1 #include <linux/kernel.h>
2 #include <linux/errno.h>
4 #include <linux/spinlock.h>
7 #include <linux/pagemap.h>
8 #include <linux/rmap.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
12 #include <linux/sched.h>
13 #include <linux/rwsem.h>
14 #include <linux/hugetlb.h>
16 #include <asm/pgtable.h>
17 #include <asm/tlbflush.h>
21 static struct page
*no_page_table(struct vm_area_struct
*vma
,
25 * When core dumping an enormous anonymous area that nobody
26 * has touched so far, we don't want to allocate unnecessary pages or
27 * page tables. Return error instead of NULL to skip handle_mm_fault,
28 * then get_dump_page() will return NULL to leave a hole in the dump.
29 * But we can only make this optimization where a hole would surely
30 * be zero-filled if handle_mm_fault() actually did handle it.
32 if ((flags
& FOLL_DUMP
) && (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
33 return ERR_PTR(-EFAULT
);
37 static int follow_pfn_pte(struct vm_area_struct
*vma
, unsigned long address
,
38 pte_t
*pte
, unsigned int flags
)
40 /* No page to get reference */
44 if (flags
& FOLL_TOUCH
) {
47 if (flags
& FOLL_WRITE
)
48 entry
= pte_mkdirty(entry
);
49 entry
= pte_mkyoung(entry
);
51 if (!pte_same(*pte
, entry
)) {
52 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
53 update_mmu_cache(vma
, address
, pte
);
57 /* Proper page table entry exists, but no corresponding struct page */
61 static struct page
*follow_page_pte(struct vm_area_struct
*vma
,
62 unsigned long address
, pmd_t
*pmd
, unsigned int flags
)
64 struct mm_struct
*mm
= vma
->vm_mm
;
70 if (unlikely(pmd_bad(*pmd
)))
71 return no_page_table(vma
, flags
);
73 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
75 if (!pte_present(pte
)) {
78 * KSM's break_ksm() relies upon recognizing a ksm page
79 * even while it is being migrated, so for that case we
80 * need migration_entry_wait().
82 if (likely(!(flags
& FOLL_MIGRATION
)))
86 entry
= pte_to_swp_entry(pte
);
87 if (!is_migration_entry(entry
))
89 pte_unmap_unlock(ptep
, ptl
);
90 migration_entry_wait(mm
, pmd
, address
);
93 if ((flags
& FOLL_NUMA
) && pte_protnone(pte
))
95 if ((flags
& FOLL_WRITE
) && !pte_write(pte
)) {
96 pte_unmap_unlock(ptep
, ptl
);
100 page
= vm_normal_page(vma
, address
, pte
);
101 if (unlikely(!page
)) {
102 if (flags
& FOLL_DUMP
) {
103 /* Avoid special (like zero) pages in core dumps */
104 page
= ERR_PTR(-EFAULT
);
108 if (is_zero_pfn(pte_pfn(pte
))) {
109 page
= pte_page(pte
);
113 ret
= follow_pfn_pte(vma
, address
, ptep
, flags
);
119 if (flags
& FOLL_SPLIT
&& PageTransCompound(page
)) {
122 pte_unmap_unlock(ptep
, ptl
);
124 ret
= split_huge_page(page
);
132 if (flags
& FOLL_GET
)
134 if (flags
& FOLL_TOUCH
) {
135 if ((flags
& FOLL_WRITE
) &&
136 !pte_dirty(pte
) && !PageDirty(page
))
137 set_page_dirty(page
);
139 * pte_mkyoung() would be more correct here, but atomic care
140 * is needed to avoid losing the dirty bit: it is easier to use
141 * mark_page_accessed().
143 mark_page_accessed(page
);
145 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
147 * The preliminary mapping check is mainly to avoid the
148 * pointless overhead of lock_page on the ZERO_PAGE
149 * which might bounce very badly if there is contention.
151 * If the page is already locked, we don't need to
152 * handle it now - vmscan will handle it later if and
153 * when it attempts to reclaim the page.
155 if (page
->mapping
&& trylock_page(page
)) {
156 lru_add_drain(); /* push cached pages to LRU */
158 * Because we lock page here, and migration is
159 * blocked by the pte's page reference, and we
160 * know the page is still mapped, we don't even
161 * need to check for file-cache page truncation.
163 mlock_vma_page(page
);
168 pte_unmap_unlock(ptep
, ptl
);
171 pte_unmap_unlock(ptep
, ptl
);
174 return no_page_table(vma
, flags
);
178 * follow_page_mask - look up a page descriptor from a user-virtual address
179 * @vma: vm_area_struct mapping @address
180 * @address: virtual address to look up
181 * @flags: flags modifying lookup behaviour
182 * @page_mask: on output, *page_mask is set according to the size of the page
184 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
186 * Returns the mapped (struct page *), %NULL if no mapping exists, or
187 * an error pointer if there is a mapping to something not represented
188 * by a page descriptor (see also vm_normal_page()).
190 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
191 unsigned long address
, unsigned int flags
,
192 unsigned int *page_mask
)
199 struct mm_struct
*mm
= vma
->vm_mm
;
203 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
205 BUG_ON(flags
& FOLL_GET
);
209 pgd
= pgd_offset(mm
, address
);
210 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
211 return no_page_table(vma
, flags
);
213 pud
= pud_offset(pgd
, address
);
215 return no_page_table(vma
, flags
);
216 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
217 page
= follow_huge_pud(mm
, address
, pud
, flags
);
220 return no_page_table(vma
, flags
);
222 if (unlikely(pud_bad(*pud
)))
223 return no_page_table(vma
, flags
);
225 pmd
= pmd_offset(pud
, address
);
227 return no_page_table(vma
, flags
);
228 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
229 page
= follow_huge_pmd(mm
, address
, pmd
, flags
);
232 return no_page_table(vma
, flags
);
234 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
235 return no_page_table(vma
, flags
);
236 if (likely(!pmd_trans_huge(*pmd
)))
237 return follow_page_pte(vma
, address
, pmd
, flags
);
239 ptl
= pmd_lock(mm
, pmd
);
240 if (unlikely(!pmd_trans_huge(*pmd
))) {
242 return follow_page_pte(vma
, address
, pmd
, flags
);
245 if (unlikely(pmd_trans_splitting(*pmd
))) {
247 wait_split_huge_page(vma
->anon_vma
, pmd
);
248 return follow_page_pte(vma
, address
, pmd
, flags
);
251 if (flags
& FOLL_SPLIT
) {
253 page
= pmd_page(*pmd
);
254 if (is_huge_zero_page(page
)) {
257 split_huge_pmd(vma
, pmd
, address
);
262 ret
= split_huge_page(page
);
267 return ret
? ERR_PTR(ret
) :
268 follow_page_pte(vma
, address
, pmd
, flags
);
271 page
= follow_trans_huge_pmd(vma
, address
, pmd
, flags
);
273 *page_mask
= HPAGE_PMD_NR
- 1;
277 static int get_gate_page(struct mm_struct
*mm
, unsigned long address
,
278 unsigned int gup_flags
, struct vm_area_struct
**vma
,
287 /* user gate pages are read-only */
288 if (gup_flags
& FOLL_WRITE
)
290 if (address
> TASK_SIZE
)
291 pgd
= pgd_offset_k(address
);
293 pgd
= pgd_offset_gate(mm
, address
);
294 BUG_ON(pgd_none(*pgd
));
295 pud
= pud_offset(pgd
, address
);
296 BUG_ON(pud_none(*pud
));
297 pmd
= pmd_offset(pud
, address
);
300 VM_BUG_ON(pmd_trans_huge(*pmd
));
301 pte
= pte_offset_map(pmd
, address
);
304 *vma
= get_gate_vma(mm
);
307 *page
= vm_normal_page(*vma
, address
, *pte
);
309 if ((gup_flags
& FOLL_DUMP
) || !is_zero_pfn(pte_pfn(*pte
)))
311 *page
= pte_page(*pte
);
322 * mmap_sem must be held on entry. If @nonblocking != NULL and
323 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
324 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
326 static int faultin_page(struct task_struct
*tsk
, struct vm_area_struct
*vma
,
327 unsigned long address
, unsigned int *flags
, int *nonblocking
)
329 struct mm_struct
*mm
= vma
->vm_mm
;
330 unsigned int fault_flags
= 0;
333 /* mlock all present pages, but do not fault in new pages */
334 if ((*flags
& (FOLL_POPULATE
| FOLL_MLOCK
)) == FOLL_MLOCK
)
336 /* For mm_populate(), just skip the stack guard page. */
337 if ((*flags
& FOLL_POPULATE
) &&
338 (stack_guard_page_start(vma
, address
) ||
339 stack_guard_page_end(vma
, address
+ PAGE_SIZE
)))
341 if (*flags
& FOLL_WRITE
)
342 fault_flags
|= FAULT_FLAG_WRITE
;
344 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
345 if (*flags
& FOLL_NOWAIT
)
346 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
;
347 if (*flags
& FOLL_TRIED
) {
348 VM_WARN_ON_ONCE(fault_flags
& FAULT_FLAG_ALLOW_RETRY
);
349 fault_flags
|= FAULT_FLAG_TRIED
;
352 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
353 if (ret
& VM_FAULT_ERROR
) {
354 if (ret
& VM_FAULT_OOM
)
356 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
357 return *flags
& FOLL_HWPOISON
? -EHWPOISON
: -EFAULT
;
358 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
364 if (ret
& VM_FAULT_MAJOR
)
370 if (ret
& VM_FAULT_RETRY
) {
377 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
378 * necessary, even if maybe_mkwrite decided not to set pte_write. We
379 * can thus safely do subsequent page lookups as if they were reads.
380 * But only do so when looping for pte_write is futile: in some cases
381 * userspace may also be wanting to write to the gotten user page,
382 * which a read fault here might prevent (a readonly page might get
383 * reCOWed by userspace write).
385 if ((ret
& VM_FAULT_WRITE
) && !(vma
->vm_flags
& VM_WRITE
))
386 *flags
&= ~FOLL_WRITE
;
390 static int check_vma_flags(struct vm_area_struct
*vma
, unsigned long gup_flags
)
392 vm_flags_t vm_flags
= vma
->vm_flags
;
394 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
397 if (gup_flags
& FOLL_WRITE
) {
398 if (!(vm_flags
& VM_WRITE
)) {
399 if (!(gup_flags
& FOLL_FORCE
))
402 * We used to let the write,force case do COW in a
403 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
404 * set a breakpoint in a read-only mapping of an
405 * executable, without corrupting the file (yet only
406 * when that file had been opened for writing!).
407 * Anon pages in shared mappings are surprising: now
410 if (!is_cow_mapping(vm_flags
)) {
411 WARN_ON_ONCE(vm_flags
& VM_MAYWRITE
);
415 } else if (!(vm_flags
& VM_READ
)) {
416 if (!(gup_flags
& FOLL_FORCE
))
419 * Is there actually any vma we can reach here which does not
420 * have VM_MAYREAD set?
422 if (!(vm_flags
& VM_MAYREAD
))
429 * __get_user_pages() - pin user pages in memory
430 * @tsk: task_struct of target task
431 * @mm: mm_struct of target mm
432 * @start: starting user address
433 * @nr_pages: number of pages from start to pin
434 * @gup_flags: flags modifying pin behaviour
435 * @pages: array that receives pointers to the pages pinned.
436 * Should be at least nr_pages long. Or NULL, if caller
437 * only intends to ensure the pages are faulted in.
438 * @vmas: array of pointers to vmas corresponding to each page.
439 * Or NULL if the caller does not require them.
440 * @nonblocking: whether waiting for disk IO or mmap_sem contention
442 * Returns number of pages pinned. This may be fewer than the number
443 * requested. If nr_pages is 0 or negative, returns 0. If no pages
444 * were pinned, returns -errno. Each page returned must be released
445 * with a put_page() call when it is finished with. vmas will only
446 * remain valid while mmap_sem is held.
448 * Must be called with mmap_sem held. It may be released. See below.
450 * __get_user_pages walks a process's page tables and takes a reference to
451 * each struct page that each user address corresponds to at a given
452 * instant. That is, it takes the page that would be accessed if a user
453 * thread accesses the given user virtual address at that instant.
455 * This does not guarantee that the page exists in the user mappings when
456 * __get_user_pages returns, and there may even be a completely different
457 * page there in some cases (eg. if mmapped pagecache has been invalidated
458 * and subsequently re faulted). However it does guarantee that the page
459 * won't be freed completely. And mostly callers simply care that the page
460 * contains data that was valid *at some point in time*. Typically, an IO
461 * or similar operation cannot guarantee anything stronger anyway because
462 * locks can't be held over the syscall boundary.
464 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
465 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
466 * appropriate) must be called after the page is finished with, and
467 * before put_page is called.
469 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
470 * or mmap_sem contention, and if waiting is needed to pin all pages,
471 * *@nonblocking will be set to 0. Further, if @gup_flags does not
472 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
475 * A caller using such a combination of @nonblocking and @gup_flags
476 * must therefore hold the mmap_sem for reading only, and recognize
477 * when it's been released. Otherwise, it must be held for either
478 * reading or writing and will not be released.
480 * In most cases, get_user_pages or get_user_pages_fast should be used
481 * instead of __get_user_pages. __get_user_pages should be used only if
482 * you need some special @gup_flags.
484 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
485 unsigned long start
, unsigned long nr_pages
,
486 unsigned int gup_flags
, struct page
**pages
,
487 struct vm_area_struct
**vmas
, int *nonblocking
)
490 unsigned int page_mask
;
491 struct vm_area_struct
*vma
= NULL
;
496 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
499 * If FOLL_FORCE is set then do not force a full fault as the hinting
500 * fault information is unrelated to the reference behaviour of a task
501 * using the address space
503 if (!(gup_flags
& FOLL_FORCE
))
504 gup_flags
|= FOLL_NUMA
;
508 unsigned int foll_flags
= gup_flags
;
509 unsigned int page_increm
;
511 /* first iteration or cross vma bound */
512 if (!vma
|| start
>= vma
->vm_end
) {
513 vma
= find_extend_vma(mm
, start
);
514 if (!vma
&& in_gate_area(mm
, start
)) {
516 ret
= get_gate_page(mm
, start
& PAGE_MASK
,
518 pages
? &pages
[i
] : NULL
);
525 if (!vma
|| check_vma_flags(vma
, gup_flags
))
526 return i
? : -EFAULT
;
527 if (is_vm_hugetlb_page(vma
)) {
528 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
529 &start
, &nr_pages
, i
,
536 * If we have a pending SIGKILL, don't keep faulting pages and
537 * potentially allocating memory.
539 if (unlikely(fatal_signal_pending(current
)))
540 return i
? i
: -ERESTARTSYS
;
542 page
= follow_page_mask(vma
, start
, foll_flags
, &page_mask
);
545 ret
= faultin_page(tsk
, vma
, start
, &foll_flags
,
560 } else if (PTR_ERR(page
) == -EEXIST
) {
562 * Proper page table entry exists, but no corresponding
566 } else if (IS_ERR(page
)) {
567 return i
? i
: PTR_ERR(page
);
571 flush_anon_page(vma
, page
, start
);
572 flush_dcache_page(page
);
580 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
581 if (page_increm
> nr_pages
)
582 page_increm
= nr_pages
;
584 start
+= page_increm
* PAGE_SIZE
;
585 nr_pages
-= page_increm
;
589 EXPORT_SYMBOL(__get_user_pages
);
592 * fixup_user_fault() - manually resolve a user page fault
593 * @tsk: the task_struct to use for page fault accounting, or
594 * NULL if faults are not to be recorded.
595 * @mm: mm_struct of target mm
596 * @address: user address
597 * @fault_flags:flags to pass down to handle_mm_fault()
599 * This is meant to be called in the specific scenario where for locking reasons
600 * we try to access user memory in atomic context (within a pagefault_disable()
601 * section), this returns -EFAULT, and we want to resolve the user fault before
604 * Typically this is meant to be used by the futex code.
606 * The main difference with get_user_pages() is that this function will
607 * unconditionally call handle_mm_fault() which will in turn perform all the
608 * necessary SW fixup of the dirty and young bits in the PTE, while
609 * handle_mm_fault() only guarantees to update these in the struct page.
611 * This is important for some architectures where those bits also gate the
612 * access permission to the page because they are maintained in software. On
613 * such architectures, gup() will not be enough to make a subsequent access
616 * This has the same semantics wrt the @mm->mmap_sem as does filemap_fault().
618 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
619 unsigned long address
, unsigned int fault_flags
)
621 struct vm_area_struct
*vma
;
625 vma
= find_extend_vma(mm
, address
);
626 if (!vma
|| address
< vma
->vm_start
)
629 vm_flags
= (fault_flags
& FAULT_FLAG_WRITE
) ? VM_WRITE
: VM_READ
;
630 if (!(vm_flags
& vma
->vm_flags
))
633 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
634 if (ret
& VM_FAULT_ERROR
) {
635 if (ret
& VM_FAULT_OOM
)
637 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
639 if (ret
& (VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
))
644 if (ret
& VM_FAULT_MAJOR
)
652 static __always_inline
long __get_user_pages_locked(struct task_struct
*tsk
,
653 struct mm_struct
*mm
,
655 unsigned long nr_pages
,
656 int write
, int force
,
658 struct vm_area_struct
**vmas
,
659 int *locked
, bool notify_drop
,
662 long ret
, pages_done
;
666 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
668 /* check caller initialized locked */
669 BUG_ON(*locked
!= 1);
680 lock_dropped
= false;
682 ret
= __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
,
685 /* VM_FAULT_RETRY couldn't trigger, bypass */
688 /* VM_FAULT_RETRY cannot return errors */
691 BUG_ON(ret
>= nr_pages
);
695 /* If it's a prefault don't insist harder */
705 /* VM_FAULT_RETRY didn't trigger */
710 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
712 start
+= ret
<< PAGE_SHIFT
;
715 * Repeat on the address that fired VM_FAULT_RETRY
716 * without FAULT_FLAG_ALLOW_RETRY but with
721 down_read(&mm
->mmap_sem
);
722 ret
= __get_user_pages(tsk
, mm
, start
, 1, flags
| FOLL_TRIED
,
737 if (notify_drop
&& lock_dropped
&& *locked
) {
739 * We must let the caller know we temporarily dropped the lock
740 * and so the critical section protected by it was lost.
742 up_read(&mm
->mmap_sem
);
749 * We can leverage the VM_FAULT_RETRY functionality in the page fault
750 * paths better by using either get_user_pages_locked() or
751 * get_user_pages_unlocked().
753 * get_user_pages_locked() is suitable to replace the form:
755 * down_read(&mm->mmap_sem);
757 * get_user_pages(tsk, mm, ..., pages, NULL);
758 * up_read(&mm->mmap_sem);
763 * down_read(&mm->mmap_sem);
765 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
767 * up_read(&mm->mmap_sem);
769 long get_user_pages_locked(struct task_struct
*tsk
, struct mm_struct
*mm
,
770 unsigned long start
, unsigned long nr_pages
,
771 int write
, int force
, struct page
**pages
,
774 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
775 pages
, NULL
, locked
, true, FOLL_TOUCH
);
777 EXPORT_SYMBOL(get_user_pages_locked
);
780 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
781 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
783 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
784 * caller if required (just like with __get_user_pages). "FOLL_GET",
785 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
786 * according to the parameters "pages", "write", "force"
789 __always_inline
long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
790 unsigned long start
, unsigned long nr_pages
,
791 int write
, int force
, struct page
**pages
,
792 unsigned int gup_flags
)
796 down_read(&mm
->mmap_sem
);
797 ret
= __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
798 pages
, NULL
, &locked
, false, gup_flags
);
800 up_read(&mm
->mmap_sem
);
803 EXPORT_SYMBOL(__get_user_pages_unlocked
);
806 * get_user_pages_unlocked() is suitable to replace the form:
808 * down_read(&mm->mmap_sem);
809 * get_user_pages(tsk, mm, ..., pages, NULL);
810 * up_read(&mm->mmap_sem);
814 * get_user_pages_unlocked(tsk, mm, ..., pages);
816 * It is functionally equivalent to get_user_pages_fast so
817 * get_user_pages_fast should be used instead, if the two parameters
818 * "tsk" and "mm" are respectively equal to current and current->mm,
819 * or if "force" shall be set to 1 (get_user_pages_fast misses the
820 * "force" parameter).
822 long get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
823 unsigned long start
, unsigned long nr_pages
,
824 int write
, int force
, struct page
**pages
)
826 return __get_user_pages_unlocked(tsk
, mm
, start
, nr_pages
, write
,
827 force
, pages
, FOLL_TOUCH
);
829 EXPORT_SYMBOL(get_user_pages_unlocked
);
832 * get_user_pages() - pin user pages in memory
833 * @tsk: the task_struct to use for page fault accounting, or
834 * NULL if faults are not to be recorded.
835 * @mm: mm_struct of target mm
836 * @start: starting user address
837 * @nr_pages: number of pages from start to pin
838 * @write: whether pages will be written to by the caller
839 * @force: whether to force access even when user mapping is currently
840 * protected (but never forces write access to shared mapping).
841 * @pages: array that receives pointers to the pages pinned.
842 * Should be at least nr_pages long. Or NULL, if caller
843 * only intends to ensure the pages are faulted in.
844 * @vmas: array of pointers to vmas corresponding to each page.
845 * Or NULL if the caller does not require them.
847 * Returns number of pages pinned. This may be fewer than the number
848 * requested. If nr_pages is 0 or negative, returns 0. If no pages
849 * were pinned, returns -errno. Each page returned must be released
850 * with a put_page() call when it is finished with. vmas will only
851 * remain valid while mmap_sem is held.
853 * Must be called with mmap_sem held for read or write.
855 * get_user_pages walks a process's page tables and takes a reference to
856 * each struct page that each user address corresponds to at a given
857 * instant. That is, it takes the page that would be accessed if a user
858 * thread accesses the given user virtual address at that instant.
860 * This does not guarantee that the page exists in the user mappings when
861 * get_user_pages returns, and there may even be a completely different
862 * page there in some cases (eg. if mmapped pagecache has been invalidated
863 * and subsequently re faulted). However it does guarantee that the page
864 * won't be freed completely. And mostly callers simply care that the page
865 * contains data that was valid *at some point in time*. Typically, an IO
866 * or similar operation cannot guarantee anything stronger anyway because
867 * locks can't be held over the syscall boundary.
869 * If write=0, the page must not be written to. If the page is written to,
870 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
871 * after the page is finished with, and before put_page is called.
873 * get_user_pages is typically used for fewer-copy IO operations, to get a
874 * handle on the memory by some means other than accesses via the user virtual
875 * addresses. The pages may be submitted for DMA to devices or accessed via
876 * their kernel linear mapping (via the kmap APIs). Care should be taken to
877 * use the correct cache flushing APIs.
879 * See also get_user_pages_fast, for performance critical applications.
881 * get_user_pages should be phased out in favor of
882 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
883 * should use get_user_pages because it cannot pass
884 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
886 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
887 unsigned long start
, unsigned long nr_pages
, int write
,
888 int force
, struct page
**pages
, struct vm_area_struct
**vmas
)
890 return __get_user_pages_locked(tsk
, mm
, start
, nr_pages
, write
, force
,
891 pages
, vmas
, NULL
, false, FOLL_TOUCH
);
893 EXPORT_SYMBOL(get_user_pages
);
896 * populate_vma_page_range() - populate a range of pages in the vma.
898 * @start: start address
902 * This takes care of mlocking the pages too if VM_LOCKED is set.
904 * return 0 on success, negative error code on error.
906 * vma->vm_mm->mmap_sem must be held.
908 * If @nonblocking is NULL, it may be held for read or write and will
911 * If @nonblocking is non-NULL, it must held for read only and may be
912 * released. If it's released, *@nonblocking will be set to 0.
914 long populate_vma_page_range(struct vm_area_struct
*vma
,
915 unsigned long start
, unsigned long end
, int *nonblocking
)
917 struct mm_struct
*mm
= vma
->vm_mm
;
918 unsigned long nr_pages
= (end
- start
) / PAGE_SIZE
;
921 VM_BUG_ON(start
& ~PAGE_MASK
);
922 VM_BUG_ON(end
& ~PAGE_MASK
);
923 VM_BUG_ON_VMA(start
< vma
->vm_start
, vma
);
924 VM_BUG_ON_VMA(end
> vma
->vm_end
, vma
);
925 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
927 gup_flags
= FOLL_TOUCH
| FOLL_POPULATE
| FOLL_MLOCK
;
928 if (vma
->vm_flags
& VM_LOCKONFAULT
)
929 gup_flags
&= ~FOLL_POPULATE
;
930 if (vma
->vm_flags
& VM_LOCKED
)
931 gup_flags
|= FOLL_SPLIT
;
933 * We want to touch writable mappings with a write fault in order
934 * to break COW, except for shared mappings because these don't COW
935 * and we would not want to dirty them for nothing.
937 if ((vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
938 gup_flags
|= FOLL_WRITE
;
941 * We want mlock to succeed for regions that have any permissions
942 * other than PROT_NONE.
944 if (vma
->vm_flags
& (VM_READ
| VM_WRITE
| VM_EXEC
))
945 gup_flags
|= FOLL_FORCE
;
948 * We made sure addr is within a VMA, so the following will
949 * not result in a stack expansion that recurses back here.
951 return __get_user_pages(current
, mm
, start
, nr_pages
, gup_flags
,
952 NULL
, NULL
, nonblocking
);
956 * __mm_populate - populate and/or mlock pages within a range of address space.
958 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
959 * flags. VMAs must be already marked with the desired vm_flags, and
960 * mmap_sem must not be held.
962 int __mm_populate(unsigned long start
, unsigned long len
, int ignore_errors
)
964 struct mm_struct
*mm
= current
->mm
;
965 unsigned long end
, nstart
, nend
;
966 struct vm_area_struct
*vma
= NULL
;
970 VM_BUG_ON(start
& ~PAGE_MASK
);
971 VM_BUG_ON(len
!= PAGE_ALIGN(len
));
974 for (nstart
= start
; nstart
< end
; nstart
= nend
) {
976 * We want to fault in pages for [nstart; end) address range.
977 * Find first corresponding VMA.
981 down_read(&mm
->mmap_sem
);
982 vma
= find_vma(mm
, nstart
);
983 } else if (nstart
>= vma
->vm_end
)
985 if (!vma
|| vma
->vm_start
>= end
)
988 * Set [nstart; nend) to intersection of desired address
989 * range with the first VMA. Also, skip undesirable VMA types.
991 nend
= min(end
, vma
->vm_end
);
992 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
994 if (nstart
< vma
->vm_start
)
995 nstart
= vma
->vm_start
;
997 * Now fault in a range of pages. populate_vma_page_range()
998 * double checks the vma flags, so that it won't mlock pages
999 * if the vma was already munlocked.
1001 ret
= populate_vma_page_range(vma
, nstart
, nend
, &locked
);
1003 if (ignore_errors
) {
1005 continue; /* continue at next VMA */
1009 nend
= nstart
+ ret
* PAGE_SIZE
;
1013 up_read(&mm
->mmap_sem
);
1014 return ret
; /* 0 or negative error code */
1018 * get_dump_page() - pin user page in memory while writing it to core dump
1019 * @addr: user address
1021 * Returns struct page pointer of user page pinned for dump,
1022 * to be freed afterwards by page_cache_release() or put_page().
1024 * Returns NULL on any kind of failure - a hole must then be inserted into
1025 * the corefile, to preserve alignment with its headers; and also returns
1026 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1027 * allowing a hole to be left in the corefile to save diskspace.
1029 * Called without mmap_sem, but after all other threads have been killed.
1031 #ifdef CONFIG_ELF_CORE
1032 struct page
*get_dump_page(unsigned long addr
)
1034 struct vm_area_struct
*vma
;
1037 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1038 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1041 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1044 #endif /* CONFIG_ELF_CORE */
1047 * Generic RCU Fast GUP
1049 * get_user_pages_fast attempts to pin user pages by walking the page
1050 * tables directly and avoids taking locks. Thus the walker needs to be
1051 * protected from page table pages being freed from under it, and should
1052 * block any THP splits.
1054 * One way to achieve this is to have the walker disable interrupts, and
1055 * rely on IPIs from the TLB flushing code blocking before the page table
1056 * pages are freed. This is unsuitable for architectures that do not need
1057 * to broadcast an IPI when invalidating TLBs.
1059 * Another way to achieve this is to batch up page table containing pages
1060 * belonging to more than one mm_user, then rcu_sched a callback to free those
1061 * pages. Disabling interrupts will allow the fast_gup walker to both block
1062 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1063 * (which is a relatively rare event). The code below adopts this strategy.
1065 * Before activating this code, please be aware that the following assumptions
1066 * are currently made:
1068 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1069 * pages containing page tables.
1071 * *) THP splits will broadcast an IPI, this can be achieved by overriding
1072 * pmdp_splitting_flush.
1074 * *) ptes can be read atomically by the architecture.
1076 * *) access_ok is sufficient to validate userspace address ranges.
1078 * The last two assumptions can be relaxed by the addition of helper functions.
1080 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1082 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1084 #ifdef __HAVE_ARCH_PTE_SPECIAL
1085 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1086 int write
, struct page
**pages
, int *nr
)
1091 ptem
= ptep
= pte_offset_map(&pmd
, addr
);
1094 * In the line below we are assuming that the pte can be read
1095 * atomically. If this is not the case for your architecture,
1096 * please wrap this in a helper function!
1098 * for an example see gup_get_pte in arch/x86/mm/gup.c
1100 pte_t pte
= READ_ONCE(*ptep
);
1101 struct page
*head
, *page
;
1104 * Similar to the PMD case below, NUMA hinting must take slow
1105 * path using the pte_protnone check.
1107 if (!pte_present(pte
) || pte_special(pte
) ||
1108 pte_protnone(pte
) || (write
&& !pte_write(pte
)))
1111 VM_BUG_ON(!pfn_valid(pte_pfn(pte
)));
1112 page
= pte_page(pte
);
1113 head
= compound_head(page
);
1115 if (!page_cache_get_speculative(head
))
1118 if (unlikely(pte_val(pte
) != pte_val(*ptep
))) {
1123 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1127 } while (ptep
++, addr
+= PAGE_SIZE
, addr
!= end
);
1138 * If we can't determine whether or not a pte is special, then fail immediately
1139 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1142 * For a futex to be placed on a THP tail page, get_futex_key requires a
1143 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1144 * useful to have gup_huge_pmd even if we can't operate on ptes.
1146 static int gup_pte_range(pmd_t pmd
, unsigned long addr
, unsigned long end
,
1147 int write
, struct page
**pages
, int *nr
)
1151 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1153 static int gup_huge_pmd(pmd_t orig
, pmd_t
*pmdp
, unsigned long addr
,
1154 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1156 struct page
*head
, *page
, *tail
;
1159 if (write
&& !pmd_write(orig
))
1163 head
= pmd_page(orig
);
1164 page
= head
+ ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1167 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1172 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1174 if (!page_cache_add_speculative(head
, refs
)) {
1179 if (unlikely(pmd_val(orig
) != pmd_val(*pmdp
))) {
1187 * Any tail pages need their mapcount reference taken before we
1188 * return. (This allows the THP code to bump their ref count when
1189 * they are split into base pages).
1193 get_huge_page_tail(tail
);
1200 static int gup_huge_pud(pud_t orig
, pud_t
*pudp
, unsigned long addr
,
1201 unsigned long end
, int write
, struct page
**pages
, int *nr
)
1203 struct page
*head
, *page
, *tail
;
1206 if (write
&& !pud_write(orig
))
1210 head
= pud_page(orig
);
1211 page
= head
+ ((addr
& ~PUD_MASK
) >> PAGE_SHIFT
);
1214 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1219 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1221 if (!page_cache_add_speculative(head
, refs
)) {
1226 if (unlikely(pud_val(orig
) != pud_val(*pudp
))) {
1235 get_huge_page_tail(tail
);
1242 static int gup_huge_pgd(pgd_t orig
, pgd_t
*pgdp
, unsigned long addr
,
1243 unsigned long end
, int write
,
1244 struct page
**pages
, int *nr
)
1247 struct page
*head
, *page
, *tail
;
1249 if (write
&& !pgd_write(orig
))
1253 head
= pgd_page(orig
);
1254 page
= head
+ ((addr
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
1257 VM_BUG_ON_PAGE(compound_head(page
) != head
, page
);
1262 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1264 if (!page_cache_add_speculative(head
, refs
)) {
1269 if (unlikely(pgd_val(orig
) != pgd_val(*pgdp
))) {
1278 get_huge_page_tail(tail
);
1285 static int gup_pmd_range(pud_t pud
, unsigned long addr
, unsigned long end
,
1286 int write
, struct page
**pages
, int *nr
)
1291 pmdp
= pmd_offset(&pud
, addr
);
1293 pmd_t pmd
= READ_ONCE(*pmdp
);
1295 next
= pmd_addr_end(addr
, end
);
1296 if (pmd_none(pmd
) || pmd_trans_splitting(pmd
))
1299 if (unlikely(pmd_trans_huge(pmd
) || pmd_huge(pmd
))) {
1301 * NUMA hinting faults need to be handled in the GUP
1302 * slowpath for accounting purposes and so that they
1303 * can be serialised against THP migration.
1305 if (pmd_protnone(pmd
))
1308 if (!gup_huge_pmd(pmd
, pmdp
, addr
, next
, write
,
1312 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd
))))) {
1314 * architecture have different format for hugetlbfs
1315 * pmd format and THP pmd format
1317 if (!gup_huge_pd(__hugepd(pmd_val(pmd
)), addr
,
1318 PMD_SHIFT
, next
, write
, pages
, nr
))
1320 } else if (!gup_pte_range(pmd
, addr
, next
, write
, pages
, nr
))
1322 } while (pmdp
++, addr
= next
, addr
!= end
);
1327 static int gup_pud_range(pgd_t pgd
, unsigned long addr
, unsigned long end
,
1328 int write
, struct page
**pages
, int *nr
)
1333 pudp
= pud_offset(&pgd
, addr
);
1335 pud_t pud
= READ_ONCE(*pudp
);
1337 next
= pud_addr_end(addr
, end
);
1340 if (unlikely(pud_huge(pud
))) {
1341 if (!gup_huge_pud(pud
, pudp
, addr
, next
, write
,
1344 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud
))))) {
1345 if (!gup_huge_pd(__hugepd(pud_val(pud
)), addr
,
1346 PUD_SHIFT
, next
, write
, pages
, nr
))
1348 } else if (!gup_pmd_range(pud
, addr
, next
, write
, pages
, nr
))
1350 } while (pudp
++, addr
= next
, addr
!= end
);
1356 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1357 * the regular GUP. It will only return non-negative values.
1359 int __get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1360 struct page
**pages
)
1362 struct mm_struct
*mm
= current
->mm
;
1363 unsigned long addr
, len
, end
;
1364 unsigned long next
, flags
;
1370 len
= (unsigned long) nr_pages
<< PAGE_SHIFT
;
1373 if (unlikely(!access_ok(write
? VERIFY_WRITE
: VERIFY_READ
,
1378 * Disable interrupts. We use the nested form as we can already have
1379 * interrupts disabled by get_futex_key.
1381 * With interrupts disabled, we block page table pages from being
1382 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1385 * We do not adopt an rcu_read_lock(.) here as we also want to
1386 * block IPIs that come from THPs splitting.
1389 local_irq_save(flags
);
1390 pgdp
= pgd_offset(mm
, addr
);
1392 pgd_t pgd
= READ_ONCE(*pgdp
);
1394 next
= pgd_addr_end(addr
, end
);
1397 if (unlikely(pgd_huge(pgd
))) {
1398 if (!gup_huge_pgd(pgd
, pgdp
, addr
, next
, write
,
1401 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd
))))) {
1402 if (!gup_huge_pd(__hugepd(pgd_val(pgd
)), addr
,
1403 PGDIR_SHIFT
, next
, write
, pages
, &nr
))
1405 } else if (!gup_pud_range(pgd
, addr
, next
, write
, pages
, &nr
))
1407 } while (pgdp
++, addr
= next
, addr
!= end
);
1408 local_irq_restore(flags
);
1414 * get_user_pages_fast() - pin user pages in memory
1415 * @start: starting user address
1416 * @nr_pages: number of pages from start to pin
1417 * @write: whether pages will be written to
1418 * @pages: array that receives pointers to the pages pinned.
1419 * Should be at least nr_pages long.
1421 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1422 * If not successful, it will fall back to taking the lock and
1423 * calling get_user_pages().
1425 * Returns number of pages pinned. This may be fewer than the number
1426 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1427 * were pinned, returns -errno.
1429 int get_user_pages_fast(unsigned long start
, int nr_pages
, int write
,
1430 struct page
**pages
)
1432 struct mm_struct
*mm
= current
->mm
;
1436 nr
= __get_user_pages_fast(start
, nr_pages
, write
, pages
);
1439 if (nr
< nr_pages
) {
1440 /* Try to get the remaining pages with get_user_pages */
1441 start
+= nr
<< PAGE_SHIFT
;
1444 ret
= get_user_pages_unlocked(current
, mm
, start
,
1445 nr_pages
- nr
, write
, 0, pages
);
1447 /* Have to be a bit careful with return values */
1459 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */