Merge tag 'extcon-next-for-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / drivers / crypto / mediatek / mtk-platform.c
blob125318a88cd4edca93dacb5e2f9db3934c355553
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for EIP97 cryptographic accelerator.
5 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
6 */
8 #include <linux/clk.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/mod_devicetable.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include "mtk-platform.h"
17 #define MTK_BURST_SIZE_MSK GENMASK(7, 4)
18 #define MTK_BURST_SIZE(x) ((x) << 4)
19 #define MTK_DESC_SIZE(x) ((x) << 0)
20 #define MTK_DESC_OFFSET(x) ((x) << 16)
21 #define MTK_DESC_FETCH_SIZE(x) ((x) << 0)
22 #define MTK_DESC_FETCH_THRESH(x) ((x) << 16)
23 #define MTK_DESC_OVL_IRQ_EN BIT(25)
24 #define MTK_DESC_ATP_PRESENT BIT(30)
26 #define MTK_DFSE_IDLE GENMASK(3, 0)
27 #define MTK_DFSE_THR_CTRL_EN BIT(30)
28 #define MTK_DFSE_THR_CTRL_RESET BIT(31)
29 #define MTK_DFSE_RING_ID(x) (((x) >> 12) & GENMASK(3, 0))
30 #define MTK_DFSE_MIN_DATA(x) ((x) << 0)
31 #define MTK_DFSE_MAX_DATA(x) ((x) << 8)
32 #define MTK_DFE_MIN_CTRL(x) ((x) << 16)
33 #define MTK_DFE_MAX_CTRL(x) ((x) << 24)
35 #define MTK_IN_BUF_MIN_THRESH(x) ((x) << 8)
36 #define MTK_IN_BUF_MAX_THRESH(x) ((x) << 12)
37 #define MTK_OUT_BUF_MIN_THRESH(x) ((x) << 0)
38 #define MTK_OUT_BUF_MAX_THRESH(x) ((x) << 4)
39 #define MTK_IN_TBUF_SIZE(x) (((x) >> 4) & GENMASK(3, 0))
40 #define MTK_IN_DBUF_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
41 #define MTK_OUT_DBUF_SIZE(x) (((x) >> 16) & GENMASK(3, 0))
42 #define MTK_CMD_FIFO_SIZE(x) (((x) >> 8) & GENMASK(3, 0))
43 #define MTK_RES_FIFO_SIZE(x) (((x) >> 12) & GENMASK(3, 0))
45 #define MTK_PE_TK_LOC_AVL BIT(2)
46 #define MTK_PE_PROC_HELD BIT(14)
47 #define MTK_PE_TK_TIMEOUT_EN BIT(22)
48 #define MTK_PE_INPUT_DMA_ERR BIT(0)
49 #define MTK_PE_OUTPUT_DMA_ERR BIT(1)
50 #define MTK_PE_PKT_PORC_ERR BIT(2)
51 #define MTK_PE_PKT_TIMEOUT BIT(3)
52 #define MTK_PE_FATAL_ERR BIT(14)
53 #define MTK_PE_INPUT_DMA_ERR_EN BIT(16)
54 #define MTK_PE_OUTPUT_DMA_ERR_EN BIT(17)
55 #define MTK_PE_PKT_PORC_ERR_EN BIT(18)
56 #define MTK_PE_PKT_TIMEOUT_EN BIT(19)
57 #define MTK_PE_FATAL_ERR_EN BIT(30)
58 #define MTK_PE_INT_OUT_EN BIT(31)
60 #define MTK_HIA_SIGNATURE ((u16)0x35ca)
61 #define MTK_HIA_DATA_WIDTH(x) (((x) >> 25) & GENMASK(1, 0))
62 #define MTK_HIA_DMA_LENGTH(x) (((x) >> 20) & GENMASK(4, 0))
63 #define MTK_CDR_STAT_CLR GENMASK(4, 0)
64 #define MTK_RDR_STAT_CLR GENMASK(7, 0)
66 #define MTK_AIC_INT_MSK GENMASK(5, 0)
67 #define MTK_AIC_VER_MSK (GENMASK(15, 0) | GENMASK(27, 20))
68 #define MTK_AIC_VER11 0x011036c9
69 #define MTK_AIC_VER12 0x012036c9
70 #define MTK_AIC_G_CLR GENMASK(30, 20)
72 /**
73 * EIP97 is an integrated security subsystem to accelerate cryptographic
74 * functions and protocols to offload the host processor.
75 * Some important hardware modules are briefly introduced below:
77 * Host Interface Adapter(HIA) - the main interface between the host
78 * system and the hardware subsystem. It is responsible for attaching
79 * processing engine to the specific host bus interface and provides a
80 * standardized software view for off loading tasks to the engine.
82 * Command Descriptor Ring Manager(CDR Manager) - keeps track of how many
83 * CD the host has prepared in the CDR. It monitors the fill level of its
84 * CD-FIFO and if there's sufficient space for the next block of descriptors,
85 * then it fires off a DMA request to fetch a block of CDs.
87 * Data fetch engine(DFE) - It is responsible for parsing the CD and
88 * setting up the required control and packet data DMA transfers from
89 * system memory to the processing engine.
91 * Result Descriptor Ring Manager(RDR Manager) - same as CDR Manager,
92 * but target is result descriptors, Moreover, it also handles the RD
93 * updates under control of the DSE. For each packet data segment
94 * processed, the DSE triggers the RDR Manager to write the updated RD.
95 * If triggered to update, the RDR Manager sets up a DMA operation to
96 * copy the RD from the DSE to the correct location in the RDR.
98 * Data Store Engine(DSE) - It is responsible for parsing the prepared RD
99 * and setting up the required control and packet data DMA transfers from
100 * the processing engine to system memory.
102 * Advanced Interrupt Controllers(AICs) - receive interrupt request signals
103 * from various sources and combine them into one interrupt output.
104 * The AICs are used by:
105 * - One for the HIA global and processing engine interrupts.
106 * - The others for the descriptor ring interrupts.
109 /* Cryptographic engine capabilities */
110 struct mtk_sys_cap {
111 /* host interface adapter */
112 u32 hia_ver;
113 u32 hia_opt;
114 /* packet engine */
115 u32 pkt_eng_opt;
116 /* global hardware */
117 u32 hw_opt;
120 static void mtk_desc_ring_link(struct mtk_cryp *cryp, u32 mask)
122 /* Assign rings to DFE/DSE thread and enable it */
123 writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DFE_THR_CTRL);
124 writel(MTK_DFSE_THR_CTRL_EN | mask, cryp->base + DSE_THR_CTRL);
127 static void mtk_dfe_dse_buf_setup(struct mtk_cryp *cryp,
128 struct mtk_sys_cap *cap)
130 u32 width = MTK_HIA_DATA_WIDTH(cap->hia_opt) + 2;
131 u32 len = MTK_HIA_DMA_LENGTH(cap->hia_opt) - 1;
132 u32 ipbuf = min((u32)MTK_IN_DBUF_SIZE(cap->hw_opt) + width, len);
133 u32 opbuf = min((u32)MTK_OUT_DBUF_SIZE(cap->hw_opt) + width, len);
134 u32 itbuf = min((u32)MTK_IN_TBUF_SIZE(cap->hw_opt) + width, len);
136 writel(MTK_DFSE_MIN_DATA(ipbuf - 1) |
137 MTK_DFSE_MAX_DATA(ipbuf) |
138 MTK_DFE_MIN_CTRL(itbuf - 1) |
139 MTK_DFE_MAX_CTRL(itbuf),
140 cryp->base + DFE_CFG);
142 writel(MTK_DFSE_MIN_DATA(opbuf - 1) |
143 MTK_DFSE_MAX_DATA(opbuf),
144 cryp->base + DSE_CFG);
146 writel(MTK_IN_BUF_MIN_THRESH(ipbuf - 1) |
147 MTK_IN_BUF_MAX_THRESH(ipbuf),
148 cryp->base + PE_IN_DBUF_THRESH);
150 writel(MTK_IN_BUF_MIN_THRESH(itbuf - 1) |
151 MTK_IN_BUF_MAX_THRESH(itbuf),
152 cryp->base + PE_IN_TBUF_THRESH);
154 writel(MTK_OUT_BUF_MIN_THRESH(opbuf - 1) |
155 MTK_OUT_BUF_MAX_THRESH(opbuf),
156 cryp->base + PE_OUT_DBUF_THRESH);
158 writel(0, cryp->base + PE_OUT_TBUF_THRESH);
159 writel(0, cryp->base + PE_OUT_BUF_CTRL);
162 static int mtk_dfe_dse_state_check(struct mtk_cryp *cryp)
164 int ret = -EINVAL;
165 u32 val;
167 /* Check for completion of all DMA transfers */
168 val = readl(cryp->base + DFE_THR_STAT);
169 if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE) {
170 val = readl(cryp->base + DSE_THR_STAT);
171 if (MTK_DFSE_RING_ID(val) == MTK_DFSE_IDLE)
172 ret = 0;
175 if (!ret) {
176 /* Take DFE/DSE thread out of reset */
177 writel(0, cryp->base + DFE_THR_CTRL);
178 writel(0, cryp->base + DSE_THR_CTRL);
179 } else {
180 return -EBUSY;
183 return 0;
186 static int mtk_dfe_dse_reset(struct mtk_cryp *cryp)
188 int err;
190 /* Reset DSE/DFE and correct system priorities for all rings. */
191 writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DFE_THR_CTRL);
192 writel(0, cryp->base + DFE_PRIO_0);
193 writel(0, cryp->base + DFE_PRIO_1);
194 writel(0, cryp->base + DFE_PRIO_2);
195 writel(0, cryp->base + DFE_PRIO_3);
197 writel(MTK_DFSE_THR_CTRL_RESET, cryp->base + DSE_THR_CTRL);
198 writel(0, cryp->base + DSE_PRIO_0);
199 writel(0, cryp->base + DSE_PRIO_1);
200 writel(0, cryp->base + DSE_PRIO_2);
201 writel(0, cryp->base + DSE_PRIO_3);
203 err = mtk_dfe_dse_state_check(cryp);
204 if (err)
205 return err;
207 return 0;
210 static void mtk_cmd_desc_ring_setup(struct mtk_cryp *cryp,
211 int i, struct mtk_sys_cap *cap)
213 /* Full descriptor that fits FIFO minus one */
214 u32 count =
215 ((1 << MTK_CMD_FIFO_SIZE(cap->hia_opt)) / MTK_DESC_SZ) - 1;
217 /* Temporarily disable external triggering */
218 writel(0, cryp->base + CDR_CFG(i));
220 /* Clear CDR count */
221 writel(MTK_CNT_RST, cryp->base + CDR_PREP_COUNT(i));
222 writel(MTK_CNT_RST, cryp->base + CDR_PROC_COUNT(i));
224 writel(0, cryp->base + CDR_PREP_PNTR(i));
225 writel(0, cryp->base + CDR_PROC_PNTR(i));
226 writel(0, cryp->base + CDR_DMA_CFG(i));
228 /* Configure CDR host address space */
229 writel(0, cryp->base + CDR_BASE_ADDR_HI(i));
230 writel(cryp->ring[i]->cmd_dma, cryp->base + CDR_BASE_ADDR_LO(i));
232 writel(MTK_DESC_RING_SZ, cryp->base + CDR_RING_SIZE(i));
234 /* Clear and disable all CDR interrupts */
235 writel(MTK_CDR_STAT_CLR, cryp->base + CDR_STAT(i));
238 * Set command descriptor offset and enable additional
239 * token present in descriptor.
241 writel(MTK_DESC_SIZE(MTK_DESC_SZ) |
242 MTK_DESC_OFFSET(MTK_DESC_OFF) |
243 MTK_DESC_ATP_PRESENT,
244 cryp->base + CDR_DESC_SIZE(i));
246 writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
247 MTK_DESC_FETCH_THRESH(count * MTK_DESC_SZ),
248 cryp->base + CDR_CFG(i));
251 static void mtk_res_desc_ring_setup(struct mtk_cryp *cryp,
252 int i, struct mtk_sys_cap *cap)
254 u32 rndup = 2;
255 u32 count = ((1 << MTK_RES_FIFO_SIZE(cap->hia_opt)) / rndup) - 1;
257 /* Temporarily disable external triggering */
258 writel(0, cryp->base + RDR_CFG(i));
260 /* Clear RDR count */
261 writel(MTK_CNT_RST, cryp->base + RDR_PREP_COUNT(i));
262 writel(MTK_CNT_RST, cryp->base + RDR_PROC_COUNT(i));
264 writel(0, cryp->base + RDR_PREP_PNTR(i));
265 writel(0, cryp->base + RDR_PROC_PNTR(i));
266 writel(0, cryp->base + RDR_DMA_CFG(i));
268 /* Configure RDR host address space */
269 writel(0, cryp->base + RDR_BASE_ADDR_HI(i));
270 writel(cryp->ring[i]->res_dma, cryp->base + RDR_BASE_ADDR_LO(i));
272 writel(MTK_DESC_RING_SZ, cryp->base + RDR_RING_SIZE(i));
273 writel(MTK_RDR_STAT_CLR, cryp->base + RDR_STAT(i));
276 * RDR manager generates update interrupts on a per-completed-packet,
277 * and the rd_proc_thresh_irq interrupt is fired when proc_pkt_count
278 * for the RDR exceeds the number of packets.
280 writel(MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE,
281 cryp->base + RDR_THRESH(i));
284 * Configure a threshold and time-out value for the processed
285 * result descriptors (or complete packets) that are written to
286 * the RDR.
288 writel(MTK_DESC_SIZE(MTK_DESC_SZ) | MTK_DESC_OFFSET(MTK_DESC_OFF),
289 cryp->base + RDR_DESC_SIZE(i));
292 * Configure HIA fetch size and fetch threshold that are used to
293 * fetch blocks of multiple descriptors.
295 writel(MTK_DESC_FETCH_SIZE(count * MTK_DESC_OFF) |
296 MTK_DESC_FETCH_THRESH(count * rndup) |
297 MTK_DESC_OVL_IRQ_EN,
298 cryp->base + RDR_CFG(i));
301 static int mtk_packet_engine_setup(struct mtk_cryp *cryp)
303 struct mtk_sys_cap cap;
304 int i, err;
305 u32 val;
307 cap.hia_ver = readl(cryp->base + HIA_VERSION);
308 cap.hia_opt = readl(cryp->base + HIA_OPTIONS);
309 cap.hw_opt = readl(cryp->base + EIP97_OPTIONS);
311 if (!(((u16)cap.hia_ver) == MTK_HIA_SIGNATURE))
312 return -EINVAL;
314 /* Configure endianness conversion method for master (DMA) interface */
315 writel(0, cryp->base + EIP97_MST_CTRL);
317 /* Set HIA burst size */
318 val = readl(cryp->base + HIA_MST_CTRL);
319 val &= ~MTK_BURST_SIZE_MSK;
320 val |= MTK_BURST_SIZE(5);
321 writel(val, cryp->base + HIA_MST_CTRL);
323 err = mtk_dfe_dse_reset(cryp);
324 if (err) {
325 dev_err(cryp->dev, "Failed to reset DFE and DSE.\n");
326 return err;
329 mtk_dfe_dse_buf_setup(cryp, &cap);
331 /* Enable the 4 rings for the packet engines. */
332 mtk_desc_ring_link(cryp, 0xf);
334 for (i = 0; i < MTK_RING_MAX; i++) {
335 mtk_cmd_desc_ring_setup(cryp, i, &cap);
336 mtk_res_desc_ring_setup(cryp, i, &cap);
339 writel(MTK_PE_TK_LOC_AVL | MTK_PE_PROC_HELD | MTK_PE_TK_TIMEOUT_EN,
340 cryp->base + PE_TOKEN_CTRL_STAT);
342 /* Clear all pending interrupts */
343 writel(MTK_AIC_G_CLR, cryp->base + AIC_G_ACK);
344 writel(MTK_PE_INPUT_DMA_ERR | MTK_PE_OUTPUT_DMA_ERR |
345 MTK_PE_PKT_PORC_ERR | MTK_PE_PKT_TIMEOUT |
346 MTK_PE_FATAL_ERR | MTK_PE_INPUT_DMA_ERR_EN |
347 MTK_PE_OUTPUT_DMA_ERR_EN | MTK_PE_PKT_PORC_ERR_EN |
348 MTK_PE_PKT_TIMEOUT_EN | MTK_PE_FATAL_ERR_EN |
349 MTK_PE_INT_OUT_EN,
350 cryp->base + PE_INTERRUPT_CTRL_STAT);
352 return 0;
355 static int mtk_aic_cap_check(struct mtk_cryp *cryp, int hw)
357 u32 val;
359 if (hw == MTK_RING_MAX)
360 val = readl(cryp->base + AIC_G_VERSION);
361 else
362 val = readl(cryp->base + AIC_VERSION(hw));
364 val &= MTK_AIC_VER_MSK;
365 if (val != MTK_AIC_VER11 && val != MTK_AIC_VER12)
366 return -ENXIO;
368 if (hw == MTK_RING_MAX)
369 val = readl(cryp->base + AIC_G_OPTIONS);
370 else
371 val = readl(cryp->base + AIC_OPTIONS(hw));
373 val &= MTK_AIC_INT_MSK;
374 if (!val || val > 32)
375 return -ENXIO;
377 return 0;
380 static int mtk_aic_init(struct mtk_cryp *cryp, int hw)
382 int err;
384 err = mtk_aic_cap_check(cryp, hw);
385 if (err)
386 return err;
388 /* Disable all interrupts and set initial configuration */
389 if (hw == MTK_RING_MAX) {
390 writel(0, cryp->base + AIC_G_ENABLE_CTRL);
391 writel(0, cryp->base + AIC_G_POL_CTRL);
392 writel(0, cryp->base + AIC_G_TYPE_CTRL);
393 writel(0, cryp->base + AIC_G_ENABLE_SET);
394 } else {
395 writel(0, cryp->base + AIC_ENABLE_CTRL(hw));
396 writel(0, cryp->base + AIC_POL_CTRL(hw));
397 writel(0, cryp->base + AIC_TYPE_CTRL(hw));
398 writel(0, cryp->base + AIC_ENABLE_SET(hw));
401 return 0;
404 static int mtk_accelerator_init(struct mtk_cryp *cryp)
406 int i, err;
408 /* Initialize advanced interrupt controller(AIC) */
409 for (i = 0; i < MTK_IRQ_NUM; i++) {
410 err = mtk_aic_init(cryp, i);
411 if (err) {
412 dev_err(cryp->dev, "Failed to initialize AIC.\n");
413 return err;
417 /* Initialize packet engine */
418 err = mtk_packet_engine_setup(cryp);
419 if (err) {
420 dev_err(cryp->dev, "Failed to configure packet engine.\n");
421 return err;
424 return 0;
427 static void mtk_desc_dma_free(struct mtk_cryp *cryp)
429 int i;
431 for (i = 0; i < MTK_RING_MAX; i++) {
432 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
433 cryp->ring[i]->res_base,
434 cryp->ring[i]->res_dma);
435 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
436 cryp->ring[i]->cmd_base,
437 cryp->ring[i]->cmd_dma);
438 kfree(cryp->ring[i]);
442 static int mtk_desc_ring_alloc(struct mtk_cryp *cryp)
444 struct mtk_ring **ring = cryp->ring;
445 int i, err = ENOMEM;
447 for (i = 0; i < MTK_RING_MAX; i++) {
448 ring[i] = kzalloc(sizeof(**ring), GFP_KERNEL);
449 if (!ring[i])
450 goto err_cleanup;
452 ring[i]->cmd_base = dma_alloc_coherent(cryp->dev,
453 MTK_DESC_RING_SZ,
454 &ring[i]->cmd_dma,
455 GFP_KERNEL);
456 if (!ring[i]->cmd_base)
457 goto err_cleanup;
459 ring[i]->res_base = dma_alloc_coherent(cryp->dev,
460 MTK_DESC_RING_SZ,
461 &ring[i]->res_dma,
462 GFP_KERNEL);
463 if (!ring[i]->res_base)
464 goto err_cleanup;
466 ring[i]->cmd_next = ring[i]->cmd_base;
467 ring[i]->res_next = ring[i]->res_base;
469 return 0;
471 err_cleanup:
472 for (; i--; ) {
473 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
474 ring[i]->res_base, ring[i]->res_dma);
475 dma_free_coherent(cryp->dev, MTK_DESC_RING_SZ,
476 ring[i]->cmd_base, ring[i]->cmd_dma);
477 kfree(ring[i]);
479 return err;
482 static int mtk_crypto_probe(struct platform_device *pdev)
484 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
485 struct mtk_cryp *cryp;
486 int i, err;
488 cryp = devm_kzalloc(&pdev->dev, sizeof(*cryp), GFP_KERNEL);
489 if (!cryp)
490 return -ENOMEM;
492 cryp->base = devm_ioremap_resource(&pdev->dev, res);
493 if (IS_ERR(cryp->base))
494 return PTR_ERR(cryp->base);
496 for (i = 0; i < MTK_IRQ_NUM; i++) {
497 cryp->irq[i] = platform_get_irq(pdev, i);
498 if (cryp->irq[i] < 0) {
499 dev_err(cryp->dev, "no IRQ:%d resource info\n", i);
500 return cryp->irq[i];
504 cryp->clk_cryp = devm_clk_get(&pdev->dev, "cryp");
505 if (IS_ERR(cryp->clk_cryp))
506 return -EPROBE_DEFER;
508 cryp->dev = &pdev->dev;
509 pm_runtime_enable(cryp->dev);
510 pm_runtime_get_sync(cryp->dev);
512 err = clk_prepare_enable(cryp->clk_cryp);
513 if (err)
514 goto err_clk_cryp;
516 /* Allocate four command/result descriptor rings */
517 err = mtk_desc_ring_alloc(cryp);
518 if (err) {
519 dev_err(cryp->dev, "Unable to allocate descriptor rings.\n");
520 goto err_resource;
523 /* Initialize hardware modules */
524 err = mtk_accelerator_init(cryp);
525 if (err) {
526 dev_err(cryp->dev, "Failed to initialize cryptographic engine.\n");
527 goto err_engine;
530 err = mtk_cipher_alg_register(cryp);
531 if (err) {
532 dev_err(cryp->dev, "Unable to register cipher algorithm.\n");
533 goto err_cipher;
536 err = mtk_hash_alg_register(cryp);
537 if (err) {
538 dev_err(cryp->dev, "Unable to register hash algorithm.\n");
539 goto err_hash;
542 platform_set_drvdata(pdev, cryp);
543 return 0;
545 err_hash:
546 mtk_cipher_alg_release(cryp);
547 err_cipher:
548 mtk_dfe_dse_reset(cryp);
549 err_engine:
550 mtk_desc_dma_free(cryp);
551 err_resource:
552 clk_disable_unprepare(cryp->clk_cryp);
553 err_clk_cryp:
554 pm_runtime_put_sync(cryp->dev);
555 pm_runtime_disable(cryp->dev);
557 return err;
560 static int mtk_crypto_remove(struct platform_device *pdev)
562 struct mtk_cryp *cryp = platform_get_drvdata(pdev);
564 mtk_hash_alg_release(cryp);
565 mtk_cipher_alg_release(cryp);
566 mtk_desc_dma_free(cryp);
568 clk_disable_unprepare(cryp->clk_cryp);
570 pm_runtime_put_sync(cryp->dev);
571 pm_runtime_disable(cryp->dev);
572 platform_set_drvdata(pdev, NULL);
574 return 0;
577 static const struct of_device_id of_crypto_id[] = {
578 { .compatible = "mediatek,eip97-crypto" },
581 MODULE_DEVICE_TABLE(of, of_crypto_id);
583 static struct platform_driver mtk_crypto_driver = {
584 .probe = mtk_crypto_probe,
585 .remove = mtk_crypto_remove,
586 .driver = {
587 .name = "mtk-crypto",
588 .of_match_table = of_crypto_id,
591 module_platform_driver(mtk_crypto_driver);
593 MODULE_LICENSE("GPL");
594 MODULE_AUTHOR("Ryder Lee <ryder.lee@mediatek.com>");
595 MODULE_DESCRIPTION("Cryptographic accelerator driver for EIP97");