4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/export.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
33 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
40 #define kenter(FMT, ...) \
41 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #define kenter(FMT, ...) \
48 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57 unsigned long max_mapnr
;
58 unsigned long num_physpages
;
59 unsigned long highest_memmap_pfn
;
60 struct percpu_counter vm_committed_as
;
61 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
62 int sysctl_overcommit_ratio
= 50; /* default is 50% */
63 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
64 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
65 int heap_stack_gap
= 0;
67 atomic_long_t mmap_pages_allocated
;
69 EXPORT_SYMBOL(mem_map
);
70 EXPORT_SYMBOL(num_physpages
);
72 /* list of mapped, potentially shareable regions */
73 static struct kmem_cache
*vm_region_jar
;
74 struct rb_root nommu_region_tree
= RB_ROOT
;
75 DECLARE_RWSEM(nommu_region_sem
);
77 const struct vm_operations_struct generic_file_vm_ops
= {
81 * Return the total memory allocated for this pointer, not
82 * just what the caller asked for.
84 * Doesn't have to be accurate, i.e. may have races.
86 unsigned int kobjsize(const void *objp
)
91 * If the object we have should not have ksize performed on it,
94 if (!objp
|| !virt_addr_valid(objp
))
97 page
= virt_to_head_page(objp
);
100 * If the allocator sets PageSlab, we know the pointer came from
107 * If it's not a compound page, see if we have a matching VMA
108 * region. This test is intentionally done in reverse order,
109 * so if there's no VMA, we still fall through and hand back
110 * PAGE_SIZE for 0-order pages.
112 if (!PageCompound(page
)) {
113 struct vm_area_struct
*vma
;
115 vma
= find_vma(current
->mm
, (unsigned long)objp
);
117 return vma
->vm_end
- vma
->vm_start
;
121 * The ksize() function is only guaranteed to work for pointers
122 * returned by kmalloc(). So handle arbitrary pointers here.
124 return PAGE_SIZE
<< compound_order(page
);
127 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
128 unsigned long start
, int nr_pages
, unsigned int foll_flags
,
129 struct page
**pages
, struct vm_area_struct
**vmas
,
132 struct vm_area_struct
*vma
;
133 unsigned long vm_flags
;
136 /* calculate required read or write permissions.
137 * If FOLL_FORCE is set, we only require the "MAY" flags.
139 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
140 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
141 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
142 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
144 for (i
= 0; i
< nr_pages
; i
++) {
145 vma
= find_vma(mm
, start
);
147 goto finish_or_fault
;
149 /* protect what we can, including chardevs */
150 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
151 !(vm_flags
& vma
->vm_flags
))
152 goto finish_or_fault
;
155 pages
[i
] = virt_to_page(start
);
157 page_cache_get(pages
[i
]);
161 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
167 return i
? : -EFAULT
;
171 * get a list of pages in an address range belonging to the specified process
172 * and indicate the VMA that covers each page
173 * - this is potentially dodgy as we may end incrementing the page count of a
174 * slab page or a secondary page from a compound page
175 * - don't permit access to VMAs that don't support it, such as I/O mappings
177 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
178 unsigned long start
, int nr_pages
, int write
, int force
,
179 struct page
**pages
, struct vm_area_struct
**vmas
)
188 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
191 EXPORT_SYMBOL(get_user_pages
);
194 * follow_pfn - look up PFN at a user virtual address
195 * @vma: memory mapping
196 * @address: user virtual address
197 * @pfn: location to store found PFN
199 * Only IO mappings and raw PFN mappings are allowed.
201 * Returns zero and the pfn at @pfn on success, -ve otherwise.
203 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
206 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
209 *pfn
= address
>> PAGE_SHIFT
;
212 EXPORT_SYMBOL(follow_pfn
);
214 DEFINE_RWLOCK(vmlist_lock
);
215 struct vm_struct
*vmlist
;
217 void vfree(const void *addr
)
221 EXPORT_SYMBOL(vfree
);
223 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
226 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
227 * returns only a logical address.
229 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
231 EXPORT_SYMBOL(__vmalloc
);
233 void *vmalloc_user(unsigned long size
)
237 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
240 struct vm_area_struct
*vma
;
242 down_write(¤t
->mm
->mmap_sem
);
243 vma
= find_vma(current
->mm
, (unsigned long)ret
);
245 vma
->vm_flags
|= VM_USERMAP
;
246 up_write(¤t
->mm
->mmap_sem
);
251 EXPORT_SYMBOL(vmalloc_user
);
253 struct page
*vmalloc_to_page(const void *addr
)
255 return virt_to_page(addr
);
257 EXPORT_SYMBOL(vmalloc_to_page
);
259 unsigned long vmalloc_to_pfn(const void *addr
)
261 return page_to_pfn(virt_to_page(addr
));
263 EXPORT_SYMBOL(vmalloc_to_pfn
);
265 long vread(char *buf
, char *addr
, unsigned long count
)
267 memcpy(buf
, addr
, count
);
271 long vwrite(char *buf
, char *addr
, unsigned long count
)
273 /* Don't allow overflow */
274 if ((unsigned long) addr
+ count
< count
)
275 count
= -(unsigned long) addr
;
277 memcpy(addr
, buf
, count
);
282 * vmalloc - allocate virtually continguos memory
284 * @size: allocation size
286 * Allocate enough pages to cover @size from the page level
287 * allocator and map them into continguos kernel virtual space.
289 * For tight control over page level allocator and protection flags
290 * use __vmalloc() instead.
292 void *vmalloc(unsigned long size
)
294 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
296 EXPORT_SYMBOL(vmalloc
);
299 * vzalloc - allocate virtually continguos memory with zero fill
301 * @size: allocation size
303 * Allocate enough pages to cover @size from the page level
304 * allocator and map them into continguos kernel virtual space.
305 * The memory allocated is set to zero.
307 * For tight control over page level allocator and protection flags
308 * use __vmalloc() instead.
310 void *vzalloc(unsigned long size
)
312 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
315 EXPORT_SYMBOL(vzalloc
);
318 * vmalloc_node - allocate memory on a specific node
319 * @size: allocation size
322 * Allocate enough pages to cover @size from the page level
323 * allocator and map them into contiguous kernel virtual space.
325 * For tight control over page level allocator and protection flags
326 * use __vmalloc() instead.
328 void *vmalloc_node(unsigned long size
, int node
)
330 return vmalloc(size
);
332 EXPORT_SYMBOL(vmalloc_node
);
335 * vzalloc_node - allocate memory on a specific node with zero fill
336 * @size: allocation size
339 * Allocate enough pages to cover @size from the page level
340 * allocator and map them into contiguous kernel virtual space.
341 * The memory allocated is set to zero.
343 * For tight control over page level allocator and protection flags
344 * use __vmalloc() instead.
346 void *vzalloc_node(unsigned long size
, int node
)
348 return vzalloc(size
);
350 EXPORT_SYMBOL(vzalloc_node
);
352 #ifndef PAGE_KERNEL_EXEC
353 # define PAGE_KERNEL_EXEC PAGE_KERNEL
357 * vmalloc_exec - allocate virtually contiguous, executable memory
358 * @size: allocation size
360 * Kernel-internal function to allocate enough pages to cover @size
361 * the page level allocator and map them into contiguous and
362 * executable kernel virtual space.
364 * For tight control over page level allocator and protection flags
365 * use __vmalloc() instead.
368 void *vmalloc_exec(unsigned long size
)
370 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
374 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
375 * @size: allocation size
377 * Allocate enough 32bit PA addressable pages to cover @size from the
378 * page level allocator and map them into continguos kernel virtual space.
380 void *vmalloc_32(unsigned long size
)
382 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
384 EXPORT_SYMBOL(vmalloc_32
);
387 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
388 * @size: allocation size
390 * The resulting memory area is 32bit addressable and zeroed so it can be
391 * mapped to userspace without leaking data.
393 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
394 * remap_vmalloc_range() are permissible.
396 void *vmalloc_32_user(unsigned long size
)
399 * We'll have to sort out the ZONE_DMA bits for 64-bit,
400 * but for now this can simply use vmalloc_user() directly.
402 return vmalloc_user(size
);
404 EXPORT_SYMBOL(vmalloc_32_user
);
406 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
413 void vunmap(const void *addr
)
417 EXPORT_SYMBOL(vunmap
);
419 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
424 EXPORT_SYMBOL(vm_map_ram
);
426 void vm_unmap_ram(const void *mem
, unsigned int count
)
430 EXPORT_SYMBOL(vm_unmap_ram
);
432 void vm_unmap_aliases(void)
435 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
438 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
441 void __attribute__((weak
)) vmalloc_sync_all(void)
446 * alloc_vm_area - allocate a range of kernel address space
447 * @size: size of the area
449 * Returns: NULL on failure, vm_struct on success
451 * This function reserves a range of kernel address space, and
452 * allocates pagetables to map that range. No actual mappings
453 * are created. If the kernel address space is not shared
454 * between processes, it syncs the pagetable across all
457 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
462 EXPORT_SYMBOL_GPL(alloc_vm_area
);
464 void free_vm_area(struct vm_struct
*area
)
468 EXPORT_SYMBOL_GPL(free_vm_area
);
470 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
475 EXPORT_SYMBOL(vm_insert_page
);
478 * sys_brk() for the most part doesn't need the global kernel
479 * lock, except when an application is doing something nasty
480 * like trying to un-brk an area that has already been mapped
481 * to a regular file. in this case, the unmapping will need
482 * to invoke file system routines that need the global lock.
484 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
486 struct mm_struct
*mm
= current
->mm
;
488 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
495 * Always allow shrinking brk
497 if (brk
<= mm
->brk
) {
503 * Ok, looks good - let it rip.
505 flush_icache_range(mm
->brk
, brk
);
506 return mm
->brk
= brk
;
510 * initialise the VMA and region record slabs
512 void __init
mmap_init(void)
516 ret
= percpu_counter_init(&vm_committed_as
, 0);
518 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
522 * validate the region tree
523 * - the caller must hold the region lock
525 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
526 static noinline
void validate_nommu_regions(void)
528 struct vm_region
*region
, *last
;
529 struct rb_node
*p
, *lastp
;
531 lastp
= rb_first(&nommu_region_tree
);
535 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
536 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
537 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
539 while ((p
= rb_next(lastp
))) {
540 region
= rb_entry(p
, struct vm_region
, vm_rb
);
541 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
543 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
544 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
545 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
551 static void validate_nommu_regions(void)
557 * add a region into the global tree
559 static void add_nommu_region(struct vm_region
*region
)
561 struct vm_region
*pregion
;
562 struct rb_node
**p
, *parent
;
564 validate_nommu_regions();
567 p
= &nommu_region_tree
.rb_node
;
570 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
571 if (region
->vm_start
< pregion
->vm_start
)
573 else if (region
->vm_start
> pregion
->vm_start
)
575 else if (pregion
== region
)
581 rb_link_node(®ion
->vm_rb
, parent
, p
);
582 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
584 validate_nommu_regions();
588 * delete a region from the global tree
590 static void delete_nommu_region(struct vm_region
*region
)
592 BUG_ON(!nommu_region_tree
.rb_node
);
594 validate_nommu_regions();
595 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
596 validate_nommu_regions();
600 * free a contiguous series of pages
602 static void free_page_series(unsigned long from
, unsigned long to
)
604 for (; from
< to
; from
+= PAGE_SIZE
) {
605 struct page
*page
= virt_to_page(from
);
607 kdebug("- free %lx", from
);
608 atomic_long_dec(&mmap_pages_allocated
);
609 if (page_count(page
) != 1)
610 kdebug("free page %p: refcount not one: %d",
611 page
, page_count(page
));
617 * release a reference to a region
618 * - the caller must hold the region semaphore for writing, which this releases
619 * - the region may not have been added to the tree yet, in which case vm_top
620 * will equal vm_start
622 static void __put_nommu_region(struct vm_region
*region
)
623 __releases(nommu_region_sem
)
625 kenter("%p{%d}", region
, region
->vm_usage
);
627 BUG_ON(!nommu_region_tree
.rb_node
);
629 if (--region
->vm_usage
== 0) {
630 if (region
->vm_top
> region
->vm_start
)
631 delete_nommu_region(region
);
632 up_write(&nommu_region_sem
);
635 fput(region
->vm_file
);
637 /* IO memory and memory shared directly out of the pagecache
638 * from ramfs/tmpfs mustn't be released here */
639 if (region
->vm_flags
& VM_MAPPED_COPY
) {
640 kdebug("free series");
641 free_page_series(region
->vm_start
, region
->vm_top
);
643 kmem_cache_free(vm_region_jar
, region
);
645 up_write(&nommu_region_sem
);
650 * release a reference to a region
652 static void put_nommu_region(struct vm_region
*region
)
654 down_write(&nommu_region_sem
);
655 __put_nommu_region(region
);
659 * update protection on a vma
661 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
664 struct mm_struct
*mm
= vma
->vm_mm
;
665 long start
= vma
->vm_start
& PAGE_MASK
;
666 while (start
< vma
->vm_end
) {
667 protect_page(mm
, start
, flags
);
670 update_protections(mm
);
675 * add a VMA into a process's mm_struct in the appropriate place in the list
676 * and tree and add to the address space's page tree also if not an anonymous
678 * - should be called with mm->mmap_sem held writelocked
680 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
682 struct vm_area_struct
*pvma
, *prev
;
683 struct address_space
*mapping
;
684 struct rb_node
**p
, *parent
, *rb_prev
;
688 BUG_ON(!vma
->vm_region
);
693 protect_vma(vma
, vma
->vm_flags
);
695 /* add the VMA to the mapping */
697 mapping
= vma
->vm_file
->f_mapping
;
699 mutex_lock(&mapping
->i_mmap_mutex
);
700 flush_dcache_mmap_lock(mapping
);
701 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
702 flush_dcache_mmap_unlock(mapping
);
703 mutex_unlock(&mapping
->i_mmap_mutex
);
706 /* add the VMA to the tree */
707 parent
= rb_prev
= NULL
;
708 p
= &mm
->mm_rb
.rb_node
;
711 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
713 /* sort by: start addr, end addr, VMA struct addr in that order
714 * (the latter is necessary as we may get identical VMAs) */
715 if (vma
->vm_start
< pvma
->vm_start
)
717 else if (vma
->vm_start
> pvma
->vm_start
) {
720 } else if (vma
->vm_end
< pvma
->vm_end
)
722 else if (vma
->vm_end
> pvma
->vm_end
) {
725 } else if (vma
< pvma
)
727 else if (vma
> pvma
) {
734 rb_link_node(&vma
->vm_rb
, parent
, p
);
735 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
737 /* add VMA to the VMA list also */
740 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
742 __vma_link_list(mm
, vma
, prev
, parent
);
746 * delete a VMA from its owning mm_struct and address space
748 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
750 struct address_space
*mapping
;
751 struct mm_struct
*mm
= vma
->vm_mm
;
758 if (mm
->mmap_cache
== vma
)
759 mm
->mmap_cache
= NULL
;
761 /* remove the VMA from the mapping */
763 mapping
= vma
->vm_file
->f_mapping
;
765 mutex_lock(&mapping
->i_mmap_mutex
);
766 flush_dcache_mmap_lock(mapping
);
767 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
768 flush_dcache_mmap_unlock(mapping
);
769 mutex_unlock(&mapping
->i_mmap_mutex
);
772 /* remove from the MM's tree and list */
773 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
776 vma
->vm_prev
->vm_next
= vma
->vm_next
;
778 mm
->mmap
= vma
->vm_next
;
781 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
785 * destroy a VMA record
787 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
790 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
791 vma
->vm_ops
->close(vma
);
794 if (vma
->vm_flags
& VM_EXECUTABLE
)
795 removed_exe_file_vma(mm
);
797 put_nommu_region(vma
->vm_region
);
798 kmem_cache_free(vm_area_cachep
, vma
);
802 * look up the first VMA in which addr resides, NULL if none
803 * - should be called with mm->mmap_sem at least held readlocked
805 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
807 struct vm_area_struct
*vma
;
809 /* check the cache first */
810 vma
= ACCESS_ONCE(mm
->mmap_cache
);
811 if (vma
&& vma
->vm_start
<= addr
&& vma
->vm_end
> addr
)
814 /* trawl the list (there may be multiple mappings in which addr
816 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
817 if (vma
->vm_start
> addr
)
819 if (vma
->vm_end
> addr
) {
820 mm
->mmap_cache
= vma
;
827 EXPORT_SYMBOL(find_vma
);
831 * - we don't extend stack VMAs under NOMMU conditions
833 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
835 return find_vma(mm
, addr
);
839 * expand a stack to a given address
840 * - not supported under NOMMU conditions
842 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
848 * look up the first VMA exactly that exactly matches addr
849 * - should be called with mm->mmap_sem at least held readlocked
851 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
855 struct vm_area_struct
*vma
;
856 unsigned long end
= addr
+ len
;
858 /* check the cache first */
859 vma
= mm
->mmap_cache
;
860 if (vma
&& vma
->vm_start
== addr
&& vma
->vm_end
== end
)
863 /* trawl the list (there may be multiple mappings in which addr
865 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
866 if (vma
->vm_start
< addr
)
868 if (vma
->vm_start
> addr
)
870 if (vma
->vm_end
== end
) {
871 mm
->mmap_cache
= vma
;
880 * determine whether a mapping should be permitted and, if so, what sort of
881 * mapping we're capable of supporting
883 static int validate_mmap_request(struct file
*file
,
889 unsigned long *_capabilities
)
891 unsigned long capabilities
, rlen
;
892 unsigned long reqprot
= prot
;
895 /* do the simple checks first */
896 if (flags
& MAP_FIXED
) {
898 "%d: Can't do fixed-address/overlay mmap of RAM\n",
903 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
904 (flags
& MAP_TYPE
) != MAP_SHARED
)
910 /* Careful about overflows.. */
911 rlen
= PAGE_ALIGN(len
);
912 if (!rlen
|| rlen
> TASK_SIZE
)
915 /* offset overflow? */
916 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
920 /* validate file mapping requests */
921 struct address_space
*mapping
;
923 /* files must support mmap */
924 if (!file
->f_op
|| !file
->f_op
->mmap
)
927 /* work out if what we've got could possibly be shared
928 * - we support chardevs that provide their own "memory"
929 * - we support files/blockdevs that are memory backed
931 mapping
= file
->f_mapping
;
933 mapping
= file
->f_path
.dentry
->d_inode
->i_mapping
;
936 if (mapping
&& mapping
->backing_dev_info
)
937 capabilities
= mapping
->backing_dev_info
->capabilities
;
940 /* no explicit capabilities set, so assume some
942 switch (file
->f_path
.dentry
->d_inode
->i_mode
& S_IFMT
) {
945 capabilities
= BDI_CAP_MAP_COPY
;
960 /* eliminate any capabilities that we can't support on this
962 if (!file
->f_op
->get_unmapped_area
)
963 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
964 if (!file
->f_op
->read
)
965 capabilities
&= ~BDI_CAP_MAP_COPY
;
967 /* The file shall have been opened with read permission. */
968 if (!(file
->f_mode
& FMODE_READ
))
971 if (flags
& MAP_SHARED
) {
972 /* do checks for writing, appending and locking */
973 if ((prot
& PROT_WRITE
) &&
974 !(file
->f_mode
& FMODE_WRITE
))
977 if (IS_APPEND(file
->f_path
.dentry
->d_inode
) &&
978 (file
->f_mode
& FMODE_WRITE
))
981 if (locks_verify_locked(file
->f_path
.dentry
->d_inode
))
984 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
987 /* we mustn't privatise shared mappings */
988 capabilities
&= ~BDI_CAP_MAP_COPY
;
991 /* we're going to read the file into private memory we
993 if (!(capabilities
& BDI_CAP_MAP_COPY
))
996 /* we don't permit a private writable mapping to be
997 * shared with the backing device */
998 if (prot
& PROT_WRITE
)
999 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1002 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1003 if (((prot
& PROT_READ
) && !(capabilities
& BDI_CAP_READ_MAP
)) ||
1004 ((prot
& PROT_WRITE
) && !(capabilities
& BDI_CAP_WRITE_MAP
)) ||
1005 ((prot
& PROT_EXEC
) && !(capabilities
& BDI_CAP_EXEC_MAP
))
1007 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1008 if (flags
& MAP_SHARED
) {
1010 "MAP_SHARED not completely supported on !MMU\n");
1016 /* handle executable mappings and implied executable
1018 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1019 if (prot
& PROT_EXEC
)
1022 else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1023 /* handle implication of PROT_EXEC by PROT_READ */
1024 if (current
->personality
& READ_IMPLIES_EXEC
) {
1025 if (capabilities
& BDI_CAP_EXEC_MAP
)
1029 else if ((prot
& PROT_READ
) &&
1030 (prot
& PROT_EXEC
) &&
1031 !(capabilities
& BDI_CAP_EXEC_MAP
)
1033 /* backing file is not executable, try to copy */
1034 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1038 /* anonymous mappings are always memory backed and can be
1041 capabilities
= BDI_CAP_MAP_COPY
;
1043 /* handle PROT_EXEC implication by PROT_READ */
1044 if ((prot
& PROT_READ
) &&
1045 (current
->personality
& READ_IMPLIES_EXEC
))
1049 /* allow the security API to have its say */
1050 ret
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1055 *_capabilities
= capabilities
;
1060 * we've determined that we can make the mapping, now translate what we
1061 * now know into VMA flags
1063 static unsigned long determine_vm_flags(struct file
*file
,
1065 unsigned long flags
,
1066 unsigned long capabilities
)
1068 unsigned long vm_flags
;
1070 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1071 /* vm_flags |= mm->def_flags; */
1073 if (!(capabilities
& BDI_CAP_MAP_DIRECT
)) {
1074 /* attempt to share read-only copies of mapped file chunks */
1075 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1076 if (file
&& !(prot
& PROT_WRITE
))
1077 vm_flags
|= VM_MAYSHARE
;
1079 /* overlay a shareable mapping on the backing device or inode
1080 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1082 vm_flags
|= VM_MAYSHARE
| (capabilities
& BDI_CAP_VMFLAGS
);
1083 if (flags
& MAP_SHARED
)
1084 vm_flags
|= VM_SHARED
;
1087 /* refuse to let anyone share private mappings with this process if
1088 * it's being traced - otherwise breakpoints set in it may interfere
1089 * with another untraced process
1091 if ((flags
& MAP_PRIVATE
) && current
->ptrace
)
1092 vm_flags
&= ~VM_MAYSHARE
;
1098 * set up a shared mapping on a file (the driver or filesystem provides and
1101 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1105 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1107 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1113 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1114 * opposed to tried but failed) so we can only give a suitable error as
1115 * it's not possible to make a private copy if MAP_SHARED was given */
1120 * set up a private mapping or an anonymous shared mapping
1122 static int do_mmap_private(struct vm_area_struct
*vma
,
1123 struct vm_region
*region
,
1125 unsigned long capabilities
)
1128 unsigned long total
, point
, n
;
1132 /* invoke the file's mapping function so that it can keep track of
1133 * shared mappings on devices or memory
1134 * - VM_MAYSHARE will be set if it may attempt to share
1136 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1137 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1139 /* shouldn't return success if we're not sharing */
1140 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1141 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1147 /* getting an ENOSYS error indicates that direct mmap isn't
1148 * possible (as opposed to tried but failed) so we'll try to
1149 * make a private copy of the data and map that instead */
1153 /* allocate some memory to hold the mapping
1154 * - note that this may not return a page-aligned address if the object
1155 * we're allocating is smaller than a page
1157 order
= get_order(len
);
1158 kdebug("alloc order %d for %lx", order
, len
);
1160 pages
= alloc_pages(GFP_KERNEL
, order
);
1165 atomic_long_add(total
, &mmap_pages_allocated
);
1167 point
= len
>> PAGE_SHIFT
;
1169 /* we allocated a power-of-2 sized page set, so we may want to trim off
1171 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1172 while (total
> point
) {
1173 order
= ilog2(total
- point
);
1175 kdebug("shave %lu/%lu @%lu", n
, total
- point
, total
);
1176 atomic_long_sub(n
, &mmap_pages_allocated
);
1178 set_page_refcounted(pages
+ total
);
1179 __free_pages(pages
+ total
, order
);
1183 for (point
= 1; point
< total
; point
++)
1184 set_page_refcounted(&pages
[point
]);
1186 base
= page_address(pages
);
1187 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1188 region
->vm_start
= (unsigned long) base
;
1189 region
->vm_end
= region
->vm_start
+ len
;
1190 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1192 vma
->vm_start
= region
->vm_start
;
1193 vma
->vm_end
= region
->vm_start
+ len
;
1196 /* read the contents of a file into the copy */
1197 mm_segment_t old_fs
;
1200 fpos
= vma
->vm_pgoff
;
1201 fpos
<<= PAGE_SHIFT
;
1205 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, len
, &fpos
);
1211 /* clear the last little bit */
1213 memset(base
+ ret
, 0, len
- ret
);
1220 free_page_series(region
->vm_start
, region
->vm_top
);
1221 region
->vm_start
= vma
->vm_start
= 0;
1222 region
->vm_end
= vma
->vm_end
= 0;
1227 printk("Allocation of length %lu from process %d (%s) failed\n",
1228 len
, current
->pid
, current
->comm
);
1234 * handle mapping creation for uClinux
1236 unsigned long do_mmap_pgoff(struct file
*file
,
1240 unsigned long flags
,
1241 unsigned long pgoff
)
1243 struct vm_area_struct
*vma
;
1244 struct vm_region
*region
;
1246 unsigned long capabilities
, vm_flags
, result
;
1249 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1251 /* decide whether we should attempt the mapping, and if so what sort of
1253 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1256 kleave(" = %d [val]", ret
);
1260 /* we ignore the address hint */
1262 len
= PAGE_ALIGN(len
);
1264 /* we've determined that we can make the mapping, now translate what we
1265 * now know into VMA flags */
1266 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1268 /* we're going to need to record the mapping */
1269 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1271 goto error_getting_region
;
1273 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1275 goto error_getting_vma
;
1277 region
->vm_usage
= 1;
1278 region
->vm_flags
= vm_flags
;
1279 region
->vm_pgoff
= pgoff
;
1281 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1282 vma
->vm_flags
= vm_flags
;
1283 vma
->vm_pgoff
= pgoff
;
1286 region
->vm_file
= file
;
1288 vma
->vm_file
= file
;
1290 if (vm_flags
& VM_EXECUTABLE
) {
1291 added_exe_file_vma(current
->mm
);
1292 vma
->vm_mm
= current
->mm
;
1296 down_write(&nommu_region_sem
);
1298 /* if we want to share, we need to check for regions created by other
1299 * mmap() calls that overlap with our proposed mapping
1300 * - we can only share with a superset match on most regular files
1301 * - shared mappings on character devices and memory backed files are
1302 * permitted to overlap inexactly as far as we are concerned for in
1303 * these cases, sharing is handled in the driver or filesystem rather
1306 if (vm_flags
& VM_MAYSHARE
) {
1307 struct vm_region
*pregion
;
1308 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1310 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1311 pgend
= pgoff
+ pglen
;
1313 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1314 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1316 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1319 /* search for overlapping mappings on the same file */
1320 if (pregion
->vm_file
->f_path
.dentry
->d_inode
!=
1321 file
->f_path
.dentry
->d_inode
)
1324 if (pregion
->vm_pgoff
>= pgend
)
1327 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1328 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1329 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1330 if (pgoff
>= rpgend
)
1333 /* handle inexactly overlapping matches between
1335 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1336 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1337 /* new mapping is not a subset of the region */
1338 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1339 goto sharing_violation
;
1343 /* we've found a region we can share */
1344 pregion
->vm_usage
++;
1345 vma
->vm_region
= pregion
;
1346 start
= pregion
->vm_start
;
1347 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1348 vma
->vm_start
= start
;
1349 vma
->vm_end
= start
+ len
;
1351 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1352 kdebug("share copy");
1353 vma
->vm_flags
|= VM_MAPPED_COPY
;
1355 kdebug("share mmap");
1356 ret
= do_mmap_shared_file(vma
);
1358 vma
->vm_region
= NULL
;
1361 pregion
->vm_usage
--;
1363 goto error_just_free
;
1366 fput(region
->vm_file
);
1367 kmem_cache_free(vm_region_jar
, region
);
1373 /* obtain the address at which to make a shared mapping
1374 * - this is the hook for quasi-memory character devices to
1375 * tell us the location of a shared mapping
1377 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1378 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1380 if (IS_ERR_VALUE(addr
)) {
1383 goto error_just_free
;
1385 /* the driver refused to tell us where to site
1386 * the mapping so we'll have to attempt to copy
1389 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1390 goto error_just_free
;
1392 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1394 vma
->vm_start
= region
->vm_start
= addr
;
1395 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1400 vma
->vm_region
= region
;
1402 /* set up the mapping
1403 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1405 if (file
&& vma
->vm_flags
& VM_SHARED
)
1406 ret
= do_mmap_shared_file(vma
);
1408 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1410 goto error_just_free
;
1411 add_nommu_region(region
);
1413 /* clear anonymous mappings that don't ask for uninitialized data */
1414 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1415 memset((void *)region
->vm_start
, 0,
1416 region
->vm_end
- region
->vm_start
);
1418 /* okay... we have a mapping; now we have to register it */
1419 result
= vma
->vm_start
;
1421 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1424 add_vma_to_mm(current
->mm
, vma
);
1426 /* we flush the region from the icache only when the first executable
1427 * mapping of it is made */
1428 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1429 flush_icache_range(region
->vm_start
, region
->vm_end
);
1430 region
->vm_icache_flushed
= true;
1433 up_write(&nommu_region_sem
);
1435 kleave(" = %lx", result
);
1439 up_write(&nommu_region_sem
);
1441 if (region
->vm_file
)
1442 fput(region
->vm_file
);
1443 kmem_cache_free(vm_region_jar
, region
);
1446 if (vma
->vm_flags
& VM_EXECUTABLE
)
1447 removed_exe_file_vma(vma
->vm_mm
);
1448 kmem_cache_free(vm_area_cachep
, vma
);
1449 kleave(" = %d", ret
);
1453 up_write(&nommu_region_sem
);
1454 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1459 kmem_cache_free(vm_region_jar
, region
);
1460 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1461 " from process %d failed\n",
1466 error_getting_region
:
1467 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1468 " from process %d failed\n",
1473 EXPORT_SYMBOL(do_mmap_pgoff
);
1475 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1476 unsigned long, prot
, unsigned long, flags
,
1477 unsigned long, fd
, unsigned long, pgoff
)
1479 struct file
*file
= NULL
;
1480 unsigned long retval
= -EBADF
;
1482 audit_mmap_fd(fd
, flags
);
1483 if (!(flags
& MAP_ANONYMOUS
)) {
1489 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1491 down_write(¤t
->mm
->mmap_sem
);
1492 retval
= do_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1493 up_write(¤t
->mm
->mmap_sem
);
1501 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1502 struct mmap_arg_struct
{
1506 unsigned long flags
;
1508 unsigned long offset
;
1511 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1513 struct mmap_arg_struct a
;
1515 if (copy_from_user(&a
, arg
, sizeof(a
)))
1517 if (a
.offset
& ~PAGE_MASK
)
1520 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1521 a
.offset
>> PAGE_SHIFT
);
1523 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1526 * split a vma into two pieces at address 'addr', a new vma is allocated either
1527 * for the first part or the tail.
1529 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1530 unsigned long addr
, int new_below
)
1532 struct vm_area_struct
*new;
1533 struct vm_region
*region
;
1534 unsigned long npages
;
1538 /* we're only permitted to split anonymous regions (these should have
1539 * only a single usage on the region) */
1543 if (mm
->map_count
>= sysctl_max_map_count
)
1546 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1550 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1552 kmem_cache_free(vm_region_jar
, region
);
1556 /* most fields are the same, copy all, and then fixup */
1558 *region
= *vma
->vm_region
;
1559 new->vm_region
= region
;
1561 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1564 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1566 region
->vm_start
= new->vm_start
= addr
;
1567 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1570 if (new->vm_ops
&& new->vm_ops
->open
)
1571 new->vm_ops
->open(new);
1573 delete_vma_from_mm(vma
);
1574 down_write(&nommu_region_sem
);
1575 delete_nommu_region(vma
->vm_region
);
1577 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1578 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1580 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1581 vma
->vm_region
->vm_top
= addr
;
1583 add_nommu_region(vma
->vm_region
);
1584 add_nommu_region(new->vm_region
);
1585 up_write(&nommu_region_sem
);
1586 add_vma_to_mm(mm
, vma
);
1587 add_vma_to_mm(mm
, new);
1592 * shrink a VMA by removing the specified chunk from either the beginning or
1595 static int shrink_vma(struct mm_struct
*mm
,
1596 struct vm_area_struct
*vma
,
1597 unsigned long from
, unsigned long to
)
1599 struct vm_region
*region
;
1603 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1605 delete_vma_from_mm(vma
);
1606 if (from
> vma
->vm_start
)
1610 add_vma_to_mm(mm
, vma
);
1612 /* cut the backing region down to size */
1613 region
= vma
->vm_region
;
1614 BUG_ON(region
->vm_usage
!= 1);
1616 down_write(&nommu_region_sem
);
1617 delete_nommu_region(region
);
1618 if (from
> region
->vm_start
) {
1619 to
= region
->vm_top
;
1620 region
->vm_top
= region
->vm_end
= from
;
1622 region
->vm_start
= to
;
1624 add_nommu_region(region
);
1625 up_write(&nommu_region_sem
);
1627 free_page_series(from
, to
);
1633 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1634 * VMA, though it need not cover the whole VMA
1636 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1638 struct vm_area_struct
*vma
;
1642 kenter(",%lx,%zx", start
, len
);
1644 len
= PAGE_ALIGN(len
);
1650 /* find the first potentially overlapping VMA */
1651 vma
= find_vma(mm
, start
);
1653 static int limit
= 0;
1656 "munmap of memory not mmapped by process %d"
1657 " (%s): 0x%lx-0x%lx\n",
1658 current
->pid
, current
->comm
,
1659 start
, start
+ len
- 1);
1665 /* we're allowed to split an anonymous VMA but not a file-backed one */
1668 if (start
> vma
->vm_start
) {
1669 kleave(" = -EINVAL [miss]");
1672 if (end
== vma
->vm_end
)
1673 goto erase_whole_vma
;
1676 kleave(" = -EINVAL [split file]");
1679 /* the chunk must be a subset of the VMA found */
1680 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1681 goto erase_whole_vma
;
1682 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1683 kleave(" = -EINVAL [superset]");
1686 if (start
& ~PAGE_MASK
) {
1687 kleave(" = -EINVAL [unaligned start]");
1690 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1691 kleave(" = -EINVAL [unaligned split]");
1694 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1695 ret
= split_vma(mm
, vma
, start
, 1);
1697 kleave(" = %d [split]", ret
);
1701 return shrink_vma(mm
, vma
, start
, end
);
1705 delete_vma_from_mm(vma
);
1706 delete_vma(mm
, vma
);
1710 EXPORT_SYMBOL(do_munmap
);
1712 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1715 struct mm_struct
*mm
= current
->mm
;
1717 down_write(&mm
->mmap_sem
);
1718 ret
= do_munmap(mm
, addr
, len
);
1719 up_write(&mm
->mmap_sem
);
1724 * release all the mappings made in a process's VM space
1726 void exit_mmap(struct mm_struct
*mm
)
1728 struct vm_area_struct
*vma
;
1737 while ((vma
= mm
->mmap
)) {
1738 mm
->mmap
= vma
->vm_next
;
1739 delete_vma_from_mm(vma
);
1740 delete_vma(mm
, vma
);
1747 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1753 * expand (or shrink) an existing mapping, potentially moving it at the same
1754 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1756 * under NOMMU conditions, we only permit changing a mapping's size, and only
1757 * as long as it stays within the region allocated by do_mmap_private() and the
1758 * block is not shareable
1760 * MREMAP_FIXED is not supported under NOMMU conditions
1762 unsigned long do_mremap(unsigned long addr
,
1763 unsigned long old_len
, unsigned long new_len
,
1764 unsigned long flags
, unsigned long new_addr
)
1766 struct vm_area_struct
*vma
;
1768 /* insanity checks first */
1769 old_len
= PAGE_ALIGN(old_len
);
1770 new_len
= PAGE_ALIGN(new_len
);
1771 if (old_len
== 0 || new_len
== 0)
1772 return (unsigned long) -EINVAL
;
1774 if (addr
& ~PAGE_MASK
)
1777 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1778 return (unsigned long) -EINVAL
;
1780 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1782 return (unsigned long) -EINVAL
;
1784 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1785 return (unsigned long) -EFAULT
;
1787 if (vma
->vm_flags
& VM_MAYSHARE
)
1788 return (unsigned long) -EPERM
;
1790 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1791 return (unsigned long) -ENOMEM
;
1793 /* all checks complete - do it */
1794 vma
->vm_end
= vma
->vm_start
+ new_len
;
1795 return vma
->vm_start
;
1797 EXPORT_SYMBOL(do_mremap
);
1799 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1800 unsigned long, new_len
, unsigned long, flags
,
1801 unsigned long, new_addr
)
1805 down_write(¤t
->mm
->mmap_sem
);
1806 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1807 up_write(¤t
->mm
->mmap_sem
);
1811 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1812 unsigned int foll_flags
)
1817 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1818 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1820 if (addr
!= (pfn
<< PAGE_SHIFT
))
1823 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1826 EXPORT_SYMBOL(remap_pfn_range
);
1828 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1830 unsigned long pfn
= start
>> PAGE_SHIFT
;
1831 unsigned long vm_len
= vma
->vm_end
- vma
->vm_start
;
1833 pfn
+= vma
->vm_pgoff
;
1834 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1836 EXPORT_SYMBOL(vm_iomap_memory
);
1838 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1839 unsigned long pgoff
)
1841 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1843 if (!(vma
->vm_flags
& VM_USERMAP
))
1846 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1847 vma
->vm_end
= vma
->vm_start
+ size
;
1851 EXPORT_SYMBOL(remap_vmalloc_range
);
1853 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1854 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1859 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1863 void unmap_mapping_range(struct address_space
*mapping
,
1864 loff_t
const holebegin
, loff_t
const holelen
,
1868 EXPORT_SYMBOL(unmap_mapping_range
);
1871 * Check that a process has enough memory to allocate a new virtual
1872 * mapping. 0 means there is enough memory for the allocation to
1873 * succeed and -ENOMEM implies there is not.
1875 * We currently support three overcommit policies, which are set via the
1876 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1878 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1879 * Additional code 2002 Jul 20 by Robert Love.
1881 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1883 * Note this is a helper function intended to be used by LSMs which
1884 * wish to use this logic.
1886 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1888 unsigned long free
, allowed
;
1890 vm_acct_memory(pages
);
1893 * Sometimes we want to use more memory than we have
1895 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1898 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1899 free
= global_page_state(NR_FREE_PAGES
);
1900 free
+= global_page_state(NR_FILE_PAGES
);
1903 * shmem pages shouldn't be counted as free in this
1904 * case, they can't be purged, only swapped out, and
1905 * that won't affect the overall amount of available
1906 * memory in the system.
1908 free
-= global_page_state(NR_SHMEM
);
1910 free
+= nr_swap_pages
;
1913 * Any slabs which are created with the
1914 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1915 * which are reclaimable, under pressure. The dentry
1916 * cache and most inode caches should fall into this
1918 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1921 * Leave reserved pages. The pages are not for anonymous pages.
1923 if (free
<= totalreserve_pages
)
1926 free
-= totalreserve_pages
;
1929 * Leave the last 3% for root
1940 allowed
= totalram_pages
* sysctl_overcommit_ratio
/ 100;
1942 * Leave the last 3% for root
1945 allowed
-= allowed
/ 32;
1946 allowed
+= total_swap_pages
;
1948 /* Don't let a single process grow too big:
1949 leave 3% of the size of this process for other processes */
1951 allowed
-= mm
->total_vm
/ 32;
1953 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1957 vm_unacct_memory(pages
);
1962 int in_gate_area_no_mm(unsigned long addr
)
1967 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1972 EXPORT_SYMBOL(filemap_fault
);
1974 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
1975 unsigned long addr
, void *buf
, int len
, int write
)
1977 struct vm_area_struct
*vma
;
1979 down_read(&mm
->mmap_sem
);
1981 /* the access must start within one of the target process's mappings */
1982 vma
= find_vma(mm
, addr
);
1984 /* don't overrun this mapping */
1985 if (addr
+ len
>= vma
->vm_end
)
1986 len
= vma
->vm_end
- addr
;
1988 /* only read or write mappings where it is permitted */
1989 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
1990 copy_to_user_page(vma
, NULL
, addr
,
1991 (void *) addr
, buf
, len
);
1992 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
1993 copy_from_user_page(vma
, NULL
, addr
,
1994 buf
, (void *) addr
, len
);
2001 up_read(&mm
->mmap_sem
);
2007 * @access_remote_vm - access another process' address space
2008 * @mm: the mm_struct of the target address space
2009 * @addr: start address to access
2010 * @buf: source or destination buffer
2011 * @len: number of bytes to transfer
2012 * @write: whether the access is a write
2014 * The caller must hold a reference on @mm.
2016 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
2017 void *buf
, int len
, int write
)
2019 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
2023 * Access another process' address space.
2024 * - source/target buffer must be kernel space
2026 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2028 struct mm_struct
*mm
;
2030 if (addr
+ len
< addr
)
2033 mm
= get_task_mm(tsk
);
2037 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
2044 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2045 * @inode: The inode to check
2046 * @size: The current filesize of the inode
2047 * @newsize: The proposed filesize of the inode
2049 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2050 * make sure that that any outstanding VMAs aren't broken and then shrink the
2051 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2052 * automatically grant mappings that are too large.
2054 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
2057 struct vm_area_struct
*vma
;
2058 struct prio_tree_iter iter
;
2059 struct vm_region
*region
;
2061 size_t r_size
, r_top
;
2063 low
= newsize
>> PAGE_SHIFT
;
2064 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2066 down_write(&nommu_region_sem
);
2067 mutex_lock(&inode
->i_mapping
->i_mmap_mutex
);
2069 /* search for VMAs that fall within the dead zone */
2070 vma_prio_tree_foreach(vma
, &iter
, &inode
->i_mapping
->i_mmap
,
2072 /* found one - only interested if it's shared out of the page
2074 if (vma
->vm_flags
& VM_SHARED
) {
2075 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2076 up_write(&nommu_region_sem
);
2077 return -ETXTBSY
; /* not quite true, but near enough */
2081 /* reduce any regions that overlap the dead zone - if in existence,
2082 * these will be pointed to by VMAs that don't overlap the dead zone
2084 * we don't check for any regions that start beyond the EOF as there
2087 vma_prio_tree_foreach(vma
, &iter
, &inode
->i_mapping
->i_mmap
,
2089 if (!(vma
->vm_flags
& VM_SHARED
))
2092 region
= vma
->vm_region
;
2093 r_size
= region
->vm_top
- region
->vm_start
;
2094 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
2096 if (r_top
> newsize
) {
2097 region
->vm_top
-= r_top
- newsize
;
2098 if (region
->vm_end
> region
->vm_top
)
2099 region
->vm_end
= region
->vm_top
;
2103 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2104 up_write(&nommu_region_sem
);