2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
35 #include <asm/pgalloc.h>
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
46 unsigned long transparent_hugepage_flags __read_mostly
=
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
57 static struct shrinker deferred_split_shrinker
;
59 static atomic_t huge_zero_refcount
;
60 struct page
*huge_zero_page __read_mostly
;
62 static struct page
*get_huge_zero_page(void)
64 struct page
*zero_page
;
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
67 return READ_ONCE(huge_zero_page
);
69 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
75 count_vm_event(THP_ZERO_PAGE_ALLOC
);
77 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
79 __free_pages(zero_page
, compound_order(zero_page
));
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount
, 2);
86 return READ_ONCE(huge_zero_page
);
89 static void put_huge_zero_page(void)
92 * Counter should never go to zero here. Only shrinker can put
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
98 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
100 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
101 return READ_ONCE(huge_zero_page
);
103 if (!get_huge_zero_page())
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
107 put_huge_zero_page();
109 return READ_ONCE(huge_zero_page
);
112 void mm_put_huge_zero_page(struct mm_struct
*mm
)
114 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
115 put_huge_zero_page();
118 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
119 struct shrink_control
*sc
)
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
126 struct shrink_control
*sc
)
128 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
129 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
130 BUG_ON(zero_page
== NULL
);
131 __free_pages(zero_page
, compound_order(zero_page
));
138 static struct shrinker huge_zero_page_shrinker
= {
139 .count_objects
= shrink_huge_zero_page_count
,
140 .scan_objects
= shrink_huge_zero_page_scan
,
141 .seeks
= DEFAULT_SEEKS
,
146 static ssize_t
triple_flag_store(struct kobject
*kobj
,
147 struct kobj_attribute
*attr
,
148 const char *buf
, size_t count
,
149 enum transparent_hugepage_flag enabled
,
150 enum transparent_hugepage_flag deferred
,
151 enum transparent_hugepage_flag req_madv
)
153 if (!memcmp("defer", buf
,
154 min(sizeof("defer")-1, count
))) {
155 if (enabled
== deferred
)
157 clear_bit(enabled
, &transparent_hugepage_flags
);
158 clear_bit(req_madv
, &transparent_hugepage_flags
);
159 set_bit(deferred
, &transparent_hugepage_flags
);
160 } else if (!memcmp("always", buf
,
161 min(sizeof("always")-1, count
))) {
162 clear_bit(deferred
, &transparent_hugepage_flags
);
163 clear_bit(req_madv
, &transparent_hugepage_flags
);
164 set_bit(enabled
, &transparent_hugepage_flags
);
165 } else if (!memcmp("madvise", buf
,
166 min(sizeof("madvise")-1, count
))) {
167 clear_bit(enabled
, &transparent_hugepage_flags
);
168 clear_bit(deferred
, &transparent_hugepage_flags
);
169 set_bit(req_madv
, &transparent_hugepage_flags
);
170 } else if (!memcmp("never", buf
,
171 min(sizeof("never")-1, count
))) {
172 clear_bit(enabled
, &transparent_hugepage_flags
);
173 clear_bit(req_madv
, &transparent_hugepage_flags
);
174 clear_bit(deferred
, &transparent_hugepage_flags
);
181 static ssize_t
enabled_show(struct kobject
*kobj
,
182 struct kobj_attribute
*attr
, char *buf
)
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
185 return sprintf(buf
, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
187 return sprintf(buf
, "always [madvise] never\n");
189 return sprintf(buf
, "always madvise [never]\n");
192 static ssize_t
enabled_store(struct kobject
*kobj
,
193 struct kobj_attribute
*attr
,
194 const char *buf
, size_t count
)
198 ret
= triple_flag_store(kobj
, attr
, buf
, count
,
199 TRANSPARENT_HUGEPAGE_FLAG
,
200 TRANSPARENT_HUGEPAGE_FLAG
,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
204 int err
= start_stop_khugepaged();
211 static struct kobj_attribute enabled_attr
=
212 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
214 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
215 struct kobj_attribute
*attr
, char *buf
,
216 enum transparent_hugepage_flag flag
)
218 return sprintf(buf
, "%d\n",
219 !!test_bit(flag
, &transparent_hugepage_flags
));
222 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
223 struct kobj_attribute
*attr
,
224 const char *buf
, size_t count
,
225 enum transparent_hugepage_flag flag
)
230 ret
= kstrtoul(buf
, 10, &value
);
237 set_bit(flag
, &transparent_hugepage_flags
);
239 clear_bit(flag
, &transparent_hugepage_flags
);
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
249 static ssize_t
defrag_show(struct kobject
*kobj
,
250 struct kobj_attribute
*attr
, char *buf
)
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
253 return sprintf(buf
, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
255 return sprintf(buf
, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
257 return sprintf(buf
, "always defer [madvise] never\n");
259 return sprintf(buf
, "always defer madvise [never]\n");
262 static ssize_t
defrag_store(struct kobject
*kobj
,
263 struct kobj_attribute
*attr
,
264 const char *buf
, size_t count
)
266 return triple_flag_store(kobj
, attr
, buf
, count
,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
,
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
271 static struct kobj_attribute defrag_attr
=
272 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
274 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
275 struct kobj_attribute
*attr
, char *buf
)
277 return single_hugepage_flag_show(kobj
, attr
, buf
,
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
280 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
281 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
283 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
286 static struct kobj_attribute use_zero_page_attr
=
287 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
288 #ifdef CONFIG_DEBUG_VM
289 static ssize_t
debug_cow_show(struct kobject
*kobj
,
290 struct kobj_attribute
*attr
, char *buf
)
292 return single_hugepage_flag_show(kobj
, attr
, buf
,
293 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
295 static ssize_t
debug_cow_store(struct kobject
*kobj
,
296 struct kobj_attribute
*attr
,
297 const char *buf
, size_t count
)
299 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
300 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
302 static struct kobj_attribute debug_cow_attr
=
303 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
304 #endif /* CONFIG_DEBUG_VM */
306 static struct attribute
*hugepage_attr
[] = {
309 &use_zero_page_attr
.attr
,
310 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
311 &shmem_enabled_attr
.attr
,
313 #ifdef CONFIG_DEBUG_VM
314 &debug_cow_attr
.attr
,
319 static struct attribute_group hugepage_attr_group
= {
320 .attrs
= hugepage_attr
,
323 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
327 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
328 if (unlikely(!*hugepage_kobj
)) {
329 pr_err("failed to create transparent hugepage kobject\n");
333 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
335 pr_err("failed to register transparent hugepage group\n");
339 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
341 pr_err("failed to register transparent hugepage group\n");
342 goto remove_hp_group
;
348 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
350 kobject_put(*hugepage_kobj
);
354 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
356 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
357 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
358 kobject_put(hugepage_kobj
);
361 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
366 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
369 #endif /* CONFIG_SYSFS */
371 static int __init
hugepage_init(void)
374 struct kobject
*hugepage_kobj
;
376 if (!has_transparent_hugepage()) {
377 transparent_hugepage_flags
= 0;
382 * hugepages can't be allocated by the buddy allocator
384 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
386 * we use page->mapping and page->index in second tail page
387 * as list_head: assuming THP order >= 2
389 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
391 err
= hugepage_init_sysfs(&hugepage_kobj
);
395 err
= khugepaged_init();
399 err
= register_shrinker(&huge_zero_page_shrinker
);
401 goto err_hzp_shrinker
;
402 err
= register_shrinker(&deferred_split_shrinker
);
404 goto err_split_shrinker
;
407 * By default disable transparent hugepages on smaller systems,
408 * where the extra memory used could hurt more than TLB overhead
409 * is likely to save. The admin can still enable it through /sys.
411 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
))) {
412 transparent_hugepage_flags
= 0;
416 err
= start_stop_khugepaged();
422 unregister_shrinker(&deferred_split_shrinker
);
424 unregister_shrinker(&huge_zero_page_shrinker
);
426 khugepaged_destroy();
428 hugepage_exit_sysfs(hugepage_kobj
);
432 subsys_initcall(hugepage_init
);
434 static int __init
setup_transparent_hugepage(char *str
)
439 if (!strcmp(str
, "always")) {
440 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
441 &transparent_hugepage_flags
);
442 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
443 &transparent_hugepage_flags
);
445 } else if (!strcmp(str
, "madvise")) {
446 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
447 &transparent_hugepage_flags
);
448 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
449 &transparent_hugepage_flags
);
451 } else if (!strcmp(str
, "never")) {
452 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
453 &transparent_hugepage_flags
);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
455 &transparent_hugepage_flags
);
460 pr_warn("transparent_hugepage= cannot parse, ignored\n");
463 __setup("transparent_hugepage=", setup_transparent_hugepage
);
465 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
467 if (likely(vma
->vm_flags
& VM_WRITE
))
468 pmd
= pmd_mkwrite(pmd
);
472 static inline struct list_head
*page_deferred_list(struct page
*page
)
475 * ->lru in the tail pages is occupied by compound_head.
476 * Let's use ->mapping + ->index in the second tail page as list_head.
478 return (struct list_head
*)&page
[2].mapping
;
481 void prep_transhuge_page(struct page
*page
)
484 * we use page->mapping and page->indexlru in second tail page
485 * as list_head: assuming THP order >= 2
488 INIT_LIST_HEAD(page_deferred_list(page
));
489 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
492 unsigned long __thp_get_unmapped_area(struct file
*filp
, unsigned long len
,
493 loff_t off
, unsigned long flags
, unsigned long size
)
496 loff_t off_end
= off
+ len
;
497 loff_t off_align
= round_up(off
, size
);
498 unsigned long len_pad
;
500 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
503 len_pad
= len
+ size
;
504 if (len_pad
< len
|| (off
+ len_pad
) < off
)
507 addr
= current
->mm
->get_unmapped_area(filp
, 0, len_pad
,
508 off
>> PAGE_SHIFT
, flags
);
509 if (IS_ERR_VALUE(addr
))
512 addr
+= (off
- addr
) & (size
- 1);
516 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
517 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
519 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
523 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
526 addr
= __thp_get_unmapped_area(filp
, len
, off
, flags
, PMD_SIZE
);
531 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
533 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
535 static int __do_huge_pmd_anonymous_page(struct fault_env
*fe
, struct page
*page
,
538 struct vm_area_struct
*vma
= fe
->vma
;
539 struct mem_cgroup
*memcg
;
541 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
543 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
545 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, gfp
| __GFP_NORETRY
, &memcg
,
548 count_vm_event(THP_FAULT_FALLBACK
);
549 return VM_FAULT_FALLBACK
;
552 pgtable
= pte_alloc_one(vma
->vm_mm
, haddr
);
553 if (unlikely(!pgtable
)) {
554 mem_cgroup_cancel_charge(page
, memcg
, true);
559 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
561 * The memory barrier inside __SetPageUptodate makes sure that
562 * clear_huge_page writes become visible before the set_pmd_at()
565 __SetPageUptodate(page
);
567 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
568 if (unlikely(!pmd_none(*fe
->pmd
))) {
569 spin_unlock(fe
->ptl
);
570 mem_cgroup_cancel_charge(page
, memcg
, true);
572 pte_free(vma
->vm_mm
, pgtable
);
576 /* Deliver the page fault to userland */
577 if (userfaultfd_missing(vma
)) {
580 spin_unlock(fe
->ptl
);
581 mem_cgroup_cancel_charge(page
, memcg
, true);
583 pte_free(vma
->vm_mm
, pgtable
);
584 ret
= handle_userfault(fe
, VM_UFFD_MISSING
);
585 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
589 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
590 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
591 page_add_new_anon_rmap(page
, vma
, haddr
, true);
592 mem_cgroup_commit_charge(page
, memcg
, false, true);
593 lru_cache_add_active_or_unevictable(page
, vma
);
594 pgtable_trans_huge_deposit(vma
->vm_mm
, fe
->pmd
, pgtable
);
595 set_pmd_at(vma
->vm_mm
, haddr
, fe
->pmd
, entry
);
596 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
597 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
598 spin_unlock(fe
->ptl
);
599 count_vm_event(THP_FAULT_ALLOC
);
606 * If THP defrag is set to always then directly reclaim/compact as necessary
607 * If set to defer then do only background reclaim/compact and defer to khugepaged
608 * If set to madvise and the VMA is flagged then directly reclaim/compact
609 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
611 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
613 bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
615 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
,
616 &transparent_hugepage_flags
) && vma_madvised
)
617 return GFP_TRANSHUGE
;
618 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
,
619 &transparent_hugepage_flags
))
620 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
621 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
,
622 &transparent_hugepage_flags
))
623 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
625 return GFP_TRANSHUGE_LIGHT
;
628 /* Caller must hold page table lock. */
629 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
630 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
631 struct page
*zero_page
)
636 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
637 entry
= pmd_mkhuge(entry
);
639 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
640 set_pmd_at(mm
, haddr
, pmd
, entry
);
641 atomic_long_inc(&mm
->nr_ptes
);
645 int do_huge_pmd_anonymous_page(struct fault_env
*fe
)
647 struct vm_area_struct
*vma
= fe
->vma
;
650 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
652 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
653 return VM_FAULT_FALLBACK
;
654 if (unlikely(anon_vma_prepare(vma
)))
656 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
658 if (!(fe
->flags
& FAULT_FLAG_WRITE
) &&
659 !mm_forbids_zeropage(vma
->vm_mm
) &&
660 transparent_hugepage_use_zero_page()) {
662 struct page
*zero_page
;
665 pgtable
= pte_alloc_one(vma
->vm_mm
, haddr
);
666 if (unlikely(!pgtable
))
668 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
669 if (unlikely(!zero_page
)) {
670 pte_free(vma
->vm_mm
, pgtable
);
671 count_vm_event(THP_FAULT_FALLBACK
);
672 return VM_FAULT_FALLBACK
;
674 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
677 if (pmd_none(*fe
->pmd
)) {
678 if (userfaultfd_missing(vma
)) {
679 spin_unlock(fe
->ptl
);
680 ret
= handle_userfault(fe
, VM_UFFD_MISSING
);
681 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
683 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
684 haddr
, fe
->pmd
, zero_page
);
685 spin_unlock(fe
->ptl
);
689 spin_unlock(fe
->ptl
);
691 pte_free(vma
->vm_mm
, pgtable
);
694 gfp
= alloc_hugepage_direct_gfpmask(vma
);
695 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
696 if (unlikely(!page
)) {
697 count_vm_event(THP_FAULT_FALLBACK
);
698 return VM_FAULT_FALLBACK
;
700 prep_transhuge_page(page
);
701 return __do_huge_pmd_anonymous_page(fe
, page
, gfp
);
704 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
705 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
)
707 struct mm_struct
*mm
= vma
->vm_mm
;
711 ptl
= pmd_lock(mm
, pmd
);
712 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
713 if (pfn_t_devmap(pfn
))
714 entry
= pmd_mkdevmap(entry
);
716 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
717 entry
= maybe_pmd_mkwrite(entry
, vma
);
719 set_pmd_at(mm
, addr
, pmd
, entry
);
720 update_mmu_cache_pmd(vma
, addr
, pmd
);
724 int vmf_insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
725 pmd_t
*pmd
, pfn_t pfn
, bool write
)
727 pgprot_t pgprot
= vma
->vm_page_prot
;
729 * If we had pmd_special, we could avoid all these restrictions,
730 * but we need to be consistent with PTEs and architectures that
731 * can't support a 'special' bit.
733 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
734 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
735 (VM_PFNMAP
|VM_MIXEDMAP
));
736 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
737 BUG_ON(!pfn_t_devmap(pfn
));
739 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
740 return VM_FAULT_SIGBUS
;
741 if (track_pfn_insert(vma
, &pgprot
, pfn
))
742 return VM_FAULT_SIGBUS
;
743 insert_pfn_pmd(vma
, addr
, pmd
, pfn
, pgprot
, write
);
744 return VM_FAULT_NOPAGE
;
746 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd
);
748 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
749 pmd_t
*pmd
, int flags
)
753 _pmd
= pmd_mkyoung(*pmd
);
754 if (flags
& FOLL_WRITE
)
755 _pmd
= pmd_mkdirty(_pmd
);
756 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
757 pmd
, _pmd
, flags
& FOLL_WRITE
))
758 update_mmu_cache_pmd(vma
, addr
, pmd
);
761 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
762 pmd_t
*pmd
, int flags
)
764 unsigned long pfn
= pmd_pfn(*pmd
);
765 struct mm_struct
*mm
= vma
->vm_mm
;
766 struct dev_pagemap
*pgmap
;
769 assert_spin_locked(pmd_lockptr(mm
, pmd
));
772 * When we COW a devmap PMD entry, we split it into PTEs, so we should
773 * not be in this function with `flags & FOLL_COW` set.
775 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
777 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
780 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
785 if (flags
& FOLL_TOUCH
)
786 touch_pmd(vma
, addr
, pmd
, flags
);
789 * device mapped pages can only be returned if the
790 * caller will manage the page reference count.
792 if (!(flags
& FOLL_GET
))
793 return ERR_PTR(-EEXIST
);
795 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
796 pgmap
= get_dev_pagemap(pfn
, NULL
);
798 return ERR_PTR(-EFAULT
);
799 page
= pfn_to_page(pfn
);
801 put_dev_pagemap(pgmap
);
806 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
807 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
808 struct vm_area_struct
*vma
)
810 spinlock_t
*dst_ptl
, *src_ptl
;
811 struct page
*src_page
;
813 pgtable_t pgtable
= NULL
;
816 /* Skip if can be re-fill on fault */
817 if (!vma_is_anonymous(vma
))
820 pgtable
= pte_alloc_one(dst_mm
, addr
);
821 if (unlikely(!pgtable
))
824 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
825 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
826 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
830 if (unlikely(!pmd_trans_huge(pmd
))) {
831 pte_free(dst_mm
, pgtable
);
835 * When page table lock is held, the huge zero pmd should not be
836 * under splitting since we don't split the page itself, only pmd to
839 if (is_huge_zero_pmd(pmd
)) {
840 struct page
*zero_page
;
842 * get_huge_zero_page() will never allocate a new page here,
843 * since we already have a zero page to copy. It just takes a
846 zero_page
= mm_get_huge_zero_page(dst_mm
);
847 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
853 src_page
= pmd_page(pmd
);
854 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
856 page_dup_rmap(src_page
, true);
857 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
858 atomic_long_inc(&dst_mm
->nr_ptes
);
859 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
861 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
862 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
863 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
867 spin_unlock(src_ptl
);
868 spin_unlock(dst_ptl
);
873 void huge_pmd_set_accessed(struct fault_env
*fe
, pmd_t orig_pmd
)
877 bool write
= fe
->flags
& FAULT_FLAG_WRITE
;
879 fe
->ptl
= pmd_lock(fe
->vma
->vm_mm
, fe
->pmd
);
880 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
)))
883 entry
= pmd_mkyoung(orig_pmd
);
885 entry
= pmd_mkdirty(entry
);
886 haddr
= fe
->address
& HPAGE_PMD_MASK
;
887 if (pmdp_set_access_flags(fe
->vma
, haddr
, fe
->pmd
, entry
, write
))
888 update_mmu_cache_pmd(fe
->vma
, fe
->address
, fe
->pmd
);
891 spin_unlock(fe
->ptl
);
894 static int do_huge_pmd_wp_page_fallback(struct fault_env
*fe
, pmd_t orig_pmd
,
897 struct vm_area_struct
*vma
= fe
->vma
;
898 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
899 struct mem_cgroup
*memcg
;
904 unsigned long mmun_start
; /* For mmu_notifiers */
905 unsigned long mmun_end
; /* For mmu_notifiers */
907 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
909 if (unlikely(!pages
)) {
914 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
915 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
916 __GFP_OTHER_NODE
, vma
,
917 fe
->address
, page_to_nid(page
));
918 if (unlikely(!pages
[i
] ||
919 mem_cgroup_try_charge(pages
[i
], vma
->vm_mm
,
920 GFP_KERNEL
, &memcg
, false))) {
924 memcg
= (void *)page_private(pages
[i
]);
925 set_page_private(pages
[i
], 0);
926 mem_cgroup_cancel_charge(pages
[i
], memcg
,
934 set_page_private(pages
[i
], (unsigned long)memcg
);
937 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
938 copy_user_highpage(pages
[i
], page
+ i
,
939 haddr
+ PAGE_SIZE
* i
, vma
);
940 __SetPageUptodate(pages
[i
]);
945 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
946 mmu_notifier_invalidate_range_start(vma
->vm_mm
, mmun_start
, mmun_end
);
948 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
949 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
)))
951 VM_BUG_ON_PAGE(!PageHead(page
), page
);
953 pmdp_huge_clear_flush_notify(vma
, haddr
, fe
->pmd
);
954 /* leave pmd empty until pte is filled */
956 pgtable
= pgtable_trans_huge_withdraw(vma
->vm_mm
, fe
->pmd
);
957 pmd_populate(vma
->vm_mm
, &_pmd
, pgtable
);
959 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
961 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
962 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
963 memcg
= (void *)page_private(pages
[i
]);
964 set_page_private(pages
[i
], 0);
965 page_add_new_anon_rmap(pages
[i
], fe
->vma
, haddr
, false);
966 mem_cgroup_commit_charge(pages
[i
], memcg
, false, false);
967 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
968 fe
->pte
= pte_offset_map(&_pmd
, haddr
);
969 VM_BUG_ON(!pte_none(*fe
->pte
));
970 set_pte_at(vma
->vm_mm
, haddr
, fe
->pte
, entry
);
975 smp_wmb(); /* make pte visible before pmd */
976 pmd_populate(vma
->vm_mm
, fe
->pmd
, pgtable
);
977 page_remove_rmap(page
, true);
978 spin_unlock(fe
->ptl
);
980 mmu_notifier_invalidate_range_end(vma
->vm_mm
, mmun_start
, mmun_end
);
982 ret
|= VM_FAULT_WRITE
;
989 spin_unlock(fe
->ptl
);
990 mmu_notifier_invalidate_range_end(vma
->vm_mm
, mmun_start
, mmun_end
);
991 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
992 memcg
= (void *)page_private(pages
[i
]);
993 set_page_private(pages
[i
], 0);
994 mem_cgroup_cancel_charge(pages
[i
], memcg
, false);
1001 int do_huge_pmd_wp_page(struct fault_env
*fe
, pmd_t orig_pmd
)
1003 struct vm_area_struct
*vma
= fe
->vma
;
1004 struct page
*page
= NULL
, *new_page
;
1005 struct mem_cgroup
*memcg
;
1006 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
1007 unsigned long mmun_start
; /* For mmu_notifiers */
1008 unsigned long mmun_end
; /* For mmu_notifiers */
1009 gfp_t huge_gfp
; /* for allocation and charge */
1012 fe
->ptl
= pmd_lockptr(vma
->vm_mm
, fe
->pmd
);
1013 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1014 if (is_huge_zero_pmd(orig_pmd
))
1017 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
)))
1020 page
= pmd_page(orig_pmd
);
1021 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1023 * We can only reuse the page if nobody else maps the huge page or it's
1026 if (page_trans_huge_mapcount(page
, NULL
) == 1) {
1028 entry
= pmd_mkyoung(orig_pmd
);
1029 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1030 if (pmdp_set_access_flags(vma
, haddr
, fe
->pmd
, entry
, 1))
1031 update_mmu_cache_pmd(vma
, fe
->address
, fe
->pmd
);
1032 ret
|= VM_FAULT_WRITE
;
1036 spin_unlock(fe
->ptl
);
1038 if (transparent_hugepage_enabled(vma
) &&
1039 !transparent_hugepage_debug_cow()) {
1040 huge_gfp
= alloc_hugepage_direct_gfpmask(vma
);
1041 new_page
= alloc_hugepage_vma(huge_gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
1045 if (likely(new_page
)) {
1046 prep_transhuge_page(new_page
);
1049 split_huge_pmd(vma
, fe
->pmd
, fe
->address
);
1050 ret
|= VM_FAULT_FALLBACK
;
1052 ret
= do_huge_pmd_wp_page_fallback(fe
, orig_pmd
, page
);
1053 if (ret
& VM_FAULT_OOM
) {
1054 split_huge_pmd(vma
, fe
->pmd
, fe
->address
);
1055 ret
|= VM_FAULT_FALLBACK
;
1059 count_vm_event(THP_FAULT_FALLBACK
);
1063 if (unlikely(mem_cgroup_try_charge(new_page
, vma
->vm_mm
,
1064 huge_gfp
| __GFP_NORETRY
, &memcg
, true))) {
1066 split_huge_pmd(vma
, fe
->pmd
, fe
->address
);
1069 ret
|= VM_FAULT_FALLBACK
;
1070 count_vm_event(THP_FAULT_FALLBACK
);
1074 count_vm_event(THP_FAULT_ALLOC
);
1077 clear_huge_page(new_page
, haddr
, HPAGE_PMD_NR
);
1079 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
1080 __SetPageUptodate(new_page
);
1083 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1084 mmu_notifier_invalidate_range_start(vma
->vm_mm
, mmun_start
, mmun_end
);
1089 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
))) {
1090 spin_unlock(fe
->ptl
);
1091 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1096 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1097 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1098 pmdp_huge_clear_flush_notify(vma
, haddr
, fe
->pmd
);
1099 page_add_new_anon_rmap(new_page
, vma
, haddr
, true);
1100 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1101 lru_cache_add_active_or_unevictable(new_page
, vma
);
1102 set_pmd_at(vma
->vm_mm
, haddr
, fe
->pmd
, entry
);
1103 update_mmu_cache_pmd(vma
, fe
->address
, fe
->pmd
);
1105 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1107 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1108 page_remove_rmap(page
, true);
1111 ret
|= VM_FAULT_WRITE
;
1113 spin_unlock(fe
->ptl
);
1115 mmu_notifier_invalidate_range_end(vma
->vm_mm
, mmun_start
, mmun_end
);
1119 spin_unlock(fe
->ptl
);
1124 * FOLL_FORCE can write to even unwritable pmd's, but only
1125 * after we've gone through a COW cycle and they are dirty.
1127 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1129 return pmd_write(pmd
) ||
1130 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pmd_dirty(pmd
));
1133 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1138 struct mm_struct
*mm
= vma
->vm_mm
;
1139 struct page
*page
= NULL
;
1141 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1143 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1146 /* Avoid dumping huge zero page */
1147 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1148 return ERR_PTR(-EFAULT
);
1150 /* Full NUMA hinting faults to serialise migration in fault paths */
1151 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1154 page
= pmd_page(*pmd
);
1155 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1156 if (flags
& FOLL_TOUCH
)
1157 touch_pmd(vma
, addr
, pmd
, flags
);
1158 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1160 * We don't mlock() pte-mapped THPs. This way we can avoid
1161 * leaking mlocked pages into non-VM_LOCKED VMAs.
1165 * In most cases the pmd is the only mapping of the page as we
1166 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1167 * writable private mappings in populate_vma_page_range().
1169 * The only scenario when we have the page shared here is if we
1170 * mlocking read-only mapping shared over fork(). We skip
1171 * mlocking such pages.
1175 * We can expect PageDoubleMap() to be stable under page lock:
1176 * for file pages we set it in page_add_file_rmap(), which
1177 * requires page to be locked.
1180 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1182 if (PageDoubleMap(page
) || !page
->mapping
)
1184 if (!trylock_page(page
))
1187 if (page
->mapping
&& !PageDoubleMap(page
))
1188 mlock_vma_page(page
);
1192 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1193 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1194 if (flags
& FOLL_GET
)
1201 /* NUMA hinting page fault entry point for trans huge pmds */
1202 int do_huge_pmd_numa_page(struct fault_env
*fe
, pmd_t pmd
)
1204 struct vm_area_struct
*vma
= fe
->vma
;
1205 struct anon_vma
*anon_vma
= NULL
;
1207 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
1208 int page_nid
= -1, this_nid
= numa_node_id();
1209 int target_nid
, last_cpupid
= -1;
1211 bool migrated
= false;
1215 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
1216 if (unlikely(!pmd_same(pmd
, *fe
->pmd
)))
1220 * If there are potential migrations, wait for completion and retry
1221 * without disrupting NUMA hinting information. Do not relock and
1222 * check_same as the page may no longer be mapped.
1224 if (unlikely(pmd_trans_migrating(*fe
->pmd
))) {
1225 page
= pmd_page(*fe
->pmd
);
1226 if (!get_page_unless_zero(page
))
1228 spin_unlock(fe
->ptl
);
1229 wait_on_page_locked(page
);
1234 page
= pmd_page(pmd
);
1235 BUG_ON(is_huge_zero_page(page
));
1236 page_nid
= page_to_nid(page
);
1237 last_cpupid
= page_cpupid_last(page
);
1238 count_vm_numa_event(NUMA_HINT_FAULTS
);
1239 if (page_nid
== this_nid
) {
1240 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1241 flags
|= TNF_FAULT_LOCAL
;
1244 /* See similar comment in do_numa_page for explanation */
1245 if (!pmd_write(pmd
))
1246 flags
|= TNF_NO_GROUP
;
1249 * Acquire the page lock to serialise THP migrations but avoid dropping
1250 * page_table_lock if at all possible
1252 page_locked
= trylock_page(page
);
1253 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1254 if (target_nid
== -1) {
1255 /* If the page was locked, there are no parallel migrations */
1260 /* Migration could have started since the pmd_trans_migrating check */
1263 if (!get_page_unless_zero(page
))
1265 spin_unlock(fe
->ptl
);
1266 wait_on_page_locked(page
);
1272 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1273 * to serialises splits
1276 spin_unlock(fe
->ptl
);
1277 anon_vma
= page_lock_anon_vma_read(page
);
1279 /* Confirm the PMD did not change while page_table_lock was released */
1281 if (unlikely(!pmd_same(pmd
, *fe
->pmd
))) {
1288 /* Bail if we fail to protect against THP splits for any reason */
1289 if (unlikely(!anon_vma
)) {
1296 * Migrate the THP to the requested node, returns with page unlocked
1297 * and access rights restored.
1299 spin_unlock(fe
->ptl
);
1300 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1301 fe
->pmd
, pmd
, fe
->address
, page
, target_nid
);
1303 flags
|= TNF_MIGRATED
;
1304 page_nid
= target_nid
;
1306 flags
|= TNF_MIGRATE_FAIL
;
1310 BUG_ON(!PageLocked(page
));
1311 was_writable
= pmd_write(pmd
);
1312 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1313 pmd
= pmd_mkyoung(pmd
);
1315 pmd
= pmd_mkwrite(pmd
);
1316 set_pmd_at(vma
->vm_mm
, haddr
, fe
->pmd
, pmd
);
1317 update_mmu_cache_pmd(vma
, fe
->address
, fe
->pmd
);
1320 spin_unlock(fe
->ptl
);
1324 page_unlock_anon_vma_read(anon_vma
);
1327 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
, fe
->flags
);
1333 * Return true if we do MADV_FREE successfully on entire pmd page.
1334 * Otherwise, return false.
1336 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1337 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1342 struct mm_struct
*mm
= tlb
->mm
;
1345 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1350 if (is_huge_zero_pmd(orig_pmd
))
1353 page
= pmd_page(orig_pmd
);
1355 * If other processes are mapping this page, we couldn't discard
1356 * the page unless they all do MADV_FREE so let's skip the page.
1358 if (page_mapcount(page
) != 1)
1361 if (!trylock_page(page
))
1365 * If user want to discard part-pages of THP, split it so MADV_FREE
1366 * will deactivate only them.
1368 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1371 split_huge_page(page
);
1377 if (PageDirty(page
))
1378 ClearPageDirty(page
);
1381 if (PageActive(page
))
1382 deactivate_page(page
);
1384 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1385 pmdp_invalidate(vma
, addr
, pmd
);
1386 orig_pmd
= pmd_mkold(orig_pmd
);
1387 orig_pmd
= pmd_mkclean(orig_pmd
);
1389 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1390 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1399 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1400 pmd_t
*pmd
, unsigned long addr
)
1405 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1409 * For architectures like ppc64 we look at deposited pgtable
1410 * when calling pmdp_huge_get_and_clear. So do the
1411 * pgtable_trans_huge_withdraw after finishing pmdp related
1414 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1416 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1417 if (vma_is_dax(vma
)) {
1419 if (is_huge_zero_pmd(orig_pmd
))
1420 tlb_remove_page(tlb
, pmd_page(orig_pmd
));
1421 } else if (is_huge_zero_pmd(orig_pmd
)) {
1422 pte_free(tlb
->mm
, pgtable_trans_huge_withdraw(tlb
->mm
, pmd
));
1423 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1425 tlb_remove_page(tlb
, pmd_page(orig_pmd
));
1427 struct page
*page
= pmd_page(orig_pmd
);
1428 page_remove_rmap(page
, true);
1429 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1430 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1431 if (PageAnon(page
)) {
1433 pgtable
= pgtable_trans_huge_withdraw(tlb
->mm
, pmd
);
1434 pte_free(tlb
->mm
, pgtable
);
1435 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1436 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1438 add_mm_counter(tlb
->mm
, MM_FILEPAGES
, -HPAGE_PMD_NR
);
1441 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1446 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1447 unsigned long new_addr
, unsigned long old_end
,
1448 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1450 spinlock_t
*old_ptl
, *new_ptl
;
1452 struct mm_struct
*mm
= vma
->vm_mm
;
1453 bool force_flush
= false;
1455 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1456 (new_addr
& ~HPAGE_PMD_MASK
) ||
1457 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1461 * The destination pmd shouldn't be established, free_pgtables()
1462 * should have release it.
1464 if (WARN_ON(!pmd_none(*new_pmd
))) {
1465 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1470 * We don't have to worry about the ordering of src and dst
1471 * ptlocks because exclusive mmap_sem prevents deadlock.
1473 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1475 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1476 if (new_ptl
!= old_ptl
)
1477 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1478 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1479 if (pmd_present(pmd
))
1481 VM_BUG_ON(!pmd_none(*new_pmd
));
1483 if (pmd_move_must_withdraw(new_ptl
, old_ptl
) &&
1484 vma_is_anonymous(vma
)) {
1486 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1487 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1489 set_pmd_at(mm
, new_addr
, new_pmd
, pmd_mksoft_dirty(pmd
));
1491 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1492 if (new_ptl
!= old_ptl
)
1493 spin_unlock(new_ptl
);
1494 spin_unlock(old_ptl
);
1502 * - 0 if PMD could not be locked
1503 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1504 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1506 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1507 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1509 struct mm_struct
*mm
= vma
->vm_mm
;
1512 bool preserve_write
;
1515 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1519 preserve_write
= prot_numa
&& pmd_write(*pmd
);
1523 * Avoid trapping faults against the zero page. The read-only
1524 * data is likely to be read-cached on the local CPU and
1525 * local/remote hits to the zero page are not interesting.
1527 if (prot_numa
&& is_huge_zero_pmd(*pmd
))
1530 if (prot_numa
&& pmd_protnone(*pmd
))
1534 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1535 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1536 * which is also under down_read(mmap_sem):
1539 * change_huge_pmd(prot_numa=1)
1540 * pmdp_huge_get_and_clear_notify()
1541 * madvise_dontneed()
1543 * pmd_trans_huge(*pmd) == 0 (without ptl)
1546 * // pmd is re-established
1548 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1549 * which may break userspace.
1551 * pmdp_invalidate() is required to make sure we don't miss
1552 * dirty/young flags set by hardware.
1555 pmdp_invalidate(vma
, addr
, pmd
);
1558 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1561 if (pmd_dirty(*pmd
))
1562 entry
= pmd_mkdirty(entry
);
1563 if (pmd_young(*pmd
))
1564 entry
= pmd_mkyoung(entry
);
1566 entry
= pmd_modify(entry
, newprot
);
1568 entry
= pmd_mkwrite(entry
);
1570 set_pmd_at(mm
, addr
, pmd
, entry
);
1571 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&& pmd_write(entry
));
1578 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1580 * Note that if it returns page table lock pointer, this routine returns without
1581 * unlocking page table lock. So callers must unlock it.
1583 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
1586 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1587 if (likely(pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)))
1593 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
1594 unsigned long haddr
, pmd_t
*pmd
)
1596 struct mm_struct
*mm
= vma
->vm_mm
;
1601 /* leave pmd empty until pte is filled */
1602 pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
1604 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1605 pmd_populate(mm
, &_pmd
, pgtable
);
1607 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1609 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
1610 entry
= pte_mkspecial(entry
);
1611 pte
= pte_offset_map(&_pmd
, haddr
);
1612 VM_BUG_ON(!pte_none(*pte
));
1613 set_pte_at(mm
, haddr
, pte
, entry
);
1616 smp_wmb(); /* make pte visible before pmd */
1617 pmd_populate(mm
, pmd
, pgtable
);
1620 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1621 unsigned long haddr
, bool freeze
)
1623 struct mm_struct
*mm
= vma
->vm_mm
;
1627 bool young
, write
, dirty
, soft_dirty
;
1631 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
1632 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
1633 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
1634 VM_BUG_ON(!pmd_trans_huge(*pmd
) && !pmd_devmap(*pmd
));
1636 count_vm_event(THP_SPLIT_PMD
);
1638 if (!vma_is_anonymous(vma
)) {
1639 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
1640 if (vma_is_dax(vma
))
1642 page
= pmd_page(_pmd
);
1643 if (!PageDirty(page
) && pmd_dirty(_pmd
))
1644 set_page_dirty(page
);
1645 if (!PageReferenced(page
) && pmd_young(_pmd
))
1646 SetPageReferenced(page
);
1647 page_remove_rmap(page
, true);
1649 add_mm_counter(mm
, MM_FILEPAGES
, -HPAGE_PMD_NR
);
1651 } else if (is_huge_zero_pmd(*pmd
)) {
1652 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
1655 page
= pmd_page(*pmd
);
1656 VM_BUG_ON_PAGE(!page_count(page
), page
);
1657 page_ref_add(page
, HPAGE_PMD_NR
- 1);
1658 write
= pmd_write(*pmd
);
1659 young
= pmd_young(*pmd
);
1660 dirty
= pmd_dirty(*pmd
);
1661 soft_dirty
= pmd_soft_dirty(*pmd
);
1663 pmdp_huge_split_prepare(vma
, haddr
, pmd
);
1664 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1665 pmd_populate(mm
, &_pmd
, pgtable
);
1667 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
1670 * Note that NUMA hinting access restrictions are not
1671 * transferred to avoid any possibility of altering
1672 * permissions across VMAs.
1675 swp_entry_t swp_entry
;
1676 swp_entry
= make_migration_entry(page
+ i
, write
);
1677 entry
= swp_entry_to_pte(swp_entry
);
1679 entry
= pte_swp_mksoft_dirty(entry
);
1681 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
1682 entry
= maybe_mkwrite(entry
, vma
);
1684 entry
= pte_wrprotect(entry
);
1686 entry
= pte_mkold(entry
);
1688 entry
= pte_mksoft_dirty(entry
);
1691 SetPageDirty(page
+ i
);
1692 pte
= pte_offset_map(&_pmd
, addr
);
1693 BUG_ON(!pte_none(*pte
));
1694 set_pte_at(mm
, addr
, pte
, entry
);
1695 atomic_inc(&page
[i
]._mapcount
);
1700 * Set PG_double_map before dropping compound_mapcount to avoid
1701 * false-negative page_mapped().
1703 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
1704 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1705 atomic_inc(&page
[i
]._mapcount
);
1708 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
1709 /* Last compound_mapcount is gone. */
1710 __dec_node_page_state(page
, NR_ANON_THPS
);
1711 if (TestClearPageDoubleMap(page
)) {
1712 /* No need in mapcount reference anymore */
1713 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1714 atomic_dec(&page
[i
]._mapcount
);
1718 smp_wmb(); /* make pte visible before pmd */
1720 * Up to this point the pmd is present and huge and userland has the
1721 * whole access to the hugepage during the split (which happens in
1722 * place). If we overwrite the pmd with the not-huge version pointing
1723 * to the pte here (which of course we could if all CPUs were bug
1724 * free), userland could trigger a small page size TLB miss on the
1725 * small sized TLB while the hugepage TLB entry is still established in
1726 * the huge TLB. Some CPU doesn't like that.
1727 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1728 * 383 on page 93. Intel should be safe but is also warns that it's
1729 * only safe if the permission and cache attributes of the two entries
1730 * loaded in the two TLB is identical (which should be the case here).
1731 * But it is generally safer to never allow small and huge TLB entries
1732 * for the same virtual address to be loaded simultaneously. So instead
1733 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1734 * current pmd notpresent (atomically because here the pmd_trans_huge
1735 * and pmd_trans_splitting must remain set at all times on the pmd
1736 * until the split is complete for this pmd), then we flush the SMP TLB
1737 * and finally we write the non-huge version of the pmd entry with
1740 pmdp_invalidate(vma
, haddr
, pmd
);
1741 pmd_populate(mm
, pmd
, pgtable
);
1744 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1745 page_remove_rmap(page
+ i
, false);
1751 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1752 unsigned long address
, bool freeze
, struct page
*page
)
1755 struct mm_struct
*mm
= vma
->vm_mm
;
1756 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
1758 mmu_notifier_invalidate_range_start(mm
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1759 ptl
= pmd_lock(mm
, pmd
);
1762 * If caller asks to setup a migration entries, we need a page to check
1763 * pmd against. Otherwise we can end up replacing wrong page.
1765 VM_BUG_ON(freeze
&& !page
);
1766 if (page
&& page
!= pmd_page(*pmd
))
1769 if (pmd_trans_huge(*pmd
)) {
1770 page
= pmd_page(*pmd
);
1771 if (PageMlocked(page
))
1772 clear_page_mlock(page
);
1773 } else if (!pmd_devmap(*pmd
))
1775 __split_huge_pmd_locked(vma
, pmd
, haddr
, freeze
);
1778 mmu_notifier_invalidate_range_end(mm
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1781 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
1782 bool freeze
, struct page
*page
)
1788 pgd
= pgd_offset(vma
->vm_mm
, address
);
1789 if (!pgd_present(*pgd
))
1792 pud
= pud_offset(pgd
, address
);
1793 if (!pud_present(*pud
))
1796 pmd
= pmd_offset(pud
, address
);
1798 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
1801 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
1802 unsigned long start
,
1807 * If the new start address isn't hpage aligned and it could
1808 * previously contain an hugepage: check if we need to split
1811 if (start
& ~HPAGE_PMD_MASK
&&
1812 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
1813 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
1814 split_huge_pmd_address(vma
, start
, false, NULL
);
1817 * If the new end address isn't hpage aligned and it could
1818 * previously contain an hugepage: check if we need to split
1821 if (end
& ~HPAGE_PMD_MASK
&&
1822 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
1823 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
1824 split_huge_pmd_address(vma
, end
, false, NULL
);
1827 * If we're also updating the vma->vm_next->vm_start, if the new
1828 * vm_next->vm_start isn't page aligned and it could previously
1829 * contain an hugepage: check if we need to split an huge pmd.
1831 if (adjust_next
> 0) {
1832 struct vm_area_struct
*next
= vma
->vm_next
;
1833 unsigned long nstart
= next
->vm_start
;
1834 nstart
+= adjust_next
<< PAGE_SHIFT
;
1835 if (nstart
& ~HPAGE_PMD_MASK
&&
1836 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
1837 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
1838 split_huge_pmd_address(next
, nstart
, false, NULL
);
1842 static void unmap_page(struct page
*page
)
1844 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
1848 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1851 ttu_flags
|= TTU_MIGRATION
;
1853 /* We only need TTU_SPLIT_HUGE_PMD once */
1854 ret
= try_to_unmap(page
, ttu_flags
| TTU_SPLIT_HUGE_PMD
);
1855 for (i
= 1; !ret
&& i
< HPAGE_PMD_NR
; i
++) {
1856 /* Cut short if the page is unmapped */
1857 if (page_count(page
) == 1)
1860 ret
= try_to_unmap(page
+ i
, ttu_flags
);
1862 VM_BUG_ON_PAGE(ret
, page
+ i
- 1);
1865 static void remap_page(struct page
*page
)
1869 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1870 remove_migration_ptes(page
+ i
, page
+ i
, true);
1873 static void __split_huge_page_tail(struct page
*head
, int tail
,
1874 struct lruvec
*lruvec
, struct list_head
*list
)
1876 struct page
*page_tail
= head
+ tail
;
1878 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
1881 * Clone page flags before unfreezing refcount.
1883 * After successful get_page_unless_zero() might follow flags change,
1884 * for exmaple lock_page() which set PG_waiters.
1886 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1887 page_tail
->flags
|= (head
->flags
&
1888 ((1L << PG_referenced
) |
1889 (1L << PG_swapbacked
) |
1890 (1L << PG_mlocked
) |
1891 (1L << PG_uptodate
) |
1894 (1L << PG_unevictable
) |
1897 /* ->mapping in first tail page is compound_mapcount */
1898 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
1900 page_tail
->mapping
= head
->mapping
;
1901 page_tail
->index
= head
->index
+ tail
;
1903 /* Page flags must be visible before we make the page non-compound. */
1907 * Clear PageTail before unfreezing page refcount.
1909 * After successful get_page_unless_zero() might follow put_page()
1910 * which needs correct compound_head().
1912 clear_compound_head(page_tail
);
1914 /* Finally unfreeze refcount. Additional reference from page cache. */
1915 page_ref_unfreeze(page_tail
, 1 + (!PageAnon(head
) ||
1916 PageSwapCache(head
)));
1918 if (page_is_young(head
))
1919 set_page_young(page_tail
);
1920 if (page_is_idle(head
))
1921 set_page_idle(page_tail
);
1923 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
1924 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
1927 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
1928 pgoff_t end
, unsigned long flags
)
1930 struct page
*head
= compound_head(page
);
1931 struct zone
*zone
= page_zone(head
);
1932 struct lruvec
*lruvec
;
1935 lruvec
= mem_cgroup_page_lruvec(head
, zone
->zone_pgdat
);
1937 /* complete memcg works before add pages to LRU */
1938 mem_cgroup_split_huge_fixup(head
);
1940 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
1941 __split_huge_page_tail(head
, i
, lruvec
, list
);
1942 /* Some pages can be beyond i_size: drop them from page cache */
1943 if (head
[i
].index
>= end
) {
1944 __ClearPageDirty(head
+ i
);
1945 __delete_from_page_cache(head
+ i
, NULL
);
1946 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
1947 shmem_uncharge(head
->mapping
->host
, 1);
1952 ClearPageCompound(head
);
1953 /* See comment in __split_huge_page_tail() */
1954 if (PageAnon(head
)) {
1957 /* Additional pin to radix tree */
1958 page_ref_add(head
, 2);
1959 spin_unlock(&head
->mapping
->tree_lock
);
1962 spin_unlock_irqrestore(zone_lru_lock(page_zone(head
)), flags
);
1966 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1967 struct page
*subpage
= head
+ i
;
1968 if (subpage
== page
)
1970 unlock_page(subpage
);
1973 * Subpages may be freed if there wasn't any mapping
1974 * like if add_to_swap() is running on a lru page that
1975 * had its mapping zapped. And freeing these pages
1976 * requires taking the lru_lock so we do the put_page
1977 * of the tail pages after the split is complete.
1983 int total_mapcount(struct page
*page
)
1985 int i
, compound
, ret
;
1987 VM_BUG_ON_PAGE(PageTail(page
), page
);
1989 if (likely(!PageCompound(page
)))
1990 return atomic_read(&page
->_mapcount
) + 1;
1992 compound
= compound_mapcount(page
);
1996 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1997 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
1998 /* File pages has compound_mapcount included in _mapcount */
1999 if (!PageAnon(page
))
2000 return ret
- compound
* HPAGE_PMD_NR
;
2001 if (PageDoubleMap(page
))
2002 ret
-= HPAGE_PMD_NR
;
2007 * This calculates accurately how many mappings a transparent hugepage
2008 * has (unlike page_mapcount() which isn't fully accurate). This full
2009 * accuracy is primarily needed to know if copy-on-write faults can
2010 * reuse the page and change the mapping to read-write instead of
2011 * copying them. At the same time this returns the total_mapcount too.
2013 * The function returns the highest mapcount any one of the subpages
2014 * has. If the return value is one, even if different processes are
2015 * mapping different subpages of the transparent hugepage, they can
2016 * all reuse it, because each process is reusing a different subpage.
2018 * The total_mapcount is instead counting all virtual mappings of the
2019 * subpages. If the total_mapcount is equal to "one", it tells the
2020 * caller all mappings belong to the same "mm" and in turn the
2021 * anon_vma of the transparent hugepage can become the vma->anon_vma
2022 * local one as no other process may be mapping any of the subpages.
2024 * It would be more accurate to replace page_mapcount() with
2025 * page_trans_huge_mapcount(), however we only use
2026 * page_trans_huge_mapcount() in the copy-on-write faults where we
2027 * need full accuracy to avoid breaking page pinning, because
2028 * page_trans_huge_mapcount() is slower than page_mapcount().
2030 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2032 int i
, ret
, _total_mapcount
, mapcount
;
2034 /* hugetlbfs shouldn't call it */
2035 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2037 if (likely(!PageTransCompound(page
))) {
2038 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2040 *total_mapcount
= mapcount
;
2044 page
= compound_head(page
);
2046 _total_mapcount
= ret
= 0;
2047 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2048 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2049 ret
= max(ret
, mapcount
);
2050 _total_mapcount
+= mapcount
;
2052 if (PageDoubleMap(page
)) {
2054 _total_mapcount
-= HPAGE_PMD_NR
;
2056 mapcount
= compound_mapcount(page
);
2058 _total_mapcount
+= mapcount
;
2060 *total_mapcount
= _total_mapcount
;
2065 * This function splits huge page into normal pages. @page can point to any
2066 * subpage of huge page to split. Split doesn't change the position of @page.
2068 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2069 * The huge page must be locked.
2071 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2073 * Both head page and tail pages will inherit mapping, flags, and so on from
2076 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2077 * they are not mapped.
2079 * Returns 0 if the hugepage is split successfully.
2080 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2083 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2085 struct page
*head
= compound_head(page
);
2086 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
2087 struct anon_vma
*anon_vma
= NULL
;
2088 struct address_space
*mapping
= NULL
;
2089 int count
, mapcount
, extra_pins
, ret
;
2091 unsigned long flags
;
2094 VM_BUG_ON_PAGE(is_huge_zero_page(page
), page
);
2095 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2096 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
2097 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
2099 if (PageAnon(head
)) {
2101 * The caller does not necessarily hold an mmap_sem that would
2102 * prevent the anon_vma disappearing so we first we take a
2103 * reference to it and then lock the anon_vma for write. This
2104 * is similar to page_lock_anon_vma_read except the write lock
2105 * is taken to serialise against parallel split or collapse
2108 anon_vma
= page_get_anon_vma(head
);
2116 anon_vma_lock_write(anon_vma
);
2118 mapping
= head
->mapping
;
2126 /* Addidional pins from radix tree */
2127 extra_pins
= HPAGE_PMD_NR
;
2129 i_mmap_lock_read(mapping
);
2132 *__split_huge_page() may need to trim off pages beyond EOF:
2133 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2134 * which cannot be nested inside the page tree lock. So note
2135 * end now: i_size itself may be changed at any moment, but
2136 * head page lock is good enough to serialize the trimming.
2138 end
= DIV_ROUND_UP(i_size_read(mapping
->host
), PAGE_SIZE
);
2142 * Racy check if we can split the page, before unmap_page() will
2145 if (total_mapcount(head
) != page_count(head
) - extra_pins
- 1) {
2150 mlocked
= PageMlocked(page
);
2152 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2154 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2158 /* prevent PageLRU to go away from under us, and freeze lru stats */
2159 spin_lock_irqsave(zone_lru_lock(page_zone(head
)), flags
);
2164 spin_lock(&mapping
->tree_lock
);
2165 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
2168 * Check if the head page is present in radix tree.
2169 * We assume all tail are present too, if head is there.
2171 if (radix_tree_deref_slot_protected(pslot
,
2172 &mapping
->tree_lock
) != head
)
2176 /* Prevent deferred_split_scan() touching ->_refcount */
2177 spin_lock(&pgdata
->split_queue_lock
);
2178 count
= page_count(head
);
2179 mapcount
= total_mapcount(head
);
2180 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2181 if (!list_empty(page_deferred_list(head
))) {
2182 pgdata
->split_queue_len
--;
2183 list_del(page_deferred_list(head
));
2186 __dec_node_page_state(page
, NR_SHMEM_THPS
);
2187 spin_unlock(&pgdata
->split_queue_lock
);
2188 __split_huge_page(page
, list
, end
, flags
);
2191 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2192 pr_alert("total_mapcount: %u, page_count(): %u\n",
2195 dump_page(head
, NULL
);
2196 dump_page(page
, "total_mapcount(head) > 0");
2199 spin_unlock(&pgdata
->split_queue_lock
);
2201 spin_unlock(&mapping
->tree_lock
);
2202 spin_unlock_irqrestore(zone_lru_lock(page_zone(head
)), flags
);
2209 anon_vma_unlock_write(anon_vma
);
2210 put_anon_vma(anon_vma
);
2213 i_mmap_unlock_read(mapping
);
2215 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2219 void free_transhuge_page(struct page
*page
)
2221 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2222 unsigned long flags
;
2224 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2225 if (!list_empty(page_deferred_list(page
))) {
2226 pgdata
->split_queue_len
--;
2227 list_del(page_deferred_list(page
));
2229 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2230 free_compound_page(page
);
2233 void deferred_split_huge_page(struct page
*page
)
2235 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2236 unsigned long flags
;
2238 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2240 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2241 if (list_empty(page_deferred_list(page
))) {
2242 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2243 list_add_tail(page_deferred_list(page
), &pgdata
->split_queue
);
2244 pgdata
->split_queue_len
++;
2246 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2249 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2250 struct shrink_control
*sc
)
2252 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2253 return ACCESS_ONCE(pgdata
->split_queue_len
);
2256 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2257 struct shrink_control
*sc
)
2259 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2260 unsigned long flags
;
2261 LIST_HEAD(list
), *pos
, *next
;
2265 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2266 /* Take pin on all head pages to avoid freeing them under us */
2267 list_for_each_safe(pos
, next
, &pgdata
->split_queue
) {
2268 page
= list_entry((void *)pos
, struct page
, mapping
);
2269 page
= compound_head(page
);
2270 if (get_page_unless_zero(page
)) {
2271 list_move(page_deferred_list(page
), &list
);
2273 /* We lost race with put_compound_page() */
2274 list_del_init(page_deferred_list(page
));
2275 pgdata
->split_queue_len
--;
2277 if (!--sc
->nr_to_scan
)
2280 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2282 list_for_each_safe(pos
, next
, &list
) {
2283 page
= list_entry((void *)pos
, struct page
, mapping
);
2284 if (!trylock_page(page
))
2286 /* split_huge_page() removes page from list on success */
2287 if (!split_huge_page(page
))
2294 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2295 list_splice_tail(&list
, &pgdata
->split_queue
);
2296 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2299 * Stop shrinker if we didn't split any page, but the queue is empty.
2300 * This can happen if pages were freed under us.
2302 if (!split
&& list_empty(&pgdata
->split_queue
))
2307 static struct shrinker deferred_split_shrinker
= {
2308 .count_objects
= deferred_split_count
,
2309 .scan_objects
= deferred_split_scan
,
2310 .seeks
= DEFAULT_SEEKS
,
2311 .flags
= SHRINKER_NUMA_AWARE
,
2314 #ifdef CONFIG_DEBUG_FS
2315 static int split_huge_pages_set(void *data
, u64 val
)
2319 unsigned long pfn
, max_zone_pfn
;
2320 unsigned long total
= 0, split
= 0;
2325 for_each_populated_zone(zone
) {
2326 max_zone_pfn
= zone_end_pfn(zone
);
2327 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
2328 if (!pfn_valid(pfn
))
2331 page
= pfn_to_page(pfn
);
2332 if (!get_page_unless_zero(page
))
2335 if (zone
!= page_zone(page
))
2338 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
2343 if (!split_huge_page(page
))
2351 pr_info("%lu of %lu THP split\n", split
, total
);
2355 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
2358 static int __init
split_huge_pages_debugfs(void)
2362 ret
= debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
2363 &split_huge_pages_fops
);
2365 pr_warn("Failed to create split_huge_pages in debugfs");
2368 late_initcall(split_huge_pages_debugfs
);