Merge tag 'iommu-updates-v3.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[linux/fpc-iii.git] / drivers / iommu / intel-iommu.c
blobc2c07a4a7f21c5f57d9eca2884933dd99088b60a
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
49 #define ROOT_SIZE VTD_PAGE_SIZE
50 #define CONTEXT_SIZE VTD_PAGE_SIZE
52 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
53 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
54 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
56 #define IOAPIC_RANGE_START (0xfee00000)
57 #define IOAPIC_RANGE_END (0xfeefffff)
58 #define IOVA_START_ADDR (0x1000)
60 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
62 #define MAX_AGAW_WIDTH 64
64 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
65 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
67 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
68 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
69 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
70 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
71 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
73 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
74 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
75 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
77 /* page table handling */
78 #define LEVEL_STRIDE (9)
79 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
82 * This bitmap is used to advertise the page sizes our hardware support
83 * to the IOMMU core, which will then use this information to split
84 * physically contiguous memory regions it is mapping into page sizes
85 * that we support.
87 * Traditionally the IOMMU core just handed us the mappings directly,
88 * after making sure the size is an order of a 4KiB page and that the
89 * mapping has natural alignment.
91 * To retain this behavior, we currently advertise that we support
92 * all page sizes that are an order of 4KiB.
94 * If at some point we'd like to utilize the IOMMU core's new behavior,
95 * we could change this to advertise the real page sizes we support.
97 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
99 static inline int agaw_to_level(int agaw)
101 return agaw + 2;
104 static inline int agaw_to_width(int agaw)
106 return 30 + agaw * LEVEL_STRIDE;
109 static inline int width_to_agaw(int width)
111 return (width - 30) / LEVEL_STRIDE;
114 static inline unsigned int level_to_offset_bits(int level)
116 return (level - 1) * LEVEL_STRIDE;
119 static inline int pfn_level_offset(unsigned long pfn, int level)
121 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
124 static inline unsigned long level_mask(int level)
126 return -1UL << level_to_offset_bits(level);
129 static inline unsigned long level_size(int level)
131 return 1UL << level_to_offset_bits(level);
134 static inline unsigned long align_to_level(unsigned long pfn, int level)
136 return (pfn + level_size(level) - 1) & level_mask(level);
139 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
141 return 1 << ((lvl - 1) * LEVEL_STRIDE);
144 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
145 are never going to work. */
146 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
148 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
151 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
153 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
155 static inline unsigned long page_to_dma_pfn(struct page *pg)
157 return mm_to_dma_pfn(page_to_pfn(pg));
159 static inline unsigned long virt_to_dma_pfn(void *p)
161 return page_to_dma_pfn(virt_to_page(p));
164 /* global iommu list, set NULL for ignored DMAR units */
165 static struct intel_iommu **g_iommus;
167 static void __init check_tylersburg_isoch(void);
168 static int rwbf_quirk;
171 * set to 1 to panic kernel if can't successfully enable VT-d
172 * (used when kernel is launched w/ TXT)
174 static int force_on = 0;
177 * 0: Present
178 * 1-11: Reserved
179 * 12-63: Context Ptr (12 - (haw-1))
180 * 64-127: Reserved
182 struct root_entry {
183 u64 val;
184 u64 rsvd1;
186 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
187 static inline bool root_present(struct root_entry *root)
189 return (root->val & 1);
191 static inline void set_root_present(struct root_entry *root)
193 root->val |= 1;
195 static inline void set_root_value(struct root_entry *root, unsigned long value)
197 root->val |= value & VTD_PAGE_MASK;
200 static inline struct context_entry *
201 get_context_addr_from_root(struct root_entry *root)
203 return (struct context_entry *)
204 (root_present(root)?phys_to_virt(
205 root->val & VTD_PAGE_MASK) :
206 NULL);
210 * low 64 bits:
211 * 0: present
212 * 1: fault processing disable
213 * 2-3: translation type
214 * 12-63: address space root
215 * high 64 bits:
216 * 0-2: address width
217 * 3-6: aval
218 * 8-23: domain id
220 struct context_entry {
221 u64 lo;
222 u64 hi;
225 static inline bool context_present(struct context_entry *context)
227 return (context->lo & 1);
229 static inline void context_set_present(struct context_entry *context)
231 context->lo |= 1;
234 static inline void context_set_fault_enable(struct context_entry *context)
236 context->lo &= (((u64)-1) << 2) | 1;
239 static inline void context_set_translation_type(struct context_entry *context,
240 unsigned long value)
242 context->lo &= (((u64)-1) << 4) | 3;
243 context->lo |= (value & 3) << 2;
246 static inline void context_set_address_root(struct context_entry *context,
247 unsigned long value)
249 context->lo |= value & VTD_PAGE_MASK;
252 static inline void context_set_address_width(struct context_entry *context,
253 unsigned long value)
255 context->hi |= value & 7;
258 static inline void context_set_domain_id(struct context_entry *context,
259 unsigned long value)
261 context->hi |= (value & ((1 << 16) - 1)) << 8;
264 static inline void context_clear_entry(struct context_entry *context)
266 context->lo = 0;
267 context->hi = 0;
271 * 0: readable
272 * 1: writable
273 * 2-6: reserved
274 * 7: super page
275 * 8-10: available
276 * 11: snoop behavior
277 * 12-63: Host physcial address
279 struct dma_pte {
280 u64 val;
283 static inline void dma_clear_pte(struct dma_pte *pte)
285 pte->val = 0;
288 static inline void dma_set_pte_readable(struct dma_pte *pte)
290 pte->val |= DMA_PTE_READ;
293 static inline void dma_set_pte_writable(struct dma_pte *pte)
295 pte->val |= DMA_PTE_WRITE;
298 static inline void dma_set_pte_snp(struct dma_pte *pte)
300 pte->val |= DMA_PTE_SNP;
303 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
305 pte->val = (pte->val & ~3) | (prot & 3);
308 static inline u64 dma_pte_addr(struct dma_pte *pte)
310 #ifdef CONFIG_64BIT
311 return pte->val & VTD_PAGE_MASK;
312 #else
313 /* Must have a full atomic 64-bit read */
314 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
315 #endif
318 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
320 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
323 static inline bool dma_pte_present(struct dma_pte *pte)
325 return (pte->val & 3) != 0;
328 static inline bool dma_pte_superpage(struct dma_pte *pte)
330 return (pte->val & (1 << 7));
333 static inline int first_pte_in_page(struct dma_pte *pte)
335 return !((unsigned long)pte & ~VTD_PAGE_MASK);
339 * This domain is a statically identity mapping domain.
340 * 1. This domain creats a static 1:1 mapping to all usable memory.
341 * 2. It maps to each iommu if successful.
342 * 3. Each iommu mapps to this domain if successful.
344 static struct dmar_domain *si_domain;
345 static int hw_pass_through = 1;
347 /* devices under the same p2p bridge are owned in one domain */
348 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
350 /* domain represents a virtual machine, more than one devices
351 * across iommus may be owned in one domain, e.g. kvm guest.
353 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
355 /* si_domain contains mulitple devices */
356 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
358 /* define the limit of IOMMUs supported in each domain */
359 #ifdef CONFIG_X86
360 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
361 #else
362 # define IOMMU_UNITS_SUPPORTED 64
363 #endif
365 struct dmar_domain {
366 int id; /* domain id */
367 int nid; /* node id */
368 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
369 /* bitmap of iommus this domain uses*/
371 struct list_head devices; /* all devices' list */
372 struct iova_domain iovad; /* iova's that belong to this domain */
374 struct dma_pte *pgd; /* virtual address */
375 int gaw; /* max guest address width */
377 /* adjusted guest address width, 0 is level 2 30-bit */
378 int agaw;
380 int flags; /* flags to find out type of domain */
382 int iommu_coherency;/* indicate coherency of iommu access */
383 int iommu_snooping; /* indicate snooping control feature*/
384 int iommu_count; /* reference count of iommu */
385 int iommu_superpage;/* Level of superpages supported:
386 0 == 4KiB (no superpages), 1 == 2MiB,
387 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
388 spinlock_t iommu_lock; /* protect iommu set in domain */
389 u64 max_addr; /* maximum mapped address */
392 /* PCI domain-device relationship */
393 struct device_domain_info {
394 struct list_head link; /* link to domain siblings */
395 struct list_head global; /* link to global list */
396 int segment; /* PCI domain */
397 u8 bus; /* PCI bus number */
398 u8 devfn; /* PCI devfn number */
399 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
400 struct intel_iommu *iommu; /* IOMMU used by this device */
401 struct dmar_domain *domain; /* pointer to domain */
404 static void flush_unmaps_timeout(unsigned long data);
406 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
408 #define HIGH_WATER_MARK 250
409 struct deferred_flush_tables {
410 int next;
411 struct iova *iova[HIGH_WATER_MARK];
412 struct dmar_domain *domain[HIGH_WATER_MARK];
415 static struct deferred_flush_tables *deferred_flush;
417 /* bitmap for indexing intel_iommus */
418 static int g_num_of_iommus;
420 static DEFINE_SPINLOCK(async_umap_flush_lock);
421 static LIST_HEAD(unmaps_to_do);
423 static int timer_on;
424 static long list_size;
426 static void domain_remove_dev_info(struct dmar_domain *domain);
428 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
429 int dmar_disabled = 0;
430 #else
431 int dmar_disabled = 1;
432 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
434 int intel_iommu_enabled = 0;
435 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
437 static int dmar_map_gfx = 1;
438 static int dmar_forcedac;
439 static int intel_iommu_strict;
440 static int intel_iommu_superpage = 1;
442 int intel_iommu_gfx_mapped;
443 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
445 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
446 static DEFINE_SPINLOCK(device_domain_lock);
447 static LIST_HEAD(device_domain_list);
449 static struct iommu_ops intel_iommu_ops;
451 static int __init intel_iommu_setup(char *str)
453 if (!str)
454 return -EINVAL;
455 while (*str) {
456 if (!strncmp(str, "on", 2)) {
457 dmar_disabled = 0;
458 printk(KERN_INFO "Intel-IOMMU: enabled\n");
459 } else if (!strncmp(str, "off", 3)) {
460 dmar_disabled = 1;
461 printk(KERN_INFO "Intel-IOMMU: disabled\n");
462 } else if (!strncmp(str, "igfx_off", 8)) {
463 dmar_map_gfx = 0;
464 printk(KERN_INFO
465 "Intel-IOMMU: disable GFX device mapping\n");
466 } else if (!strncmp(str, "forcedac", 8)) {
467 printk(KERN_INFO
468 "Intel-IOMMU: Forcing DAC for PCI devices\n");
469 dmar_forcedac = 1;
470 } else if (!strncmp(str, "strict", 6)) {
471 printk(KERN_INFO
472 "Intel-IOMMU: disable batched IOTLB flush\n");
473 intel_iommu_strict = 1;
474 } else if (!strncmp(str, "sp_off", 6)) {
475 printk(KERN_INFO
476 "Intel-IOMMU: disable supported super page\n");
477 intel_iommu_superpage = 0;
480 str += strcspn(str, ",");
481 while (*str == ',')
482 str++;
484 return 0;
486 __setup("intel_iommu=", intel_iommu_setup);
488 static struct kmem_cache *iommu_domain_cache;
489 static struct kmem_cache *iommu_devinfo_cache;
490 static struct kmem_cache *iommu_iova_cache;
492 static inline void *alloc_pgtable_page(int node)
494 struct page *page;
495 void *vaddr = NULL;
497 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
498 if (page)
499 vaddr = page_address(page);
500 return vaddr;
503 static inline void free_pgtable_page(void *vaddr)
505 free_page((unsigned long)vaddr);
508 static inline void *alloc_domain_mem(void)
510 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
513 static void free_domain_mem(void *vaddr)
515 kmem_cache_free(iommu_domain_cache, vaddr);
518 static inline void * alloc_devinfo_mem(void)
520 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
523 static inline void free_devinfo_mem(void *vaddr)
525 kmem_cache_free(iommu_devinfo_cache, vaddr);
528 struct iova *alloc_iova_mem(void)
530 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
533 void free_iova_mem(struct iova *iova)
535 kmem_cache_free(iommu_iova_cache, iova);
539 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
541 unsigned long sagaw;
542 int agaw = -1;
544 sagaw = cap_sagaw(iommu->cap);
545 for (agaw = width_to_agaw(max_gaw);
546 agaw >= 0; agaw--) {
547 if (test_bit(agaw, &sagaw))
548 break;
551 return agaw;
555 * Calculate max SAGAW for each iommu.
557 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
559 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
563 * calculate agaw for each iommu.
564 * "SAGAW" may be different across iommus, use a default agaw, and
565 * get a supported less agaw for iommus that don't support the default agaw.
567 int iommu_calculate_agaw(struct intel_iommu *iommu)
569 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
572 /* This functionin only returns single iommu in a domain */
573 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
575 int iommu_id;
577 /* si_domain and vm domain should not get here. */
578 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
579 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
581 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
582 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
583 return NULL;
585 return g_iommus[iommu_id];
588 static void domain_update_iommu_coherency(struct dmar_domain *domain)
590 int i;
592 i = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
594 domain->iommu_coherency = i < g_num_of_iommus ? 1 : 0;
596 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
597 if (!ecap_coherent(g_iommus[i]->ecap)) {
598 domain->iommu_coherency = 0;
599 break;
604 static void domain_update_iommu_snooping(struct dmar_domain *domain)
606 int i;
608 domain->iommu_snooping = 1;
610 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
611 if (!ecap_sc_support(g_iommus[i]->ecap)) {
612 domain->iommu_snooping = 0;
613 break;
618 static void domain_update_iommu_superpage(struct dmar_domain *domain)
620 struct dmar_drhd_unit *drhd;
621 struct intel_iommu *iommu = NULL;
622 int mask = 0xf;
624 if (!intel_iommu_superpage) {
625 domain->iommu_superpage = 0;
626 return;
629 /* set iommu_superpage to the smallest common denominator */
630 for_each_active_iommu(iommu, drhd) {
631 mask &= cap_super_page_val(iommu->cap);
632 if (!mask) {
633 break;
636 domain->iommu_superpage = fls(mask);
639 /* Some capabilities may be different across iommus */
640 static void domain_update_iommu_cap(struct dmar_domain *domain)
642 domain_update_iommu_coherency(domain);
643 domain_update_iommu_snooping(domain);
644 domain_update_iommu_superpage(domain);
647 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
649 struct dmar_drhd_unit *drhd = NULL;
650 int i;
652 for_each_drhd_unit(drhd) {
653 if (drhd->ignored)
654 continue;
655 if (segment != drhd->segment)
656 continue;
658 for (i = 0; i < drhd->devices_cnt; i++) {
659 if (drhd->devices[i] &&
660 drhd->devices[i]->bus->number == bus &&
661 drhd->devices[i]->devfn == devfn)
662 return drhd->iommu;
663 if (drhd->devices[i] &&
664 drhd->devices[i]->subordinate &&
665 drhd->devices[i]->subordinate->number <= bus &&
666 drhd->devices[i]->subordinate->busn_res.end >= bus)
667 return drhd->iommu;
670 if (drhd->include_all)
671 return drhd->iommu;
674 return NULL;
677 static void domain_flush_cache(struct dmar_domain *domain,
678 void *addr, int size)
680 if (!domain->iommu_coherency)
681 clflush_cache_range(addr, size);
684 /* Gets context entry for a given bus and devfn */
685 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
686 u8 bus, u8 devfn)
688 struct root_entry *root;
689 struct context_entry *context;
690 unsigned long phy_addr;
691 unsigned long flags;
693 spin_lock_irqsave(&iommu->lock, flags);
694 root = &iommu->root_entry[bus];
695 context = get_context_addr_from_root(root);
696 if (!context) {
697 context = (struct context_entry *)
698 alloc_pgtable_page(iommu->node);
699 if (!context) {
700 spin_unlock_irqrestore(&iommu->lock, flags);
701 return NULL;
703 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
704 phy_addr = virt_to_phys((void *)context);
705 set_root_value(root, phy_addr);
706 set_root_present(root);
707 __iommu_flush_cache(iommu, root, sizeof(*root));
709 spin_unlock_irqrestore(&iommu->lock, flags);
710 return &context[devfn];
713 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
715 struct root_entry *root;
716 struct context_entry *context;
717 int ret;
718 unsigned long flags;
720 spin_lock_irqsave(&iommu->lock, flags);
721 root = &iommu->root_entry[bus];
722 context = get_context_addr_from_root(root);
723 if (!context) {
724 ret = 0;
725 goto out;
727 ret = context_present(&context[devfn]);
728 out:
729 spin_unlock_irqrestore(&iommu->lock, flags);
730 return ret;
733 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
735 struct root_entry *root;
736 struct context_entry *context;
737 unsigned long flags;
739 spin_lock_irqsave(&iommu->lock, flags);
740 root = &iommu->root_entry[bus];
741 context = get_context_addr_from_root(root);
742 if (context) {
743 context_clear_entry(&context[devfn]);
744 __iommu_flush_cache(iommu, &context[devfn], \
745 sizeof(*context));
747 spin_unlock_irqrestore(&iommu->lock, flags);
750 static void free_context_table(struct intel_iommu *iommu)
752 struct root_entry *root;
753 int i;
754 unsigned long flags;
755 struct context_entry *context;
757 spin_lock_irqsave(&iommu->lock, flags);
758 if (!iommu->root_entry) {
759 goto out;
761 for (i = 0; i < ROOT_ENTRY_NR; i++) {
762 root = &iommu->root_entry[i];
763 context = get_context_addr_from_root(root);
764 if (context)
765 free_pgtable_page(context);
767 free_pgtable_page(iommu->root_entry);
768 iommu->root_entry = NULL;
769 out:
770 spin_unlock_irqrestore(&iommu->lock, flags);
773 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
774 unsigned long pfn, int target_level)
776 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
777 struct dma_pte *parent, *pte = NULL;
778 int level = agaw_to_level(domain->agaw);
779 int offset;
781 BUG_ON(!domain->pgd);
782 BUG_ON(addr_width < BITS_PER_LONG && pfn >> addr_width);
783 parent = domain->pgd;
785 while (level > 0) {
786 void *tmp_page;
788 offset = pfn_level_offset(pfn, level);
789 pte = &parent[offset];
790 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
791 break;
792 if (level == target_level)
793 break;
795 if (!dma_pte_present(pte)) {
796 uint64_t pteval;
798 tmp_page = alloc_pgtable_page(domain->nid);
800 if (!tmp_page)
801 return NULL;
803 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
804 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
805 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
806 /* Someone else set it while we were thinking; use theirs. */
807 free_pgtable_page(tmp_page);
808 } else {
809 dma_pte_addr(pte);
810 domain_flush_cache(domain, pte, sizeof(*pte));
813 parent = phys_to_virt(dma_pte_addr(pte));
814 level--;
817 return pte;
821 /* return address's pte at specific level */
822 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
823 unsigned long pfn,
824 int level, int *large_page)
826 struct dma_pte *parent, *pte = NULL;
827 int total = agaw_to_level(domain->agaw);
828 int offset;
830 parent = domain->pgd;
831 while (level <= total) {
832 offset = pfn_level_offset(pfn, total);
833 pte = &parent[offset];
834 if (level == total)
835 return pte;
837 if (!dma_pte_present(pte)) {
838 *large_page = total;
839 break;
842 if (pte->val & DMA_PTE_LARGE_PAGE) {
843 *large_page = total;
844 return pte;
847 parent = phys_to_virt(dma_pte_addr(pte));
848 total--;
850 return NULL;
853 /* clear last level pte, a tlb flush should be followed */
854 static int dma_pte_clear_range(struct dmar_domain *domain,
855 unsigned long start_pfn,
856 unsigned long last_pfn)
858 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
859 unsigned int large_page = 1;
860 struct dma_pte *first_pte, *pte;
861 int order;
863 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
864 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
865 BUG_ON(start_pfn > last_pfn);
867 /* we don't need lock here; nobody else touches the iova range */
868 do {
869 large_page = 1;
870 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
871 if (!pte) {
872 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
873 continue;
875 do {
876 dma_clear_pte(pte);
877 start_pfn += lvl_to_nr_pages(large_page);
878 pte++;
879 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
881 domain_flush_cache(domain, first_pte,
882 (void *)pte - (void *)first_pte);
884 } while (start_pfn && start_pfn <= last_pfn);
886 order = (large_page - 1) * 9;
887 return order;
890 /* free page table pages. last level pte should already be cleared */
891 static void dma_pte_free_pagetable(struct dmar_domain *domain,
892 unsigned long start_pfn,
893 unsigned long last_pfn)
895 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
896 struct dma_pte *first_pte, *pte;
897 int total = agaw_to_level(domain->agaw);
898 int level;
899 unsigned long tmp;
900 int large_page = 2;
902 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
903 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
904 BUG_ON(start_pfn > last_pfn);
906 /* We don't need lock here; nobody else touches the iova range */
907 level = 2;
908 while (level <= total) {
909 tmp = align_to_level(start_pfn, level);
911 /* If we can't even clear one PTE at this level, we're done */
912 if (tmp + level_size(level) - 1 > last_pfn)
913 return;
915 do {
916 large_page = level;
917 first_pte = pte = dma_pfn_level_pte(domain, tmp, level, &large_page);
918 if (large_page > level)
919 level = large_page + 1;
920 if (!pte) {
921 tmp = align_to_level(tmp + 1, level + 1);
922 continue;
924 do {
925 if (dma_pte_present(pte)) {
926 free_pgtable_page(phys_to_virt(dma_pte_addr(pte)));
927 dma_clear_pte(pte);
929 pte++;
930 tmp += level_size(level);
931 } while (!first_pte_in_page(pte) &&
932 tmp + level_size(level) - 1 <= last_pfn);
934 domain_flush_cache(domain, first_pte,
935 (void *)pte - (void *)first_pte);
937 } while (tmp && tmp + level_size(level) - 1 <= last_pfn);
938 level++;
940 /* free pgd */
941 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
942 free_pgtable_page(domain->pgd);
943 domain->pgd = NULL;
947 /* iommu handling */
948 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
950 struct root_entry *root;
951 unsigned long flags;
953 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
954 if (!root)
955 return -ENOMEM;
957 __iommu_flush_cache(iommu, root, ROOT_SIZE);
959 spin_lock_irqsave(&iommu->lock, flags);
960 iommu->root_entry = root;
961 spin_unlock_irqrestore(&iommu->lock, flags);
963 return 0;
966 static void iommu_set_root_entry(struct intel_iommu *iommu)
968 void *addr;
969 u32 sts;
970 unsigned long flag;
972 addr = iommu->root_entry;
974 raw_spin_lock_irqsave(&iommu->register_lock, flag);
975 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
977 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
979 /* Make sure hardware complete it */
980 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
981 readl, (sts & DMA_GSTS_RTPS), sts);
983 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
986 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
988 u32 val;
989 unsigned long flag;
991 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
992 return;
994 raw_spin_lock_irqsave(&iommu->register_lock, flag);
995 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
997 /* Make sure hardware complete it */
998 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
999 readl, (!(val & DMA_GSTS_WBFS)), val);
1001 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1004 /* return value determine if we need a write buffer flush */
1005 static void __iommu_flush_context(struct intel_iommu *iommu,
1006 u16 did, u16 source_id, u8 function_mask,
1007 u64 type)
1009 u64 val = 0;
1010 unsigned long flag;
1012 switch (type) {
1013 case DMA_CCMD_GLOBAL_INVL:
1014 val = DMA_CCMD_GLOBAL_INVL;
1015 break;
1016 case DMA_CCMD_DOMAIN_INVL:
1017 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1018 break;
1019 case DMA_CCMD_DEVICE_INVL:
1020 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1021 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1022 break;
1023 default:
1024 BUG();
1026 val |= DMA_CCMD_ICC;
1028 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1029 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1031 /* Make sure hardware complete it */
1032 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1033 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1035 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1038 /* return value determine if we need a write buffer flush */
1039 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1040 u64 addr, unsigned int size_order, u64 type)
1042 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1043 u64 val = 0, val_iva = 0;
1044 unsigned long flag;
1046 switch (type) {
1047 case DMA_TLB_GLOBAL_FLUSH:
1048 /* global flush doesn't need set IVA_REG */
1049 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1050 break;
1051 case DMA_TLB_DSI_FLUSH:
1052 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1053 break;
1054 case DMA_TLB_PSI_FLUSH:
1055 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1056 /* Note: always flush non-leaf currently */
1057 val_iva = size_order | addr;
1058 break;
1059 default:
1060 BUG();
1062 /* Note: set drain read/write */
1063 #if 0
1065 * This is probably to be super secure.. Looks like we can
1066 * ignore it without any impact.
1068 if (cap_read_drain(iommu->cap))
1069 val |= DMA_TLB_READ_DRAIN;
1070 #endif
1071 if (cap_write_drain(iommu->cap))
1072 val |= DMA_TLB_WRITE_DRAIN;
1074 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1075 /* Note: Only uses first TLB reg currently */
1076 if (val_iva)
1077 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1078 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1080 /* Make sure hardware complete it */
1081 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1082 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1084 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1086 /* check IOTLB invalidation granularity */
1087 if (DMA_TLB_IAIG(val) == 0)
1088 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1089 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1090 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1091 (unsigned long long)DMA_TLB_IIRG(type),
1092 (unsigned long long)DMA_TLB_IAIG(val));
1095 static struct device_domain_info *iommu_support_dev_iotlb(
1096 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1098 int found = 0;
1099 unsigned long flags;
1100 struct device_domain_info *info;
1101 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1103 if (!ecap_dev_iotlb_support(iommu->ecap))
1104 return NULL;
1106 if (!iommu->qi)
1107 return NULL;
1109 spin_lock_irqsave(&device_domain_lock, flags);
1110 list_for_each_entry(info, &domain->devices, link)
1111 if (info->bus == bus && info->devfn == devfn) {
1112 found = 1;
1113 break;
1115 spin_unlock_irqrestore(&device_domain_lock, flags);
1117 if (!found || !info->dev)
1118 return NULL;
1120 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1121 return NULL;
1123 if (!dmar_find_matched_atsr_unit(info->dev))
1124 return NULL;
1126 info->iommu = iommu;
1128 return info;
1131 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1133 if (!info)
1134 return;
1136 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1139 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1141 if (!info->dev || !pci_ats_enabled(info->dev))
1142 return;
1144 pci_disable_ats(info->dev);
1147 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1148 u64 addr, unsigned mask)
1150 u16 sid, qdep;
1151 unsigned long flags;
1152 struct device_domain_info *info;
1154 spin_lock_irqsave(&device_domain_lock, flags);
1155 list_for_each_entry(info, &domain->devices, link) {
1156 if (!info->dev || !pci_ats_enabled(info->dev))
1157 continue;
1159 sid = info->bus << 8 | info->devfn;
1160 qdep = pci_ats_queue_depth(info->dev);
1161 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1163 spin_unlock_irqrestore(&device_domain_lock, flags);
1166 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1167 unsigned long pfn, unsigned int pages, int map)
1169 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1170 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1172 BUG_ON(pages == 0);
1175 * Fallback to domain selective flush if no PSI support or the size is
1176 * too big.
1177 * PSI requires page size to be 2 ^ x, and the base address is naturally
1178 * aligned to the size
1180 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1181 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1182 DMA_TLB_DSI_FLUSH);
1183 else
1184 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1185 DMA_TLB_PSI_FLUSH);
1188 * In caching mode, changes of pages from non-present to present require
1189 * flush. However, device IOTLB doesn't need to be flushed in this case.
1191 if (!cap_caching_mode(iommu->cap) || !map)
1192 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1195 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1197 u32 pmen;
1198 unsigned long flags;
1200 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1201 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1202 pmen &= ~DMA_PMEN_EPM;
1203 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1205 /* wait for the protected region status bit to clear */
1206 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1207 readl, !(pmen & DMA_PMEN_PRS), pmen);
1209 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1212 static int iommu_enable_translation(struct intel_iommu *iommu)
1214 u32 sts;
1215 unsigned long flags;
1217 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1218 iommu->gcmd |= DMA_GCMD_TE;
1219 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1221 /* Make sure hardware complete it */
1222 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1223 readl, (sts & DMA_GSTS_TES), sts);
1225 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1226 return 0;
1229 static int iommu_disable_translation(struct intel_iommu *iommu)
1231 u32 sts;
1232 unsigned long flag;
1234 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1235 iommu->gcmd &= ~DMA_GCMD_TE;
1236 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1238 /* Make sure hardware complete it */
1239 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1240 readl, (!(sts & DMA_GSTS_TES)), sts);
1242 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1243 return 0;
1247 static int iommu_init_domains(struct intel_iommu *iommu)
1249 unsigned long ndomains;
1250 unsigned long nlongs;
1252 ndomains = cap_ndoms(iommu->cap);
1253 pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id,
1254 ndomains);
1255 nlongs = BITS_TO_LONGS(ndomains);
1257 spin_lock_init(&iommu->lock);
1259 /* TBD: there might be 64K domains,
1260 * consider other allocation for future chip
1262 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1263 if (!iommu->domain_ids) {
1264 printk(KERN_ERR "Allocating domain id array failed\n");
1265 return -ENOMEM;
1267 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1268 GFP_KERNEL);
1269 if (!iommu->domains) {
1270 printk(KERN_ERR "Allocating domain array failed\n");
1271 return -ENOMEM;
1275 * if Caching mode is set, then invalid translations are tagged
1276 * with domainid 0. Hence we need to pre-allocate it.
1278 if (cap_caching_mode(iommu->cap))
1279 set_bit(0, iommu->domain_ids);
1280 return 0;
1284 static void domain_exit(struct dmar_domain *domain);
1285 static void vm_domain_exit(struct dmar_domain *domain);
1287 void free_dmar_iommu(struct intel_iommu *iommu)
1289 struct dmar_domain *domain;
1290 int i;
1291 unsigned long flags;
1293 if ((iommu->domains) && (iommu->domain_ids)) {
1294 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1295 domain = iommu->domains[i];
1296 clear_bit(i, iommu->domain_ids);
1298 spin_lock_irqsave(&domain->iommu_lock, flags);
1299 if (--domain->iommu_count == 0) {
1300 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1301 vm_domain_exit(domain);
1302 else
1303 domain_exit(domain);
1305 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1309 if (iommu->gcmd & DMA_GCMD_TE)
1310 iommu_disable_translation(iommu);
1312 if (iommu->irq) {
1313 irq_set_handler_data(iommu->irq, NULL);
1314 /* This will mask the irq */
1315 free_irq(iommu->irq, iommu);
1316 destroy_irq(iommu->irq);
1319 kfree(iommu->domains);
1320 kfree(iommu->domain_ids);
1322 g_iommus[iommu->seq_id] = NULL;
1324 /* if all iommus are freed, free g_iommus */
1325 for (i = 0; i < g_num_of_iommus; i++) {
1326 if (g_iommus[i])
1327 break;
1330 if (i == g_num_of_iommus)
1331 kfree(g_iommus);
1333 /* free context mapping */
1334 free_context_table(iommu);
1337 static struct dmar_domain *alloc_domain(void)
1339 struct dmar_domain *domain;
1341 domain = alloc_domain_mem();
1342 if (!domain)
1343 return NULL;
1345 domain->nid = -1;
1346 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1347 domain->flags = 0;
1349 return domain;
1352 static int iommu_attach_domain(struct dmar_domain *domain,
1353 struct intel_iommu *iommu)
1355 int num;
1356 unsigned long ndomains;
1357 unsigned long flags;
1359 ndomains = cap_ndoms(iommu->cap);
1361 spin_lock_irqsave(&iommu->lock, flags);
1363 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1364 if (num >= ndomains) {
1365 spin_unlock_irqrestore(&iommu->lock, flags);
1366 printk(KERN_ERR "IOMMU: no free domain ids\n");
1367 return -ENOMEM;
1370 domain->id = num;
1371 set_bit(num, iommu->domain_ids);
1372 set_bit(iommu->seq_id, domain->iommu_bmp);
1373 iommu->domains[num] = domain;
1374 spin_unlock_irqrestore(&iommu->lock, flags);
1376 return 0;
1379 static void iommu_detach_domain(struct dmar_domain *domain,
1380 struct intel_iommu *iommu)
1382 unsigned long flags;
1383 int num, ndomains;
1384 int found = 0;
1386 spin_lock_irqsave(&iommu->lock, flags);
1387 ndomains = cap_ndoms(iommu->cap);
1388 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1389 if (iommu->domains[num] == domain) {
1390 found = 1;
1391 break;
1395 if (found) {
1396 clear_bit(num, iommu->domain_ids);
1397 clear_bit(iommu->seq_id, domain->iommu_bmp);
1398 iommu->domains[num] = NULL;
1400 spin_unlock_irqrestore(&iommu->lock, flags);
1403 static struct iova_domain reserved_iova_list;
1404 static struct lock_class_key reserved_rbtree_key;
1406 static int dmar_init_reserved_ranges(void)
1408 struct pci_dev *pdev = NULL;
1409 struct iova *iova;
1410 int i;
1412 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1414 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1415 &reserved_rbtree_key);
1417 /* IOAPIC ranges shouldn't be accessed by DMA */
1418 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1419 IOVA_PFN(IOAPIC_RANGE_END));
1420 if (!iova) {
1421 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1422 return -ENODEV;
1425 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1426 for_each_pci_dev(pdev) {
1427 struct resource *r;
1429 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1430 r = &pdev->resource[i];
1431 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1432 continue;
1433 iova = reserve_iova(&reserved_iova_list,
1434 IOVA_PFN(r->start),
1435 IOVA_PFN(r->end));
1436 if (!iova) {
1437 printk(KERN_ERR "Reserve iova failed\n");
1438 return -ENODEV;
1442 return 0;
1445 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1447 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1450 static inline int guestwidth_to_adjustwidth(int gaw)
1452 int agaw;
1453 int r = (gaw - 12) % 9;
1455 if (r == 0)
1456 agaw = gaw;
1457 else
1458 agaw = gaw + 9 - r;
1459 if (agaw > 64)
1460 agaw = 64;
1461 return agaw;
1464 static int domain_init(struct dmar_domain *domain, int guest_width)
1466 struct intel_iommu *iommu;
1467 int adjust_width, agaw;
1468 unsigned long sagaw;
1470 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1471 spin_lock_init(&domain->iommu_lock);
1473 domain_reserve_special_ranges(domain);
1475 /* calculate AGAW */
1476 iommu = domain_get_iommu(domain);
1477 if (guest_width > cap_mgaw(iommu->cap))
1478 guest_width = cap_mgaw(iommu->cap);
1479 domain->gaw = guest_width;
1480 adjust_width = guestwidth_to_adjustwidth(guest_width);
1481 agaw = width_to_agaw(adjust_width);
1482 sagaw = cap_sagaw(iommu->cap);
1483 if (!test_bit(agaw, &sagaw)) {
1484 /* hardware doesn't support it, choose a bigger one */
1485 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1486 agaw = find_next_bit(&sagaw, 5, agaw);
1487 if (agaw >= 5)
1488 return -ENODEV;
1490 domain->agaw = agaw;
1491 INIT_LIST_HEAD(&domain->devices);
1493 if (ecap_coherent(iommu->ecap))
1494 domain->iommu_coherency = 1;
1495 else
1496 domain->iommu_coherency = 0;
1498 if (ecap_sc_support(iommu->ecap))
1499 domain->iommu_snooping = 1;
1500 else
1501 domain->iommu_snooping = 0;
1503 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1504 domain->iommu_count = 1;
1505 domain->nid = iommu->node;
1507 /* always allocate the top pgd */
1508 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1509 if (!domain->pgd)
1510 return -ENOMEM;
1511 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1512 return 0;
1515 static void domain_exit(struct dmar_domain *domain)
1517 struct dmar_drhd_unit *drhd;
1518 struct intel_iommu *iommu;
1520 /* Domain 0 is reserved, so dont process it */
1521 if (!domain)
1522 return;
1524 /* Flush any lazy unmaps that may reference this domain */
1525 if (!intel_iommu_strict)
1526 flush_unmaps_timeout(0);
1528 domain_remove_dev_info(domain);
1529 /* destroy iovas */
1530 put_iova_domain(&domain->iovad);
1532 /* clear ptes */
1533 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1535 /* free page tables */
1536 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1538 for_each_active_iommu(iommu, drhd)
1539 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1540 iommu_detach_domain(domain, iommu);
1542 free_domain_mem(domain);
1545 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1546 u8 bus, u8 devfn, int translation)
1548 struct context_entry *context;
1549 unsigned long flags;
1550 struct intel_iommu *iommu;
1551 struct dma_pte *pgd;
1552 unsigned long num;
1553 unsigned long ndomains;
1554 int id;
1555 int agaw;
1556 struct device_domain_info *info = NULL;
1558 pr_debug("Set context mapping for %02x:%02x.%d\n",
1559 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1561 BUG_ON(!domain->pgd);
1562 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1563 translation != CONTEXT_TT_MULTI_LEVEL);
1565 iommu = device_to_iommu(segment, bus, devfn);
1566 if (!iommu)
1567 return -ENODEV;
1569 context = device_to_context_entry(iommu, bus, devfn);
1570 if (!context)
1571 return -ENOMEM;
1572 spin_lock_irqsave(&iommu->lock, flags);
1573 if (context_present(context)) {
1574 spin_unlock_irqrestore(&iommu->lock, flags);
1575 return 0;
1578 id = domain->id;
1579 pgd = domain->pgd;
1581 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1582 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1583 int found = 0;
1585 /* find an available domain id for this device in iommu */
1586 ndomains = cap_ndoms(iommu->cap);
1587 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1588 if (iommu->domains[num] == domain) {
1589 id = num;
1590 found = 1;
1591 break;
1595 if (found == 0) {
1596 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1597 if (num >= ndomains) {
1598 spin_unlock_irqrestore(&iommu->lock, flags);
1599 printk(KERN_ERR "IOMMU: no free domain ids\n");
1600 return -EFAULT;
1603 set_bit(num, iommu->domain_ids);
1604 iommu->domains[num] = domain;
1605 id = num;
1608 /* Skip top levels of page tables for
1609 * iommu which has less agaw than default.
1610 * Unnecessary for PT mode.
1612 if (translation != CONTEXT_TT_PASS_THROUGH) {
1613 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1614 pgd = phys_to_virt(dma_pte_addr(pgd));
1615 if (!dma_pte_present(pgd)) {
1616 spin_unlock_irqrestore(&iommu->lock, flags);
1617 return -ENOMEM;
1623 context_set_domain_id(context, id);
1625 if (translation != CONTEXT_TT_PASS_THROUGH) {
1626 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1627 translation = info ? CONTEXT_TT_DEV_IOTLB :
1628 CONTEXT_TT_MULTI_LEVEL;
1631 * In pass through mode, AW must be programmed to indicate the largest
1632 * AGAW value supported by hardware. And ASR is ignored by hardware.
1634 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1635 context_set_address_width(context, iommu->msagaw);
1636 else {
1637 context_set_address_root(context, virt_to_phys(pgd));
1638 context_set_address_width(context, iommu->agaw);
1641 context_set_translation_type(context, translation);
1642 context_set_fault_enable(context);
1643 context_set_present(context);
1644 domain_flush_cache(domain, context, sizeof(*context));
1647 * It's a non-present to present mapping. If hardware doesn't cache
1648 * non-present entry we only need to flush the write-buffer. If the
1649 * _does_ cache non-present entries, then it does so in the special
1650 * domain #0, which we have to flush:
1652 if (cap_caching_mode(iommu->cap)) {
1653 iommu->flush.flush_context(iommu, 0,
1654 (((u16)bus) << 8) | devfn,
1655 DMA_CCMD_MASK_NOBIT,
1656 DMA_CCMD_DEVICE_INVL);
1657 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1658 } else {
1659 iommu_flush_write_buffer(iommu);
1661 iommu_enable_dev_iotlb(info);
1662 spin_unlock_irqrestore(&iommu->lock, flags);
1664 spin_lock_irqsave(&domain->iommu_lock, flags);
1665 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1666 domain->iommu_count++;
1667 if (domain->iommu_count == 1)
1668 domain->nid = iommu->node;
1669 domain_update_iommu_cap(domain);
1671 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1672 return 0;
1675 static int
1676 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1677 int translation)
1679 int ret;
1680 struct pci_dev *tmp, *parent;
1682 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1683 pdev->bus->number, pdev->devfn,
1684 translation);
1685 if (ret)
1686 return ret;
1688 /* dependent device mapping */
1689 tmp = pci_find_upstream_pcie_bridge(pdev);
1690 if (!tmp)
1691 return 0;
1692 /* Secondary interface's bus number and devfn 0 */
1693 parent = pdev->bus->self;
1694 while (parent != tmp) {
1695 ret = domain_context_mapping_one(domain,
1696 pci_domain_nr(parent->bus),
1697 parent->bus->number,
1698 parent->devfn, translation);
1699 if (ret)
1700 return ret;
1701 parent = parent->bus->self;
1703 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1704 return domain_context_mapping_one(domain,
1705 pci_domain_nr(tmp->subordinate),
1706 tmp->subordinate->number, 0,
1707 translation);
1708 else /* this is a legacy PCI bridge */
1709 return domain_context_mapping_one(domain,
1710 pci_domain_nr(tmp->bus),
1711 tmp->bus->number,
1712 tmp->devfn,
1713 translation);
1716 static int domain_context_mapped(struct pci_dev *pdev)
1718 int ret;
1719 struct pci_dev *tmp, *parent;
1720 struct intel_iommu *iommu;
1722 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1723 pdev->devfn);
1724 if (!iommu)
1725 return -ENODEV;
1727 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1728 if (!ret)
1729 return ret;
1730 /* dependent device mapping */
1731 tmp = pci_find_upstream_pcie_bridge(pdev);
1732 if (!tmp)
1733 return ret;
1734 /* Secondary interface's bus number and devfn 0 */
1735 parent = pdev->bus->self;
1736 while (parent != tmp) {
1737 ret = device_context_mapped(iommu, parent->bus->number,
1738 parent->devfn);
1739 if (!ret)
1740 return ret;
1741 parent = parent->bus->self;
1743 if (pci_is_pcie(tmp))
1744 return device_context_mapped(iommu, tmp->subordinate->number,
1746 else
1747 return device_context_mapped(iommu, tmp->bus->number,
1748 tmp->devfn);
1751 /* Returns a number of VTD pages, but aligned to MM page size */
1752 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1753 size_t size)
1755 host_addr &= ~PAGE_MASK;
1756 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1759 /* Return largest possible superpage level for a given mapping */
1760 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1761 unsigned long iov_pfn,
1762 unsigned long phy_pfn,
1763 unsigned long pages)
1765 int support, level = 1;
1766 unsigned long pfnmerge;
1768 support = domain->iommu_superpage;
1770 /* To use a large page, the virtual *and* physical addresses
1771 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1772 of them will mean we have to use smaller pages. So just
1773 merge them and check both at once. */
1774 pfnmerge = iov_pfn | phy_pfn;
1776 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1777 pages >>= VTD_STRIDE_SHIFT;
1778 if (!pages)
1779 break;
1780 pfnmerge >>= VTD_STRIDE_SHIFT;
1781 level++;
1782 support--;
1784 return level;
1787 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1788 struct scatterlist *sg, unsigned long phys_pfn,
1789 unsigned long nr_pages, int prot)
1791 struct dma_pte *first_pte = NULL, *pte = NULL;
1792 phys_addr_t uninitialized_var(pteval);
1793 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1794 unsigned long sg_res;
1795 unsigned int largepage_lvl = 0;
1796 unsigned long lvl_pages = 0;
1798 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1800 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1801 return -EINVAL;
1803 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1805 if (sg)
1806 sg_res = 0;
1807 else {
1808 sg_res = nr_pages + 1;
1809 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1812 while (nr_pages > 0) {
1813 uint64_t tmp;
1815 if (!sg_res) {
1816 sg_res = aligned_nrpages(sg->offset, sg->length);
1817 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1818 sg->dma_length = sg->length;
1819 pteval = page_to_phys(sg_page(sg)) | prot;
1820 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1823 if (!pte) {
1824 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1826 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1827 if (!pte)
1828 return -ENOMEM;
1829 /* It is large page*/
1830 if (largepage_lvl > 1) {
1831 pteval |= DMA_PTE_LARGE_PAGE;
1832 /* Ensure that old small page tables are removed to make room
1833 for superpage, if they exist. */
1834 dma_pte_clear_range(domain, iov_pfn,
1835 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1836 dma_pte_free_pagetable(domain, iov_pfn,
1837 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1838 } else {
1839 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1843 /* We don't need lock here, nobody else
1844 * touches the iova range
1846 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1847 if (tmp) {
1848 static int dumps = 5;
1849 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1850 iov_pfn, tmp, (unsigned long long)pteval);
1851 if (dumps) {
1852 dumps--;
1853 debug_dma_dump_mappings(NULL);
1855 WARN_ON(1);
1858 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1860 BUG_ON(nr_pages < lvl_pages);
1861 BUG_ON(sg_res < lvl_pages);
1863 nr_pages -= lvl_pages;
1864 iov_pfn += lvl_pages;
1865 phys_pfn += lvl_pages;
1866 pteval += lvl_pages * VTD_PAGE_SIZE;
1867 sg_res -= lvl_pages;
1869 /* If the next PTE would be the first in a new page, then we
1870 need to flush the cache on the entries we've just written.
1871 And then we'll need to recalculate 'pte', so clear it and
1872 let it get set again in the if (!pte) block above.
1874 If we're done (!nr_pages) we need to flush the cache too.
1876 Also if we've been setting superpages, we may need to
1877 recalculate 'pte' and switch back to smaller pages for the
1878 end of the mapping, if the trailing size is not enough to
1879 use another superpage (i.e. sg_res < lvl_pages). */
1880 pte++;
1881 if (!nr_pages || first_pte_in_page(pte) ||
1882 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1883 domain_flush_cache(domain, first_pte,
1884 (void *)pte - (void *)first_pte);
1885 pte = NULL;
1888 if (!sg_res && nr_pages)
1889 sg = sg_next(sg);
1891 return 0;
1894 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1895 struct scatterlist *sg, unsigned long nr_pages,
1896 int prot)
1898 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1901 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1902 unsigned long phys_pfn, unsigned long nr_pages,
1903 int prot)
1905 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1908 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1910 if (!iommu)
1911 return;
1913 clear_context_table(iommu, bus, devfn);
1914 iommu->flush.flush_context(iommu, 0, 0, 0,
1915 DMA_CCMD_GLOBAL_INVL);
1916 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1919 static inline void unlink_domain_info(struct device_domain_info *info)
1921 assert_spin_locked(&device_domain_lock);
1922 list_del(&info->link);
1923 list_del(&info->global);
1924 if (info->dev)
1925 info->dev->dev.archdata.iommu = NULL;
1928 static void domain_remove_dev_info(struct dmar_domain *domain)
1930 struct device_domain_info *info;
1931 unsigned long flags;
1932 struct intel_iommu *iommu;
1934 spin_lock_irqsave(&device_domain_lock, flags);
1935 while (!list_empty(&domain->devices)) {
1936 info = list_entry(domain->devices.next,
1937 struct device_domain_info, link);
1938 unlink_domain_info(info);
1939 spin_unlock_irqrestore(&device_domain_lock, flags);
1941 iommu_disable_dev_iotlb(info);
1942 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1943 iommu_detach_dev(iommu, info->bus, info->devfn);
1944 free_devinfo_mem(info);
1946 spin_lock_irqsave(&device_domain_lock, flags);
1948 spin_unlock_irqrestore(&device_domain_lock, flags);
1952 * find_domain
1953 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1955 static struct dmar_domain *
1956 find_domain(struct pci_dev *pdev)
1958 struct device_domain_info *info;
1960 /* No lock here, assumes no domain exit in normal case */
1961 info = pdev->dev.archdata.iommu;
1962 if (info)
1963 return info->domain;
1964 return NULL;
1967 /* domain is initialized */
1968 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1970 struct dmar_domain *domain, *found = NULL;
1971 struct intel_iommu *iommu;
1972 struct dmar_drhd_unit *drhd;
1973 struct device_domain_info *info, *tmp;
1974 struct pci_dev *dev_tmp;
1975 unsigned long flags;
1976 int bus = 0, devfn = 0;
1977 int segment;
1978 int ret;
1980 domain = find_domain(pdev);
1981 if (domain)
1982 return domain;
1984 segment = pci_domain_nr(pdev->bus);
1986 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1987 if (dev_tmp) {
1988 if (pci_is_pcie(dev_tmp)) {
1989 bus = dev_tmp->subordinate->number;
1990 devfn = 0;
1991 } else {
1992 bus = dev_tmp->bus->number;
1993 devfn = dev_tmp->devfn;
1995 spin_lock_irqsave(&device_domain_lock, flags);
1996 list_for_each_entry(info, &device_domain_list, global) {
1997 if (info->segment == segment &&
1998 info->bus == bus && info->devfn == devfn) {
1999 found = info->domain;
2000 break;
2003 spin_unlock_irqrestore(&device_domain_lock, flags);
2004 /* pcie-pci bridge already has a domain, uses it */
2005 if (found) {
2006 domain = found;
2007 goto found_domain;
2011 domain = alloc_domain();
2012 if (!domain)
2013 goto error;
2015 /* Allocate new domain for the device */
2016 drhd = dmar_find_matched_drhd_unit(pdev);
2017 if (!drhd) {
2018 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2019 pci_name(pdev));
2020 free_domain_mem(domain);
2021 return NULL;
2023 iommu = drhd->iommu;
2025 ret = iommu_attach_domain(domain, iommu);
2026 if (ret) {
2027 free_domain_mem(domain);
2028 goto error;
2031 if (domain_init(domain, gaw)) {
2032 domain_exit(domain);
2033 goto error;
2036 /* register pcie-to-pci device */
2037 if (dev_tmp) {
2038 info = alloc_devinfo_mem();
2039 if (!info) {
2040 domain_exit(domain);
2041 goto error;
2043 info->segment = segment;
2044 info->bus = bus;
2045 info->devfn = devfn;
2046 info->dev = NULL;
2047 info->domain = domain;
2048 /* This domain is shared by devices under p2p bridge */
2049 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2051 /* pcie-to-pci bridge already has a domain, uses it */
2052 found = NULL;
2053 spin_lock_irqsave(&device_domain_lock, flags);
2054 list_for_each_entry(tmp, &device_domain_list, global) {
2055 if (tmp->segment == segment &&
2056 tmp->bus == bus && tmp->devfn == devfn) {
2057 found = tmp->domain;
2058 break;
2061 if (found) {
2062 spin_unlock_irqrestore(&device_domain_lock, flags);
2063 free_devinfo_mem(info);
2064 domain_exit(domain);
2065 domain = found;
2066 } else {
2067 list_add(&info->link, &domain->devices);
2068 list_add(&info->global, &device_domain_list);
2069 spin_unlock_irqrestore(&device_domain_lock, flags);
2073 found_domain:
2074 info = alloc_devinfo_mem();
2075 if (!info)
2076 goto error;
2077 info->segment = segment;
2078 info->bus = pdev->bus->number;
2079 info->devfn = pdev->devfn;
2080 info->dev = pdev;
2081 info->domain = domain;
2082 spin_lock_irqsave(&device_domain_lock, flags);
2083 /* somebody is fast */
2084 found = find_domain(pdev);
2085 if (found != NULL) {
2086 spin_unlock_irqrestore(&device_domain_lock, flags);
2087 if (found != domain) {
2088 domain_exit(domain);
2089 domain = found;
2091 free_devinfo_mem(info);
2092 return domain;
2094 list_add(&info->link, &domain->devices);
2095 list_add(&info->global, &device_domain_list);
2096 pdev->dev.archdata.iommu = info;
2097 spin_unlock_irqrestore(&device_domain_lock, flags);
2098 return domain;
2099 error:
2100 /* recheck it here, maybe others set it */
2101 return find_domain(pdev);
2104 static int iommu_identity_mapping;
2105 #define IDENTMAP_ALL 1
2106 #define IDENTMAP_GFX 2
2107 #define IDENTMAP_AZALIA 4
2109 static int iommu_domain_identity_map(struct dmar_domain *domain,
2110 unsigned long long start,
2111 unsigned long long end)
2113 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2114 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2116 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2117 dma_to_mm_pfn(last_vpfn))) {
2118 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2119 return -ENOMEM;
2122 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2123 start, end, domain->id);
2125 * RMRR range might have overlap with physical memory range,
2126 * clear it first
2128 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2130 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2131 last_vpfn - first_vpfn + 1,
2132 DMA_PTE_READ|DMA_PTE_WRITE);
2135 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2136 unsigned long long start,
2137 unsigned long long end)
2139 struct dmar_domain *domain;
2140 int ret;
2142 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2143 if (!domain)
2144 return -ENOMEM;
2146 /* For _hardware_ passthrough, don't bother. But for software
2147 passthrough, we do it anyway -- it may indicate a memory
2148 range which is reserved in E820, so which didn't get set
2149 up to start with in si_domain */
2150 if (domain == si_domain && hw_pass_through) {
2151 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2152 pci_name(pdev), start, end);
2153 return 0;
2156 printk(KERN_INFO
2157 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2158 pci_name(pdev), start, end);
2160 if (end < start) {
2161 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2162 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2163 dmi_get_system_info(DMI_BIOS_VENDOR),
2164 dmi_get_system_info(DMI_BIOS_VERSION),
2165 dmi_get_system_info(DMI_PRODUCT_VERSION));
2166 ret = -EIO;
2167 goto error;
2170 if (end >> agaw_to_width(domain->agaw)) {
2171 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2172 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2173 agaw_to_width(domain->agaw),
2174 dmi_get_system_info(DMI_BIOS_VENDOR),
2175 dmi_get_system_info(DMI_BIOS_VERSION),
2176 dmi_get_system_info(DMI_PRODUCT_VERSION));
2177 ret = -EIO;
2178 goto error;
2181 ret = iommu_domain_identity_map(domain, start, end);
2182 if (ret)
2183 goto error;
2185 /* context entry init */
2186 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2187 if (ret)
2188 goto error;
2190 return 0;
2192 error:
2193 domain_exit(domain);
2194 return ret;
2197 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2198 struct pci_dev *pdev)
2200 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2201 return 0;
2202 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2203 rmrr->end_address);
2206 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2207 static inline void iommu_prepare_isa(void)
2209 struct pci_dev *pdev;
2210 int ret;
2212 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2213 if (!pdev)
2214 return;
2216 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2217 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2219 if (ret)
2220 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2221 "floppy might not work\n");
2224 #else
2225 static inline void iommu_prepare_isa(void)
2227 return;
2229 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2231 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2233 static int __init si_domain_init(int hw)
2235 struct dmar_drhd_unit *drhd;
2236 struct intel_iommu *iommu;
2237 int nid, ret = 0;
2239 si_domain = alloc_domain();
2240 if (!si_domain)
2241 return -EFAULT;
2243 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2245 for_each_active_iommu(iommu, drhd) {
2246 ret = iommu_attach_domain(si_domain, iommu);
2247 if (ret) {
2248 domain_exit(si_domain);
2249 return -EFAULT;
2253 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2254 domain_exit(si_domain);
2255 return -EFAULT;
2258 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2260 if (hw)
2261 return 0;
2263 for_each_online_node(nid) {
2264 unsigned long start_pfn, end_pfn;
2265 int i;
2267 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2268 ret = iommu_domain_identity_map(si_domain,
2269 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2270 if (ret)
2271 return ret;
2275 return 0;
2278 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2279 struct pci_dev *pdev);
2280 static int identity_mapping(struct pci_dev *pdev)
2282 struct device_domain_info *info;
2284 if (likely(!iommu_identity_mapping))
2285 return 0;
2287 info = pdev->dev.archdata.iommu;
2288 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2289 return (info->domain == si_domain);
2291 return 0;
2294 static int domain_add_dev_info(struct dmar_domain *domain,
2295 struct pci_dev *pdev,
2296 int translation)
2298 struct device_domain_info *info;
2299 unsigned long flags;
2300 int ret;
2302 info = alloc_devinfo_mem();
2303 if (!info)
2304 return -ENOMEM;
2306 info->segment = pci_domain_nr(pdev->bus);
2307 info->bus = pdev->bus->number;
2308 info->devfn = pdev->devfn;
2309 info->dev = pdev;
2310 info->domain = domain;
2312 spin_lock_irqsave(&device_domain_lock, flags);
2313 list_add(&info->link, &domain->devices);
2314 list_add(&info->global, &device_domain_list);
2315 pdev->dev.archdata.iommu = info;
2316 spin_unlock_irqrestore(&device_domain_lock, flags);
2318 ret = domain_context_mapping(domain, pdev, translation);
2319 if (ret) {
2320 spin_lock_irqsave(&device_domain_lock, flags);
2321 unlink_domain_info(info);
2322 spin_unlock_irqrestore(&device_domain_lock, flags);
2323 free_devinfo_mem(info);
2324 return ret;
2327 return 0;
2330 static bool device_has_rmrr(struct pci_dev *dev)
2332 struct dmar_rmrr_unit *rmrr;
2333 int i;
2335 for_each_rmrr_units(rmrr) {
2336 for (i = 0; i < rmrr->devices_cnt; i++) {
2338 * Return TRUE if this RMRR contains the device that
2339 * is passed in.
2341 if (rmrr->devices[i] == dev)
2342 return true;
2345 return false;
2348 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2352 * We want to prevent any device associated with an RMRR from
2353 * getting placed into the SI Domain. This is done because
2354 * problems exist when devices are moved in and out of domains
2355 * and their respective RMRR info is lost. We exempt USB devices
2356 * from this process due to their usage of RMRRs that are known
2357 * to not be needed after BIOS hand-off to OS.
2359 if (device_has_rmrr(pdev) &&
2360 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2361 return 0;
2363 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2364 return 1;
2366 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2367 return 1;
2369 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2370 return 0;
2373 * We want to start off with all devices in the 1:1 domain, and
2374 * take them out later if we find they can't access all of memory.
2376 * However, we can't do this for PCI devices behind bridges,
2377 * because all PCI devices behind the same bridge will end up
2378 * with the same source-id on their transactions.
2380 * Practically speaking, we can't change things around for these
2381 * devices at run-time, because we can't be sure there'll be no
2382 * DMA transactions in flight for any of their siblings.
2384 * So PCI devices (unless they're on the root bus) as well as
2385 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2386 * the 1:1 domain, just in _case_ one of their siblings turns out
2387 * not to be able to map all of memory.
2389 if (!pci_is_pcie(pdev)) {
2390 if (!pci_is_root_bus(pdev->bus))
2391 return 0;
2392 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2393 return 0;
2394 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2395 return 0;
2398 * At boot time, we don't yet know if devices will be 64-bit capable.
2399 * Assume that they will -- if they turn out not to be, then we can
2400 * take them out of the 1:1 domain later.
2402 if (!startup) {
2404 * If the device's dma_mask is less than the system's memory
2405 * size then this is not a candidate for identity mapping.
2407 u64 dma_mask = pdev->dma_mask;
2409 if (pdev->dev.coherent_dma_mask &&
2410 pdev->dev.coherent_dma_mask < dma_mask)
2411 dma_mask = pdev->dev.coherent_dma_mask;
2413 return dma_mask >= dma_get_required_mask(&pdev->dev);
2416 return 1;
2419 static int __init iommu_prepare_static_identity_mapping(int hw)
2421 struct pci_dev *pdev = NULL;
2422 int ret;
2424 ret = si_domain_init(hw);
2425 if (ret)
2426 return -EFAULT;
2428 for_each_pci_dev(pdev) {
2429 if (iommu_should_identity_map(pdev, 1)) {
2430 ret = domain_add_dev_info(si_domain, pdev,
2431 hw ? CONTEXT_TT_PASS_THROUGH :
2432 CONTEXT_TT_MULTI_LEVEL);
2433 if (ret) {
2434 /* device not associated with an iommu */
2435 if (ret == -ENODEV)
2436 continue;
2437 return ret;
2439 pr_info("IOMMU: %s identity mapping for device %s\n",
2440 hw ? "hardware" : "software", pci_name(pdev));
2444 return 0;
2447 static int __init init_dmars(void)
2449 struct dmar_drhd_unit *drhd;
2450 struct dmar_rmrr_unit *rmrr;
2451 struct pci_dev *pdev;
2452 struct intel_iommu *iommu;
2453 int i, ret;
2456 * for each drhd
2457 * allocate root
2458 * initialize and program root entry to not present
2459 * endfor
2461 for_each_drhd_unit(drhd) {
2463 * lock not needed as this is only incremented in the single
2464 * threaded kernel __init code path all other access are read
2465 * only
2467 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2468 g_num_of_iommus++;
2469 continue;
2471 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2472 IOMMU_UNITS_SUPPORTED);
2475 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2476 GFP_KERNEL);
2477 if (!g_iommus) {
2478 printk(KERN_ERR "Allocating global iommu array failed\n");
2479 ret = -ENOMEM;
2480 goto error;
2483 deferred_flush = kzalloc(g_num_of_iommus *
2484 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2485 if (!deferred_flush) {
2486 ret = -ENOMEM;
2487 goto error;
2490 for_each_drhd_unit(drhd) {
2491 if (drhd->ignored)
2492 continue;
2494 iommu = drhd->iommu;
2495 g_iommus[iommu->seq_id] = iommu;
2497 ret = iommu_init_domains(iommu);
2498 if (ret)
2499 goto error;
2502 * TBD:
2503 * we could share the same root & context tables
2504 * among all IOMMU's. Need to Split it later.
2506 ret = iommu_alloc_root_entry(iommu);
2507 if (ret) {
2508 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2509 goto error;
2511 if (!ecap_pass_through(iommu->ecap))
2512 hw_pass_through = 0;
2516 * Start from the sane iommu hardware state.
2518 for_each_drhd_unit(drhd) {
2519 if (drhd->ignored)
2520 continue;
2522 iommu = drhd->iommu;
2525 * If the queued invalidation is already initialized by us
2526 * (for example, while enabling interrupt-remapping) then
2527 * we got the things already rolling from a sane state.
2529 if (iommu->qi)
2530 continue;
2533 * Clear any previous faults.
2535 dmar_fault(-1, iommu);
2537 * Disable queued invalidation if supported and already enabled
2538 * before OS handover.
2540 dmar_disable_qi(iommu);
2543 for_each_drhd_unit(drhd) {
2544 if (drhd->ignored)
2545 continue;
2547 iommu = drhd->iommu;
2549 if (dmar_enable_qi(iommu)) {
2551 * Queued Invalidate not enabled, use Register Based
2552 * Invalidate
2554 iommu->flush.flush_context = __iommu_flush_context;
2555 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2556 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2557 "invalidation\n",
2558 iommu->seq_id,
2559 (unsigned long long)drhd->reg_base_addr);
2560 } else {
2561 iommu->flush.flush_context = qi_flush_context;
2562 iommu->flush.flush_iotlb = qi_flush_iotlb;
2563 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2564 "invalidation\n",
2565 iommu->seq_id,
2566 (unsigned long long)drhd->reg_base_addr);
2570 if (iommu_pass_through)
2571 iommu_identity_mapping |= IDENTMAP_ALL;
2573 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2574 iommu_identity_mapping |= IDENTMAP_GFX;
2575 #endif
2577 check_tylersburg_isoch();
2580 * If pass through is not set or not enabled, setup context entries for
2581 * identity mappings for rmrr, gfx, and isa and may fall back to static
2582 * identity mapping if iommu_identity_mapping is set.
2584 if (iommu_identity_mapping) {
2585 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2586 if (ret) {
2587 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2588 goto error;
2592 * For each rmrr
2593 * for each dev attached to rmrr
2594 * do
2595 * locate drhd for dev, alloc domain for dev
2596 * allocate free domain
2597 * allocate page table entries for rmrr
2598 * if context not allocated for bus
2599 * allocate and init context
2600 * set present in root table for this bus
2601 * init context with domain, translation etc
2602 * endfor
2603 * endfor
2605 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2606 for_each_rmrr_units(rmrr) {
2607 for (i = 0; i < rmrr->devices_cnt; i++) {
2608 pdev = rmrr->devices[i];
2610 * some BIOS lists non-exist devices in DMAR
2611 * table.
2613 if (!pdev)
2614 continue;
2615 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2616 if (ret)
2617 printk(KERN_ERR
2618 "IOMMU: mapping reserved region failed\n");
2622 iommu_prepare_isa();
2625 * for each drhd
2626 * enable fault log
2627 * global invalidate context cache
2628 * global invalidate iotlb
2629 * enable translation
2631 for_each_drhd_unit(drhd) {
2632 if (drhd->ignored) {
2634 * we always have to disable PMRs or DMA may fail on
2635 * this device
2637 if (force_on)
2638 iommu_disable_protect_mem_regions(drhd->iommu);
2639 continue;
2641 iommu = drhd->iommu;
2643 iommu_flush_write_buffer(iommu);
2645 ret = dmar_set_interrupt(iommu);
2646 if (ret)
2647 goto error;
2649 iommu_set_root_entry(iommu);
2651 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2652 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2654 ret = iommu_enable_translation(iommu);
2655 if (ret)
2656 goto error;
2658 iommu_disable_protect_mem_regions(iommu);
2661 return 0;
2662 error:
2663 for_each_drhd_unit(drhd) {
2664 if (drhd->ignored)
2665 continue;
2666 iommu = drhd->iommu;
2667 free_iommu(iommu);
2669 kfree(g_iommus);
2670 return ret;
2673 /* This takes a number of _MM_ pages, not VTD pages */
2674 static struct iova *intel_alloc_iova(struct device *dev,
2675 struct dmar_domain *domain,
2676 unsigned long nrpages, uint64_t dma_mask)
2678 struct pci_dev *pdev = to_pci_dev(dev);
2679 struct iova *iova = NULL;
2681 /* Restrict dma_mask to the width that the iommu can handle */
2682 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2684 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2686 * First try to allocate an io virtual address in
2687 * DMA_BIT_MASK(32) and if that fails then try allocating
2688 * from higher range
2690 iova = alloc_iova(&domain->iovad, nrpages,
2691 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2692 if (iova)
2693 return iova;
2695 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2696 if (unlikely(!iova)) {
2697 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2698 nrpages, pci_name(pdev));
2699 return NULL;
2702 return iova;
2705 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2707 struct dmar_domain *domain;
2708 int ret;
2710 domain = get_domain_for_dev(pdev,
2711 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2712 if (!domain) {
2713 printk(KERN_ERR
2714 "Allocating domain for %s failed", pci_name(pdev));
2715 return NULL;
2718 /* make sure context mapping is ok */
2719 if (unlikely(!domain_context_mapped(pdev))) {
2720 ret = domain_context_mapping(domain, pdev,
2721 CONTEXT_TT_MULTI_LEVEL);
2722 if (ret) {
2723 printk(KERN_ERR
2724 "Domain context map for %s failed",
2725 pci_name(pdev));
2726 return NULL;
2730 return domain;
2733 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2735 struct device_domain_info *info;
2737 /* No lock here, assumes no domain exit in normal case */
2738 info = dev->dev.archdata.iommu;
2739 if (likely(info))
2740 return info->domain;
2742 return __get_valid_domain_for_dev(dev);
2745 static int iommu_dummy(struct pci_dev *pdev)
2747 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2750 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2751 static int iommu_no_mapping(struct device *dev)
2753 struct pci_dev *pdev;
2754 int found;
2756 if (unlikely(dev->bus != &pci_bus_type))
2757 return 1;
2759 pdev = to_pci_dev(dev);
2760 if (iommu_dummy(pdev))
2761 return 1;
2763 if (!iommu_identity_mapping)
2764 return 0;
2766 found = identity_mapping(pdev);
2767 if (found) {
2768 if (iommu_should_identity_map(pdev, 0))
2769 return 1;
2770 else {
2772 * 32 bit DMA is removed from si_domain and fall back
2773 * to non-identity mapping.
2775 domain_remove_one_dev_info(si_domain, pdev);
2776 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2777 pci_name(pdev));
2778 return 0;
2780 } else {
2782 * In case of a detached 64 bit DMA device from vm, the device
2783 * is put into si_domain for identity mapping.
2785 if (iommu_should_identity_map(pdev, 0)) {
2786 int ret;
2787 ret = domain_add_dev_info(si_domain, pdev,
2788 hw_pass_through ?
2789 CONTEXT_TT_PASS_THROUGH :
2790 CONTEXT_TT_MULTI_LEVEL);
2791 if (!ret) {
2792 printk(KERN_INFO "64bit %s uses identity mapping\n",
2793 pci_name(pdev));
2794 return 1;
2799 return 0;
2802 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2803 size_t size, int dir, u64 dma_mask)
2805 struct pci_dev *pdev = to_pci_dev(hwdev);
2806 struct dmar_domain *domain;
2807 phys_addr_t start_paddr;
2808 struct iova *iova;
2809 int prot = 0;
2810 int ret;
2811 struct intel_iommu *iommu;
2812 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2814 BUG_ON(dir == DMA_NONE);
2816 if (iommu_no_mapping(hwdev))
2817 return paddr;
2819 domain = get_valid_domain_for_dev(pdev);
2820 if (!domain)
2821 return 0;
2823 iommu = domain_get_iommu(domain);
2824 size = aligned_nrpages(paddr, size);
2826 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2827 if (!iova)
2828 goto error;
2831 * Check if DMAR supports zero-length reads on write only
2832 * mappings..
2834 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2835 !cap_zlr(iommu->cap))
2836 prot |= DMA_PTE_READ;
2837 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2838 prot |= DMA_PTE_WRITE;
2840 * paddr - (paddr + size) might be partial page, we should map the whole
2841 * page. Note: if two part of one page are separately mapped, we
2842 * might have two guest_addr mapping to the same host paddr, but this
2843 * is not a big problem
2845 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2846 mm_to_dma_pfn(paddr_pfn), size, prot);
2847 if (ret)
2848 goto error;
2850 /* it's a non-present to present mapping. Only flush if caching mode */
2851 if (cap_caching_mode(iommu->cap))
2852 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2853 else
2854 iommu_flush_write_buffer(iommu);
2856 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2857 start_paddr += paddr & ~PAGE_MASK;
2858 return start_paddr;
2860 error:
2861 if (iova)
2862 __free_iova(&domain->iovad, iova);
2863 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2864 pci_name(pdev), size, (unsigned long long)paddr, dir);
2865 return 0;
2868 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2869 unsigned long offset, size_t size,
2870 enum dma_data_direction dir,
2871 struct dma_attrs *attrs)
2873 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2874 dir, to_pci_dev(dev)->dma_mask);
2877 static void flush_unmaps(void)
2879 int i, j;
2881 timer_on = 0;
2883 /* just flush them all */
2884 for (i = 0; i < g_num_of_iommus; i++) {
2885 struct intel_iommu *iommu = g_iommus[i];
2886 if (!iommu)
2887 continue;
2889 if (!deferred_flush[i].next)
2890 continue;
2892 /* In caching mode, global flushes turn emulation expensive */
2893 if (!cap_caching_mode(iommu->cap))
2894 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2895 DMA_TLB_GLOBAL_FLUSH);
2896 for (j = 0; j < deferred_flush[i].next; j++) {
2897 unsigned long mask;
2898 struct iova *iova = deferred_flush[i].iova[j];
2899 struct dmar_domain *domain = deferred_flush[i].domain[j];
2901 /* On real hardware multiple invalidations are expensive */
2902 if (cap_caching_mode(iommu->cap))
2903 iommu_flush_iotlb_psi(iommu, domain->id,
2904 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2905 else {
2906 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2907 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2908 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2910 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2912 deferred_flush[i].next = 0;
2915 list_size = 0;
2918 static void flush_unmaps_timeout(unsigned long data)
2920 unsigned long flags;
2922 spin_lock_irqsave(&async_umap_flush_lock, flags);
2923 flush_unmaps();
2924 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2927 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2929 unsigned long flags;
2930 int next, iommu_id;
2931 struct intel_iommu *iommu;
2933 spin_lock_irqsave(&async_umap_flush_lock, flags);
2934 if (list_size == HIGH_WATER_MARK)
2935 flush_unmaps();
2937 iommu = domain_get_iommu(dom);
2938 iommu_id = iommu->seq_id;
2940 next = deferred_flush[iommu_id].next;
2941 deferred_flush[iommu_id].domain[next] = dom;
2942 deferred_flush[iommu_id].iova[next] = iova;
2943 deferred_flush[iommu_id].next++;
2945 if (!timer_on) {
2946 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2947 timer_on = 1;
2949 list_size++;
2950 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2953 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2954 size_t size, enum dma_data_direction dir,
2955 struct dma_attrs *attrs)
2957 struct pci_dev *pdev = to_pci_dev(dev);
2958 struct dmar_domain *domain;
2959 unsigned long start_pfn, last_pfn;
2960 struct iova *iova;
2961 struct intel_iommu *iommu;
2963 if (iommu_no_mapping(dev))
2964 return;
2966 domain = find_domain(pdev);
2967 BUG_ON(!domain);
2969 iommu = domain_get_iommu(domain);
2971 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2972 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2973 (unsigned long long)dev_addr))
2974 return;
2976 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2977 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2979 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2980 pci_name(pdev), start_pfn, last_pfn);
2982 /* clear the whole page */
2983 dma_pte_clear_range(domain, start_pfn, last_pfn);
2985 /* free page tables */
2986 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2988 if (intel_iommu_strict) {
2989 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2990 last_pfn - start_pfn + 1, 0);
2991 /* free iova */
2992 __free_iova(&domain->iovad, iova);
2993 } else {
2994 add_unmap(domain, iova);
2996 * queue up the release of the unmap to save the 1/6th of the
2997 * cpu used up by the iotlb flush operation...
3002 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
3003 dma_addr_t *dma_handle, gfp_t flags,
3004 struct dma_attrs *attrs)
3006 void *vaddr;
3007 int order;
3009 size = PAGE_ALIGN(size);
3010 order = get_order(size);
3012 if (!iommu_no_mapping(hwdev))
3013 flags &= ~(GFP_DMA | GFP_DMA32);
3014 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
3015 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
3016 flags |= GFP_DMA;
3017 else
3018 flags |= GFP_DMA32;
3021 vaddr = (void *)__get_free_pages(flags, order);
3022 if (!vaddr)
3023 return NULL;
3024 memset(vaddr, 0, size);
3026 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
3027 DMA_BIDIRECTIONAL,
3028 hwdev->coherent_dma_mask);
3029 if (*dma_handle)
3030 return vaddr;
3031 free_pages((unsigned long)vaddr, order);
3032 return NULL;
3035 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
3036 dma_addr_t dma_handle, struct dma_attrs *attrs)
3038 int order;
3040 size = PAGE_ALIGN(size);
3041 order = get_order(size);
3043 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3044 free_pages((unsigned long)vaddr, order);
3047 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3048 int nelems, enum dma_data_direction dir,
3049 struct dma_attrs *attrs)
3051 struct pci_dev *pdev = to_pci_dev(hwdev);
3052 struct dmar_domain *domain;
3053 unsigned long start_pfn, last_pfn;
3054 struct iova *iova;
3055 struct intel_iommu *iommu;
3057 if (iommu_no_mapping(hwdev))
3058 return;
3060 domain = find_domain(pdev);
3061 BUG_ON(!domain);
3063 iommu = domain_get_iommu(domain);
3065 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3066 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3067 (unsigned long long)sglist[0].dma_address))
3068 return;
3070 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3071 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3073 /* clear the whole page */
3074 dma_pte_clear_range(domain, start_pfn, last_pfn);
3076 /* free page tables */
3077 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3079 if (intel_iommu_strict) {
3080 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3081 last_pfn - start_pfn + 1, 0);
3082 /* free iova */
3083 __free_iova(&domain->iovad, iova);
3084 } else {
3085 add_unmap(domain, iova);
3087 * queue up the release of the unmap to save the 1/6th of the
3088 * cpu used up by the iotlb flush operation...
3093 static int intel_nontranslate_map_sg(struct device *hddev,
3094 struct scatterlist *sglist, int nelems, int dir)
3096 int i;
3097 struct scatterlist *sg;
3099 for_each_sg(sglist, sg, nelems, i) {
3100 BUG_ON(!sg_page(sg));
3101 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3102 sg->dma_length = sg->length;
3104 return nelems;
3107 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3108 enum dma_data_direction dir, struct dma_attrs *attrs)
3110 int i;
3111 struct pci_dev *pdev = to_pci_dev(hwdev);
3112 struct dmar_domain *domain;
3113 size_t size = 0;
3114 int prot = 0;
3115 struct iova *iova = NULL;
3116 int ret;
3117 struct scatterlist *sg;
3118 unsigned long start_vpfn;
3119 struct intel_iommu *iommu;
3121 BUG_ON(dir == DMA_NONE);
3122 if (iommu_no_mapping(hwdev))
3123 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3125 domain = get_valid_domain_for_dev(pdev);
3126 if (!domain)
3127 return 0;
3129 iommu = domain_get_iommu(domain);
3131 for_each_sg(sglist, sg, nelems, i)
3132 size += aligned_nrpages(sg->offset, sg->length);
3134 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3135 pdev->dma_mask);
3136 if (!iova) {
3137 sglist->dma_length = 0;
3138 return 0;
3142 * Check if DMAR supports zero-length reads on write only
3143 * mappings..
3145 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3146 !cap_zlr(iommu->cap))
3147 prot |= DMA_PTE_READ;
3148 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3149 prot |= DMA_PTE_WRITE;
3151 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3153 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3154 if (unlikely(ret)) {
3155 /* clear the page */
3156 dma_pte_clear_range(domain, start_vpfn,
3157 start_vpfn + size - 1);
3158 /* free page tables */
3159 dma_pte_free_pagetable(domain, start_vpfn,
3160 start_vpfn + size - 1);
3161 /* free iova */
3162 __free_iova(&domain->iovad, iova);
3163 return 0;
3166 /* it's a non-present to present mapping. Only flush if caching mode */
3167 if (cap_caching_mode(iommu->cap))
3168 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3169 else
3170 iommu_flush_write_buffer(iommu);
3172 return nelems;
3175 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3177 return !dma_addr;
3180 struct dma_map_ops intel_dma_ops = {
3181 .alloc = intel_alloc_coherent,
3182 .free = intel_free_coherent,
3183 .map_sg = intel_map_sg,
3184 .unmap_sg = intel_unmap_sg,
3185 .map_page = intel_map_page,
3186 .unmap_page = intel_unmap_page,
3187 .mapping_error = intel_mapping_error,
3190 static inline int iommu_domain_cache_init(void)
3192 int ret = 0;
3194 iommu_domain_cache = kmem_cache_create("iommu_domain",
3195 sizeof(struct dmar_domain),
3197 SLAB_HWCACHE_ALIGN,
3199 NULL);
3200 if (!iommu_domain_cache) {
3201 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3202 ret = -ENOMEM;
3205 return ret;
3208 static inline int iommu_devinfo_cache_init(void)
3210 int ret = 0;
3212 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3213 sizeof(struct device_domain_info),
3215 SLAB_HWCACHE_ALIGN,
3216 NULL);
3217 if (!iommu_devinfo_cache) {
3218 printk(KERN_ERR "Couldn't create devinfo cache\n");
3219 ret = -ENOMEM;
3222 return ret;
3225 static inline int iommu_iova_cache_init(void)
3227 int ret = 0;
3229 iommu_iova_cache = kmem_cache_create("iommu_iova",
3230 sizeof(struct iova),
3232 SLAB_HWCACHE_ALIGN,
3233 NULL);
3234 if (!iommu_iova_cache) {
3235 printk(KERN_ERR "Couldn't create iova cache\n");
3236 ret = -ENOMEM;
3239 return ret;
3242 static int __init iommu_init_mempool(void)
3244 int ret;
3245 ret = iommu_iova_cache_init();
3246 if (ret)
3247 return ret;
3249 ret = iommu_domain_cache_init();
3250 if (ret)
3251 goto domain_error;
3253 ret = iommu_devinfo_cache_init();
3254 if (!ret)
3255 return ret;
3257 kmem_cache_destroy(iommu_domain_cache);
3258 domain_error:
3259 kmem_cache_destroy(iommu_iova_cache);
3261 return -ENOMEM;
3264 static void __init iommu_exit_mempool(void)
3266 kmem_cache_destroy(iommu_devinfo_cache);
3267 kmem_cache_destroy(iommu_domain_cache);
3268 kmem_cache_destroy(iommu_iova_cache);
3272 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3274 struct dmar_drhd_unit *drhd;
3275 u32 vtbar;
3276 int rc;
3278 /* We know that this device on this chipset has its own IOMMU.
3279 * If we find it under a different IOMMU, then the BIOS is lying
3280 * to us. Hope that the IOMMU for this device is actually
3281 * disabled, and it needs no translation...
3283 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3284 if (rc) {
3285 /* "can't" happen */
3286 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3287 return;
3289 vtbar &= 0xffff0000;
3291 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3292 drhd = dmar_find_matched_drhd_unit(pdev);
3293 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3294 TAINT_FIRMWARE_WORKAROUND,
3295 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3296 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3298 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3300 static void __init init_no_remapping_devices(void)
3302 struct dmar_drhd_unit *drhd;
3304 for_each_drhd_unit(drhd) {
3305 if (!drhd->include_all) {
3306 int i;
3307 for (i = 0; i < drhd->devices_cnt; i++)
3308 if (drhd->devices[i] != NULL)
3309 break;
3310 /* ignore DMAR unit if no pci devices exist */
3311 if (i == drhd->devices_cnt)
3312 drhd->ignored = 1;
3316 for_each_drhd_unit(drhd) {
3317 int i;
3318 if (drhd->ignored || drhd->include_all)
3319 continue;
3321 for (i = 0; i < drhd->devices_cnt; i++)
3322 if (drhd->devices[i] &&
3323 !IS_GFX_DEVICE(drhd->devices[i]))
3324 break;
3326 if (i < drhd->devices_cnt)
3327 continue;
3329 /* This IOMMU has *only* gfx devices. Either bypass it or
3330 set the gfx_mapped flag, as appropriate */
3331 if (dmar_map_gfx) {
3332 intel_iommu_gfx_mapped = 1;
3333 } else {
3334 drhd->ignored = 1;
3335 for (i = 0; i < drhd->devices_cnt; i++) {
3336 if (!drhd->devices[i])
3337 continue;
3338 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3344 #ifdef CONFIG_SUSPEND
3345 static int init_iommu_hw(void)
3347 struct dmar_drhd_unit *drhd;
3348 struct intel_iommu *iommu = NULL;
3350 for_each_active_iommu(iommu, drhd)
3351 if (iommu->qi)
3352 dmar_reenable_qi(iommu);
3354 for_each_iommu(iommu, drhd) {
3355 if (drhd->ignored) {
3357 * we always have to disable PMRs or DMA may fail on
3358 * this device
3360 if (force_on)
3361 iommu_disable_protect_mem_regions(iommu);
3362 continue;
3365 iommu_flush_write_buffer(iommu);
3367 iommu_set_root_entry(iommu);
3369 iommu->flush.flush_context(iommu, 0, 0, 0,
3370 DMA_CCMD_GLOBAL_INVL);
3371 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3372 DMA_TLB_GLOBAL_FLUSH);
3373 if (iommu_enable_translation(iommu))
3374 return 1;
3375 iommu_disable_protect_mem_regions(iommu);
3378 return 0;
3381 static void iommu_flush_all(void)
3383 struct dmar_drhd_unit *drhd;
3384 struct intel_iommu *iommu;
3386 for_each_active_iommu(iommu, drhd) {
3387 iommu->flush.flush_context(iommu, 0, 0, 0,
3388 DMA_CCMD_GLOBAL_INVL);
3389 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3390 DMA_TLB_GLOBAL_FLUSH);
3394 static int iommu_suspend(void)
3396 struct dmar_drhd_unit *drhd;
3397 struct intel_iommu *iommu = NULL;
3398 unsigned long flag;
3400 for_each_active_iommu(iommu, drhd) {
3401 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3402 GFP_ATOMIC);
3403 if (!iommu->iommu_state)
3404 goto nomem;
3407 iommu_flush_all();
3409 for_each_active_iommu(iommu, drhd) {
3410 iommu_disable_translation(iommu);
3412 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3414 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3415 readl(iommu->reg + DMAR_FECTL_REG);
3416 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3417 readl(iommu->reg + DMAR_FEDATA_REG);
3418 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3419 readl(iommu->reg + DMAR_FEADDR_REG);
3420 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3421 readl(iommu->reg + DMAR_FEUADDR_REG);
3423 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3425 return 0;
3427 nomem:
3428 for_each_active_iommu(iommu, drhd)
3429 kfree(iommu->iommu_state);
3431 return -ENOMEM;
3434 static void iommu_resume(void)
3436 struct dmar_drhd_unit *drhd;
3437 struct intel_iommu *iommu = NULL;
3438 unsigned long flag;
3440 if (init_iommu_hw()) {
3441 if (force_on)
3442 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3443 else
3444 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3445 return;
3448 for_each_active_iommu(iommu, drhd) {
3450 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3452 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3453 iommu->reg + DMAR_FECTL_REG);
3454 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3455 iommu->reg + DMAR_FEDATA_REG);
3456 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3457 iommu->reg + DMAR_FEADDR_REG);
3458 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3459 iommu->reg + DMAR_FEUADDR_REG);
3461 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3464 for_each_active_iommu(iommu, drhd)
3465 kfree(iommu->iommu_state);
3468 static struct syscore_ops iommu_syscore_ops = {
3469 .resume = iommu_resume,
3470 .suspend = iommu_suspend,
3473 static void __init init_iommu_pm_ops(void)
3475 register_syscore_ops(&iommu_syscore_ops);
3478 #else
3479 static inline void init_iommu_pm_ops(void) {}
3480 #endif /* CONFIG_PM */
3482 LIST_HEAD(dmar_rmrr_units);
3484 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3486 list_add(&rmrr->list, &dmar_rmrr_units);
3490 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3492 struct acpi_dmar_reserved_memory *rmrr;
3493 struct dmar_rmrr_unit *rmrru;
3495 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3496 if (!rmrru)
3497 return -ENOMEM;
3499 rmrru->hdr = header;
3500 rmrr = (struct acpi_dmar_reserved_memory *)header;
3501 rmrru->base_address = rmrr->base_address;
3502 rmrru->end_address = rmrr->end_address;
3504 dmar_register_rmrr_unit(rmrru);
3505 return 0;
3508 static int __init
3509 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3511 struct acpi_dmar_reserved_memory *rmrr;
3512 int ret;
3514 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3515 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3516 ((void *)rmrr) + rmrr->header.length,
3517 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3519 if (ret || (rmrru->devices_cnt == 0)) {
3520 list_del(&rmrru->list);
3521 kfree(rmrru);
3523 return ret;
3526 static LIST_HEAD(dmar_atsr_units);
3528 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3530 struct acpi_dmar_atsr *atsr;
3531 struct dmar_atsr_unit *atsru;
3533 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3534 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3535 if (!atsru)
3536 return -ENOMEM;
3538 atsru->hdr = hdr;
3539 atsru->include_all = atsr->flags & 0x1;
3541 list_add(&atsru->list, &dmar_atsr_units);
3543 return 0;
3546 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3548 int rc;
3549 struct acpi_dmar_atsr *atsr;
3551 if (atsru->include_all)
3552 return 0;
3554 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3555 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3556 (void *)atsr + atsr->header.length,
3557 &atsru->devices_cnt, &atsru->devices,
3558 atsr->segment);
3559 if (rc || !atsru->devices_cnt) {
3560 list_del(&atsru->list);
3561 kfree(atsru);
3564 return rc;
3567 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3569 int i;
3570 struct pci_bus *bus;
3571 struct acpi_dmar_atsr *atsr;
3572 struct dmar_atsr_unit *atsru;
3574 dev = pci_physfn(dev);
3576 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3577 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3578 if (atsr->segment == pci_domain_nr(dev->bus))
3579 goto found;
3582 return 0;
3584 found:
3585 for (bus = dev->bus; bus; bus = bus->parent) {
3586 struct pci_dev *bridge = bus->self;
3588 if (!bridge || !pci_is_pcie(bridge) ||
3589 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3590 return 0;
3592 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) {
3593 for (i = 0; i < atsru->devices_cnt; i++)
3594 if (atsru->devices[i] == bridge)
3595 return 1;
3596 break;
3600 if (atsru->include_all)
3601 return 1;
3603 return 0;
3606 int __init dmar_parse_rmrr_atsr_dev(void)
3608 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3609 struct dmar_atsr_unit *atsr, *atsr_n;
3610 int ret = 0;
3612 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3613 ret = rmrr_parse_dev(rmrr);
3614 if (ret)
3615 return ret;
3618 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3619 ret = atsr_parse_dev(atsr);
3620 if (ret)
3621 return ret;
3624 return ret;
3628 * Here we only respond to action of unbound device from driver.
3630 * Added device is not attached to its DMAR domain here yet. That will happen
3631 * when mapping the device to iova.
3633 static int device_notifier(struct notifier_block *nb,
3634 unsigned long action, void *data)
3636 struct device *dev = data;
3637 struct pci_dev *pdev = to_pci_dev(dev);
3638 struct dmar_domain *domain;
3640 if (iommu_no_mapping(dev))
3641 return 0;
3643 domain = find_domain(pdev);
3644 if (!domain)
3645 return 0;
3647 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3648 domain_remove_one_dev_info(domain, pdev);
3650 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3651 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3652 list_empty(&domain->devices))
3653 domain_exit(domain);
3656 return 0;
3659 static struct notifier_block device_nb = {
3660 .notifier_call = device_notifier,
3663 int __init intel_iommu_init(void)
3665 int ret = 0;
3667 /* VT-d is required for a TXT/tboot launch, so enforce that */
3668 force_on = tboot_force_iommu();
3670 if (dmar_table_init()) {
3671 if (force_on)
3672 panic("tboot: Failed to initialize DMAR table\n");
3673 return -ENODEV;
3676 if (dmar_dev_scope_init() < 0) {
3677 if (force_on)
3678 panic("tboot: Failed to initialize DMAR device scope\n");
3679 return -ENODEV;
3682 if (no_iommu || dmar_disabled)
3683 return -ENODEV;
3685 if (iommu_init_mempool()) {
3686 if (force_on)
3687 panic("tboot: Failed to initialize iommu memory\n");
3688 return -ENODEV;
3691 if (list_empty(&dmar_rmrr_units))
3692 printk(KERN_INFO "DMAR: No RMRR found\n");
3694 if (list_empty(&dmar_atsr_units))
3695 printk(KERN_INFO "DMAR: No ATSR found\n");
3697 if (dmar_init_reserved_ranges()) {
3698 if (force_on)
3699 panic("tboot: Failed to reserve iommu ranges\n");
3700 return -ENODEV;
3703 init_no_remapping_devices();
3705 ret = init_dmars();
3706 if (ret) {
3707 if (force_on)
3708 panic("tboot: Failed to initialize DMARs\n");
3709 printk(KERN_ERR "IOMMU: dmar init failed\n");
3710 put_iova_domain(&reserved_iova_list);
3711 iommu_exit_mempool();
3712 return ret;
3714 printk(KERN_INFO
3715 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3717 init_timer(&unmap_timer);
3718 #ifdef CONFIG_SWIOTLB
3719 swiotlb = 0;
3720 #endif
3721 dma_ops = &intel_dma_ops;
3723 init_iommu_pm_ops();
3725 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3727 bus_register_notifier(&pci_bus_type, &device_nb);
3729 intel_iommu_enabled = 1;
3731 return 0;
3734 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3735 struct pci_dev *pdev)
3737 struct pci_dev *tmp, *parent;
3739 if (!iommu || !pdev)
3740 return;
3742 /* dependent device detach */
3743 tmp = pci_find_upstream_pcie_bridge(pdev);
3744 /* Secondary interface's bus number and devfn 0 */
3745 if (tmp) {
3746 parent = pdev->bus->self;
3747 while (parent != tmp) {
3748 iommu_detach_dev(iommu, parent->bus->number,
3749 parent->devfn);
3750 parent = parent->bus->self;
3752 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3753 iommu_detach_dev(iommu,
3754 tmp->subordinate->number, 0);
3755 else /* this is a legacy PCI bridge */
3756 iommu_detach_dev(iommu, tmp->bus->number,
3757 tmp->devfn);
3761 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3762 struct pci_dev *pdev)
3764 struct device_domain_info *info;
3765 struct intel_iommu *iommu;
3766 unsigned long flags;
3767 int found = 0;
3768 struct list_head *entry, *tmp;
3770 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3771 pdev->devfn);
3772 if (!iommu)
3773 return;
3775 spin_lock_irqsave(&device_domain_lock, flags);
3776 list_for_each_safe(entry, tmp, &domain->devices) {
3777 info = list_entry(entry, struct device_domain_info, link);
3778 if (info->segment == pci_domain_nr(pdev->bus) &&
3779 info->bus == pdev->bus->number &&
3780 info->devfn == pdev->devfn) {
3781 unlink_domain_info(info);
3782 spin_unlock_irqrestore(&device_domain_lock, flags);
3784 iommu_disable_dev_iotlb(info);
3785 iommu_detach_dev(iommu, info->bus, info->devfn);
3786 iommu_detach_dependent_devices(iommu, pdev);
3787 free_devinfo_mem(info);
3789 spin_lock_irqsave(&device_domain_lock, flags);
3791 if (found)
3792 break;
3793 else
3794 continue;
3797 /* if there is no other devices under the same iommu
3798 * owned by this domain, clear this iommu in iommu_bmp
3799 * update iommu count and coherency
3801 if (iommu == device_to_iommu(info->segment, info->bus,
3802 info->devfn))
3803 found = 1;
3806 spin_unlock_irqrestore(&device_domain_lock, flags);
3808 if (found == 0) {
3809 unsigned long tmp_flags;
3810 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3811 clear_bit(iommu->seq_id, domain->iommu_bmp);
3812 domain->iommu_count--;
3813 domain_update_iommu_cap(domain);
3814 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3816 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3817 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3818 spin_lock_irqsave(&iommu->lock, tmp_flags);
3819 clear_bit(domain->id, iommu->domain_ids);
3820 iommu->domains[domain->id] = NULL;
3821 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3826 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3828 struct device_domain_info *info;
3829 struct intel_iommu *iommu;
3830 unsigned long flags1, flags2;
3832 spin_lock_irqsave(&device_domain_lock, flags1);
3833 while (!list_empty(&domain->devices)) {
3834 info = list_entry(domain->devices.next,
3835 struct device_domain_info, link);
3836 unlink_domain_info(info);
3837 spin_unlock_irqrestore(&device_domain_lock, flags1);
3839 iommu_disable_dev_iotlb(info);
3840 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3841 iommu_detach_dev(iommu, info->bus, info->devfn);
3842 iommu_detach_dependent_devices(iommu, info->dev);
3844 /* clear this iommu in iommu_bmp, update iommu count
3845 * and capabilities
3847 spin_lock_irqsave(&domain->iommu_lock, flags2);
3848 if (test_and_clear_bit(iommu->seq_id,
3849 domain->iommu_bmp)) {
3850 domain->iommu_count--;
3851 domain_update_iommu_cap(domain);
3853 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3855 free_devinfo_mem(info);
3856 spin_lock_irqsave(&device_domain_lock, flags1);
3858 spin_unlock_irqrestore(&device_domain_lock, flags1);
3861 /* domain id for virtual machine, it won't be set in context */
3862 static unsigned long vm_domid;
3864 static struct dmar_domain *iommu_alloc_vm_domain(void)
3866 struct dmar_domain *domain;
3868 domain = alloc_domain_mem();
3869 if (!domain)
3870 return NULL;
3872 domain->id = vm_domid++;
3873 domain->nid = -1;
3874 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3875 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3877 return domain;
3880 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3882 int adjust_width;
3884 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3885 spin_lock_init(&domain->iommu_lock);
3887 domain_reserve_special_ranges(domain);
3889 /* calculate AGAW */
3890 domain->gaw = guest_width;
3891 adjust_width = guestwidth_to_adjustwidth(guest_width);
3892 domain->agaw = width_to_agaw(adjust_width);
3894 INIT_LIST_HEAD(&domain->devices);
3896 domain->iommu_count = 0;
3897 domain->iommu_coherency = 0;
3898 domain->iommu_snooping = 0;
3899 domain->iommu_superpage = 0;
3900 domain->max_addr = 0;
3901 domain->nid = -1;
3903 /* always allocate the top pgd */
3904 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3905 if (!domain->pgd)
3906 return -ENOMEM;
3907 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3908 return 0;
3911 static void iommu_free_vm_domain(struct dmar_domain *domain)
3913 unsigned long flags;
3914 struct dmar_drhd_unit *drhd;
3915 struct intel_iommu *iommu;
3916 unsigned long i;
3917 unsigned long ndomains;
3919 for_each_drhd_unit(drhd) {
3920 if (drhd->ignored)
3921 continue;
3922 iommu = drhd->iommu;
3924 ndomains = cap_ndoms(iommu->cap);
3925 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3926 if (iommu->domains[i] == domain) {
3927 spin_lock_irqsave(&iommu->lock, flags);
3928 clear_bit(i, iommu->domain_ids);
3929 iommu->domains[i] = NULL;
3930 spin_unlock_irqrestore(&iommu->lock, flags);
3931 break;
3937 static void vm_domain_exit(struct dmar_domain *domain)
3939 /* Domain 0 is reserved, so dont process it */
3940 if (!domain)
3941 return;
3943 vm_domain_remove_all_dev_info(domain);
3944 /* destroy iovas */
3945 put_iova_domain(&domain->iovad);
3947 /* clear ptes */
3948 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3950 /* free page tables */
3951 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3953 iommu_free_vm_domain(domain);
3954 free_domain_mem(domain);
3957 static int intel_iommu_domain_init(struct iommu_domain *domain)
3959 struct dmar_domain *dmar_domain;
3961 dmar_domain = iommu_alloc_vm_domain();
3962 if (!dmar_domain) {
3963 printk(KERN_ERR
3964 "intel_iommu_domain_init: dmar_domain == NULL\n");
3965 return -ENOMEM;
3967 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3968 printk(KERN_ERR
3969 "intel_iommu_domain_init() failed\n");
3970 vm_domain_exit(dmar_domain);
3971 return -ENOMEM;
3973 domain_update_iommu_cap(dmar_domain);
3974 domain->priv = dmar_domain;
3976 domain->geometry.aperture_start = 0;
3977 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
3978 domain->geometry.force_aperture = true;
3980 return 0;
3983 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
3985 struct dmar_domain *dmar_domain = domain->priv;
3987 domain->priv = NULL;
3988 vm_domain_exit(dmar_domain);
3991 static int intel_iommu_attach_device(struct iommu_domain *domain,
3992 struct device *dev)
3994 struct dmar_domain *dmar_domain = domain->priv;
3995 struct pci_dev *pdev = to_pci_dev(dev);
3996 struct intel_iommu *iommu;
3997 int addr_width;
3999 /* normally pdev is not mapped */
4000 if (unlikely(domain_context_mapped(pdev))) {
4001 struct dmar_domain *old_domain;
4003 old_domain = find_domain(pdev);
4004 if (old_domain) {
4005 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4006 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4007 domain_remove_one_dev_info(old_domain, pdev);
4008 else
4009 domain_remove_dev_info(old_domain);
4013 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
4014 pdev->devfn);
4015 if (!iommu)
4016 return -ENODEV;
4018 /* check if this iommu agaw is sufficient for max mapped address */
4019 addr_width = agaw_to_width(iommu->agaw);
4020 if (addr_width > cap_mgaw(iommu->cap))
4021 addr_width = cap_mgaw(iommu->cap);
4023 if (dmar_domain->max_addr > (1LL << addr_width)) {
4024 printk(KERN_ERR "%s: iommu width (%d) is not "
4025 "sufficient for the mapped address (%llx)\n",
4026 __func__, addr_width, dmar_domain->max_addr);
4027 return -EFAULT;
4029 dmar_domain->gaw = addr_width;
4032 * Knock out extra levels of page tables if necessary
4034 while (iommu->agaw < dmar_domain->agaw) {
4035 struct dma_pte *pte;
4037 pte = dmar_domain->pgd;
4038 if (dma_pte_present(pte)) {
4039 dmar_domain->pgd = (struct dma_pte *)
4040 phys_to_virt(dma_pte_addr(pte));
4041 free_pgtable_page(pte);
4043 dmar_domain->agaw--;
4046 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4049 static void intel_iommu_detach_device(struct iommu_domain *domain,
4050 struct device *dev)
4052 struct dmar_domain *dmar_domain = domain->priv;
4053 struct pci_dev *pdev = to_pci_dev(dev);
4055 domain_remove_one_dev_info(dmar_domain, pdev);
4058 static int intel_iommu_map(struct iommu_domain *domain,
4059 unsigned long iova, phys_addr_t hpa,
4060 size_t size, int iommu_prot)
4062 struct dmar_domain *dmar_domain = domain->priv;
4063 u64 max_addr;
4064 int prot = 0;
4065 int ret;
4067 if (iommu_prot & IOMMU_READ)
4068 prot |= DMA_PTE_READ;
4069 if (iommu_prot & IOMMU_WRITE)
4070 prot |= DMA_PTE_WRITE;
4071 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4072 prot |= DMA_PTE_SNP;
4074 max_addr = iova + size;
4075 if (dmar_domain->max_addr < max_addr) {
4076 u64 end;
4078 /* check if minimum agaw is sufficient for mapped address */
4079 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4080 if (end < max_addr) {
4081 printk(KERN_ERR "%s: iommu width (%d) is not "
4082 "sufficient for the mapped address (%llx)\n",
4083 __func__, dmar_domain->gaw, max_addr);
4084 return -EFAULT;
4086 dmar_domain->max_addr = max_addr;
4088 /* Round up size to next multiple of PAGE_SIZE, if it and
4089 the low bits of hpa would take us onto the next page */
4090 size = aligned_nrpages(hpa, size);
4091 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4092 hpa >> VTD_PAGE_SHIFT, size, prot);
4093 return ret;
4096 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4097 unsigned long iova, size_t size)
4099 struct dmar_domain *dmar_domain = domain->priv;
4100 int order;
4102 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4103 (iova + size - 1) >> VTD_PAGE_SHIFT);
4105 if (dmar_domain->max_addr == iova + size)
4106 dmar_domain->max_addr = iova;
4108 return PAGE_SIZE << order;
4111 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4112 unsigned long iova)
4114 struct dmar_domain *dmar_domain = domain->priv;
4115 struct dma_pte *pte;
4116 u64 phys = 0;
4118 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4119 if (pte)
4120 phys = dma_pte_addr(pte);
4122 return phys;
4125 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4126 unsigned long cap)
4128 struct dmar_domain *dmar_domain = domain->priv;
4130 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4131 return dmar_domain->iommu_snooping;
4132 if (cap == IOMMU_CAP_INTR_REMAP)
4133 return irq_remapping_enabled;
4135 return 0;
4138 static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
4140 pci_dev_put(*from);
4141 *from = to;
4144 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4146 static int intel_iommu_add_device(struct device *dev)
4148 struct pci_dev *pdev = to_pci_dev(dev);
4149 struct pci_dev *bridge, *dma_pdev = NULL;
4150 struct iommu_group *group;
4151 int ret;
4153 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4154 pdev->bus->number, pdev->devfn))
4155 return -ENODEV;
4157 bridge = pci_find_upstream_pcie_bridge(pdev);
4158 if (bridge) {
4159 if (pci_is_pcie(bridge))
4160 dma_pdev = pci_get_domain_bus_and_slot(
4161 pci_domain_nr(pdev->bus),
4162 bridge->subordinate->number, 0);
4163 if (!dma_pdev)
4164 dma_pdev = pci_dev_get(bridge);
4165 } else
4166 dma_pdev = pci_dev_get(pdev);
4168 /* Account for quirked devices */
4169 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4172 * If it's a multifunction device that does not support our
4173 * required ACS flags, add to the same group as function 0.
4175 if (dma_pdev->multifunction &&
4176 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
4177 swap_pci_ref(&dma_pdev,
4178 pci_get_slot(dma_pdev->bus,
4179 PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
4180 0)));
4183 * Devices on the root bus go through the iommu. If that's not us,
4184 * find the next upstream device and test ACS up to the root bus.
4185 * Finding the next device may require skipping virtual buses.
4187 while (!pci_is_root_bus(dma_pdev->bus)) {
4188 struct pci_bus *bus = dma_pdev->bus;
4190 while (!bus->self) {
4191 if (!pci_is_root_bus(bus))
4192 bus = bus->parent;
4193 else
4194 goto root_bus;
4197 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4198 break;
4200 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4203 root_bus:
4204 group = iommu_group_get(&dma_pdev->dev);
4205 pci_dev_put(dma_pdev);
4206 if (!group) {
4207 group = iommu_group_alloc();
4208 if (IS_ERR(group))
4209 return PTR_ERR(group);
4212 ret = iommu_group_add_device(group, dev);
4214 iommu_group_put(group);
4215 return ret;
4218 static void intel_iommu_remove_device(struct device *dev)
4220 iommu_group_remove_device(dev);
4223 static struct iommu_ops intel_iommu_ops = {
4224 .domain_init = intel_iommu_domain_init,
4225 .domain_destroy = intel_iommu_domain_destroy,
4226 .attach_dev = intel_iommu_attach_device,
4227 .detach_dev = intel_iommu_detach_device,
4228 .map = intel_iommu_map,
4229 .unmap = intel_iommu_unmap,
4230 .iova_to_phys = intel_iommu_iova_to_phys,
4231 .domain_has_cap = intel_iommu_domain_has_cap,
4232 .add_device = intel_iommu_add_device,
4233 .remove_device = intel_iommu_remove_device,
4234 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4237 static void __devinit quirk_iommu_rwbf(struct pci_dev *dev)
4240 * Mobile 4 Series Chipset neglects to set RWBF capability,
4241 * but needs it:
4243 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4244 rwbf_quirk = 1;
4246 /* https://bugzilla.redhat.com/show_bug.cgi?id=538163 */
4247 if (dev->revision == 0x07) {
4248 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4249 dmar_map_gfx = 0;
4253 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4255 #define GGC 0x52
4256 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4257 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4258 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4259 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4260 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4261 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4262 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4263 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4265 static void __devinit quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4267 unsigned short ggc;
4269 if (pci_read_config_word(dev, GGC, &ggc))
4270 return;
4272 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4273 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4274 dmar_map_gfx = 0;
4275 } else if (dmar_map_gfx) {
4276 /* we have to ensure the gfx device is idle before we flush */
4277 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4278 intel_iommu_strict = 1;
4281 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4282 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4283 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4284 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4286 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4287 ISOCH DMAR unit for the Azalia sound device, but not give it any
4288 TLB entries, which causes it to deadlock. Check for that. We do
4289 this in a function called from init_dmars(), instead of in a PCI
4290 quirk, because we don't want to print the obnoxious "BIOS broken"
4291 message if VT-d is actually disabled.
4293 static void __init check_tylersburg_isoch(void)
4295 struct pci_dev *pdev;
4296 uint32_t vtisochctrl;
4298 /* If there's no Azalia in the system anyway, forget it. */
4299 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4300 if (!pdev)
4301 return;
4302 pci_dev_put(pdev);
4304 /* System Management Registers. Might be hidden, in which case
4305 we can't do the sanity check. But that's OK, because the
4306 known-broken BIOSes _don't_ actually hide it, so far. */
4307 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4308 if (!pdev)
4309 return;
4311 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4312 pci_dev_put(pdev);
4313 return;
4316 pci_dev_put(pdev);
4318 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4319 if (vtisochctrl & 1)
4320 return;
4322 /* Drop all bits other than the number of TLB entries */
4323 vtisochctrl &= 0x1c;
4325 /* If we have the recommended number of TLB entries (16), fine. */
4326 if (vtisochctrl == 0x10)
4327 return;
4329 /* Zero TLB entries? You get to ride the short bus to school. */
4330 if (!vtisochctrl) {
4331 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4332 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4333 dmi_get_system_info(DMI_BIOS_VENDOR),
4334 dmi_get_system_info(DMI_BIOS_VERSION),
4335 dmi_get_system_info(DMI_PRODUCT_VERSION));
4336 iommu_identity_mapping |= IDENTMAP_AZALIA;
4337 return;
4340 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4341 vtisochctrl);