3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t
;
166 typedef unsigned short freelist_idx_t
;
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
175 * - LIFO ordering, to hand out cache-warm objects from _alloc
176 * - reduce the number of linked list operations
177 * - reduce spinlock operations
179 * The limit is stored in the per-cpu structure to reduce the data cache
186 unsigned int batchcount
;
187 unsigned int touched
;
189 * Must have this definition in here for the proper
190 * alignment of array_cache. Also simplifies accessing
197 struct array_cache ac
;
201 * Need this for bootstrapping a per node allocator.
203 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
204 static struct kmem_cache_node __initdata init_kmem_cache_node
[NUM_INIT_LISTS
];
205 #define CACHE_CACHE 0
206 #define SIZE_NODE (MAX_NUMNODES)
208 static int drain_freelist(struct kmem_cache
*cache
,
209 struct kmem_cache_node
*n
, int tofree
);
210 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
211 int node
, struct list_head
*list
);
212 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
);
213 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
214 static void cache_reap(struct work_struct
*unused
);
216 static inline void fixup_objfreelist_debug(struct kmem_cache
*cachep
,
218 static inline void fixup_slab_list(struct kmem_cache
*cachep
,
219 struct kmem_cache_node
*n
, struct page
*page
,
221 static int slab_early_init
= 1;
223 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225 static void kmem_cache_node_init(struct kmem_cache_node
*parent
)
227 INIT_LIST_HEAD(&parent
->slabs_full
);
228 INIT_LIST_HEAD(&parent
->slabs_partial
);
229 INIT_LIST_HEAD(&parent
->slabs_free
);
230 parent
->shared
= NULL
;
231 parent
->alien
= NULL
;
232 parent
->colour_next
= 0;
233 spin_lock_init(&parent
->list_lock
);
234 parent
->free_objects
= 0;
235 parent
->free_touched
= 0;
236 parent
->num_slabs
= 0;
239 #define MAKE_LIST(cachep, listp, slab, nodeid) \
241 INIT_LIST_HEAD(listp); \
242 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
247 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
248 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
249 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
253 #define CFLGS_OFF_SLAB (0x80000000UL)
254 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
255 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
257 #define BATCHREFILL_LIMIT 16
259 * Optimization question: fewer reaps means less probability for unnessary
260 * cpucache drain/refill cycles.
262 * OTOH the cpuarrays can contain lots of objects,
263 * which could lock up otherwise freeable slabs.
265 #define REAPTIMEOUT_AC (2*HZ)
266 #define REAPTIMEOUT_NODE (4*HZ)
269 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
270 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
271 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
272 #define STATS_INC_GROWN(x) ((x)->grown++)
273 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
274 #define STATS_SET_HIGH(x) \
276 if ((x)->num_active > (x)->high_mark) \
277 (x)->high_mark = (x)->num_active; \
279 #define STATS_INC_ERR(x) ((x)->errors++)
280 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
281 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
282 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
283 #define STATS_SET_FREEABLE(x, i) \
285 if ((x)->max_freeable < i) \
286 (x)->max_freeable = i; \
288 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
289 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
290 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
291 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
293 #define STATS_INC_ACTIVE(x) do { } while (0)
294 #define STATS_DEC_ACTIVE(x) do { } while (0)
295 #define STATS_INC_ALLOCED(x) do { } while (0)
296 #define STATS_INC_GROWN(x) do { } while (0)
297 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
298 #define STATS_SET_HIGH(x) do { } while (0)
299 #define STATS_INC_ERR(x) do { } while (0)
300 #define STATS_INC_NODEALLOCS(x) do { } while (0)
301 #define STATS_INC_NODEFREES(x) do { } while (0)
302 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
303 #define STATS_SET_FREEABLE(x, i) do { } while (0)
304 #define STATS_INC_ALLOCHIT(x) do { } while (0)
305 #define STATS_INC_ALLOCMISS(x) do { } while (0)
306 #define STATS_INC_FREEHIT(x) do { } while (0)
307 #define STATS_INC_FREEMISS(x) do { } while (0)
313 * memory layout of objects:
315 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
316 * the end of an object is aligned with the end of the real
317 * allocation. Catches writes behind the end of the allocation.
318 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
320 * cachep->obj_offset: The real object.
321 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
322 * cachep->size - 1* BYTES_PER_WORD: last caller address
323 * [BYTES_PER_WORD long]
325 static int obj_offset(struct kmem_cache
*cachep
)
327 return cachep
->obj_offset
;
330 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
332 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
333 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
334 sizeof(unsigned long long));
337 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
339 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
340 if (cachep
->flags
& SLAB_STORE_USER
)
341 return (unsigned long long *)(objp
+ cachep
->size
-
342 sizeof(unsigned long long) -
344 return (unsigned long long *) (objp
+ cachep
->size
-
345 sizeof(unsigned long long));
348 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
350 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
351 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
356 #define obj_offset(x) 0
357 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
358 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
359 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
363 #ifdef CONFIG_DEBUG_SLAB_LEAK
365 static inline bool is_store_user_clean(struct kmem_cache
*cachep
)
367 return atomic_read(&cachep
->store_user_clean
) == 1;
370 static inline void set_store_user_clean(struct kmem_cache
*cachep
)
372 atomic_set(&cachep
->store_user_clean
, 1);
375 static inline void set_store_user_dirty(struct kmem_cache
*cachep
)
377 if (is_store_user_clean(cachep
))
378 atomic_set(&cachep
->store_user_clean
, 0);
382 static inline void set_store_user_dirty(struct kmem_cache
*cachep
) {}
387 * Do not go above this order unless 0 objects fit into the slab or
388 * overridden on the command line.
390 #define SLAB_MAX_ORDER_HI 1
391 #define SLAB_MAX_ORDER_LO 0
392 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
393 static bool slab_max_order_set __initdata
;
395 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
397 struct page
*page
= virt_to_head_page(obj
);
398 return page
->slab_cache
;
401 static inline void *index_to_obj(struct kmem_cache
*cache
, struct page
*page
,
404 return page
->s_mem
+ cache
->size
* idx
;
408 * We want to avoid an expensive divide : (offset / cache->size)
409 * Using the fact that size is a constant for a particular cache,
410 * we can replace (offset / cache->size) by
411 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
413 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
414 const struct page
*page
, void *obj
)
416 u32 offset
= (obj
- page
->s_mem
);
417 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
420 #define BOOT_CPUCACHE_ENTRIES 1
421 /* internal cache of cache description objs */
422 static struct kmem_cache kmem_cache_boot
= {
424 .limit
= BOOT_CPUCACHE_ENTRIES
,
426 .size
= sizeof(struct kmem_cache
),
427 .name
= "kmem_cache",
430 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
432 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
434 return this_cpu_ptr(cachep
->cpu_cache
);
438 * Calculate the number of objects and left-over bytes for a given buffer size.
440 static unsigned int cache_estimate(unsigned long gfporder
, size_t buffer_size
,
441 unsigned long flags
, size_t *left_over
)
444 size_t slab_size
= PAGE_SIZE
<< gfporder
;
447 * The slab management structure can be either off the slab or
448 * on it. For the latter case, the memory allocated for a
451 * - @buffer_size bytes for each object
452 * - One freelist_idx_t for each object
454 * We don't need to consider alignment of freelist because
455 * freelist will be at the end of slab page. The objects will be
456 * at the correct alignment.
458 * If the slab management structure is off the slab, then the
459 * alignment will already be calculated into the size. Because
460 * the slabs are all pages aligned, the objects will be at the
461 * correct alignment when allocated.
463 if (flags
& (CFLGS_OBJFREELIST_SLAB
| CFLGS_OFF_SLAB
)) {
464 num
= slab_size
/ buffer_size
;
465 *left_over
= slab_size
% buffer_size
;
467 num
= slab_size
/ (buffer_size
+ sizeof(freelist_idx_t
));
468 *left_over
= slab_size
%
469 (buffer_size
+ sizeof(freelist_idx_t
));
476 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
478 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
481 pr_err("slab error in %s(): cache `%s': %s\n",
482 function
, cachep
->name
, msg
);
484 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
489 * By default on NUMA we use alien caches to stage the freeing of
490 * objects allocated from other nodes. This causes massive memory
491 * inefficiencies when using fake NUMA setup to split memory into a
492 * large number of small nodes, so it can be disabled on the command
496 static int use_alien_caches __read_mostly
= 1;
497 static int __init
noaliencache_setup(char *s
)
499 use_alien_caches
= 0;
502 __setup("noaliencache", noaliencache_setup
);
504 static int __init
slab_max_order_setup(char *str
)
506 get_option(&str
, &slab_max_order
);
507 slab_max_order
= slab_max_order
< 0 ? 0 :
508 min(slab_max_order
, MAX_ORDER
- 1);
509 slab_max_order_set
= true;
513 __setup("slab_max_order=", slab_max_order_setup
);
517 * Special reaping functions for NUMA systems called from cache_reap().
518 * These take care of doing round robin flushing of alien caches (containing
519 * objects freed on different nodes from which they were allocated) and the
520 * flushing of remote pcps by calling drain_node_pages.
522 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
524 static void init_reap_node(int cpu
)
526 per_cpu(slab_reap_node
, cpu
) = next_node_in(cpu_to_mem(cpu
),
530 static void next_reap_node(void)
532 int node
= __this_cpu_read(slab_reap_node
);
534 node
= next_node_in(node
, node_online_map
);
535 __this_cpu_write(slab_reap_node
, node
);
539 #define init_reap_node(cpu) do { } while (0)
540 #define next_reap_node(void) do { } while (0)
544 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
545 * via the workqueue/eventd.
546 * Add the CPU number into the expiration time to minimize the possibility of
547 * the CPUs getting into lockstep and contending for the global cache chain
550 static void start_cpu_timer(int cpu
)
552 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
555 * When this gets called from do_initcalls via cpucache_init(),
556 * init_workqueues() has already run, so keventd will be setup
559 if (keventd_up() && reap_work
->work
.func
== NULL
) {
561 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
562 schedule_delayed_work_on(cpu
, reap_work
,
563 __round_jiffies_relative(HZ
, cpu
));
567 static void init_arraycache(struct array_cache
*ac
, int limit
, int batch
)
572 ac
->batchcount
= batch
;
577 static struct array_cache
*alloc_arraycache(int node
, int entries
,
578 int batchcount
, gfp_t gfp
)
580 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
581 struct array_cache
*ac
= NULL
;
583 ac
= kmalloc_node(memsize
, gfp
, node
);
585 * The array_cache structures contain pointers to free object.
586 * However, when such objects are allocated or transferred to another
587 * cache the pointers are not cleared and they could be counted as
588 * valid references during a kmemleak scan. Therefore, kmemleak must
589 * not scan such objects.
591 kmemleak_no_scan(ac
);
592 init_arraycache(ac
, entries
, batchcount
);
596 static noinline
void cache_free_pfmemalloc(struct kmem_cache
*cachep
,
597 struct page
*page
, void *objp
)
599 struct kmem_cache_node
*n
;
603 page_node
= page_to_nid(page
);
604 n
= get_node(cachep
, page_node
);
606 spin_lock(&n
->list_lock
);
607 free_block(cachep
, &objp
, 1, page_node
, &list
);
608 spin_unlock(&n
->list_lock
);
610 slabs_destroy(cachep
, &list
);
614 * Transfer objects in one arraycache to another.
615 * Locking must be handled by the caller.
617 * Return the number of entries transferred.
619 static int transfer_objects(struct array_cache
*to
,
620 struct array_cache
*from
, unsigned int max
)
622 /* Figure out how many entries to transfer */
623 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
628 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
638 #define drain_alien_cache(cachep, alien) do { } while (0)
639 #define reap_alien(cachep, n) do { } while (0)
641 static inline struct alien_cache
**alloc_alien_cache(int node
,
642 int limit
, gfp_t gfp
)
647 static inline void free_alien_cache(struct alien_cache
**ac_ptr
)
651 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
656 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
662 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
663 gfp_t flags
, int nodeid
)
668 static inline gfp_t
gfp_exact_node(gfp_t flags
)
670 return flags
& ~__GFP_NOFAIL
;
673 #else /* CONFIG_NUMA */
675 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
676 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
678 static struct alien_cache
*__alloc_alien_cache(int node
, int entries
,
679 int batch
, gfp_t gfp
)
681 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct alien_cache
);
682 struct alien_cache
*alc
= NULL
;
684 alc
= kmalloc_node(memsize
, gfp
, node
);
686 kmemleak_no_scan(alc
);
687 init_arraycache(&alc
->ac
, entries
, batch
);
688 spin_lock_init(&alc
->lock
);
693 static struct alien_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
695 struct alien_cache
**alc_ptr
;
696 size_t memsize
= sizeof(void *) * nr_node_ids
;
701 alc_ptr
= kzalloc_node(memsize
, gfp
, node
);
706 if (i
== node
|| !node_online(i
))
708 alc_ptr
[i
] = __alloc_alien_cache(node
, limit
, 0xbaadf00d, gfp
);
710 for (i
--; i
>= 0; i
--)
719 static void free_alien_cache(struct alien_cache
**alc_ptr
)
730 static void __drain_alien_cache(struct kmem_cache
*cachep
,
731 struct array_cache
*ac
, int node
,
732 struct list_head
*list
)
734 struct kmem_cache_node
*n
= get_node(cachep
, node
);
737 spin_lock(&n
->list_lock
);
739 * Stuff objects into the remote nodes shared array first.
740 * That way we could avoid the overhead of putting the objects
741 * into the free lists and getting them back later.
744 transfer_objects(n
->shared
, ac
, ac
->limit
);
746 free_block(cachep
, ac
->entry
, ac
->avail
, node
, list
);
748 spin_unlock(&n
->list_lock
);
753 * Called from cache_reap() to regularly drain alien caches round robin.
755 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
)
757 int node
= __this_cpu_read(slab_reap_node
);
760 struct alien_cache
*alc
= n
->alien
[node
];
761 struct array_cache
*ac
;
765 if (ac
->avail
&& spin_trylock_irq(&alc
->lock
)) {
768 __drain_alien_cache(cachep
, ac
, node
, &list
);
769 spin_unlock_irq(&alc
->lock
);
770 slabs_destroy(cachep
, &list
);
776 static void drain_alien_cache(struct kmem_cache
*cachep
,
777 struct alien_cache
**alien
)
780 struct alien_cache
*alc
;
781 struct array_cache
*ac
;
784 for_each_online_node(i
) {
790 spin_lock_irqsave(&alc
->lock
, flags
);
791 __drain_alien_cache(cachep
, ac
, i
, &list
);
792 spin_unlock_irqrestore(&alc
->lock
, flags
);
793 slabs_destroy(cachep
, &list
);
798 static int __cache_free_alien(struct kmem_cache
*cachep
, void *objp
,
799 int node
, int page_node
)
801 struct kmem_cache_node
*n
;
802 struct alien_cache
*alien
= NULL
;
803 struct array_cache
*ac
;
806 n
= get_node(cachep
, node
);
807 STATS_INC_NODEFREES(cachep
);
808 if (n
->alien
&& n
->alien
[page_node
]) {
809 alien
= n
->alien
[page_node
];
811 spin_lock(&alien
->lock
);
812 if (unlikely(ac
->avail
== ac
->limit
)) {
813 STATS_INC_ACOVERFLOW(cachep
);
814 __drain_alien_cache(cachep
, ac
, page_node
, &list
);
816 ac
->entry
[ac
->avail
++] = objp
;
817 spin_unlock(&alien
->lock
);
818 slabs_destroy(cachep
, &list
);
820 n
= get_node(cachep
, page_node
);
821 spin_lock(&n
->list_lock
);
822 free_block(cachep
, &objp
, 1, page_node
, &list
);
823 spin_unlock(&n
->list_lock
);
824 slabs_destroy(cachep
, &list
);
829 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
831 int page_node
= page_to_nid(virt_to_page(objp
));
832 int node
= numa_mem_id();
834 * Make sure we are not freeing a object from another node to the array
837 if (likely(node
== page_node
))
840 return __cache_free_alien(cachep
, objp
, node
, page_node
);
844 * Construct gfp mask to allocate from a specific node but do not reclaim or
845 * warn about failures.
847 static inline gfp_t
gfp_exact_node(gfp_t flags
)
849 return (flags
| __GFP_THISNODE
| __GFP_NOWARN
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
853 static int init_cache_node(struct kmem_cache
*cachep
, int node
, gfp_t gfp
)
855 struct kmem_cache_node
*n
;
858 * Set up the kmem_cache_node for cpu before we can
859 * begin anything. Make sure some other cpu on this
860 * node has not already allocated this
862 n
= get_node(cachep
, node
);
864 spin_lock_irq(&n
->list_lock
);
865 n
->free_limit
= (1 + nr_cpus_node(node
)) * cachep
->batchcount
+
867 spin_unlock_irq(&n
->list_lock
);
872 n
= kmalloc_node(sizeof(struct kmem_cache_node
), gfp
, node
);
876 kmem_cache_node_init(n
);
877 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
878 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
881 (1 + nr_cpus_node(node
)) * cachep
->batchcount
+ cachep
->num
;
884 * The kmem_cache_nodes don't come and go as CPUs
885 * come and go. slab_mutex is sufficient
888 cachep
->node
[node
] = n
;
893 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
895 * Allocates and initializes node for a node on each slab cache, used for
896 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
897 * will be allocated off-node since memory is not yet online for the new node.
898 * When hotplugging memory or a cpu, existing node are not replaced if
901 * Must hold slab_mutex.
903 static int init_cache_node_node(int node
)
906 struct kmem_cache
*cachep
;
908 list_for_each_entry(cachep
, &slab_caches
, list
) {
909 ret
= init_cache_node(cachep
, node
, GFP_KERNEL
);
918 static int setup_kmem_cache_node(struct kmem_cache
*cachep
,
919 int node
, gfp_t gfp
, bool force_change
)
922 struct kmem_cache_node
*n
;
923 struct array_cache
*old_shared
= NULL
;
924 struct array_cache
*new_shared
= NULL
;
925 struct alien_cache
**new_alien
= NULL
;
928 if (use_alien_caches
) {
929 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
934 if (cachep
->shared
) {
935 new_shared
= alloc_arraycache(node
,
936 cachep
->shared
* cachep
->batchcount
, 0xbaadf00d, gfp
);
941 ret
= init_cache_node(cachep
, node
, gfp
);
945 n
= get_node(cachep
, node
);
946 spin_lock_irq(&n
->list_lock
);
947 if (n
->shared
&& force_change
) {
948 free_block(cachep
, n
->shared
->entry
,
949 n
->shared
->avail
, node
, &list
);
950 n
->shared
->avail
= 0;
953 if (!n
->shared
|| force_change
) {
954 old_shared
= n
->shared
;
955 n
->shared
= new_shared
;
960 n
->alien
= new_alien
;
964 spin_unlock_irq(&n
->list_lock
);
965 slabs_destroy(cachep
, &list
);
968 * To protect lockless access to n->shared during irq disabled context.
969 * If n->shared isn't NULL in irq disabled context, accessing to it is
970 * guaranteed to be valid until irq is re-enabled, because it will be
971 * freed after synchronize_sched().
973 if (old_shared
&& force_change
)
979 free_alien_cache(new_alien
);
986 static void cpuup_canceled(long cpu
)
988 struct kmem_cache
*cachep
;
989 struct kmem_cache_node
*n
= NULL
;
990 int node
= cpu_to_mem(cpu
);
991 const struct cpumask
*mask
= cpumask_of_node(node
);
993 list_for_each_entry(cachep
, &slab_caches
, list
) {
994 struct array_cache
*nc
;
995 struct array_cache
*shared
;
996 struct alien_cache
**alien
;
999 n
= get_node(cachep
, node
);
1003 spin_lock_irq(&n
->list_lock
);
1005 /* Free limit for this kmem_cache_node */
1006 n
->free_limit
-= cachep
->batchcount
;
1008 /* cpu is dead; no one can alloc from it. */
1009 nc
= per_cpu_ptr(cachep
->cpu_cache
, cpu
);
1011 free_block(cachep
, nc
->entry
, nc
->avail
, node
, &list
);
1015 if (!cpumask_empty(mask
)) {
1016 spin_unlock_irq(&n
->list_lock
);
1022 free_block(cachep
, shared
->entry
,
1023 shared
->avail
, node
, &list
);
1030 spin_unlock_irq(&n
->list_lock
);
1034 drain_alien_cache(cachep
, alien
);
1035 free_alien_cache(alien
);
1039 slabs_destroy(cachep
, &list
);
1042 * In the previous loop, all the objects were freed to
1043 * the respective cache's slabs, now we can go ahead and
1044 * shrink each nodelist to its limit.
1046 list_for_each_entry(cachep
, &slab_caches
, list
) {
1047 n
= get_node(cachep
, node
);
1050 drain_freelist(cachep
, n
, INT_MAX
);
1054 static int cpuup_prepare(long cpu
)
1056 struct kmem_cache
*cachep
;
1057 int node
= cpu_to_mem(cpu
);
1061 * We need to do this right in the beginning since
1062 * alloc_arraycache's are going to use this list.
1063 * kmalloc_node allows us to add the slab to the right
1064 * kmem_cache_node and not this cpu's kmem_cache_node
1066 err
= init_cache_node_node(node
);
1071 * Now we can go ahead with allocating the shared arrays and
1074 list_for_each_entry(cachep
, &slab_caches
, list
) {
1075 err
= setup_kmem_cache_node(cachep
, node
, GFP_KERNEL
, false);
1082 cpuup_canceled(cpu
);
1086 int slab_prepare_cpu(unsigned int cpu
)
1090 mutex_lock(&slab_mutex
);
1091 err
= cpuup_prepare(cpu
);
1092 mutex_unlock(&slab_mutex
);
1097 * This is called for a failed online attempt and for a successful
1100 * Even if all the cpus of a node are down, we don't free the
1101 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1102 * a kmalloc allocation from another cpu for memory from the node of
1103 * the cpu going down. The list3 structure is usually allocated from
1104 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1106 int slab_dead_cpu(unsigned int cpu
)
1108 mutex_lock(&slab_mutex
);
1109 cpuup_canceled(cpu
);
1110 mutex_unlock(&slab_mutex
);
1115 static int slab_online_cpu(unsigned int cpu
)
1117 start_cpu_timer(cpu
);
1121 static int slab_offline_cpu(unsigned int cpu
)
1124 * Shutdown cache reaper. Note that the slab_mutex is held so
1125 * that if cache_reap() is invoked it cannot do anything
1126 * expensive but will only modify reap_work and reschedule the
1129 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1130 /* Now the cache_reaper is guaranteed to be not running. */
1131 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1135 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1137 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1138 * Returns -EBUSY if all objects cannot be drained so that the node is not
1141 * Must hold slab_mutex.
1143 static int __meminit
drain_cache_node_node(int node
)
1145 struct kmem_cache
*cachep
;
1148 list_for_each_entry(cachep
, &slab_caches
, list
) {
1149 struct kmem_cache_node
*n
;
1151 n
= get_node(cachep
, node
);
1155 drain_freelist(cachep
, n
, INT_MAX
);
1157 if (!list_empty(&n
->slabs_full
) ||
1158 !list_empty(&n
->slabs_partial
)) {
1166 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1167 unsigned long action
, void *arg
)
1169 struct memory_notify
*mnb
= arg
;
1173 nid
= mnb
->status_change_nid
;
1178 case MEM_GOING_ONLINE
:
1179 mutex_lock(&slab_mutex
);
1180 ret
= init_cache_node_node(nid
);
1181 mutex_unlock(&slab_mutex
);
1183 case MEM_GOING_OFFLINE
:
1184 mutex_lock(&slab_mutex
);
1185 ret
= drain_cache_node_node(nid
);
1186 mutex_unlock(&slab_mutex
);
1190 case MEM_CANCEL_ONLINE
:
1191 case MEM_CANCEL_OFFLINE
:
1195 return notifier_from_errno(ret
);
1197 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1200 * swap the static kmem_cache_node with kmalloced memory
1202 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_cache_node
*list
,
1205 struct kmem_cache_node
*ptr
;
1207 ptr
= kmalloc_node(sizeof(struct kmem_cache_node
), GFP_NOWAIT
, nodeid
);
1210 memcpy(ptr
, list
, sizeof(struct kmem_cache_node
));
1212 * Do not assume that spinlocks can be initialized via memcpy:
1214 spin_lock_init(&ptr
->list_lock
);
1216 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1217 cachep
->node
[nodeid
] = ptr
;
1221 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1222 * size of kmem_cache_node.
1224 static void __init
set_up_node(struct kmem_cache
*cachep
, int index
)
1228 for_each_online_node(node
) {
1229 cachep
->node
[node
] = &init_kmem_cache_node
[index
+ node
];
1230 cachep
->node
[node
]->next_reap
= jiffies
+
1232 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1237 * Initialisation. Called after the page allocator have been initialised and
1238 * before smp_init().
1240 void __init
kmem_cache_init(void)
1244 BUILD_BUG_ON(sizeof(((struct page
*)NULL
)->lru
) <
1245 sizeof(struct rcu_head
));
1246 kmem_cache
= &kmem_cache_boot
;
1248 if (!IS_ENABLED(CONFIG_NUMA
) || num_possible_nodes() == 1)
1249 use_alien_caches
= 0;
1251 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1252 kmem_cache_node_init(&init_kmem_cache_node
[i
]);
1255 * Fragmentation resistance on low memory - only use bigger
1256 * page orders on machines with more than 32MB of memory if
1257 * not overridden on the command line.
1259 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1260 slab_max_order
= SLAB_MAX_ORDER_HI
;
1262 /* Bootstrap is tricky, because several objects are allocated
1263 * from caches that do not exist yet:
1264 * 1) initialize the kmem_cache cache: it contains the struct
1265 * kmem_cache structures of all caches, except kmem_cache itself:
1266 * kmem_cache is statically allocated.
1267 * Initially an __init data area is used for the head array and the
1268 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1269 * array at the end of the bootstrap.
1270 * 2) Create the first kmalloc cache.
1271 * The struct kmem_cache for the new cache is allocated normally.
1272 * An __init data area is used for the head array.
1273 * 3) Create the remaining kmalloc caches, with minimally sized
1275 * 4) Replace the __init data head arrays for kmem_cache and the first
1276 * kmalloc cache with kmalloc allocated arrays.
1277 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1278 * the other cache's with kmalloc allocated memory.
1279 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1282 /* 1) create the kmem_cache */
1285 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1287 create_boot_cache(kmem_cache
, "kmem_cache",
1288 offsetof(struct kmem_cache
, node
) +
1289 nr_node_ids
* sizeof(struct kmem_cache_node
*),
1290 SLAB_HWCACHE_ALIGN
);
1291 list_add(&kmem_cache
->list
, &slab_caches
);
1292 slab_state
= PARTIAL
;
1295 * Initialize the caches that provide memory for the kmem_cache_node
1296 * structures first. Without this, further allocations will bug.
1298 kmalloc_caches
[INDEX_NODE
] = create_kmalloc_cache("kmalloc-node",
1299 kmalloc_size(INDEX_NODE
), ARCH_KMALLOC_FLAGS
);
1300 slab_state
= PARTIAL_NODE
;
1301 setup_kmalloc_cache_index_table();
1303 slab_early_init
= 0;
1305 /* 5) Replace the bootstrap kmem_cache_node */
1309 for_each_online_node(nid
) {
1310 init_list(kmem_cache
, &init_kmem_cache_node
[CACHE_CACHE
+ nid
], nid
);
1312 init_list(kmalloc_caches
[INDEX_NODE
],
1313 &init_kmem_cache_node
[SIZE_NODE
+ nid
], nid
);
1317 create_kmalloc_caches(ARCH_KMALLOC_FLAGS
);
1320 void __init
kmem_cache_init_late(void)
1322 struct kmem_cache
*cachep
;
1326 /* 6) resize the head arrays to their final sizes */
1327 mutex_lock(&slab_mutex
);
1328 list_for_each_entry(cachep
, &slab_caches
, list
)
1329 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1331 mutex_unlock(&slab_mutex
);
1338 * Register a memory hotplug callback that initializes and frees
1341 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1345 * The reap timers are started later, with a module init call: That part
1346 * of the kernel is not yet operational.
1350 static int __init
cpucache_init(void)
1355 * Register the timers that return unneeded pages to the page allocator
1357 ret
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "SLAB online",
1358 slab_online_cpu
, slab_offline_cpu
);
1365 __initcall(cpucache_init
);
1367 static noinline
void
1368 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1371 struct kmem_cache_node
*n
;
1373 unsigned long flags
;
1375 static DEFINE_RATELIMIT_STATE(slab_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1376 DEFAULT_RATELIMIT_BURST
);
1378 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slab_oom_rs
))
1381 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1382 nodeid
, gfpflags
, &gfpflags
);
1383 pr_warn(" cache: %s, object size: %d, order: %d\n",
1384 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1386 for_each_kmem_cache_node(cachep
, node
, n
) {
1387 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1388 unsigned long active_slabs
= 0, num_slabs
= 0;
1389 unsigned long num_slabs_partial
= 0, num_slabs_free
= 0;
1390 unsigned long num_slabs_full
;
1392 spin_lock_irqsave(&n
->list_lock
, flags
);
1393 num_slabs
= n
->num_slabs
;
1394 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
1395 active_objs
+= page
->active
;
1396 num_slabs_partial
++;
1398 list_for_each_entry(page
, &n
->slabs_free
, lru
)
1401 free_objects
+= n
->free_objects
;
1402 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1404 num_objs
= num_slabs
* cachep
->num
;
1405 active_slabs
= num_slabs
- num_slabs_free
;
1406 num_slabs_full
= num_slabs
-
1407 (num_slabs_partial
+ num_slabs_free
);
1408 active_objs
+= (num_slabs_full
* cachep
->num
);
1410 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1411 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1418 * Interface to system's page allocator. No need to hold the
1419 * kmem_cache_node ->list_lock.
1421 * If we requested dmaable memory, we will get it. Even if we
1422 * did not request dmaable memory, we might get it, but that
1423 * would be relatively rare and ignorable.
1425 static struct page
*kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
,
1431 flags
|= cachep
->allocflags
;
1432 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1433 flags
|= __GFP_RECLAIMABLE
;
1435 page
= __alloc_pages_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1437 slab_out_of_memory(cachep
, flags
, nodeid
);
1441 if (memcg_charge_slab(page
, flags
, cachep
->gfporder
, cachep
)) {
1442 __free_pages(page
, cachep
->gfporder
);
1446 nr_pages
= (1 << cachep
->gfporder
);
1447 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1448 add_zone_page_state(page_zone(page
),
1449 NR_SLAB_RECLAIMABLE
, nr_pages
);
1451 add_zone_page_state(page_zone(page
),
1452 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1454 __SetPageSlab(page
);
1455 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1456 if (sk_memalloc_socks() && page_is_pfmemalloc(page
))
1457 SetPageSlabPfmemalloc(page
);
1459 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1460 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1463 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1465 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1472 * Interface to system's page release.
1474 static void kmem_freepages(struct kmem_cache
*cachep
, struct page
*page
)
1476 int order
= cachep
->gfporder
;
1477 unsigned long nr_freed
= (1 << order
);
1479 kmemcheck_free_shadow(page
, order
);
1481 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1482 sub_zone_page_state(page_zone(page
),
1483 NR_SLAB_RECLAIMABLE
, nr_freed
);
1485 sub_zone_page_state(page_zone(page
),
1486 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1488 BUG_ON(!PageSlab(page
));
1489 __ClearPageSlabPfmemalloc(page
);
1490 __ClearPageSlab(page
);
1491 page_mapcount_reset(page
);
1492 page
->mapping
= NULL
;
1494 if (current
->reclaim_state
)
1495 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1496 memcg_uncharge_slab(page
, order
, cachep
);
1497 __free_pages(page
, order
);
1500 static void kmem_rcu_free(struct rcu_head
*head
)
1502 struct kmem_cache
*cachep
;
1505 page
= container_of(head
, struct page
, rcu_head
);
1506 cachep
= page
->slab_cache
;
1508 kmem_freepages(cachep
, page
);
1512 static bool is_debug_pagealloc_cache(struct kmem_cache
*cachep
)
1514 if (debug_pagealloc_enabled() && OFF_SLAB(cachep
) &&
1515 (cachep
->size
% PAGE_SIZE
) == 0)
1521 #ifdef CONFIG_DEBUG_PAGEALLOC
1522 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1523 unsigned long caller
)
1525 int size
= cachep
->object_size
;
1527 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1529 if (size
< 5 * sizeof(unsigned long))
1532 *addr
++ = 0x12345678;
1534 *addr
++ = smp_processor_id();
1535 size
-= 3 * sizeof(unsigned long);
1537 unsigned long *sptr
= &caller
;
1538 unsigned long svalue
;
1540 while (!kstack_end(sptr
)) {
1542 if (kernel_text_address(svalue
)) {
1544 size
-= sizeof(unsigned long);
1545 if (size
<= sizeof(unsigned long))
1551 *addr
++ = 0x87654321;
1554 static void slab_kernel_map(struct kmem_cache
*cachep
, void *objp
,
1555 int map
, unsigned long caller
)
1557 if (!is_debug_pagealloc_cache(cachep
))
1561 store_stackinfo(cachep
, objp
, caller
);
1563 kernel_map_pages(virt_to_page(objp
), cachep
->size
/ PAGE_SIZE
, map
);
1567 static inline void slab_kernel_map(struct kmem_cache
*cachep
, void *objp
,
1568 int map
, unsigned long caller
) {}
1572 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1574 int size
= cachep
->object_size
;
1575 addr
= &((char *)addr
)[obj_offset(cachep
)];
1577 memset(addr
, val
, size
);
1578 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1581 static void dump_line(char *data
, int offset
, int limit
)
1584 unsigned char error
= 0;
1587 pr_err("%03x: ", offset
);
1588 for (i
= 0; i
< limit
; i
++) {
1589 if (data
[offset
+ i
] != POISON_FREE
) {
1590 error
= data
[offset
+ i
];
1594 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
1595 &data
[offset
], limit
, 1);
1597 if (bad_count
== 1) {
1598 error
^= POISON_FREE
;
1599 if (!(error
& (error
- 1))) {
1600 pr_err("Single bit error detected. Probably bad RAM.\n");
1602 pr_err("Run memtest86+ or a similar memory test tool.\n");
1604 pr_err("Run a memory test tool.\n");
1613 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1618 if (cachep
->flags
& SLAB_RED_ZONE
) {
1619 pr_err("Redzone: 0x%llx/0x%llx\n",
1620 *dbg_redzone1(cachep
, objp
),
1621 *dbg_redzone2(cachep
, objp
));
1624 if (cachep
->flags
& SLAB_STORE_USER
) {
1625 pr_err("Last user: [<%p>](%pSR)\n",
1626 *dbg_userword(cachep
, objp
),
1627 *dbg_userword(cachep
, objp
));
1629 realobj
= (char *)objp
+ obj_offset(cachep
);
1630 size
= cachep
->object_size
;
1631 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1634 if (i
+ limit
> size
)
1636 dump_line(realobj
, i
, limit
);
1640 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1646 if (is_debug_pagealloc_cache(cachep
))
1649 realobj
= (char *)objp
+ obj_offset(cachep
);
1650 size
= cachep
->object_size
;
1652 for (i
= 0; i
< size
; i
++) {
1653 char exp
= POISON_FREE
;
1656 if (realobj
[i
] != exp
) {
1661 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1662 print_tainted(), cachep
->name
,
1664 print_objinfo(cachep
, objp
, 0);
1666 /* Hexdump the affected line */
1669 if (i
+ limit
> size
)
1671 dump_line(realobj
, i
, limit
);
1674 /* Limit to 5 lines */
1680 /* Print some data about the neighboring objects, if they
1683 struct page
*page
= virt_to_head_page(objp
);
1686 objnr
= obj_to_index(cachep
, page
, objp
);
1688 objp
= index_to_obj(cachep
, page
, objnr
- 1);
1689 realobj
= (char *)objp
+ obj_offset(cachep
);
1690 pr_err("Prev obj: start=%p, len=%d\n", realobj
, size
);
1691 print_objinfo(cachep
, objp
, 2);
1693 if (objnr
+ 1 < cachep
->num
) {
1694 objp
= index_to_obj(cachep
, page
, objnr
+ 1);
1695 realobj
= (char *)objp
+ obj_offset(cachep
);
1696 pr_err("Next obj: start=%p, len=%d\n", realobj
, size
);
1697 print_objinfo(cachep
, objp
, 2);
1704 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1709 if (OBJFREELIST_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
) {
1710 poison_obj(cachep
, page
->freelist
- obj_offset(cachep
),
1714 for (i
= 0; i
< cachep
->num
; i
++) {
1715 void *objp
= index_to_obj(cachep
, page
, i
);
1717 if (cachep
->flags
& SLAB_POISON
) {
1718 check_poison_obj(cachep
, objp
);
1719 slab_kernel_map(cachep
, objp
, 1, 0);
1721 if (cachep
->flags
& SLAB_RED_ZONE
) {
1722 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1723 slab_error(cachep
, "start of a freed object was overwritten");
1724 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1725 slab_error(cachep
, "end of a freed object was overwritten");
1730 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1737 * slab_destroy - destroy and release all objects in a slab
1738 * @cachep: cache pointer being destroyed
1739 * @page: page pointer being destroyed
1741 * Destroy all the objs in a slab page, and release the mem back to the system.
1742 * Before calling the slab page must have been unlinked from the cache. The
1743 * kmem_cache_node ->list_lock is not held/needed.
1745 static void slab_destroy(struct kmem_cache
*cachep
, struct page
*page
)
1749 freelist
= page
->freelist
;
1750 slab_destroy_debugcheck(cachep
, page
);
1751 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1752 call_rcu(&page
->rcu_head
, kmem_rcu_free
);
1754 kmem_freepages(cachep
, page
);
1757 * From now on, we don't use freelist
1758 * although actual page can be freed in rcu context
1760 if (OFF_SLAB(cachep
))
1761 kmem_cache_free(cachep
->freelist_cache
, freelist
);
1764 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
)
1766 struct page
*page
, *n
;
1768 list_for_each_entry_safe(page
, n
, list
, lru
) {
1769 list_del(&page
->lru
);
1770 slab_destroy(cachep
, page
);
1775 * calculate_slab_order - calculate size (page order) of slabs
1776 * @cachep: pointer to the cache that is being created
1777 * @size: size of objects to be created in this cache.
1778 * @flags: slab allocation flags
1780 * Also calculates the number of objects per slab.
1782 * This could be made much more intelligent. For now, try to avoid using
1783 * high order pages for slabs. When the gfp() functions are more friendly
1784 * towards high-order requests, this should be changed.
1786 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1787 size_t size
, unsigned long flags
)
1789 size_t left_over
= 0;
1792 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
1796 num
= cache_estimate(gfporder
, size
, flags
, &remainder
);
1800 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1801 if (num
> SLAB_OBJ_MAX_NUM
)
1804 if (flags
& CFLGS_OFF_SLAB
) {
1805 struct kmem_cache
*freelist_cache
;
1806 size_t freelist_size
;
1808 freelist_size
= num
* sizeof(freelist_idx_t
);
1809 freelist_cache
= kmalloc_slab(freelist_size
, 0u);
1810 if (!freelist_cache
)
1814 * Needed to avoid possible looping condition
1815 * in cache_grow_begin()
1817 if (OFF_SLAB(freelist_cache
))
1820 /* check if off slab has enough benefit */
1821 if (freelist_cache
->size
> cachep
->size
/ 2)
1825 /* Found something acceptable - save it away */
1827 cachep
->gfporder
= gfporder
;
1828 left_over
= remainder
;
1831 * A VFS-reclaimable slab tends to have most allocations
1832 * as GFP_NOFS and we really don't want to have to be allocating
1833 * higher-order pages when we are unable to shrink dcache.
1835 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1839 * Large number of objects is good, but very large slabs are
1840 * currently bad for the gfp()s.
1842 if (gfporder
>= slab_max_order
)
1846 * Acceptable internal fragmentation?
1848 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1854 static struct array_cache __percpu
*alloc_kmem_cache_cpus(
1855 struct kmem_cache
*cachep
, int entries
, int batchcount
)
1859 struct array_cache __percpu
*cpu_cache
;
1861 size
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
1862 cpu_cache
= __alloc_percpu(size
, sizeof(void *));
1867 for_each_possible_cpu(cpu
) {
1868 init_arraycache(per_cpu_ptr(cpu_cache
, cpu
),
1869 entries
, batchcount
);
1875 static int __ref
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
1877 if (slab_state
>= FULL
)
1878 return enable_cpucache(cachep
, gfp
);
1880 cachep
->cpu_cache
= alloc_kmem_cache_cpus(cachep
, 1, 1);
1881 if (!cachep
->cpu_cache
)
1884 if (slab_state
== DOWN
) {
1885 /* Creation of first cache (kmem_cache). */
1886 set_up_node(kmem_cache
, CACHE_CACHE
);
1887 } else if (slab_state
== PARTIAL
) {
1888 /* For kmem_cache_node */
1889 set_up_node(cachep
, SIZE_NODE
);
1893 for_each_online_node(node
) {
1894 cachep
->node
[node
] = kmalloc_node(
1895 sizeof(struct kmem_cache_node
), gfp
, node
);
1896 BUG_ON(!cachep
->node
[node
]);
1897 kmem_cache_node_init(cachep
->node
[node
]);
1901 cachep
->node
[numa_mem_id()]->next_reap
=
1902 jiffies
+ REAPTIMEOUT_NODE
+
1903 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1905 cpu_cache_get(cachep
)->avail
= 0;
1906 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1907 cpu_cache_get(cachep
)->batchcount
= 1;
1908 cpu_cache_get(cachep
)->touched
= 0;
1909 cachep
->batchcount
= 1;
1910 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1914 unsigned long kmem_cache_flags(unsigned long object_size
,
1915 unsigned long flags
, const char *name
,
1916 void (*ctor
)(void *))
1922 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
1923 unsigned long flags
, void (*ctor
)(void *))
1925 struct kmem_cache
*cachep
;
1927 cachep
= find_mergeable(size
, align
, flags
, name
, ctor
);
1932 * Adjust the object sizes so that we clear
1933 * the complete object on kzalloc.
1935 cachep
->object_size
= max_t(int, cachep
->object_size
, size
);
1940 static bool set_objfreelist_slab_cache(struct kmem_cache
*cachep
,
1941 size_t size
, unsigned long flags
)
1947 if (cachep
->ctor
|| flags
& SLAB_DESTROY_BY_RCU
)
1950 left
= calculate_slab_order(cachep
, size
,
1951 flags
| CFLGS_OBJFREELIST_SLAB
);
1955 if (cachep
->num
* sizeof(freelist_idx_t
) > cachep
->object_size
)
1958 cachep
->colour
= left
/ cachep
->colour_off
;
1963 static bool set_off_slab_cache(struct kmem_cache
*cachep
,
1964 size_t size
, unsigned long flags
)
1971 * Always use on-slab management when SLAB_NOLEAKTRACE
1972 * to avoid recursive calls into kmemleak.
1974 if (flags
& SLAB_NOLEAKTRACE
)
1978 * Size is large, assume best to place the slab management obj
1979 * off-slab (should allow better packing of objs).
1981 left
= calculate_slab_order(cachep
, size
, flags
| CFLGS_OFF_SLAB
);
1986 * If the slab has been placed off-slab, and we have enough space then
1987 * move it on-slab. This is at the expense of any extra colouring.
1989 if (left
>= cachep
->num
* sizeof(freelist_idx_t
))
1992 cachep
->colour
= left
/ cachep
->colour_off
;
1997 static bool set_on_slab_cache(struct kmem_cache
*cachep
,
1998 size_t size
, unsigned long flags
)
2004 left
= calculate_slab_order(cachep
, size
, flags
);
2008 cachep
->colour
= left
/ cachep
->colour_off
;
2014 * __kmem_cache_create - Create a cache.
2015 * @cachep: cache management descriptor
2016 * @flags: SLAB flags
2018 * Returns a ptr to the cache on success, NULL on failure.
2019 * Cannot be called within a int, but can be interrupted.
2020 * The @ctor is run when new pages are allocated by the cache.
2024 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2025 * to catch references to uninitialised memory.
2027 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2028 * for buffer overruns.
2030 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2031 * cacheline. This can be beneficial if you're counting cycles as closely
2035 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2037 size_t ralign
= BYTES_PER_WORD
;
2040 size_t size
= cachep
->size
;
2045 * Enable redzoning and last user accounting, except for caches with
2046 * large objects, if the increased size would increase the object size
2047 * above the next power of two: caches with object sizes just above a
2048 * power of two have a significant amount of internal fragmentation.
2050 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2051 2 * sizeof(unsigned long long)))
2052 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2053 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2054 flags
|= SLAB_POISON
;
2059 * Check that size is in terms of words. This is needed to avoid
2060 * unaligned accesses for some archs when redzoning is used, and makes
2061 * sure any on-slab bufctl's are also correctly aligned.
2063 if (size
& (BYTES_PER_WORD
- 1)) {
2064 size
+= (BYTES_PER_WORD
- 1);
2065 size
&= ~(BYTES_PER_WORD
- 1);
2068 if (flags
& SLAB_RED_ZONE
) {
2069 ralign
= REDZONE_ALIGN
;
2070 /* If redzoning, ensure that the second redzone is suitably
2071 * aligned, by adjusting the object size accordingly. */
2072 size
+= REDZONE_ALIGN
- 1;
2073 size
&= ~(REDZONE_ALIGN
- 1);
2076 /* 3) caller mandated alignment */
2077 if (ralign
< cachep
->align
) {
2078 ralign
= cachep
->align
;
2080 /* disable debug if necessary */
2081 if (ralign
> __alignof__(unsigned long long))
2082 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2086 cachep
->align
= ralign
;
2087 cachep
->colour_off
= cache_line_size();
2088 /* Offset must be a multiple of the alignment. */
2089 if (cachep
->colour_off
< cachep
->align
)
2090 cachep
->colour_off
= cachep
->align
;
2092 if (slab_is_available())
2100 * Both debugging options require word-alignment which is calculated
2103 if (flags
& SLAB_RED_ZONE
) {
2104 /* add space for red zone words */
2105 cachep
->obj_offset
+= sizeof(unsigned long long);
2106 size
+= 2 * sizeof(unsigned long long);
2108 if (flags
& SLAB_STORE_USER
) {
2109 /* user store requires one word storage behind the end of
2110 * the real object. But if the second red zone needs to be
2111 * aligned to 64 bits, we must allow that much space.
2113 if (flags
& SLAB_RED_ZONE
)
2114 size
+= REDZONE_ALIGN
;
2116 size
+= BYTES_PER_WORD
;
2120 kasan_cache_create(cachep
, &size
, &flags
);
2122 size
= ALIGN(size
, cachep
->align
);
2124 * We should restrict the number of objects in a slab to implement
2125 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2127 if (FREELIST_BYTE_INDEX
&& size
< SLAB_OBJ_MIN_SIZE
)
2128 size
= ALIGN(SLAB_OBJ_MIN_SIZE
, cachep
->align
);
2132 * To activate debug pagealloc, off-slab management is necessary
2133 * requirement. In early phase of initialization, small sized slab
2134 * doesn't get initialized so it would not be possible. So, we need
2135 * to check size >= 256. It guarantees that all necessary small
2136 * sized slab is initialized in current slab initialization sequence.
2138 if (debug_pagealloc_enabled() && (flags
& SLAB_POISON
) &&
2139 size
>= 256 && cachep
->object_size
> cache_line_size()) {
2140 if (size
< PAGE_SIZE
|| size
% PAGE_SIZE
== 0) {
2141 size_t tmp_size
= ALIGN(size
, PAGE_SIZE
);
2143 if (set_off_slab_cache(cachep
, tmp_size
, flags
)) {
2144 flags
|= CFLGS_OFF_SLAB
;
2145 cachep
->obj_offset
+= tmp_size
- size
;
2153 if (set_objfreelist_slab_cache(cachep
, size
, flags
)) {
2154 flags
|= CFLGS_OBJFREELIST_SLAB
;
2158 if (set_off_slab_cache(cachep
, size
, flags
)) {
2159 flags
|= CFLGS_OFF_SLAB
;
2163 if (set_on_slab_cache(cachep
, size
, flags
))
2169 cachep
->freelist_size
= cachep
->num
* sizeof(freelist_idx_t
);
2170 cachep
->flags
= flags
;
2171 cachep
->allocflags
= __GFP_COMP
;
2172 if (flags
& SLAB_CACHE_DMA
)
2173 cachep
->allocflags
|= GFP_DMA
;
2174 cachep
->size
= size
;
2175 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2179 * If we're going to use the generic kernel_map_pages()
2180 * poisoning, then it's going to smash the contents of
2181 * the redzone and userword anyhow, so switch them off.
2183 if (IS_ENABLED(CONFIG_PAGE_POISONING
) &&
2184 (cachep
->flags
& SLAB_POISON
) &&
2185 is_debug_pagealloc_cache(cachep
))
2186 cachep
->flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2189 if (OFF_SLAB(cachep
)) {
2190 cachep
->freelist_cache
=
2191 kmalloc_slab(cachep
->freelist_size
, 0u);
2194 err
= setup_cpu_cache(cachep
, gfp
);
2196 __kmem_cache_release(cachep
);
2204 static void check_irq_off(void)
2206 BUG_ON(!irqs_disabled());
2209 static void check_irq_on(void)
2211 BUG_ON(irqs_disabled());
2214 static void check_mutex_acquired(void)
2216 BUG_ON(!mutex_is_locked(&slab_mutex
));
2219 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2223 assert_spin_locked(&get_node(cachep
, numa_mem_id())->list_lock
);
2227 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2231 assert_spin_locked(&get_node(cachep
, node
)->list_lock
);
2236 #define check_irq_off() do { } while(0)
2237 #define check_irq_on() do { } while(0)
2238 #define check_mutex_acquired() do { } while(0)
2239 #define check_spinlock_acquired(x) do { } while(0)
2240 #define check_spinlock_acquired_node(x, y) do { } while(0)
2243 static void drain_array_locked(struct kmem_cache
*cachep
, struct array_cache
*ac
,
2244 int node
, bool free_all
, struct list_head
*list
)
2248 if (!ac
|| !ac
->avail
)
2251 tofree
= free_all
? ac
->avail
: (ac
->limit
+ 4) / 5;
2252 if (tofree
> ac
->avail
)
2253 tofree
= (ac
->avail
+ 1) / 2;
2255 free_block(cachep
, ac
->entry
, tofree
, node
, list
);
2256 ac
->avail
-= tofree
;
2257 memmove(ac
->entry
, &(ac
->entry
[tofree
]), sizeof(void *) * ac
->avail
);
2260 static void do_drain(void *arg
)
2262 struct kmem_cache
*cachep
= arg
;
2263 struct array_cache
*ac
;
2264 int node
= numa_mem_id();
2265 struct kmem_cache_node
*n
;
2269 ac
= cpu_cache_get(cachep
);
2270 n
= get_node(cachep
, node
);
2271 spin_lock(&n
->list_lock
);
2272 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
2273 spin_unlock(&n
->list_lock
);
2274 slabs_destroy(cachep
, &list
);
2278 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2280 struct kmem_cache_node
*n
;
2284 on_each_cpu(do_drain
, cachep
, 1);
2286 for_each_kmem_cache_node(cachep
, node
, n
)
2288 drain_alien_cache(cachep
, n
->alien
);
2290 for_each_kmem_cache_node(cachep
, node
, n
) {
2291 spin_lock_irq(&n
->list_lock
);
2292 drain_array_locked(cachep
, n
->shared
, node
, true, &list
);
2293 spin_unlock_irq(&n
->list_lock
);
2295 slabs_destroy(cachep
, &list
);
2300 * Remove slabs from the list of free slabs.
2301 * Specify the number of slabs to drain in tofree.
2303 * Returns the actual number of slabs released.
2305 static int drain_freelist(struct kmem_cache
*cache
,
2306 struct kmem_cache_node
*n
, int tofree
)
2308 struct list_head
*p
;
2313 while (nr_freed
< tofree
&& !list_empty(&n
->slabs_free
)) {
2315 spin_lock_irq(&n
->list_lock
);
2316 p
= n
->slabs_free
.prev
;
2317 if (p
== &n
->slabs_free
) {
2318 spin_unlock_irq(&n
->list_lock
);
2322 page
= list_entry(p
, struct page
, lru
);
2323 list_del(&page
->lru
);
2326 * Safe to drop the lock. The slab is no longer linked
2329 n
->free_objects
-= cache
->num
;
2330 spin_unlock_irq(&n
->list_lock
);
2331 slab_destroy(cache
, page
);
2338 int __kmem_cache_shrink(struct kmem_cache
*cachep
)
2342 struct kmem_cache_node
*n
;
2344 drain_cpu_caches(cachep
);
2347 for_each_kmem_cache_node(cachep
, node
, n
) {
2348 drain_freelist(cachep
, n
, INT_MAX
);
2350 ret
+= !list_empty(&n
->slabs_full
) ||
2351 !list_empty(&n
->slabs_partial
);
2353 return (ret
? 1 : 0);
2356 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2358 return __kmem_cache_shrink(cachep
);
2361 void __kmem_cache_release(struct kmem_cache
*cachep
)
2364 struct kmem_cache_node
*n
;
2366 cache_random_seq_destroy(cachep
);
2368 free_percpu(cachep
->cpu_cache
);
2370 /* NUMA: free the node structures */
2371 for_each_kmem_cache_node(cachep
, i
, n
) {
2373 free_alien_cache(n
->alien
);
2375 cachep
->node
[i
] = NULL
;
2380 * Get the memory for a slab management obj.
2382 * For a slab cache when the slab descriptor is off-slab, the
2383 * slab descriptor can't come from the same cache which is being created,
2384 * Because if it is the case, that means we defer the creation of
2385 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2386 * And we eventually call down to __kmem_cache_create(), which
2387 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2388 * This is a "chicken-and-egg" problem.
2390 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2391 * which are all initialized during kmem_cache_init().
2393 static void *alloc_slabmgmt(struct kmem_cache
*cachep
,
2394 struct page
*page
, int colour_off
,
2395 gfp_t local_flags
, int nodeid
)
2398 void *addr
= page_address(page
);
2400 page
->s_mem
= addr
+ colour_off
;
2403 if (OBJFREELIST_SLAB(cachep
))
2405 else if (OFF_SLAB(cachep
)) {
2406 /* Slab management obj is off-slab. */
2407 freelist
= kmem_cache_alloc_node(cachep
->freelist_cache
,
2408 local_flags
, nodeid
);
2412 /* We will use last bytes at the slab for freelist */
2413 freelist
= addr
+ (PAGE_SIZE
<< cachep
->gfporder
) -
2414 cachep
->freelist_size
;
2420 static inline freelist_idx_t
get_free_obj(struct page
*page
, unsigned int idx
)
2422 return ((freelist_idx_t
*)page
->freelist
)[idx
];
2425 static inline void set_free_obj(struct page
*page
,
2426 unsigned int idx
, freelist_idx_t val
)
2428 ((freelist_idx_t
*)(page
->freelist
))[idx
] = val
;
2431 static void cache_init_objs_debug(struct kmem_cache
*cachep
, struct page
*page
)
2436 for (i
= 0; i
< cachep
->num
; i
++) {
2437 void *objp
= index_to_obj(cachep
, page
, i
);
2439 if (cachep
->flags
& SLAB_STORE_USER
)
2440 *dbg_userword(cachep
, objp
) = NULL
;
2442 if (cachep
->flags
& SLAB_RED_ZONE
) {
2443 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2444 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2447 * Constructors are not allowed to allocate memory from the same
2448 * cache which they are a constructor for. Otherwise, deadlock.
2449 * They must also be threaded.
2451 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
)) {
2452 kasan_unpoison_object_data(cachep
,
2453 objp
+ obj_offset(cachep
));
2454 cachep
->ctor(objp
+ obj_offset(cachep
));
2455 kasan_poison_object_data(
2456 cachep
, objp
+ obj_offset(cachep
));
2459 if (cachep
->flags
& SLAB_RED_ZONE
) {
2460 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2461 slab_error(cachep
, "constructor overwrote the end of an object");
2462 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2463 slab_error(cachep
, "constructor overwrote the start of an object");
2465 /* need to poison the objs? */
2466 if (cachep
->flags
& SLAB_POISON
) {
2467 poison_obj(cachep
, objp
, POISON_FREE
);
2468 slab_kernel_map(cachep
, objp
, 0, 0);
2474 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2475 /* Hold information during a freelist initialization */
2476 union freelist_init_state
{
2482 struct rnd_state rnd_state
;
2486 * Initialize the state based on the randomization methode available.
2487 * return true if the pre-computed list is available, false otherwize.
2489 static bool freelist_state_initialize(union freelist_init_state
*state
,
2490 struct kmem_cache
*cachep
,
2496 /* Use best entropy available to define a random shift */
2497 rand
= get_random_int();
2499 /* Use a random state if the pre-computed list is not available */
2500 if (!cachep
->random_seq
) {
2501 prandom_seed_state(&state
->rnd_state
, rand
);
2504 state
->list
= cachep
->random_seq
;
2505 state
->count
= count
;
2506 state
->pos
= rand
% count
;
2512 /* Get the next entry on the list and randomize it using a random shift */
2513 static freelist_idx_t
next_random_slot(union freelist_init_state
*state
)
2515 if (state
->pos
>= state
->count
)
2517 return state
->list
[state
->pos
++];
2520 /* Swap two freelist entries */
2521 static void swap_free_obj(struct page
*page
, unsigned int a
, unsigned int b
)
2523 swap(((freelist_idx_t
*)page
->freelist
)[a
],
2524 ((freelist_idx_t
*)page
->freelist
)[b
]);
2528 * Shuffle the freelist initialization state based on pre-computed lists.
2529 * return true if the list was successfully shuffled, false otherwise.
2531 static bool shuffle_freelist(struct kmem_cache
*cachep
, struct page
*page
)
2533 unsigned int objfreelist
= 0, i
, rand
, count
= cachep
->num
;
2534 union freelist_init_state state
;
2540 precomputed
= freelist_state_initialize(&state
, cachep
, count
);
2542 /* Take a random entry as the objfreelist */
2543 if (OBJFREELIST_SLAB(cachep
)) {
2545 objfreelist
= count
- 1;
2547 objfreelist
= next_random_slot(&state
);
2548 page
->freelist
= index_to_obj(cachep
, page
, objfreelist
) +
2554 * On early boot, generate the list dynamically.
2555 * Later use a pre-computed list for speed.
2558 for (i
= 0; i
< count
; i
++)
2559 set_free_obj(page
, i
, i
);
2561 /* Fisher-Yates shuffle */
2562 for (i
= count
- 1; i
> 0; i
--) {
2563 rand
= prandom_u32_state(&state
.rnd_state
);
2565 swap_free_obj(page
, i
, rand
);
2568 for (i
= 0; i
< count
; i
++)
2569 set_free_obj(page
, i
, next_random_slot(&state
));
2572 if (OBJFREELIST_SLAB(cachep
))
2573 set_free_obj(page
, cachep
->num
- 1, objfreelist
);
2578 static inline bool shuffle_freelist(struct kmem_cache
*cachep
,
2583 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2585 static void cache_init_objs(struct kmem_cache
*cachep
,
2592 cache_init_objs_debug(cachep
, page
);
2594 /* Try to randomize the freelist if enabled */
2595 shuffled
= shuffle_freelist(cachep
, page
);
2597 if (!shuffled
&& OBJFREELIST_SLAB(cachep
)) {
2598 page
->freelist
= index_to_obj(cachep
, page
, cachep
->num
- 1) +
2602 for (i
= 0; i
< cachep
->num
; i
++) {
2603 objp
= index_to_obj(cachep
, page
, i
);
2604 kasan_init_slab_obj(cachep
, objp
);
2606 /* constructor could break poison info */
2607 if (DEBUG
== 0 && cachep
->ctor
) {
2608 kasan_unpoison_object_data(cachep
, objp
);
2610 kasan_poison_object_data(cachep
, objp
);
2614 set_free_obj(page
, i
, i
);
2618 static void *slab_get_obj(struct kmem_cache
*cachep
, struct page
*page
)
2622 objp
= index_to_obj(cachep
, page
, get_free_obj(page
, page
->active
));
2626 if (cachep
->flags
& SLAB_STORE_USER
)
2627 set_store_user_dirty(cachep
);
2633 static void slab_put_obj(struct kmem_cache
*cachep
,
2634 struct page
*page
, void *objp
)
2636 unsigned int objnr
= obj_to_index(cachep
, page
, objp
);
2640 /* Verify double free bug */
2641 for (i
= page
->active
; i
< cachep
->num
; i
++) {
2642 if (get_free_obj(page
, i
) == objnr
) {
2643 pr_err("slab: double free detected in cache '%s', objp %p\n",
2644 cachep
->name
, objp
);
2650 if (!page
->freelist
)
2651 page
->freelist
= objp
+ obj_offset(cachep
);
2653 set_free_obj(page
, page
->active
, objnr
);
2657 * Map pages beginning at addr to the given cache and slab. This is required
2658 * for the slab allocator to be able to lookup the cache and slab of a
2659 * virtual address for kfree, ksize, and slab debugging.
2661 static void slab_map_pages(struct kmem_cache
*cache
, struct page
*page
,
2664 page
->slab_cache
= cache
;
2665 page
->freelist
= freelist
;
2669 * Grow (by 1) the number of slabs within a cache. This is called by
2670 * kmem_cache_alloc() when there are no active objs left in a cache.
2672 static struct page
*cache_grow_begin(struct kmem_cache
*cachep
,
2673 gfp_t flags
, int nodeid
)
2679 struct kmem_cache_node
*n
;
2683 * Be lazy and only check for valid flags here, keeping it out of the
2684 * critical path in kmem_cache_alloc().
2686 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
2687 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
2688 flags
&= ~GFP_SLAB_BUG_MASK
;
2689 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2690 invalid_mask
, &invalid_mask
, flags
, &flags
);
2693 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2696 if (gfpflags_allow_blocking(local_flags
))
2700 * Get mem for the objs. Attempt to allocate a physical page from
2703 page
= kmem_getpages(cachep
, local_flags
, nodeid
);
2707 page_node
= page_to_nid(page
);
2708 n
= get_node(cachep
, page_node
);
2710 /* Get colour for the slab, and cal the next value. */
2712 if (n
->colour_next
>= cachep
->colour
)
2715 offset
= n
->colour_next
;
2716 if (offset
>= cachep
->colour
)
2719 offset
*= cachep
->colour_off
;
2721 /* Get slab management. */
2722 freelist
= alloc_slabmgmt(cachep
, page
, offset
,
2723 local_flags
& ~GFP_CONSTRAINT_MASK
, page_node
);
2724 if (OFF_SLAB(cachep
) && !freelist
)
2727 slab_map_pages(cachep
, page
, freelist
);
2729 kasan_poison_slab(page
);
2730 cache_init_objs(cachep
, page
);
2732 if (gfpflags_allow_blocking(local_flags
))
2733 local_irq_disable();
2738 kmem_freepages(cachep
, page
);
2740 if (gfpflags_allow_blocking(local_flags
))
2741 local_irq_disable();
2745 static void cache_grow_end(struct kmem_cache
*cachep
, struct page
*page
)
2747 struct kmem_cache_node
*n
;
2755 INIT_LIST_HEAD(&page
->lru
);
2756 n
= get_node(cachep
, page_to_nid(page
));
2758 spin_lock(&n
->list_lock
);
2760 list_add_tail(&page
->lru
, &(n
->slabs_free
));
2762 fixup_slab_list(cachep
, n
, page
, &list
);
2765 STATS_INC_GROWN(cachep
);
2766 n
->free_objects
+= cachep
->num
- page
->active
;
2767 spin_unlock(&n
->list_lock
);
2769 fixup_objfreelist_debug(cachep
, &list
);
2775 * Perform extra freeing checks:
2776 * - detect bad pointers.
2777 * - POISON/RED_ZONE checking
2779 static void kfree_debugcheck(const void *objp
)
2781 if (!virt_addr_valid(objp
)) {
2782 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2783 (unsigned long)objp
);
2788 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2790 unsigned long long redzone1
, redzone2
;
2792 redzone1
= *dbg_redzone1(cache
, obj
);
2793 redzone2
= *dbg_redzone2(cache
, obj
);
2798 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2801 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2802 slab_error(cache
, "double free detected");
2804 slab_error(cache
, "memory outside object was overwritten");
2806 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2807 obj
, redzone1
, redzone2
);
2810 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2811 unsigned long caller
)
2816 BUG_ON(virt_to_cache(objp
) != cachep
);
2818 objp
-= obj_offset(cachep
);
2819 kfree_debugcheck(objp
);
2820 page
= virt_to_head_page(objp
);
2822 if (cachep
->flags
& SLAB_RED_ZONE
) {
2823 verify_redzone_free(cachep
, objp
);
2824 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2825 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2827 if (cachep
->flags
& SLAB_STORE_USER
) {
2828 set_store_user_dirty(cachep
);
2829 *dbg_userword(cachep
, objp
) = (void *)caller
;
2832 objnr
= obj_to_index(cachep
, page
, objp
);
2834 BUG_ON(objnr
>= cachep
->num
);
2835 BUG_ON(objp
!= index_to_obj(cachep
, page
, objnr
));
2837 if (cachep
->flags
& SLAB_POISON
) {
2838 poison_obj(cachep
, objp
, POISON_FREE
);
2839 slab_kernel_map(cachep
, objp
, 0, caller
);
2845 #define kfree_debugcheck(x) do { } while(0)
2846 #define cache_free_debugcheck(x,objp,z) (objp)
2849 static inline void fixup_objfreelist_debug(struct kmem_cache
*cachep
,
2857 objp
= next
- obj_offset(cachep
);
2858 next
= *(void **)next
;
2859 poison_obj(cachep
, objp
, POISON_FREE
);
2864 static inline void fixup_slab_list(struct kmem_cache
*cachep
,
2865 struct kmem_cache_node
*n
, struct page
*page
,
2868 /* move slabp to correct slabp list: */
2869 list_del(&page
->lru
);
2870 if (page
->active
== cachep
->num
) {
2871 list_add(&page
->lru
, &n
->slabs_full
);
2872 if (OBJFREELIST_SLAB(cachep
)) {
2874 /* Poisoning will be done without holding the lock */
2875 if (cachep
->flags
& SLAB_POISON
) {
2876 void **objp
= page
->freelist
;
2882 page
->freelist
= NULL
;
2885 list_add(&page
->lru
, &n
->slabs_partial
);
2888 /* Try to find non-pfmemalloc slab if needed */
2889 static noinline
struct page
*get_valid_first_slab(struct kmem_cache_node
*n
,
2890 struct page
*page
, bool pfmemalloc
)
2898 if (!PageSlabPfmemalloc(page
))
2901 /* No need to keep pfmemalloc slab if we have enough free objects */
2902 if (n
->free_objects
> n
->free_limit
) {
2903 ClearPageSlabPfmemalloc(page
);
2907 /* Move pfmemalloc slab to the end of list to speed up next search */
2908 list_del(&page
->lru
);
2910 list_add_tail(&page
->lru
, &n
->slabs_free
);
2912 list_add_tail(&page
->lru
, &n
->slabs_partial
);
2914 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
2915 if (!PageSlabPfmemalloc(page
))
2919 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
2920 if (!PageSlabPfmemalloc(page
))
2927 static struct page
*get_first_slab(struct kmem_cache_node
*n
, bool pfmemalloc
)
2931 page
= list_first_entry_or_null(&n
->slabs_partial
,
2934 n
->free_touched
= 1;
2935 page
= list_first_entry_or_null(&n
->slabs_free
,
2939 if (sk_memalloc_socks())
2940 return get_valid_first_slab(n
, page
, pfmemalloc
);
2945 static noinline
void *cache_alloc_pfmemalloc(struct kmem_cache
*cachep
,
2946 struct kmem_cache_node
*n
, gfp_t flags
)
2952 if (!gfp_pfmemalloc_allowed(flags
))
2955 spin_lock(&n
->list_lock
);
2956 page
= get_first_slab(n
, true);
2958 spin_unlock(&n
->list_lock
);
2962 obj
= slab_get_obj(cachep
, page
);
2965 fixup_slab_list(cachep
, n
, page
, &list
);
2967 spin_unlock(&n
->list_lock
);
2968 fixup_objfreelist_debug(cachep
, &list
);
2974 * Slab list should be fixed up by fixup_slab_list() for existing slab
2975 * or cache_grow_end() for new slab
2977 static __always_inline
int alloc_block(struct kmem_cache
*cachep
,
2978 struct array_cache
*ac
, struct page
*page
, int batchcount
)
2981 * There must be at least one object available for
2984 BUG_ON(page
->active
>= cachep
->num
);
2986 while (page
->active
< cachep
->num
&& batchcount
--) {
2987 STATS_INC_ALLOCED(cachep
);
2988 STATS_INC_ACTIVE(cachep
);
2989 STATS_SET_HIGH(cachep
);
2991 ac
->entry
[ac
->avail
++] = slab_get_obj(cachep
, page
);
2997 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
)
3000 struct kmem_cache_node
*n
;
3001 struct array_cache
*ac
, *shared
;
3007 node
= numa_mem_id();
3009 ac
= cpu_cache_get(cachep
);
3010 batchcount
= ac
->batchcount
;
3011 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
3013 * If there was little recent activity on this cache, then
3014 * perform only a partial refill. Otherwise we could generate
3017 batchcount
= BATCHREFILL_LIMIT
;
3019 n
= get_node(cachep
, node
);
3021 BUG_ON(ac
->avail
> 0 || !n
);
3022 shared
= READ_ONCE(n
->shared
);
3023 if (!n
->free_objects
&& (!shared
|| !shared
->avail
))
3026 spin_lock(&n
->list_lock
);
3027 shared
= READ_ONCE(n
->shared
);
3029 /* See if we can refill from the shared array */
3030 if (shared
&& transfer_objects(ac
, shared
, batchcount
)) {
3031 shared
->touched
= 1;
3035 while (batchcount
> 0) {
3036 /* Get slab alloc is to come from. */
3037 page
= get_first_slab(n
, false);
3041 check_spinlock_acquired(cachep
);
3043 batchcount
= alloc_block(cachep
, ac
, page
, batchcount
);
3044 fixup_slab_list(cachep
, n
, page
, &list
);
3048 n
->free_objects
-= ac
->avail
;
3050 spin_unlock(&n
->list_lock
);
3051 fixup_objfreelist_debug(cachep
, &list
);
3054 if (unlikely(!ac
->avail
)) {
3055 /* Check if we can use obj in pfmemalloc slab */
3056 if (sk_memalloc_socks()) {
3057 void *obj
= cache_alloc_pfmemalloc(cachep
, n
, flags
);
3063 page
= cache_grow_begin(cachep
, gfp_exact_node(flags
), node
);
3066 * cache_grow_begin() can reenable interrupts,
3067 * then ac could change.
3069 ac
= cpu_cache_get(cachep
);
3070 if (!ac
->avail
&& page
)
3071 alloc_block(cachep
, ac
, page
, batchcount
);
3072 cache_grow_end(cachep
, page
);
3079 return ac
->entry
[--ac
->avail
];
3082 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
3085 might_sleep_if(gfpflags_allow_blocking(flags
));
3089 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
3090 gfp_t flags
, void *objp
, unsigned long caller
)
3094 if (cachep
->flags
& SLAB_POISON
) {
3095 check_poison_obj(cachep
, objp
);
3096 slab_kernel_map(cachep
, objp
, 1, 0);
3097 poison_obj(cachep
, objp
, POISON_INUSE
);
3099 if (cachep
->flags
& SLAB_STORE_USER
)
3100 *dbg_userword(cachep
, objp
) = (void *)caller
;
3102 if (cachep
->flags
& SLAB_RED_ZONE
) {
3103 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
3104 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
3105 slab_error(cachep
, "double free, or memory outside object was overwritten");
3106 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3107 objp
, *dbg_redzone1(cachep
, objp
),
3108 *dbg_redzone2(cachep
, objp
));
3110 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
3111 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
3114 objp
+= obj_offset(cachep
);
3115 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3117 if (ARCH_SLAB_MINALIGN
&&
3118 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3119 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3120 objp
, (int)ARCH_SLAB_MINALIGN
);
3125 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3128 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3131 struct array_cache
*ac
;
3135 ac
= cpu_cache_get(cachep
);
3136 if (likely(ac
->avail
)) {
3138 objp
= ac
->entry
[--ac
->avail
];
3140 STATS_INC_ALLOCHIT(cachep
);
3144 STATS_INC_ALLOCMISS(cachep
);
3145 objp
= cache_alloc_refill(cachep
, flags
);
3147 * the 'ac' may be updated by cache_alloc_refill(),
3148 * and kmemleak_erase() requires its correct value.
3150 ac
= cpu_cache_get(cachep
);
3154 * To avoid a false negative, if an object that is in one of the
3155 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3156 * treat the array pointers as a reference to the object.
3159 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3165 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3167 * If we are in_interrupt, then process context, including cpusets and
3168 * mempolicy, may not apply and should not be used for allocation policy.
3170 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3172 int nid_alloc
, nid_here
;
3174 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3176 nid_alloc
= nid_here
= numa_mem_id();
3177 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3178 nid_alloc
= cpuset_slab_spread_node();
3179 else if (current
->mempolicy
)
3180 nid_alloc
= mempolicy_slab_node();
3181 if (nid_alloc
!= nid_here
)
3182 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3187 * Fallback function if there was no memory available and no objects on a
3188 * certain node and fall back is permitted. First we scan all the
3189 * available node for available objects. If that fails then we
3190 * perform an allocation without specifying a node. This allows the page
3191 * allocator to do its reclaim / fallback magic. We then insert the
3192 * slab into the proper nodelist and then allocate from it.
3194 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3196 struct zonelist
*zonelist
;
3199 enum zone_type high_zoneidx
= gfp_zone(flags
);
3203 unsigned int cpuset_mems_cookie
;
3205 if (flags
& __GFP_THISNODE
)
3209 cpuset_mems_cookie
= read_mems_allowed_begin();
3210 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
3214 * Look through allowed nodes for objects available
3215 * from existing per node queues.
3217 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3218 nid
= zone_to_nid(zone
);
3220 if (cpuset_zone_allowed(zone
, flags
) &&
3221 get_node(cache
, nid
) &&
3222 get_node(cache
, nid
)->free_objects
) {
3223 obj
= ____cache_alloc_node(cache
,
3224 gfp_exact_node(flags
), nid
);
3232 * This allocation will be performed within the constraints
3233 * of the current cpuset / memory policy requirements.
3234 * We may trigger various forms of reclaim on the allowed
3235 * set and go into memory reserves if necessary.
3237 page
= cache_grow_begin(cache
, flags
, numa_mem_id());
3238 cache_grow_end(cache
, page
);
3240 nid
= page_to_nid(page
);
3241 obj
= ____cache_alloc_node(cache
,
3242 gfp_exact_node(flags
), nid
);
3245 * Another processor may allocate the objects in
3246 * the slab since we are not holding any locks.
3253 if (unlikely(!obj
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3259 * A interface to enable slab creation on nodeid
3261 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3265 struct kmem_cache_node
*n
;
3269 VM_BUG_ON(nodeid
< 0 || nodeid
>= MAX_NUMNODES
);
3270 n
= get_node(cachep
, nodeid
);
3274 spin_lock(&n
->list_lock
);
3275 page
= get_first_slab(n
, false);
3279 check_spinlock_acquired_node(cachep
, nodeid
);
3281 STATS_INC_NODEALLOCS(cachep
);
3282 STATS_INC_ACTIVE(cachep
);
3283 STATS_SET_HIGH(cachep
);
3285 BUG_ON(page
->active
== cachep
->num
);
3287 obj
= slab_get_obj(cachep
, page
);
3290 fixup_slab_list(cachep
, n
, page
, &list
);
3292 spin_unlock(&n
->list_lock
);
3293 fixup_objfreelist_debug(cachep
, &list
);
3297 spin_unlock(&n
->list_lock
);
3298 page
= cache_grow_begin(cachep
, gfp_exact_node(flags
), nodeid
);
3300 /* This slab isn't counted yet so don't update free_objects */
3301 obj
= slab_get_obj(cachep
, page
);
3303 cache_grow_end(cachep
, page
);
3305 return obj
? obj
: fallback_alloc(cachep
, flags
);
3308 static __always_inline
void *
3309 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3310 unsigned long caller
)
3312 unsigned long save_flags
;
3314 int slab_node
= numa_mem_id();
3316 flags
&= gfp_allowed_mask
;
3317 cachep
= slab_pre_alloc_hook(cachep
, flags
);
3318 if (unlikely(!cachep
))
3321 cache_alloc_debugcheck_before(cachep
, flags
);
3322 local_irq_save(save_flags
);
3324 if (nodeid
== NUMA_NO_NODE
)
3327 if (unlikely(!get_node(cachep
, nodeid
))) {
3328 /* Node not bootstrapped yet */
3329 ptr
= fallback_alloc(cachep
, flags
);
3333 if (nodeid
== slab_node
) {
3335 * Use the locally cached objects if possible.
3336 * However ____cache_alloc does not allow fallback
3337 * to other nodes. It may fail while we still have
3338 * objects on other nodes available.
3340 ptr
= ____cache_alloc(cachep
, flags
);
3344 /* ___cache_alloc_node can fall back to other nodes */
3345 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3347 local_irq_restore(save_flags
);
3348 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3350 if (unlikely(flags
& __GFP_ZERO
) && ptr
)
3351 memset(ptr
, 0, cachep
->object_size
);
3353 slab_post_alloc_hook(cachep
, flags
, 1, &ptr
);
3357 static __always_inline
void *
3358 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3362 if (current
->mempolicy
|| cpuset_do_slab_mem_spread()) {
3363 objp
= alternate_node_alloc(cache
, flags
);
3367 objp
= ____cache_alloc(cache
, flags
);
3370 * We may just have run out of memory on the local node.
3371 * ____cache_alloc_node() knows how to locate memory on other nodes
3374 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3381 static __always_inline
void *
3382 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3384 return ____cache_alloc(cachep
, flags
);
3387 #endif /* CONFIG_NUMA */
3389 static __always_inline
void *
3390 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3392 unsigned long save_flags
;
3395 flags
&= gfp_allowed_mask
;
3396 cachep
= slab_pre_alloc_hook(cachep
, flags
);
3397 if (unlikely(!cachep
))
3400 cache_alloc_debugcheck_before(cachep
, flags
);
3401 local_irq_save(save_flags
);
3402 objp
= __do_cache_alloc(cachep
, flags
);
3403 local_irq_restore(save_flags
);
3404 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3407 if (unlikely(flags
& __GFP_ZERO
) && objp
)
3408 memset(objp
, 0, cachep
->object_size
);
3410 slab_post_alloc_hook(cachep
, flags
, 1, &objp
);
3415 * Caller needs to acquire correct kmem_cache_node's list_lock
3416 * @list: List of detached free slabs should be freed by caller
3418 static void free_block(struct kmem_cache
*cachep
, void **objpp
,
3419 int nr_objects
, int node
, struct list_head
*list
)
3422 struct kmem_cache_node
*n
= get_node(cachep
, node
);
3425 n
->free_objects
+= nr_objects
;
3427 for (i
= 0; i
< nr_objects
; i
++) {
3433 page
= virt_to_head_page(objp
);
3434 list_del(&page
->lru
);
3435 check_spinlock_acquired_node(cachep
, node
);
3436 slab_put_obj(cachep
, page
, objp
);
3437 STATS_DEC_ACTIVE(cachep
);
3439 /* fixup slab chains */
3440 if (page
->active
== 0)
3441 list_add(&page
->lru
, &n
->slabs_free
);
3443 /* Unconditionally move a slab to the end of the
3444 * partial list on free - maximum time for the
3445 * other objects to be freed, too.
3447 list_add_tail(&page
->lru
, &n
->slabs_partial
);
3451 while (n
->free_objects
> n
->free_limit
&& !list_empty(&n
->slabs_free
)) {
3452 n
->free_objects
-= cachep
->num
;
3454 page
= list_last_entry(&n
->slabs_free
, struct page
, lru
);
3455 list_move(&page
->lru
, list
);
3460 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3463 struct kmem_cache_node
*n
;
3464 int node
= numa_mem_id();
3467 batchcount
= ac
->batchcount
;
3470 n
= get_node(cachep
, node
);
3471 spin_lock(&n
->list_lock
);
3473 struct array_cache
*shared_array
= n
->shared
;
3474 int max
= shared_array
->limit
- shared_array
->avail
;
3476 if (batchcount
> max
)
3478 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3479 ac
->entry
, sizeof(void *) * batchcount
);
3480 shared_array
->avail
+= batchcount
;
3485 free_block(cachep
, ac
->entry
, batchcount
, node
, &list
);
3492 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
3493 BUG_ON(page
->active
);
3497 STATS_SET_FREEABLE(cachep
, i
);
3500 spin_unlock(&n
->list_lock
);
3501 slabs_destroy(cachep
, &list
);
3502 ac
->avail
-= batchcount
;
3503 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3507 * Release an obj back to its cache. If the obj has a constructed state, it must
3508 * be in this state _before_ it is released. Called with disabled ints.
3510 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3511 unsigned long caller
)
3513 /* Put the object into the quarantine, don't touch it for now. */
3514 if (kasan_slab_free(cachep
, objp
))
3517 ___cache_free(cachep
, objp
, caller
);
3520 void ___cache_free(struct kmem_cache
*cachep
, void *objp
,
3521 unsigned long caller
)
3523 struct array_cache
*ac
= cpu_cache_get(cachep
);
3526 kmemleak_free_recursive(objp
, cachep
->flags
);
3527 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3529 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3532 * Skip calling cache_free_alien() when the platform is not numa.
3533 * This will avoid cache misses that happen while accessing slabp (which
3534 * is per page memory reference) to get nodeid. Instead use a global
3535 * variable to skip the call, which is mostly likely to be present in
3538 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3541 if (ac
->avail
< ac
->limit
) {
3542 STATS_INC_FREEHIT(cachep
);
3544 STATS_INC_FREEMISS(cachep
);
3545 cache_flusharray(cachep
, ac
);
3548 if (sk_memalloc_socks()) {
3549 struct page
*page
= virt_to_head_page(objp
);
3551 if (unlikely(PageSlabPfmemalloc(page
))) {
3552 cache_free_pfmemalloc(cachep
, page
, objp
);
3557 ac
->entry
[ac
->avail
++] = objp
;
3561 * kmem_cache_alloc - Allocate an object
3562 * @cachep: The cache to allocate from.
3563 * @flags: See kmalloc().
3565 * Allocate an object from this cache. The flags are only relevant
3566 * if the cache has no available objects.
3568 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3570 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3572 kasan_slab_alloc(cachep
, ret
, flags
);
3573 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3574 cachep
->object_size
, cachep
->size
, flags
);
3578 EXPORT_SYMBOL(kmem_cache_alloc
);
3580 static __always_inline
void
3581 cache_alloc_debugcheck_after_bulk(struct kmem_cache
*s
, gfp_t flags
,
3582 size_t size
, void **p
, unsigned long caller
)
3586 for (i
= 0; i
< size
; i
++)
3587 p
[i
] = cache_alloc_debugcheck_after(s
, flags
, p
[i
], caller
);
3590 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3595 s
= slab_pre_alloc_hook(s
, flags
);
3599 cache_alloc_debugcheck_before(s
, flags
);
3601 local_irq_disable();
3602 for (i
= 0; i
< size
; i
++) {
3603 void *objp
= __do_cache_alloc(s
, flags
);
3605 if (unlikely(!objp
))
3611 cache_alloc_debugcheck_after_bulk(s
, flags
, size
, p
, _RET_IP_
);
3613 /* Clear memory outside IRQ disabled section */
3614 if (unlikely(flags
& __GFP_ZERO
))
3615 for (i
= 0; i
< size
; i
++)
3616 memset(p
[i
], 0, s
->object_size
);
3618 slab_post_alloc_hook(s
, flags
, size
, p
);
3619 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3623 cache_alloc_debugcheck_after_bulk(s
, flags
, i
, p
, _RET_IP_
);
3624 slab_post_alloc_hook(s
, flags
, i
, p
);
3625 __kmem_cache_free_bulk(s
, i
, p
);
3628 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3630 #ifdef CONFIG_TRACING
3632 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3636 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3638 kasan_kmalloc(cachep
, ret
, size
, flags
);
3639 trace_kmalloc(_RET_IP_
, ret
,
3640 size
, cachep
->size
, flags
);
3643 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3648 * kmem_cache_alloc_node - Allocate an object on the specified node
3649 * @cachep: The cache to allocate from.
3650 * @flags: See kmalloc().
3651 * @nodeid: node number of the target node.
3653 * Identical to kmem_cache_alloc but it will allocate memory on the given
3654 * node, which can improve the performance for cpu bound structures.
3656 * Fallback to other node is possible if __GFP_THISNODE is not set.
3658 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3660 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3662 kasan_slab_alloc(cachep
, ret
, flags
);
3663 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3664 cachep
->object_size
, cachep
->size
,
3669 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3671 #ifdef CONFIG_TRACING
3672 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3679 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3681 kasan_kmalloc(cachep
, ret
, size
, flags
);
3682 trace_kmalloc_node(_RET_IP_
, ret
,
3687 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3690 static __always_inline
void *
3691 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3693 struct kmem_cache
*cachep
;
3696 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3698 cachep
= kmalloc_slab(size
, flags
);
3699 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3701 ret
= kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3702 kasan_kmalloc(cachep
, ret
, size
, flags
);
3707 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3709 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3711 EXPORT_SYMBOL(__kmalloc_node
);
3713 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3714 int node
, unsigned long caller
)
3716 return __do_kmalloc_node(size
, flags
, node
, caller
);
3718 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3719 #endif /* CONFIG_NUMA */
3722 * __do_kmalloc - allocate memory
3723 * @size: how many bytes of memory are required.
3724 * @flags: the type of memory to allocate (see kmalloc).
3725 * @caller: function caller for debug tracking of the caller
3727 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3728 unsigned long caller
)
3730 struct kmem_cache
*cachep
;
3733 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3735 cachep
= kmalloc_slab(size
, flags
);
3736 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3738 ret
= slab_alloc(cachep
, flags
, caller
);
3740 kasan_kmalloc(cachep
, ret
, size
, flags
);
3741 trace_kmalloc(caller
, ret
,
3742 size
, cachep
->size
, flags
);
3747 void *__kmalloc(size_t size
, gfp_t flags
)
3749 return __do_kmalloc(size
, flags
, _RET_IP_
);
3751 EXPORT_SYMBOL(__kmalloc
);
3753 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3755 return __do_kmalloc(size
, flags
, caller
);
3757 EXPORT_SYMBOL(__kmalloc_track_caller
);
3760 * kmem_cache_free - Deallocate an object
3761 * @cachep: The cache the allocation was from.
3762 * @objp: The previously allocated object.
3764 * Free an object which was previously allocated from this
3767 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3769 unsigned long flags
;
3770 cachep
= cache_from_obj(cachep
, objp
);
3774 local_irq_save(flags
);
3775 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3776 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3777 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3778 __cache_free(cachep
, objp
, _RET_IP_
);
3779 local_irq_restore(flags
);
3781 trace_kmem_cache_free(_RET_IP_
, objp
);
3783 EXPORT_SYMBOL(kmem_cache_free
);
3785 void kmem_cache_free_bulk(struct kmem_cache
*orig_s
, size_t size
, void **p
)
3787 struct kmem_cache
*s
;
3790 local_irq_disable();
3791 for (i
= 0; i
< size
; i
++) {
3794 if (!orig_s
) /* called via kfree_bulk */
3795 s
= virt_to_cache(objp
);
3797 s
= cache_from_obj(orig_s
, objp
);
3799 debug_check_no_locks_freed(objp
, s
->object_size
);
3800 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
3801 debug_check_no_obj_freed(objp
, s
->object_size
);
3803 __cache_free(s
, objp
, _RET_IP_
);
3807 /* FIXME: add tracing */
3809 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3812 * kfree - free previously allocated memory
3813 * @objp: pointer returned by kmalloc.
3815 * If @objp is NULL, no operation is performed.
3817 * Don't free memory not originally allocated by kmalloc()
3818 * or you will run into trouble.
3820 void kfree(const void *objp
)
3822 struct kmem_cache
*c
;
3823 unsigned long flags
;
3825 trace_kfree(_RET_IP_
, objp
);
3827 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3829 local_irq_save(flags
);
3830 kfree_debugcheck(objp
);
3831 c
= virt_to_cache(objp
);
3832 debug_check_no_locks_freed(objp
, c
->object_size
);
3834 debug_check_no_obj_freed(objp
, c
->object_size
);
3835 __cache_free(c
, (void *)objp
, _RET_IP_
);
3836 local_irq_restore(flags
);
3838 EXPORT_SYMBOL(kfree
);
3841 * This initializes kmem_cache_node or resizes various caches for all nodes.
3843 static int setup_kmem_cache_nodes(struct kmem_cache
*cachep
, gfp_t gfp
)
3847 struct kmem_cache_node
*n
;
3849 for_each_online_node(node
) {
3850 ret
= setup_kmem_cache_node(cachep
, node
, gfp
, true);
3859 if (!cachep
->list
.next
) {
3860 /* Cache is not active yet. Roll back what we did */
3863 n
= get_node(cachep
, node
);
3866 free_alien_cache(n
->alien
);
3868 cachep
->node
[node
] = NULL
;
3876 /* Always called with the slab_mutex held */
3877 static int __do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3878 int batchcount
, int shared
, gfp_t gfp
)
3880 struct array_cache __percpu
*cpu_cache
, *prev
;
3883 cpu_cache
= alloc_kmem_cache_cpus(cachep
, limit
, batchcount
);
3887 prev
= cachep
->cpu_cache
;
3888 cachep
->cpu_cache
= cpu_cache
;
3889 kick_all_cpus_sync();
3892 cachep
->batchcount
= batchcount
;
3893 cachep
->limit
= limit
;
3894 cachep
->shared
= shared
;
3899 for_each_online_cpu(cpu
) {
3902 struct kmem_cache_node
*n
;
3903 struct array_cache
*ac
= per_cpu_ptr(prev
, cpu
);
3905 node
= cpu_to_mem(cpu
);
3906 n
= get_node(cachep
, node
);
3907 spin_lock_irq(&n
->list_lock
);
3908 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
3909 spin_unlock_irq(&n
->list_lock
);
3910 slabs_destroy(cachep
, &list
);
3915 return setup_kmem_cache_nodes(cachep
, gfp
);
3918 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3919 int batchcount
, int shared
, gfp_t gfp
)
3922 struct kmem_cache
*c
;
3924 ret
= __do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3926 if (slab_state
< FULL
)
3929 if ((ret
< 0) || !is_root_cache(cachep
))
3932 lockdep_assert_held(&slab_mutex
);
3933 for_each_memcg_cache(c
, cachep
) {
3934 /* return value determined by the root cache only */
3935 __do_tune_cpucache(c
, limit
, batchcount
, shared
, gfp
);
3941 /* Called with slab_mutex held always */
3942 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
3949 err
= cache_random_seq_create(cachep
, cachep
->num
, gfp
);
3953 if (!is_root_cache(cachep
)) {
3954 struct kmem_cache
*root
= memcg_root_cache(cachep
);
3955 limit
= root
->limit
;
3956 shared
= root
->shared
;
3957 batchcount
= root
->batchcount
;
3960 if (limit
&& shared
&& batchcount
)
3963 * The head array serves three purposes:
3964 * - create a LIFO ordering, i.e. return objects that are cache-warm
3965 * - reduce the number of spinlock operations.
3966 * - reduce the number of linked list operations on the slab and
3967 * bufctl chains: array operations are cheaper.
3968 * The numbers are guessed, we should auto-tune as described by
3971 if (cachep
->size
> 131072)
3973 else if (cachep
->size
> PAGE_SIZE
)
3975 else if (cachep
->size
> 1024)
3977 else if (cachep
->size
> 256)
3983 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3984 * allocation behaviour: Most allocs on one cpu, most free operations
3985 * on another cpu. For these cases, an efficient object passing between
3986 * cpus is necessary. This is provided by a shared array. The array
3987 * replaces Bonwick's magazine layer.
3988 * On uniprocessor, it's functionally equivalent (but less efficient)
3989 * to a larger limit. Thus disabled by default.
3992 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3997 * With debugging enabled, large batchcount lead to excessively long
3998 * periods with disabled local interrupts. Limit the batchcount
4003 batchcount
= (limit
+ 1) / 2;
4005 err
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
4008 pr_err("enable_cpucache failed for %s, error %d\n",
4009 cachep
->name
, -err
);
4014 * Drain an array if it contains any elements taking the node lock only if
4015 * necessary. Note that the node listlock also protects the array_cache
4016 * if drain_array() is used on the shared array.
4018 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
4019 struct array_cache
*ac
, int node
)
4023 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4024 check_mutex_acquired();
4026 if (!ac
|| !ac
->avail
)
4034 spin_lock_irq(&n
->list_lock
);
4035 drain_array_locked(cachep
, ac
, node
, false, &list
);
4036 spin_unlock_irq(&n
->list_lock
);
4038 slabs_destroy(cachep
, &list
);
4042 * cache_reap - Reclaim memory from caches.
4043 * @w: work descriptor
4045 * Called from workqueue/eventd every few seconds.
4047 * - clear the per-cpu caches for this CPU.
4048 * - return freeable pages to the main free memory pool.
4050 * If we cannot acquire the cache chain mutex then just give up - we'll try
4051 * again on the next iteration.
4053 static void cache_reap(struct work_struct
*w
)
4055 struct kmem_cache
*searchp
;
4056 struct kmem_cache_node
*n
;
4057 int node
= numa_mem_id();
4058 struct delayed_work
*work
= to_delayed_work(w
);
4060 if (!mutex_trylock(&slab_mutex
))
4061 /* Give up. Setup the next iteration. */
4064 list_for_each_entry(searchp
, &slab_caches
, list
) {
4068 * We only take the node lock if absolutely necessary and we
4069 * have established with reasonable certainty that
4070 * we can do some work if the lock was obtained.
4072 n
= get_node(searchp
, node
);
4074 reap_alien(searchp
, n
);
4076 drain_array(searchp
, n
, cpu_cache_get(searchp
), node
);
4079 * These are racy checks but it does not matter
4080 * if we skip one check or scan twice.
4082 if (time_after(n
->next_reap
, jiffies
))
4085 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
;
4087 drain_array(searchp
, n
, n
->shared
, node
);
4089 if (n
->free_touched
)
4090 n
->free_touched
= 0;
4094 freed
= drain_freelist(searchp
, n
, (n
->free_limit
+
4095 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4096 STATS_ADD_REAPED(searchp
, freed
);
4102 mutex_unlock(&slab_mutex
);
4105 /* Set up the next iteration */
4106 schedule_delayed_work_on(smp_processor_id(), work
,
4107 round_jiffies_relative(REAPTIMEOUT_AC
));
4110 #ifdef CONFIG_SLABINFO
4111 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
4114 unsigned long active_objs
;
4115 unsigned long num_objs
;
4116 unsigned long active_slabs
= 0;
4117 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4118 unsigned long num_slabs_partial
= 0, num_slabs_free
= 0;
4119 unsigned long num_slabs_full
= 0;
4123 struct kmem_cache_node
*n
;
4127 for_each_kmem_cache_node(cachep
, node
, n
) {
4130 spin_lock_irq(&n
->list_lock
);
4132 num_slabs
+= n
->num_slabs
;
4134 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
4135 if (page
->active
== cachep
->num
&& !error
)
4136 error
= "slabs_partial accounting error";
4137 if (!page
->active
&& !error
)
4138 error
= "slabs_partial accounting error";
4139 active_objs
+= page
->active
;
4140 num_slabs_partial
++;
4143 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
4144 if (page
->active
&& !error
)
4145 error
= "slabs_free accounting error";
4149 free_objects
+= n
->free_objects
;
4151 shared_avail
+= n
->shared
->avail
;
4153 spin_unlock_irq(&n
->list_lock
);
4155 num_objs
= num_slabs
* cachep
->num
;
4156 active_slabs
= num_slabs
- num_slabs_free
;
4157 num_slabs_full
= num_slabs
- (num_slabs_partial
+ num_slabs_free
);
4158 active_objs
+= (num_slabs_full
* cachep
->num
);
4160 if (num_objs
- active_objs
!= free_objects
&& !error
)
4161 error
= "free_objects accounting error";
4163 name
= cachep
->name
;
4165 pr_err("slab: cache %s error: %s\n", name
, error
);
4167 sinfo
->active_objs
= active_objs
;
4168 sinfo
->num_objs
= num_objs
;
4169 sinfo
->active_slabs
= active_slabs
;
4170 sinfo
->num_slabs
= num_slabs
;
4171 sinfo
->shared_avail
= shared_avail
;
4172 sinfo
->limit
= cachep
->limit
;
4173 sinfo
->batchcount
= cachep
->batchcount
;
4174 sinfo
->shared
= cachep
->shared
;
4175 sinfo
->objects_per_slab
= cachep
->num
;
4176 sinfo
->cache_order
= cachep
->gfporder
;
4179 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
4183 unsigned long high
= cachep
->high_mark
;
4184 unsigned long allocs
= cachep
->num_allocations
;
4185 unsigned long grown
= cachep
->grown
;
4186 unsigned long reaped
= cachep
->reaped
;
4187 unsigned long errors
= cachep
->errors
;
4188 unsigned long max_freeable
= cachep
->max_freeable
;
4189 unsigned long node_allocs
= cachep
->node_allocs
;
4190 unsigned long node_frees
= cachep
->node_frees
;
4191 unsigned long overflows
= cachep
->node_overflow
;
4193 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4194 allocs
, high
, grown
,
4195 reaped
, errors
, max_freeable
, node_allocs
,
4196 node_frees
, overflows
);
4200 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4201 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4202 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4203 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4205 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4206 allochit
, allocmiss
, freehit
, freemiss
);
4211 #define MAX_SLABINFO_WRITE 128
4213 * slabinfo_write - Tuning for the slab allocator
4215 * @buffer: user buffer
4216 * @count: data length
4219 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4220 size_t count
, loff_t
*ppos
)
4222 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4223 int limit
, batchcount
, shared
, res
;
4224 struct kmem_cache
*cachep
;
4226 if (count
> MAX_SLABINFO_WRITE
)
4228 if (copy_from_user(&kbuf
, buffer
, count
))
4230 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4232 tmp
= strchr(kbuf
, ' ');
4237 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4240 /* Find the cache in the chain of caches. */
4241 mutex_lock(&slab_mutex
);
4243 list_for_each_entry(cachep
, &slab_caches
, list
) {
4244 if (!strcmp(cachep
->name
, kbuf
)) {
4245 if (limit
< 1 || batchcount
< 1 ||
4246 batchcount
> limit
|| shared
< 0) {
4249 res
= do_tune_cpucache(cachep
, limit
,
4256 mutex_unlock(&slab_mutex
);
4262 #ifdef CONFIG_DEBUG_SLAB_LEAK
4264 static inline int add_caller(unsigned long *n
, unsigned long v
)
4274 unsigned long *q
= p
+ 2 * i
;
4288 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4294 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
,
4303 for (i
= 0, p
= page
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4306 for (j
= page
->active
; j
< c
->num
; j
++) {
4307 if (get_free_obj(page
, j
) == i
) {
4317 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4318 * mapping is established when actual object allocation and
4319 * we could mistakenly access the unmapped object in the cpu
4322 if (probe_kernel_read(&v
, dbg_userword(c
, p
), sizeof(v
)))
4325 if (!add_caller(n
, v
))
4330 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4332 #ifdef CONFIG_KALLSYMS
4333 unsigned long offset
, size
;
4334 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4336 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4337 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4339 seq_printf(m
, " [%s]", modname
);
4343 seq_printf(m
, "%p", (void *)address
);
4346 static int leaks_show(struct seq_file
*m
, void *p
)
4348 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4350 struct kmem_cache_node
*n
;
4352 unsigned long *x
= m
->private;
4356 if (!(cachep
->flags
& SLAB_STORE_USER
))
4358 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4362 * Set store_user_clean and start to grab stored user information
4363 * for all objects on this cache. If some alloc/free requests comes
4364 * during the processing, information would be wrong so restart
4368 drain_cpu_caches(cachep
);
4370 * drain_cpu_caches() could make kmemleak_object and
4371 * debug_objects_cache dirty, so reset afterwards.
4373 set_store_user_clean(cachep
);
4377 for_each_kmem_cache_node(cachep
, node
, n
) {
4380 spin_lock_irq(&n
->list_lock
);
4382 list_for_each_entry(page
, &n
->slabs_full
, lru
)
4383 handle_slab(x
, cachep
, page
);
4384 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
4385 handle_slab(x
, cachep
, page
);
4386 spin_unlock_irq(&n
->list_lock
);
4388 } while (!is_store_user_clean(cachep
));
4390 name
= cachep
->name
;
4392 /* Increase the buffer size */
4393 mutex_unlock(&slab_mutex
);
4394 m
->private = kzalloc(x
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4396 /* Too bad, we are really out */
4398 mutex_lock(&slab_mutex
);
4401 *(unsigned long *)m
->private = x
[0] * 2;
4403 mutex_lock(&slab_mutex
);
4404 /* Now make sure this entry will be retried */
4408 for (i
= 0; i
< x
[1]; i
++) {
4409 seq_printf(m
, "%s: %lu ", name
, x
[2*i
+3]);
4410 show_symbol(m
, x
[2*i
+2]);
4417 static const struct seq_operations slabstats_op
= {
4418 .start
= slab_start
,
4424 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4428 n
= __seq_open_private(file
, &slabstats_op
, PAGE_SIZE
);
4432 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4437 static const struct file_operations proc_slabstats_operations
= {
4438 .open
= slabstats_open
,
4440 .llseek
= seq_lseek
,
4441 .release
= seq_release_private
,
4445 static int __init
slab_proc_init(void)
4447 #ifdef CONFIG_DEBUG_SLAB_LEAK
4448 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4452 module_init(slab_proc_init
);
4455 #ifdef CONFIG_HARDENED_USERCOPY
4457 * Rejects objects that are incorrectly sized.
4459 * Returns NULL if check passes, otherwise const char * to name of cache
4460 * to indicate an error.
4462 const char *__check_heap_object(const void *ptr
, unsigned long n
,
4465 struct kmem_cache
*cachep
;
4467 unsigned long offset
;
4469 /* Find and validate object. */
4470 cachep
= page
->slab_cache
;
4471 objnr
= obj_to_index(cachep
, page
, (void *)ptr
);
4472 BUG_ON(objnr
>= cachep
->num
);
4474 /* Find offset within object. */
4475 offset
= ptr
- index_to_obj(cachep
, page
, objnr
) - obj_offset(cachep
);
4477 /* Allow address range falling entirely within object size. */
4478 if (offset
<= cachep
->object_size
&& n
<= cachep
->object_size
- offset
)
4481 return cachep
->name
;
4483 #endif /* CONFIG_HARDENED_USERCOPY */
4486 * ksize - get the actual amount of memory allocated for a given object
4487 * @objp: Pointer to the object
4489 * kmalloc may internally round up allocations and return more memory
4490 * than requested. ksize() can be used to determine the actual amount of
4491 * memory allocated. The caller may use this additional memory, even though
4492 * a smaller amount of memory was initially specified with the kmalloc call.
4493 * The caller must guarantee that objp points to a valid object previously
4494 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4495 * must not be freed during the duration of the call.
4497 size_t ksize(const void *objp
)
4502 if (unlikely(objp
== ZERO_SIZE_PTR
))
4505 size
= virt_to_cache(objp
)->object_size
;
4506 /* We assume that ksize callers could use the whole allocated area,
4507 * so we need to unpoison this area.
4509 kasan_unpoison_shadow(objp
, size
);
4513 EXPORT_SYMBOL(ksize
);