, _Q_LOCKED_VAL, 0) == _Q_LOCKED_VAL))
296 return;
299 * Since the above failed to release, this must be the SLOW path.
300 * Therefore start by looking up the blocked node and unhashing it.
302 node = pv_unhash(lock);
305 * Now that we have a reference to the (likely) blocked pv_node,
306 * release the lock.
308 smp_store_release(&l->locked, 0);
311 * At this point the memory pointed at by lock can be freed/reused,
312 * however we can still use the pv_node to kick the CPU.
314 if (READ_ONCE(node->state) == vcpu_halted)
315 pv_kick(node->cpu);
318 * Include the architecture specific callee-save thunk of the
319 * __pv_queued_spin_unlock(). This thunk is put together with
320 * __pv_queued_spin_unlock() near the top of the file to make sure
321 * that the callee-save thunk and the real unlock function are close
322 * to each other sharing consecutive instruction cachelines.
324 #include <asm/qspinlock_paravirt.h>