bridge: flush br's address entry in fdb when remove the bridge dev
[linux/fpc-iii.git] / mm / filemap.c
blob556858c07148bb4ed97aa36c5447f465b5a0b200
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include "internal.h"
40 * FIXME: remove all knowledge of the buffer layer from the core VM
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
44 #include <asm/mman.h>
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
50 * Shared mappings now work. 15.8.1995 Bruno.
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * Lock ordering:
61 * ->i_mmap_mutex (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
66 * ->i_mutex
67 * ->i_mmap_mutex (truncate->unmap_mapping_range)
69 * ->mmap_sem
70 * ->i_mmap_mutex
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 * bdi->wb.list_lock
81 * sb_lock (fs/fs-writeback.c)
82 * ->mapping->tree_lock (__sync_single_inode)
84 * ->i_mmap_mutex
85 * ->anon_vma.lock (vma_adjust)
87 * ->anon_vma.lock
88 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
90 * ->page_table_lock or pte_lock
91 * ->swap_lock (try_to_unmap_one)
92 * ->private_lock (try_to_unmap_one)
93 * ->tree_lock (try_to_unmap_one)
94 * ->zone.lru_lock (follow_page->mark_page_accessed)
95 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
98 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
99 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
100 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
101 * ->inode->i_lock (zap_pte_range->set_page_dirty)
102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 * (code doesn't rely on that order, so you could switch it around)
105 * ->tasklist_lock (memory_failure, collect_procs_ao)
106 * ->i_mmap_mutex
110 * Delete a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold the mapping's tree_lock.
114 void __delete_from_page_cache(struct page *page)
116 struct address_space *mapping = page->mapping;
119 * if we're uptodate, flush out into the cleancache, otherwise
120 * invalidate any existing cleancache entries. We can't leave
121 * stale data around in the cleancache once our page is gone
123 if (PageUptodate(page) && PageMappedToDisk(page))
124 cleancache_put_page(page);
125 else
126 cleancache_flush_page(mapping, page);
128 radix_tree_delete(&mapping->page_tree, page->index);
129 page->mapping = NULL;
130 /* Leave page->index set: truncation lookup relies upon it */
131 mapping->nrpages--;
132 __dec_zone_page_state(page, NR_FILE_PAGES);
133 if (PageSwapBacked(page))
134 __dec_zone_page_state(page, NR_SHMEM);
135 BUG_ON(page_mapped(page));
138 * Some filesystems seem to re-dirty the page even after
139 * the VM has canceled the dirty bit (eg ext3 journaling).
141 * Fix it up by doing a final dirty accounting check after
142 * having removed the page entirely.
144 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
145 dec_zone_page_state(page, NR_FILE_DIRTY);
146 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
151 * delete_from_page_cache - delete page from page cache
152 * @page: the page which the kernel is trying to remove from page cache
154 * This must be called only on pages that have been verified to be in the page
155 * cache and locked. It will never put the page into the free list, the caller
156 * has a reference on the page.
158 void delete_from_page_cache(struct page *page)
160 struct address_space *mapping = page->mapping;
161 void (*freepage)(struct page *);
163 BUG_ON(!PageLocked(page));
165 freepage = mapping->a_ops->freepage;
166 spin_lock_irq(&mapping->tree_lock);
167 __delete_from_page_cache(page);
168 spin_unlock_irq(&mapping->tree_lock);
169 mem_cgroup_uncharge_cache_page(page);
171 if (freepage)
172 freepage(page);
173 page_cache_release(page);
175 EXPORT_SYMBOL(delete_from_page_cache);
177 static int sleep_on_page(void *word)
179 io_schedule();
180 return 0;
183 static int sleep_on_page_killable(void *word)
185 sleep_on_page(word);
186 return fatal_signal_pending(current) ? -EINTR : 0;
190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
191 * @mapping: address space structure to write
192 * @start: offset in bytes where the range starts
193 * @end: offset in bytes where the range ends (inclusive)
194 * @sync_mode: enable synchronous operation
196 * Start writeback against all of a mapping's dirty pages that lie
197 * within the byte offsets <start, end> inclusive.
199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
200 * opposed to a regular memory cleansing writeback. The difference between
201 * these two operations is that if a dirty page/buffer is encountered, it must
202 * be waited upon, and not just skipped over.
204 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
205 loff_t end, int sync_mode)
207 int ret;
208 struct writeback_control wbc = {
209 .sync_mode = sync_mode,
210 .nr_to_write = LONG_MAX,
211 .range_start = start,
212 .range_end = end,
215 if (!mapping_cap_writeback_dirty(mapping))
216 return 0;
218 ret = do_writepages(mapping, &wbc);
219 return ret;
222 static inline int __filemap_fdatawrite(struct address_space *mapping,
223 int sync_mode)
225 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
228 int filemap_fdatawrite(struct address_space *mapping)
230 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
232 EXPORT_SYMBOL(filemap_fdatawrite);
234 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
235 loff_t end)
237 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
239 EXPORT_SYMBOL(filemap_fdatawrite_range);
242 * filemap_flush - mostly a non-blocking flush
243 * @mapping: target address_space
245 * This is a mostly non-blocking flush. Not suitable for data-integrity
246 * purposes - I/O may not be started against all dirty pages.
248 int filemap_flush(struct address_space *mapping)
250 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
252 EXPORT_SYMBOL(filemap_flush);
255 * filemap_fdatawait_range - wait for writeback to complete
256 * @mapping: address space structure to wait for
257 * @start_byte: offset in bytes where the range starts
258 * @end_byte: offset in bytes where the range ends (inclusive)
260 * Walk the list of under-writeback pages of the given address space
261 * in the given range and wait for all of them.
263 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
264 loff_t end_byte)
266 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
267 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
268 struct pagevec pvec;
269 int nr_pages;
270 int ret = 0;
272 if (end_byte < start_byte)
273 return 0;
275 pagevec_init(&pvec, 0);
276 while ((index <= end) &&
277 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
278 PAGECACHE_TAG_WRITEBACK,
279 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
280 unsigned i;
282 for (i = 0; i < nr_pages; i++) {
283 struct page *page = pvec.pages[i];
285 /* until radix tree lookup accepts end_index */
286 if (page->index > end)
287 continue;
289 wait_on_page_writeback(page);
290 if (TestClearPageError(page))
291 ret = -EIO;
293 pagevec_release(&pvec);
294 cond_resched();
297 /* Check for outstanding write errors */
298 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
299 ret = -ENOSPC;
300 if (test_and_clear_bit(AS_EIO, &mapping->flags))
301 ret = -EIO;
303 return ret;
305 EXPORT_SYMBOL(filemap_fdatawait_range);
308 * filemap_fdatawait - wait for all under-writeback pages to complete
309 * @mapping: address space structure to wait for
311 * Walk the list of under-writeback pages of the given address space
312 * and wait for all of them.
314 int filemap_fdatawait(struct address_space *mapping)
316 loff_t i_size = i_size_read(mapping->host);
318 if (i_size == 0)
319 return 0;
321 return filemap_fdatawait_range(mapping, 0, i_size - 1);
323 EXPORT_SYMBOL(filemap_fdatawait);
325 int filemap_write_and_wait(struct address_space *mapping)
327 int err = 0;
329 if (mapping->nrpages) {
330 err = filemap_fdatawrite(mapping);
332 * Even if the above returned error, the pages may be
333 * written partially (e.g. -ENOSPC), so we wait for it.
334 * But the -EIO is special case, it may indicate the worst
335 * thing (e.g. bug) happened, so we avoid waiting for it.
337 if (err != -EIO) {
338 int err2 = filemap_fdatawait(mapping);
339 if (!err)
340 err = err2;
343 return err;
345 EXPORT_SYMBOL(filemap_write_and_wait);
348 * filemap_write_and_wait_range - write out & wait on a file range
349 * @mapping: the address_space for the pages
350 * @lstart: offset in bytes where the range starts
351 * @lend: offset in bytes where the range ends (inclusive)
353 * Write out and wait upon file offsets lstart->lend, inclusive.
355 * Note that `lend' is inclusive (describes the last byte to be written) so
356 * that this function can be used to write to the very end-of-file (end = -1).
358 int filemap_write_and_wait_range(struct address_space *mapping,
359 loff_t lstart, loff_t lend)
361 int err = 0;
363 if (mapping->nrpages) {
364 err = __filemap_fdatawrite_range(mapping, lstart, lend,
365 WB_SYNC_ALL);
366 /* See comment of filemap_write_and_wait() */
367 if (err != -EIO) {
368 int err2 = filemap_fdatawait_range(mapping,
369 lstart, lend);
370 if (!err)
371 err = err2;
374 return err;
376 EXPORT_SYMBOL(filemap_write_and_wait_range);
379 * replace_page_cache_page - replace a pagecache page with a new one
380 * @old: page to be replaced
381 * @new: page to replace with
382 * @gfp_mask: allocation mode
384 * This function replaces a page in the pagecache with a new one. On
385 * success it acquires the pagecache reference for the new page and
386 * drops it for the old page. Both the old and new pages must be
387 * locked. This function does not add the new page to the LRU, the
388 * caller must do that.
390 * The remove + add is atomic. The only way this function can fail is
391 * memory allocation failure.
393 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
395 int error;
397 VM_BUG_ON(!PageLocked(old));
398 VM_BUG_ON(!PageLocked(new));
399 VM_BUG_ON(new->mapping);
401 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
402 if (!error) {
403 struct address_space *mapping = old->mapping;
404 void (*freepage)(struct page *);
406 pgoff_t offset = old->index;
407 freepage = mapping->a_ops->freepage;
409 page_cache_get(new);
410 new->mapping = mapping;
411 new->index = offset;
413 spin_lock_irq(&mapping->tree_lock);
414 __delete_from_page_cache(old);
415 error = radix_tree_insert(&mapping->page_tree, offset, new);
416 BUG_ON(error);
417 mapping->nrpages++;
418 __inc_zone_page_state(new, NR_FILE_PAGES);
419 if (PageSwapBacked(new))
420 __inc_zone_page_state(new, NR_SHMEM);
421 spin_unlock_irq(&mapping->tree_lock);
422 /* mem_cgroup codes must not be called under tree_lock */
423 mem_cgroup_replace_page_cache(old, new);
424 radix_tree_preload_end();
425 if (freepage)
426 freepage(old);
427 page_cache_release(old);
430 return error;
432 EXPORT_SYMBOL_GPL(replace_page_cache_page);
435 * add_to_page_cache_locked - add a locked page to the pagecache
436 * @page: page to add
437 * @mapping: the page's address_space
438 * @offset: page index
439 * @gfp_mask: page allocation mode
441 * This function is used to add a page to the pagecache. It must be locked.
442 * This function does not add the page to the LRU. The caller must do that.
444 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
445 pgoff_t offset, gfp_t gfp_mask)
447 int error;
449 VM_BUG_ON(!PageLocked(page));
450 VM_BUG_ON(PageSwapBacked(page));
452 error = mem_cgroup_cache_charge(page, current->mm,
453 gfp_mask & GFP_RECLAIM_MASK);
454 if (error)
455 goto out;
457 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
458 if (error == 0) {
459 page_cache_get(page);
460 page->mapping = mapping;
461 page->index = offset;
463 spin_lock_irq(&mapping->tree_lock);
464 error = radix_tree_insert(&mapping->page_tree, offset, page);
465 if (likely(!error)) {
466 mapping->nrpages++;
467 __inc_zone_page_state(page, NR_FILE_PAGES);
468 spin_unlock_irq(&mapping->tree_lock);
469 } else {
470 page->mapping = NULL;
471 /* Leave page->index set: truncation relies upon it */
472 spin_unlock_irq(&mapping->tree_lock);
473 mem_cgroup_uncharge_cache_page(page);
474 page_cache_release(page);
476 radix_tree_preload_end();
477 } else
478 mem_cgroup_uncharge_cache_page(page);
479 out:
480 return error;
482 EXPORT_SYMBOL(add_to_page_cache_locked);
484 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
485 pgoff_t offset, gfp_t gfp_mask)
487 int ret;
489 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
490 if (ret == 0)
491 lru_cache_add_file(page);
492 return ret;
494 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
496 #ifdef CONFIG_NUMA
497 struct page *__page_cache_alloc(gfp_t gfp)
499 int n;
500 struct page *page;
502 if (cpuset_do_page_mem_spread()) {
503 unsigned int cpuset_mems_cookie;
504 do {
505 cpuset_mems_cookie = get_mems_allowed();
506 n = cpuset_mem_spread_node();
507 page = alloc_pages_exact_node(n, gfp, 0);
508 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
510 return page;
512 return alloc_pages(gfp, 0);
514 EXPORT_SYMBOL(__page_cache_alloc);
515 #endif
518 * In order to wait for pages to become available there must be
519 * waitqueues associated with pages. By using a hash table of
520 * waitqueues where the bucket discipline is to maintain all
521 * waiters on the same queue and wake all when any of the pages
522 * become available, and for the woken contexts to check to be
523 * sure the appropriate page became available, this saves space
524 * at a cost of "thundering herd" phenomena during rare hash
525 * collisions.
527 static wait_queue_head_t *page_waitqueue(struct page *page)
529 const struct zone *zone = page_zone(page);
531 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
534 static inline void wake_up_page(struct page *page, int bit)
536 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
539 void wait_on_page_bit(struct page *page, int bit_nr)
541 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
543 if (test_bit(bit_nr, &page->flags))
544 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
545 TASK_UNINTERRUPTIBLE);
547 EXPORT_SYMBOL(wait_on_page_bit);
549 int wait_on_page_bit_killable(struct page *page, int bit_nr)
551 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
553 if (!test_bit(bit_nr, &page->flags))
554 return 0;
556 return __wait_on_bit(page_waitqueue(page), &wait,
557 sleep_on_page_killable, TASK_KILLABLE);
561 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
562 * @page: Page defining the wait queue of interest
563 * @waiter: Waiter to add to the queue
565 * Add an arbitrary @waiter to the wait queue for the nominated @page.
567 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
569 wait_queue_head_t *q = page_waitqueue(page);
570 unsigned long flags;
572 spin_lock_irqsave(&q->lock, flags);
573 __add_wait_queue(q, waiter);
574 spin_unlock_irqrestore(&q->lock, flags);
576 EXPORT_SYMBOL_GPL(add_page_wait_queue);
579 * unlock_page - unlock a locked page
580 * @page: the page
582 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
583 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
584 * mechananism between PageLocked pages and PageWriteback pages is shared.
585 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
587 * The mb is necessary to enforce ordering between the clear_bit and the read
588 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
590 void unlock_page(struct page *page)
592 VM_BUG_ON(!PageLocked(page));
593 clear_bit_unlock(PG_locked, &page->flags);
594 smp_mb__after_clear_bit();
595 wake_up_page(page, PG_locked);
597 EXPORT_SYMBOL(unlock_page);
600 * end_page_writeback - end writeback against a page
601 * @page: the page
603 void end_page_writeback(struct page *page)
605 if (TestClearPageReclaim(page))
606 rotate_reclaimable_page(page);
608 if (!test_clear_page_writeback(page))
609 BUG();
611 smp_mb__after_clear_bit();
612 wake_up_page(page, PG_writeback);
614 EXPORT_SYMBOL(end_page_writeback);
617 * __lock_page - get a lock on the page, assuming we need to sleep to get it
618 * @page: the page to lock
620 void __lock_page(struct page *page)
622 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
624 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
625 TASK_UNINTERRUPTIBLE);
627 EXPORT_SYMBOL(__lock_page);
629 int __lock_page_killable(struct page *page)
631 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
633 return __wait_on_bit_lock(page_waitqueue(page), &wait,
634 sleep_on_page_killable, TASK_KILLABLE);
636 EXPORT_SYMBOL_GPL(__lock_page_killable);
638 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
639 unsigned int flags)
641 if (flags & FAULT_FLAG_ALLOW_RETRY) {
643 * CAUTION! In this case, mmap_sem is not released
644 * even though return 0.
646 if (flags & FAULT_FLAG_RETRY_NOWAIT)
647 return 0;
649 up_read(&mm->mmap_sem);
650 if (flags & FAULT_FLAG_KILLABLE)
651 wait_on_page_locked_killable(page);
652 else
653 wait_on_page_locked(page);
654 return 0;
655 } else {
656 if (flags & FAULT_FLAG_KILLABLE) {
657 int ret;
659 ret = __lock_page_killable(page);
660 if (ret) {
661 up_read(&mm->mmap_sem);
662 return 0;
664 } else
665 __lock_page(page);
666 return 1;
671 * find_get_page - find and get a page reference
672 * @mapping: the address_space to search
673 * @offset: the page index
675 * Is there a pagecache struct page at the given (mapping, offset) tuple?
676 * If yes, increment its refcount and return it; if no, return NULL.
678 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
680 void **pagep;
681 struct page *page;
683 rcu_read_lock();
684 repeat:
685 page = NULL;
686 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
687 if (pagep) {
688 page = radix_tree_deref_slot(pagep);
689 if (unlikely(!page))
690 goto out;
691 if (radix_tree_exception(page)) {
692 if (radix_tree_deref_retry(page))
693 goto repeat;
695 * Otherwise, shmem/tmpfs must be storing a swap entry
696 * here as an exceptional entry: so return it without
697 * attempting to raise page count.
699 goto out;
701 if (!page_cache_get_speculative(page))
702 goto repeat;
705 * Has the page moved?
706 * This is part of the lockless pagecache protocol. See
707 * include/linux/pagemap.h for details.
709 if (unlikely(page != *pagep)) {
710 page_cache_release(page);
711 goto repeat;
714 out:
715 rcu_read_unlock();
717 return page;
719 EXPORT_SYMBOL(find_get_page);
722 * find_lock_page - locate, pin and lock a pagecache page
723 * @mapping: the address_space to search
724 * @offset: the page index
726 * Locates the desired pagecache page, locks it, increments its reference
727 * count and returns its address.
729 * Returns zero if the page was not present. find_lock_page() may sleep.
731 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
733 struct page *page;
735 repeat:
736 page = find_get_page(mapping, offset);
737 if (page && !radix_tree_exception(page)) {
738 lock_page(page);
739 /* Has the page been truncated? */
740 if (unlikely(page->mapping != mapping)) {
741 unlock_page(page);
742 page_cache_release(page);
743 goto repeat;
745 VM_BUG_ON(page->index != offset);
747 return page;
749 EXPORT_SYMBOL(find_lock_page);
752 * find_or_create_page - locate or add a pagecache page
753 * @mapping: the page's address_space
754 * @index: the page's index into the mapping
755 * @gfp_mask: page allocation mode
757 * Locates a page in the pagecache. If the page is not present, a new page
758 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
759 * LRU list. The returned page is locked and has its reference count
760 * incremented.
762 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
763 * allocation!
765 * find_or_create_page() returns the desired page's address, or zero on
766 * memory exhaustion.
768 struct page *find_or_create_page(struct address_space *mapping,
769 pgoff_t index, gfp_t gfp_mask)
771 struct page *page;
772 int err;
773 repeat:
774 page = find_lock_page(mapping, index);
775 if (!page) {
776 page = __page_cache_alloc(gfp_mask);
777 if (!page)
778 return NULL;
780 * We want a regular kernel memory (not highmem or DMA etc)
781 * allocation for the radix tree nodes, but we need to honour
782 * the context-specific requirements the caller has asked for.
783 * GFP_RECLAIM_MASK collects those requirements.
785 err = add_to_page_cache_lru(page, mapping, index,
786 (gfp_mask & GFP_RECLAIM_MASK));
787 if (unlikely(err)) {
788 page_cache_release(page);
789 page = NULL;
790 if (err == -EEXIST)
791 goto repeat;
794 return page;
796 EXPORT_SYMBOL(find_or_create_page);
799 * find_get_pages - gang pagecache lookup
800 * @mapping: The address_space to search
801 * @start: The starting page index
802 * @nr_pages: The maximum number of pages
803 * @pages: Where the resulting pages are placed
805 * find_get_pages() will search for and return a group of up to
806 * @nr_pages pages in the mapping. The pages are placed at @pages.
807 * find_get_pages() takes a reference against the returned pages.
809 * The search returns a group of mapping-contiguous pages with ascending
810 * indexes. There may be holes in the indices due to not-present pages.
812 * find_get_pages() returns the number of pages which were found.
814 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
815 unsigned int nr_pages, struct page **pages)
817 unsigned int i;
818 unsigned int ret;
819 unsigned int nr_found, nr_skip;
821 rcu_read_lock();
822 restart:
823 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
824 (void ***)pages, NULL, start, nr_pages);
825 ret = 0;
826 nr_skip = 0;
827 for (i = 0; i < nr_found; i++) {
828 struct page *page;
829 repeat:
830 page = radix_tree_deref_slot((void **)pages[i]);
831 if (unlikely(!page))
832 continue;
834 if (radix_tree_exception(page)) {
835 if (radix_tree_deref_retry(page)) {
837 * Transient condition which can only trigger
838 * when entry at index 0 moves out of or back
839 * to root: none yet gotten, safe to restart.
841 WARN_ON(start | i);
842 goto restart;
845 * Otherwise, shmem/tmpfs must be storing a swap entry
846 * here as an exceptional entry: so skip over it -
847 * we only reach this from invalidate_mapping_pages().
849 nr_skip++;
850 continue;
853 if (!page_cache_get_speculative(page))
854 goto repeat;
856 /* Has the page moved? */
857 if (unlikely(page != *((void **)pages[i]))) {
858 page_cache_release(page);
859 goto repeat;
862 pages[ret] = page;
863 ret++;
867 * If all entries were removed before we could secure them,
868 * try again, because callers stop trying once 0 is returned.
870 if (unlikely(!ret && nr_found > nr_skip))
871 goto restart;
872 rcu_read_unlock();
873 return ret;
877 * find_get_pages_contig - gang contiguous pagecache lookup
878 * @mapping: The address_space to search
879 * @index: The starting page index
880 * @nr_pages: The maximum number of pages
881 * @pages: Where the resulting pages are placed
883 * find_get_pages_contig() works exactly like find_get_pages(), except
884 * that the returned number of pages are guaranteed to be contiguous.
886 * find_get_pages_contig() returns the number of pages which were found.
888 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
889 unsigned int nr_pages, struct page **pages)
891 unsigned int i;
892 unsigned int ret;
893 unsigned int nr_found;
895 rcu_read_lock();
896 restart:
897 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
898 (void ***)pages, NULL, index, nr_pages);
899 ret = 0;
900 for (i = 0; i < nr_found; i++) {
901 struct page *page;
902 repeat:
903 page = radix_tree_deref_slot((void **)pages[i]);
904 if (unlikely(!page))
905 continue;
907 if (radix_tree_exception(page)) {
908 if (radix_tree_deref_retry(page)) {
910 * Transient condition which can only trigger
911 * when entry at index 0 moves out of or back
912 * to root: none yet gotten, safe to restart.
914 goto restart;
917 * Otherwise, shmem/tmpfs must be storing a swap entry
918 * here as an exceptional entry: so stop looking for
919 * contiguous pages.
921 break;
924 if (!page_cache_get_speculative(page))
925 goto repeat;
927 /* Has the page moved? */
928 if (unlikely(page != *((void **)pages[i]))) {
929 page_cache_release(page);
930 goto repeat;
934 * must check mapping and index after taking the ref.
935 * otherwise we can get both false positives and false
936 * negatives, which is just confusing to the caller.
938 if (page->mapping == NULL || page->index != index) {
939 page_cache_release(page);
940 break;
943 pages[ret] = page;
944 ret++;
945 index++;
947 rcu_read_unlock();
948 return ret;
950 EXPORT_SYMBOL(find_get_pages_contig);
953 * find_get_pages_tag - find and return pages that match @tag
954 * @mapping: the address_space to search
955 * @index: the starting page index
956 * @tag: the tag index
957 * @nr_pages: the maximum number of pages
958 * @pages: where the resulting pages are placed
960 * Like find_get_pages, except we only return pages which are tagged with
961 * @tag. We update @index to index the next page for the traversal.
963 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
964 int tag, unsigned int nr_pages, struct page **pages)
966 unsigned int i;
967 unsigned int ret;
968 unsigned int nr_found;
970 rcu_read_lock();
971 restart:
972 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
973 (void ***)pages, *index, nr_pages, tag);
974 ret = 0;
975 for (i = 0; i < nr_found; i++) {
976 struct page *page;
977 repeat:
978 page = radix_tree_deref_slot((void **)pages[i]);
979 if (unlikely(!page))
980 continue;
982 if (radix_tree_exception(page)) {
983 if (radix_tree_deref_retry(page)) {
985 * Transient condition which can only trigger
986 * when entry at index 0 moves out of or back
987 * to root: none yet gotten, safe to restart.
989 goto restart;
992 * This function is never used on a shmem/tmpfs
993 * mapping, so a swap entry won't be found here.
995 BUG();
998 if (!page_cache_get_speculative(page))
999 goto repeat;
1001 /* Has the page moved? */
1002 if (unlikely(page != *((void **)pages[i]))) {
1003 page_cache_release(page);
1004 goto repeat;
1007 pages[ret] = page;
1008 ret++;
1012 * If all entries were removed before we could secure them,
1013 * try again, because callers stop trying once 0 is returned.
1015 if (unlikely(!ret && nr_found))
1016 goto restart;
1017 rcu_read_unlock();
1019 if (ret)
1020 *index = pages[ret - 1]->index + 1;
1022 return ret;
1024 EXPORT_SYMBOL(find_get_pages_tag);
1027 * grab_cache_page_nowait - returns locked page at given index in given cache
1028 * @mapping: target address_space
1029 * @index: the page index
1031 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1032 * This is intended for speculative data generators, where the data can
1033 * be regenerated if the page couldn't be grabbed. This routine should
1034 * be safe to call while holding the lock for another page.
1036 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1037 * and deadlock against the caller's locked page.
1039 struct page *
1040 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1042 struct page *page = find_get_page(mapping, index);
1044 if (page) {
1045 if (trylock_page(page))
1046 return page;
1047 page_cache_release(page);
1048 return NULL;
1050 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1051 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1052 page_cache_release(page);
1053 page = NULL;
1055 return page;
1057 EXPORT_SYMBOL(grab_cache_page_nowait);
1060 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1061 * a _large_ part of the i/o request. Imagine the worst scenario:
1063 * ---R__________________________________________B__________
1064 * ^ reading here ^ bad block(assume 4k)
1066 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1067 * => failing the whole request => read(R) => read(R+1) =>
1068 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1069 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1070 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1072 * It is going insane. Fix it by quickly scaling down the readahead size.
1074 static void shrink_readahead_size_eio(struct file *filp,
1075 struct file_ra_state *ra)
1077 ra->ra_pages /= 4;
1081 * do_generic_file_read - generic file read routine
1082 * @filp: the file to read
1083 * @ppos: current file position
1084 * @desc: read_descriptor
1085 * @actor: read method
1087 * This is a generic file read routine, and uses the
1088 * mapping->a_ops->readpage() function for the actual low-level stuff.
1090 * This is really ugly. But the goto's actually try to clarify some
1091 * of the logic when it comes to error handling etc.
1093 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1094 read_descriptor_t *desc, read_actor_t actor)
1096 struct address_space *mapping = filp->f_mapping;
1097 struct inode *inode = mapping->host;
1098 struct file_ra_state *ra = &filp->f_ra;
1099 pgoff_t index;
1100 pgoff_t last_index;
1101 pgoff_t prev_index;
1102 unsigned long offset; /* offset into pagecache page */
1103 unsigned int prev_offset;
1104 int error;
1106 index = *ppos >> PAGE_CACHE_SHIFT;
1107 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1108 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1109 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1110 offset = *ppos & ~PAGE_CACHE_MASK;
1112 for (;;) {
1113 struct page *page;
1114 pgoff_t end_index;
1115 loff_t isize;
1116 unsigned long nr, ret;
1118 cond_resched();
1119 find_page:
1120 page = find_get_page(mapping, index);
1121 if (!page) {
1122 page_cache_sync_readahead(mapping,
1123 ra, filp,
1124 index, last_index - index);
1125 page = find_get_page(mapping, index);
1126 if (unlikely(page == NULL))
1127 goto no_cached_page;
1129 if (PageReadahead(page)) {
1130 page_cache_async_readahead(mapping,
1131 ra, filp, page,
1132 index, last_index - index);
1134 if (!PageUptodate(page)) {
1135 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1136 !mapping->a_ops->is_partially_uptodate)
1137 goto page_not_up_to_date;
1138 if (!trylock_page(page))
1139 goto page_not_up_to_date;
1140 /* Did it get truncated before we got the lock? */
1141 if (!page->mapping)
1142 goto page_not_up_to_date_locked;
1143 if (!mapping->a_ops->is_partially_uptodate(page,
1144 desc, offset))
1145 goto page_not_up_to_date_locked;
1146 unlock_page(page);
1148 page_ok:
1150 * i_size must be checked after we know the page is Uptodate.
1152 * Checking i_size after the check allows us to calculate
1153 * the correct value for "nr", which means the zero-filled
1154 * part of the page is not copied back to userspace (unless
1155 * another truncate extends the file - this is desired though).
1158 isize = i_size_read(inode);
1159 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1160 if (unlikely(!isize || index > end_index)) {
1161 page_cache_release(page);
1162 goto out;
1165 /* nr is the maximum number of bytes to copy from this page */
1166 nr = PAGE_CACHE_SIZE;
1167 if (index == end_index) {
1168 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1169 if (nr <= offset) {
1170 page_cache_release(page);
1171 goto out;
1174 nr = nr - offset;
1176 /* If users can be writing to this page using arbitrary
1177 * virtual addresses, take care about potential aliasing
1178 * before reading the page on the kernel side.
1180 if (mapping_writably_mapped(mapping))
1181 flush_dcache_page(page);
1184 * When a sequential read accesses a page several times,
1185 * only mark it as accessed the first time.
1187 if (prev_index != index || offset != prev_offset)
1188 mark_page_accessed(page);
1189 prev_index = index;
1192 * Ok, we have the page, and it's up-to-date, so
1193 * now we can copy it to user space...
1195 * The actor routine returns how many bytes were actually used..
1196 * NOTE! This may not be the same as how much of a user buffer
1197 * we filled up (we may be padding etc), so we can only update
1198 * "pos" here (the actor routine has to update the user buffer
1199 * pointers and the remaining count).
1201 ret = actor(desc, page, offset, nr);
1202 offset += ret;
1203 index += offset >> PAGE_CACHE_SHIFT;
1204 offset &= ~PAGE_CACHE_MASK;
1205 prev_offset = offset;
1207 page_cache_release(page);
1208 if (ret == nr && desc->count)
1209 continue;
1210 goto out;
1212 page_not_up_to_date:
1213 /* Get exclusive access to the page ... */
1214 error = lock_page_killable(page);
1215 if (unlikely(error))
1216 goto readpage_error;
1218 page_not_up_to_date_locked:
1219 /* Did it get truncated before we got the lock? */
1220 if (!page->mapping) {
1221 unlock_page(page);
1222 page_cache_release(page);
1223 continue;
1226 /* Did somebody else fill it already? */
1227 if (PageUptodate(page)) {
1228 unlock_page(page);
1229 goto page_ok;
1232 readpage:
1234 * A previous I/O error may have been due to temporary
1235 * failures, eg. multipath errors.
1236 * PG_error will be set again if readpage fails.
1238 ClearPageError(page);
1239 /* Start the actual read. The read will unlock the page. */
1240 error = mapping->a_ops->readpage(filp, page);
1242 if (unlikely(error)) {
1243 if (error == AOP_TRUNCATED_PAGE) {
1244 page_cache_release(page);
1245 goto find_page;
1247 goto readpage_error;
1250 if (!PageUptodate(page)) {
1251 error = lock_page_killable(page);
1252 if (unlikely(error))
1253 goto readpage_error;
1254 if (!PageUptodate(page)) {
1255 if (page->mapping == NULL) {
1257 * invalidate_mapping_pages got it
1259 unlock_page(page);
1260 page_cache_release(page);
1261 goto find_page;
1263 unlock_page(page);
1264 shrink_readahead_size_eio(filp, ra);
1265 error = -EIO;
1266 goto readpage_error;
1268 unlock_page(page);
1271 goto page_ok;
1273 readpage_error:
1274 /* UHHUH! A synchronous read error occurred. Report it */
1275 desc->error = error;
1276 page_cache_release(page);
1277 goto out;
1279 no_cached_page:
1281 * Ok, it wasn't cached, so we need to create a new
1282 * page..
1284 page = page_cache_alloc_cold(mapping);
1285 if (!page) {
1286 desc->error = -ENOMEM;
1287 goto out;
1289 error = add_to_page_cache_lru(page, mapping,
1290 index, GFP_KERNEL);
1291 if (error) {
1292 page_cache_release(page);
1293 if (error == -EEXIST)
1294 goto find_page;
1295 desc->error = error;
1296 goto out;
1298 goto readpage;
1301 out:
1302 ra->prev_pos = prev_index;
1303 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1304 ra->prev_pos |= prev_offset;
1306 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1307 file_accessed(filp);
1310 int file_read_actor(read_descriptor_t *desc, struct page *page,
1311 unsigned long offset, unsigned long size)
1313 char *kaddr;
1314 unsigned long left, count = desc->count;
1316 if (size > count)
1317 size = count;
1320 * Faults on the destination of a read are common, so do it before
1321 * taking the kmap.
1323 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1324 kaddr = kmap_atomic(page, KM_USER0);
1325 left = __copy_to_user_inatomic(desc->arg.buf,
1326 kaddr + offset, size);
1327 kunmap_atomic(kaddr, KM_USER0);
1328 if (left == 0)
1329 goto success;
1332 /* Do it the slow way */
1333 kaddr = kmap(page);
1334 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1335 kunmap(page);
1337 if (left) {
1338 size -= left;
1339 desc->error = -EFAULT;
1341 success:
1342 desc->count = count - size;
1343 desc->written += size;
1344 desc->arg.buf += size;
1345 return size;
1349 * Performs necessary checks before doing a write
1350 * @iov: io vector request
1351 * @nr_segs: number of segments in the iovec
1352 * @count: number of bytes to write
1353 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1355 * Adjust number of segments and amount of bytes to write (nr_segs should be
1356 * properly initialized first). Returns appropriate error code that caller
1357 * should return or zero in case that write should be allowed.
1359 int generic_segment_checks(const struct iovec *iov,
1360 unsigned long *nr_segs, size_t *count, int access_flags)
1362 unsigned long seg;
1363 size_t cnt = 0;
1364 for (seg = 0; seg < *nr_segs; seg++) {
1365 const struct iovec *iv = &iov[seg];
1368 * If any segment has a negative length, or the cumulative
1369 * length ever wraps negative then return -EINVAL.
1371 cnt += iv->iov_len;
1372 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1373 return -EINVAL;
1374 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1375 continue;
1376 if (seg == 0)
1377 return -EFAULT;
1378 *nr_segs = seg;
1379 cnt -= iv->iov_len; /* This segment is no good */
1380 break;
1382 *count = cnt;
1383 return 0;
1385 EXPORT_SYMBOL(generic_segment_checks);
1388 * generic_file_aio_read - generic filesystem read routine
1389 * @iocb: kernel I/O control block
1390 * @iov: io vector request
1391 * @nr_segs: number of segments in the iovec
1392 * @pos: current file position
1394 * This is the "read()" routine for all filesystems
1395 * that can use the page cache directly.
1397 ssize_t
1398 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1399 unsigned long nr_segs, loff_t pos)
1401 struct file *filp = iocb->ki_filp;
1402 ssize_t retval;
1403 unsigned long seg = 0;
1404 size_t count;
1405 loff_t *ppos = &iocb->ki_pos;
1407 count = 0;
1408 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1409 if (retval)
1410 return retval;
1412 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1413 if (filp->f_flags & O_DIRECT) {
1414 loff_t size;
1415 struct address_space *mapping;
1416 struct inode *inode;
1418 mapping = filp->f_mapping;
1419 inode = mapping->host;
1420 if (!count)
1421 goto out; /* skip atime */
1422 size = i_size_read(inode);
1423 if (pos < size) {
1424 retval = filemap_write_and_wait_range(mapping, pos,
1425 pos + iov_length(iov, nr_segs) - 1);
1426 if (!retval) {
1427 struct blk_plug plug;
1429 blk_start_plug(&plug);
1430 retval = mapping->a_ops->direct_IO(READ, iocb,
1431 iov, pos, nr_segs);
1432 blk_finish_plug(&plug);
1434 if (retval > 0) {
1435 *ppos = pos + retval;
1436 count -= retval;
1440 * Btrfs can have a short DIO read if we encounter
1441 * compressed extents, so if there was an error, or if
1442 * we've already read everything we wanted to, or if
1443 * there was a short read because we hit EOF, go ahead
1444 * and return. Otherwise fallthrough to buffered io for
1445 * the rest of the read.
1447 if (retval < 0 || !count || *ppos >= size) {
1448 file_accessed(filp);
1449 goto out;
1454 count = retval;
1455 for (seg = 0; seg < nr_segs; seg++) {
1456 read_descriptor_t desc;
1457 loff_t offset = 0;
1460 * If we did a short DIO read we need to skip the section of the
1461 * iov that we've already read data into.
1463 if (count) {
1464 if (count > iov[seg].iov_len) {
1465 count -= iov[seg].iov_len;
1466 continue;
1468 offset = count;
1469 count = 0;
1472 desc.written = 0;
1473 desc.arg.buf = iov[seg].iov_base + offset;
1474 desc.count = iov[seg].iov_len - offset;
1475 if (desc.count == 0)
1476 continue;
1477 desc.error = 0;
1478 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1479 retval += desc.written;
1480 if (desc.error) {
1481 retval = retval ?: desc.error;
1482 break;
1484 if (desc.count > 0)
1485 break;
1487 out:
1488 return retval;
1490 EXPORT_SYMBOL(generic_file_aio_read);
1492 static ssize_t
1493 do_readahead(struct address_space *mapping, struct file *filp,
1494 pgoff_t index, unsigned long nr)
1496 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1497 return -EINVAL;
1499 force_page_cache_readahead(mapping, filp, index, nr);
1500 return 0;
1503 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1505 ssize_t ret;
1506 struct file *file;
1508 ret = -EBADF;
1509 file = fget(fd);
1510 if (file) {
1511 if (file->f_mode & FMODE_READ) {
1512 struct address_space *mapping = file->f_mapping;
1513 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1514 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1515 unsigned long len = end - start + 1;
1516 ret = do_readahead(mapping, file, start, len);
1518 fput(file);
1520 return ret;
1522 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1523 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1525 return SYSC_readahead((int) fd, offset, (size_t) count);
1527 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1528 #endif
1530 #ifdef CONFIG_MMU
1532 * page_cache_read - adds requested page to the page cache if not already there
1533 * @file: file to read
1534 * @offset: page index
1536 * This adds the requested page to the page cache if it isn't already there,
1537 * and schedules an I/O to read in its contents from disk.
1539 static int page_cache_read(struct file *file, pgoff_t offset)
1541 struct address_space *mapping = file->f_mapping;
1542 struct page *page;
1543 int ret;
1545 do {
1546 page = page_cache_alloc_cold(mapping);
1547 if (!page)
1548 return -ENOMEM;
1550 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1551 if (ret == 0)
1552 ret = mapping->a_ops->readpage(file, page);
1553 else if (ret == -EEXIST)
1554 ret = 0; /* losing race to add is OK */
1556 page_cache_release(page);
1558 } while (ret == AOP_TRUNCATED_PAGE);
1560 return ret;
1563 #define MMAP_LOTSAMISS (100)
1566 * Synchronous readahead happens when we don't even find
1567 * a page in the page cache at all.
1569 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1570 struct file_ra_state *ra,
1571 struct file *file,
1572 pgoff_t offset)
1574 unsigned long ra_pages;
1575 struct address_space *mapping = file->f_mapping;
1577 /* If we don't want any read-ahead, don't bother */
1578 if (VM_RandomReadHint(vma))
1579 return;
1580 if (!ra->ra_pages)
1581 return;
1583 if (VM_SequentialReadHint(vma)) {
1584 page_cache_sync_readahead(mapping, ra, file, offset,
1585 ra->ra_pages);
1586 return;
1589 /* Avoid banging the cache line if not needed */
1590 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1591 ra->mmap_miss++;
1594 * Do we miss much more than hit in this file? If so,
1595 * stop bothering with read-ahead. It will only hurt.
1597 if (ra->mmap_miss > MMAP_LOTSAMISS)
1598 return;
1601 * mmap read-around
1603 ra_pages = max_sane_readahead(ra->ra_pages);
1604 ra->start = max_t(long, 0, offset - ra_pages / 2);
1605 ra->size = ra_pages;
1606 ra->async_size = ra_pages / 4;
1607 ra_submit(ra, mapping, file);
1611 * Asynchronous readahead happens when we find the page and PG_readahead,
1612 * so we want to possibly extend the readahead further..
1614 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1615 struct file_ra_state *ra,
1616 struct file *file,
1617 struct page *page,
1618 pgoff_t offset)
1620 struct address_space *mapping = file->f_mapping;
1622 /* If we don't want any read-ahead, don't bother */
1623 if (VM_RandomReadHint(vma))
1624 return;
1625 if (ra->mmap_miss > 0)
1626 ra->mmap_miss--;
1627 if (PageReadahead(page))
1628 page_cache_async_readahead(mapping, ra, file,
1629 page, offset, ra->ra_pages);
1633 * filemap_fault - read in file data for page fault handling
1634 * @vma: vma in which the fault was taken
1635 * @vmf: struct vm_fault containing details of the fault
1637 * filemap_fault() is invoked via the vma operations vector for a
1638 * mapped memory region to read in file data during a page fault.
1640 * The goto's are kind of ugly, but this streamlines the normal case of having
1641 * it in the page cache, and handles the special cases reasonably without
1642 * having a lot of duplicated code.
1644 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1646 int error;
1647 struct file *file = vma->vm_file;
1648 struct address_space *mapping = file->f_mapping;
1649 struct file_ra_state *ra = &file->f_ra;
1650 struct inode *inode = mapping->host;
1651 pgoff_t offset = vmf->pgoff;
1652 struct page *page;
1653 pgoff_t size;
1654 int ret = 0;
1656 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1657 if (offset >= size)
1658 return VM_FAULT_SIGBUS;
1661 * Do we have something in the page cache already?
1663 page = find_get_page(mapping, offset);
1664 if (likely(page)) {
1666 * We found the page, so try async readahead before
1667 * waiting for the lock.
1669 do_async_mmap_readahead(vma, ra, file, page, offset);
1670 } else {
1671 /* No page in the page cache at all */
1672 do_sync_mmap_readahead(vma, ra, file, offset);
1673 count_vm_event(PGMAJFAULT);
1674 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1675 ret = VM_FAULT_MAJOR;
1676 retry_find:
1677 page = find_get_page(mapping, offset);
1678 if (!page)
1679 goto no_cached_page;
1682 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1683 page_cache_release(page);
1684 return ret | VM_FAULT_RETRY;
1687 /* Did it get truncated? */
1688 if (unlikely(page->mapping != mapping)) {
1689 unlock_page(page);
1690 put_page(page);
1691 goto retry_find;
1693 VM_BUG_ON(page->index != offset);
1696 * We have a locked page in the page cache, now we need to check
1697 * that it's up-to-date. If not, it is going to be due to an error.
1699 if (unlikely(!PageUptodate(page)))
1700 goto page_not_uptodate;
1703 * Found the page and have a reference on it.
1704 * We must recheck i_size under page lock.
1706 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1707 if (unlikely(offset >= size)) {
1708 unlock_page(page);
1709 page_cache_release(page);
1710 return VM_FAULT_SIGBUS;
1713 vmf->page = page;
1714 return ret | VM_FAULT_LOCKED;
1716 no_cached_page:
1718 * We're only likely to ever get here if MADV_RANDOM is in
1719 * effect.
1721 error = page_cache_read(file, offset);
1724 * The page we want has now been added to the page cache.
1725 * In the unlikely event that someone removed it in the
1726 * meantime, we'll just come back here and read it again.
1728 if (error >= 0)
1729 goto retry_find;
1732 * An error return from page_cache_read can result if the
1733 * system is low on memory, or a problem occurs while trying
1734 * to schedule I/O.
1736 if (error == -ENOMEM)
1737 return VM_FAULT_OOM;
1738 return VM_FAULT_SIGBUS;
1740 page_not_uptodate:
1742 * Umm, take care of errors if the page isn't up-to-date.
1743 * Try to re-read it _once_. We do this synchronously,
1744 * because there really aren't any performance issues here
1745 * and we need to check for errors.
1747 ClearPageError(page);
1748 error = mapping->a_ops->readpage(file, page);
1749 if (!error) {
1750 wait_on_page_locked(page);
1751 if (!PageUptodate(page))
1752 error = -EIO;
1754 page_cache_release(page);
1756 if (!error || error == AOP_TRUNCATED_PAGE)
1757 goto retry_find;
1759 /* Things didn't work out. Return zero to tell the mm layer so. */
1760 shrink_readahead_size_eio(file, ra);
1761 return VM_FAULT_SIGBUS;
1763 EXPORT_SYMBOL(filemap_fault);
1765 const struct vm_operations_struct generic_file_vm_ops = {
1766 .fault = filemap_fault,
1769 /* This is used for a general mmap of a disk file */
1771 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1773 struct address_space *mapping = file->f_mapping;
1775 if (!mapping->a_ops->readpage)
1776 return -ENOEXEC;
1777 file_accessed(file);
1778 vma->vm_ops = &generic_file_vm_ops;
1779 vma->vm_flags |= VM_CAN_NONLINEAR;
1780 return 0;
1784 * This is for filesystems which do not implement ->writepage.
1786 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1788 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1789 return -EINVAL;
1790 return generic_file_mmap(file, vma);
1792 #else
1793 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1795 return -ENOSYS;
1797 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1799 return -ENOSYS;
1801 #endif /* CONFIG_MMU */
1803 EXPORT_SYMBOL(generic_file_mmap);
1804 EXPORT_SYMBOL(generic_file_readonly_mmap);
1806 static struct page *__read_cache_page(struct address_space *mapping,
1807 pgoff_t index,
1808 int (*filler)(void *, struct page *),
1809 void *data,
1810 gfp_t gfp)
1812 struct page *page;
1813 int err;
1814 repeat:
1815 page = find_get_page(mapping, index);
1816 if (!page) {
1817 page = __page_cache_alloc(gfp | __GFP_COLD);
1818 if (!page)
1819 return ERR_PTR(-ENOMEM);
1820 err = add_to_page_cache_lru(page, mapping, index, gfp);
1821 if (unlikely(err)) {
1822 page_cache_release(page);
1823 if (err == -EEXIST)
1824 goto repeat;
1825 /* Presumably ENOMEM for radix tree node */
1826 return ERR_PTR(err);
1828 err = filler(data, page);
1829 if (err < 0) {
1830 page_cache_release(page);
1831 page = ERR_PTR(err);
1834 return page;
1837 static struct page *do_read_cache_page(struct address_space *mapping,
1838 pgoff_t index,
1839 int (*filler)(void *, struct page *),
1840 void *data,
1841 gfp_t gfp)
1844 struct page *page;
1845 int err;
1847 retry:
1848 page = __read_cache_page(mapping, index, filler, data, gfp);
1849 if (IS_ERR(page))
1850 return page;
1851 if (PageUptodate(page))
1852 goto out;
1854 lock_page(page);
1855 if (!page->mapping) {
1856 unlock_page(page);
1857 page_cache_release(page);
1858 goto retry;
1860 if (PageUptodate(page)) {
1861 unlock_page(page);
1862 goto out;
1864 err = filler(data, page);
1865 if (err < 0) {
1866 page_cache_release(page);
1867 return ERR_PTR(err);
1869 out:
1870 mark_page_accessed(page);
1871 return page;
1875 * read_cache_page_async - read into page cache, fill it if needed
1876 * @mapping: the page's address_space
1877 * @index: the page index
1878 * @filler: function to perform the read
1879 * @data: first arg to filler(data, page) function, often left as NULL
1881 * Same as read_cache_page, but don't wait for page to become unlocked
1882 * after submitting it to the filler.
1884 * Read into the page cache. If a page already exists, and PageUptodate() is
1885 * not set, try to fill the page but don't wait for it to become unlocked.
1887 * If the page does not get brought uptodate, return -EIO.
1889 struct page *read_cache_page_async(struct address_space *mapping,
1890 pgoff_t index,
1891 int (*filler)(void *, struct page *),
1892 void *data)
1894 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1896 EXPORT_SYMBOL(read_cache_page_async);
1898 static struct page *wait_on_page_read(struct page *page)
1900 if (!IS_ERR(page)) {
1901 wait_on_page_locked(page);
1902 if (!PageUptodate(page)) {
1903 page_cache_release(page);
1904 page = ERR_PTR(-EIO);
1907 return page;
1911 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1912 * @mapping: the page's address_space
1913 * @index: the page index
1914 * @gfp: the page allocator flags to use if allocating
1916 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1917 * any new page allocations done using the specified allocation flags.
1919 * If the page does not get brought uptodate, return -EIO.
1921 struct page *read_cache_page_gfp(struct address_space *mapping,
1922 pgoff_t index,
1923 gfp_t gfp)
1925 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1927 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1929 EXPORT_SYMBOL(read_cache_page_gfp);
1932 * read_cache_page - read into page cache, fill it if needed
1933 * @mapping: the page's address_space
1934 * @index: the page index
1935 * @filler: function to perform the read
1936 * @data: first arg to filler(data, page) function, often left as NULL
1938 * Read into the page cache. If a page already exists, and PageUptodate() is
1939 * not set, try to fill the page then wait for it to become unlocked.
1941 * If the page does not get brought uptodate, return -EIO.
1943 struct page *read_cache_page(struct address_space *mapping,
1944 pgoff_t index,
1945 int (*filler)(void *, struct page *),
1946 void *data)
1948 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1950 EXPORT_SYMBOL(read_cache_page);
1953 * The logic we want is
1955 * if suid or (sgid and xgrp)
1956 * remove privs
1958 int should_remove_suid(struct dentry *dentry)
1960 mode_t mode = dentry->d_inode->i_mode;
1961 int kill = 0;
1963 /* suid always must be killed */
1964 if (unlikely(mode & S_ISUID))
1965 kill = ATTR_KILL_SUID;
1968 * sgid without any exec bits is just a mandatory locking mark; leave
1969 * it alone. If some exec bits are set, it's a real sgid; kill it.
1971 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1972 kill |= ATTR_KILL_SGID;
1974 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1975 return kill;
1977 return 0;
1979 EXPORT_SYMBOL(should_remove_suid);
1981 static int __remove_suid(struct dentry *dentry, int kill)
1983 struct iattr newattrs;
1985 newattrs.ia_valid = ATTR_FORCE | kill;
1986 return notify_change(dentry, &newattrs);
1989 int file_remove_suid(struct file *file)
1991 struct dentry *dentry = file->f_path.dentry;
1992 struct inode *inode = dentry->d_inode;
1993 int killsuid;
1994 int killpriv;
1995 int error = 0;
1997 /* Fast path for nothing security related */
1998 if (IS_NOSEC(inode))
1999 return 0;
2001 killsuid = should_remove_suid(dentry);
2002 killpriv = security_inode_need_killpriv(dentry);
2004 if (killpriv < 0)
2005 return killpriv;
2006 if (killpriv)
2007 error = security_inode_killpriv(dentry);
2008 if (!error && killsuid)
2009 error = __remove_suid(dentry, killsuid);
2010 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
2011 inode->i_flags |= S_NOSEC;
2013 return error;
2015 EXPORT_SYMBOL(file_remove_suid);
2017 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2018 const struct iovec *iov, size_t base, size_t bytes)
2020 size_t copied = 0, left = 0;
2022 while (bytes) {
2023 char __user *buf = iov->iov_base + base;
2024 int copy = min(bytes, iov->iov_len - base);
2026 base = 0;
2027 left = __copy_from_user_inatomic(vaddr, buf, copy);
2028 copied += copy;
2029 bytes -= copy;
2030 vaddr += copy;
2031 iov++;
2033 if (unlikely(left))
2034 break;
2036 return copied - left;
2040 * Copy as much as we can into the page and return the number of bytes which
2041 * were successfully copied. If a fault is encountered then return the number of
2042 * bytes which were copied.
2044 size_t iov_iter_copy_from_user_atomic(struct page *page,
2045 struct iov_iter *i, unsigned long offset, size_t bytes)
2047 char *kaddr;
2048 size_t copied;
2050 BUG_ON(!in_atomic());
2051 kaddr = kmap_atomic(page, KM_USER0);
2052 if (likely(i->nr_segs == 1)) {
2053 int left;
2054 char __user *buf = i->iov->iov_base + i->iov_offset;
2055 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2056 copied = bytes - left;
2057 } else {
2058 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2059 i->iov, i->iov_offset, bytes);
2061 kunmap_atomic(kaddr, KM_USER0);
2063 return copied;
2065 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2068 * This has the same sideeffects and return value as
2069 * iov_iter_copy_from_user_atomic().
2070 * The difference is that it attempts to resolve faults.
2071 * Page must not be locked.
2073 size_t iov_iter_copy_from_user(struct page *page,
2074 struct iov_iter *i, unsigned long offset, size_t bytes)
2076 char *kaddr;
2077 size_t copied;
2079 kaddr = kmap(page);
2080 if (likely(i->nr_segs == 1)) {
2081 int left;
2082 char __user *buf = i->iov->iov_base + i->iov_offset;
2083 left = __copy_from_user(kaddr + offset, buf, bytes);
2084 copied = bytes - left;
2085 } else {
2086 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2087 i->iov, i->iov_offset, bytes);
2089 kunmap(page);
2090 return copied;
2092 EXPORT_SYMBOL(iov_iter_copy_from_user);
2094 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2096 BUG_ON(i->count < bytes);
2098 if (likely(i->nr_segs == 1)) {
2099 i->iov_offset += bytes;
2100 i->count -= bytes;
2101 } else {
2102 const struct iovec *iov = i->iov;
2103 size_t base = i->iov_offset;
2104 unsigned long nr_segs = i->nr_segs;
2107 * The !iov->iov_len check ensures we skip over unlikely
2108 * zero-length segments (without overruning the iovec).
2110 while (bytes || unlikely(i->count && !iov->iov_len)) {
2111 int copy;
2113 copy = min(bytes, iov->iov_len - base);
2114 BUG_ON(!i->count || i->count < copy);
2115 i->count -= copy;
2116 bytes -= copy;
2117 base += copy;
2118 if (iov->iov_len == base) {
2119 iov++;
2120 nr_segs--;
2121 base = 0;
2124 i->iov = iov;
2125 i->iov_offset = base;
2126 i->nr_segs = nr_segs;
2129 EXPORT_SYMBOL(iov_iter_advance);
2132 * Fault in the first iovec of the given iov_iter, to a maximum length
2133 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2134 * accessed (ie. because it is an invalid address).
2136 * writev-intensive code may want this to prefault several iovecs -- that
2137 * would be possible (callers must not rely on the fact that _only_ the
2138 * first iovec will be faulted with the current implementation).
2140 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2142 char __user *buf = i->iov->iov_base + i->iov_offset;
2143 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2144 return fault_in_pages_readable(buf, bytes);
2146 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2149 * Return the count of just the current iov_iter segment.
2151 size_t iov_iter_single_seg_count(struct iov_iter *i)
2153 const struct iovec *iov = i->iov;
2154 if (i->nr_segs == 1)
2155 return i->count;
2156 else
2157 return min(i->count, iov->iov_len - i->iov_offset);
2159 EXPORT_SYMBOL(iov_iter_single_seg_count);
2162 * Performs necessary checks before doing a write
2164 * Can adjust writing position or amount of bytes to write.
2165 * Returns appropriate error code that caller should return or
2166 * zero in case that write should be allowed.
2168 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2170 struct inode *inode = file->f_mapping->host;
2171 unsigned long limit = rlimit(RLIMIT_FSIZE);
2173 if (unlikely(*pos < 0))
2174 return -EINVAL;
2176 if (!isblk) {
2177 /* FIXME: this is for backwards compatibility with 2.4 */
2178 if (file->f_flags & O_APPEND)
2179 *pos = i_size_read(inode);
2181 if (limit != RLIM_INFINITY) {
2182 if (*pos >= limit) {
2183 send_sig(SIGXFSZ, current, 0);
2184 return -EFBIG;
2186 if (*count > limit - (typeof(limit))*pos) {
2187 *count = limit - (typeof(limit))*pos;
2193 * LFS rule
2195 if (unlikely(*pos + *count > MAX_NON_LFS &&
2196 !(file->f_flags & O_LARGEFILE))) {
2197 if (*pos >= MAX_NON_LFS) {
2198 return -EFBIG;
2200 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2201 *count = MAX_NON_LFS - (unsigned long)*pos;
2206 * Are we about to exceed the fs block limit ?
2208 * If we have written data it becomes a short write. If we have
2209 * exceeded without writing data we send a signal and return EFBIG.
2210 * Linus frestrict idea will clean these up nicely..
2212 if (likely(!isblk)) {
2213 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2214 if (*count || *pos > inode->i_sb->s_maxbytes) {
2215 return -EFBIG;
2217 /* zero-length writes at ->s_maxbytes are OK */
2220 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2221 *count = inode->i_sb->s_maxbytes - *pos;
2222 } else {
2223 #ifdef CONFIG_BLOCK
2224 loff_t isize;
2225 if (bdev_read_only(I_BDEV(inode)))
2226 return -EPERM;
2227 isize = i_size_read(inode);
2228 if (*pos >= isize) {
2229 if (*count || *pos > isize)
2230 return -ENOSPC;
2233 if (*pos + *count > isize)
2234 *count = isize - *pos;
2235 #else
2236 return -EPERM;
2237 #endif
2239 return 0;
2241 EXPORT_SYMBOL(generic_write_checks);
2243 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2244 loff_t pos, unsigned len, unsigned flags,
2245 struct page **pagep, void **fsdata)
2247 const struct address_space_operations *aops = mapping->a_ops;
2249 return aops->write_begin(file, mapping, pos, len, flags,
2250 pagep, fsdata);
2252 EXPORT_SYMBOL(pagecache_write_begin);
2254 int pagecache_write_end(struct file *file, struct address_space *mapping,
2255 loff_t pos, unsigned len, unsigned copied,
2256 struct page *page, void *fsdata)
2258 const struct address_space_operations *aops = mapping->a_ops;
2260 mark_page_accessed(page);
2261 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2263 EXPORT_SYMBOL(pagecache_write_end);
2265 ssize_t
2266 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2267 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2268 size_t count, size_t ocount)
2270 struct file *file = iocb->ki_filp;
2271 struct address_space *mapping = file->f_mapping;
2272 struct inode *inode = mapping->host;
2273 ssize_t written;
2274 size_t write_len;
2275 pgoff_t end;
2277 if (count != ocount)
2278 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2280 write_len = iov_length(iov, *nr_segs);
2281 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2283 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2284 if (written)
2285 goto out;
2288 * After a write we want buffered reads to be sure to go to disk to get
2289 * the new data. We invalidate clean cached page from the region we're
2290 * about to write. We do this *before* the write so that we can return
2291 * without clobbering -EIOCBQUEUED from ->direct_IO().
2293 if (mapping->nrpages) {
2294 written = invalidate_inode_pages2_range(mapping,
2295 pos >> PAGE_CACHE_SHIFT, end);
2297 * If a page can not be invalidated, return 0 to fall back
2298 * to buffered write.
2300 if (written) {
2301 if (written == -EBUSY)
2302 return 0;
2303 goto out;
2307 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2310 * Finally, try again to invalidate clean pages which might have been
2311 * cached by non-direct readahead, or faulted in by get_user_pages()
2312 * if the source of the write was an mmap'ed region of the file
2313 * we're writing. Either one is a pretty crazy thing to do,
2314 * so we don't support it 100%. If this invalidation
2315 * fails, tough, the write still worked...
2317 if (mapping->nrpages) {
2318 invalidate_inode_pages2_range(mapping,
2319 pos >> PAGE_CACHE_SHIFT, end);
2322 if (written > 0) {
2323 pos += written;
2324 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2325 i_size_write(inode, pos);
2326 mark_inode_dirty(inode);
2328 *ppos = pos;
2330 out:
2331 return written;
2333 EXPORT_SYMBOL(generic_file_direct_write);
2336 * Find or create a page at the given pagecache position. Return the locked
2337 * page. This function is specifically for buffered writes.
2339 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2340 pgoff_t index, unsigned flags)
2342 int status;
2343 struct page *page;
2344 gfp_t gfp_notmask = 0;
2345 if (flags & AOP_FLAG_NOFS)
2346 gfp_notmask = __GFP_FS;
2347 repeat:
2348 page = find_lock_page(mapping, index);
2349 if (page)
2350 goto found;
2352 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2353 if (!page)
2354 return NULL;
2355 status = add_to_page_cache_lru(page, mapping, index,
2356 GFP_KERNEL & ~gfp_notmask);
2357 if (unlikely(status)) {
2358 page_cache_release(page);
2359 if (status == -EEXIST)
2360 goto repeat;
2361 return NULL;
2363 found:
2364 wait_on_page_writeback(page);
2365 return page;
2367 EXPORT_SYMBOL(grab_cache_page_write_begin);
2369 static ssize_t generic_perform_write(struct file *file,
2370 struct iov_iter *i, loff_t pos)
2372 struct address_space *mapping = file->f_mapping;
2373 const struct address_space_operations *a_ops = mapping->a_ops;
2374 long status = 0;
2375 ssize_t written = 0;
2376 unsigned int flags = 0;
2379 * Copies from kernel address space cannot fail (NFSD is a big user).
2381 if (segment_eq(get_fs(), KERNEL_DS))
2382 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2384 do {
2385 struct page *page;
2386 unsigned long offset; /* Offset into pagecache page */
2387 unsigned long bytes; /* Bytes to write to page */
2388 size_t copied; /* Bytes copied from user */
2389 void *fsdata;
2391 offset = (pos & (PAGE_CACHE_SIZE - 1));
2392 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2393 iov_iter_count(i));
2395 again:
2397 * Bring in the user page that we will copy from _first_.
2398 * Otherwise there's a nasty deadlock on copying from the
2399 * same page as we're writing to, without it being marked
2400 * up-to-date.
2402 * Not only is this an optimisation, but it is also required
2403 * to check that the address is actually valid, when atomic
2404 * usercopies are used, below.
2406 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2407 status = -EFAULT;
2408 break;
2411 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2412 &page, &fsdata);
2413 if (unlikely(status))
2414 break;
2416 if (mapping_writably_mapped(mapping))
2417 flush_dcache_page(page);
2419 pagefault_disable();
2420 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2421 pagefault_enable();
2422 flush_dcache_page(page);
2424 mark_page_accessed(page);
2425 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2426 page, fsdata);
2427 if (unlikely(status < 0))
2428 break;
2429 copied = status;
2431 cond_resched();
2433 iov_iter_advance(i, copied);
2434 if (unlikely(copied == 0)) {
2436 * If we were unable to copy any data at all, we must
2437 * fall back to a single segment length write.
2439 * If we didn't fallback here, we could livelock
2440 * because not all segments in the iov can be copied at
2441 * once without a pagefault.
2443 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2444 iov_iter_single_seg_count(i));
2445 goto again;
2447 pos += copied;
2448 written += copied;
2450 balance_dirty_pages_ratelimited(mapping);
2451 if (fatal_signal_pending(current)) {
2452 status = -EINTR;
2453 break;
2455 } while (iov_iter_count(i));
2457 return written ? written : status;
2460 ssize_t
2461 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2462 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2463 size_t count, ssize_t written)
2465 struct file *file = iocb->ki_filp;
2466 ssize_t status;
2467 struct iov_iter i;
2469 iov_iter_init(&i, iov, nr_segs, count, written);
2470 status = generic_perform_write(file, &i, pos);
2472 if (likely(status >= 0)) {
2473 written += status;
2474 *ppos = pos + status;
2477 return written ? written : status;
2479 EXPORT_SYMBOL(generic_file_buffered_write);
2482 * __generic_file_aio_write - write data to a file
2483 * @iocb: IO state structure (file, offset, etc.)
2484 * @iov: vector with data to write
2485 * @nr_segs: number of segments in the vector
2486 * @ppos: position where to write
2488 * This function does all the work needed for actually writing data to a
2489 * file. It does all basic checks, removes SUID from the file, updates
2490 * modification times and calls proper subroutines depending on whether we
2491 * do direct IO or a standard buffered write.
2493 * It expects i_mutex to be grabbed unless we work on a block device or similar
2494 * object which does not need locking at all.
2496 * This function does *not* take care of syncing data in case of O_SYNC write.
2497 * A caller has to handle it. This is mainly due to the fact that we want to
2498 * avoid syncing under i_mutex.
2500 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2501 unsigned long nr_segs, loff_t *ppos)
2503 struct file *file = iocb->ki_filp;
2504 struct address_space * mapping = file->f_mapping;
2505 size_t ocount; /* original count */
2506 size_t count; /* after file limit checks */
2507 struct inode *inode = mapping->host;
2508 loff_t pos;
2509 ssize_t written;
2510 ssize_t err;
2512 ocount = 0;
2513 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2514 if (err)
2515 return err;
2517 count = ocount;
2518 pos = *ppos;
2520 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2522 /* We can write back this queue in page reclaim */
2523 current->backing_dev_info = mapping->backing_dev_info;
2524 written = 0;
2526 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2527 if (err)
2528 goto out;
2530 if (count == 0)
2531 goto out;
2533 err = file_remove_suid(file);
2534 if (err)
2535 goto out;
2537 file_update_time(file);
2539 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2540 if (unlikely(file->f_flags & O_DIRECT)) {
2541 loff_t endbyte;
2542 ssize_t written_buffered;
2544 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2545 ppos, count, ocount);
2546 if (written < 0 || written == count)
2547 goto out;
2549 * direct-io write to a hole: fall through to buffered I/O
2550 * for completing the rest of the request.
2552 pos += written;
2553 count -= written;
2554 written_buffered = generic_file_buffered_write(iocb, iov,
2555 nr_segs, pos, ppos, count,
2556 written);
2558 * If generic_file_buffered_write() retuned a synchronous error
2559 * then we want to return the number of bytes which were
2560 * direct-written, or the error code if that was zero. Note
2561 * that this differs from normal direct-io semantics, which
2562 * will return -EFOO even if some bytes were written.
2564 if (written_buffered < 0) {
2565 err = written_buffered;
2566 goto out;
2570 * We need to ensure that the page cache pages are written to
2571 * disk and invalidated to preserve the expected O_DIRECT
2572 * semantics.
2574 endbyte = pos + written_buffered - written - 1;
2575 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2576 if (err == 0) {
2577 written = written_buffered;
2578 invalidate_mapping_pages(mapping,
2579 pos >> PAGE_CACHE_SHIFT,
2580 endbyte >> PAGE_CACHE_SHIFT);
2581 } else {
2583 * We don't know how much we wrote, so just return
2584 * the number of bytes which were direct-written
2587 } else {
2588 written = generic_file_buffered_write(iocb, iov, nr_segs,
2589 pos, ppos, count, written);
2591 out:
2592 current->backing_dev_info = NULL;
2593 return written ? written : err;
2595 EXPORT_SYMBOL(__generic_file_aio_write);
2598 * generic_file_aio_write - write data to a file
2599 * @iocb: IO state structure
2600 * @iov: vector with data to write
2601 * @nr_segs: number of segments in the vector
2602 * @pos: position in file where to write
2604 * This is a wrapper around __generic_file_aio_write() to be used by most
2605 * filesystems. It takes care of syncing the file in case of O_SYNC file
2606 * and acquires i_mutex as needed.
2608 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2609 unsigned long nr_segs, loff_t pos)
2611 struct file *file = iocb->ki_filp;
2612 struct inode *inode = file->f_mapping->host;
2613 struct blk_plug plug;
2614 ssize_t ret;
2616 BUG_ON(iocb->ki_pos != pos);
2618 mutex_lock(&inode->i_mutex);
2619 blk_start_plug(&plug);
2620 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2621 mutex_unlock(&inode->i_mutex);
2623 if (ret > 0 || ret == -EIOCBQUEUED) {
2624 ssize_t err;
2626 err = generic_write_sync(file, pos, ret);
2627 if (err < 0 && ret > 0)
2628 ret = err;
2630 blk_finish_plug(&plug);
2631 return ret;
2633 EXPORT_SYMBOL(generic_file_aio_write);
2636 * try_to_release_page() - release old fs-specific metadata on a page
2638 * @page: the page which the kernel is trying to free
2639 * @gfp_mask: memory allocation flags (and I/O mode)
2641 * The address_space is to try to release any data against the page
2642 * (presumably at page->private). If the release was successful, return `1'.
2643 * Otherwise return zero.
2645 * This may also be called if PG_fscache is set on a page, indicating that the
2646 * page is known to the local caching routines.
2648 * The @gfp_mask argument specifies whether I/O may be performed to release
2649 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2652 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2654 struct address_space * const mapping = page->mapping;
2656 BUG_ON(!PageLocked(page));
2657 if (PageWriteback(page))
2658 return 0;
2660 if (mapping && mapping->a_ops->releasepage)
2661 return mapping->a_ops->releasepage(page, gfp_mask);
2662 return try_to_free_buffers(page);
2665 EXPORT_SYMBOL(try_to_release_page);