2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/cpu.h>
28 #include <linux/errno.h>
29 #include <linux/export.h>
30 #include <linux/idr.h>
31 #include <linux/init.h>
32 #include <linux/kernel.h>
33 #include <linux/kmemleak.h>
34 #include <linux/percpu.h>
35 #include <linux/preempt.h> /* in_interrupt() */
36 #include <linux/radix-tree.h>
37 #include <linux/rcupdate.h>
38 #include <linux/slab.h>
39 #include <linux/string.h>
42 /* Number of nodes in fully populated tree of given height */
43 static unsigned long height_to_maxnodes
[RADIX_TREE_MAX_PATH
+ 1] __read_mostly
;
46 * Radix tree node cache.
48 static struct kmem_cache
*radix_tree_node_cachep
;
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
64 * The IDR does not have to be as high as the radix tree since it uses
65 * signed integers, not unsigned longs.
67 #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
68 #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
69 RADIX_TREE_MAP_SHIFT))
70 #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
73 * The IDA is even shorter since it uses a bitmap at the last level.
75 #define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
76 #define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
77 RADIX_TREE_MAP_SHIFT))
78 #define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
81 * Per-cpu pool of preloaded nodes
83 struct radix_tree_preload
{
85 /* nodes->parent points to next preallocated node */
86 struct radix_tree_node
*nodes
;
88 static DEFINE_PER_CPU(struct radix_tree_preload
, radix_tree_preloads
) = { 0, };
90 static inline struct radix_tree_node
*entry_to_node(void *ptr
)
92 return (void *)((unsigned long)ptr
& ~RADIX_TREE_INTERNAL_NODE
);
95 static inline void *node_to_entry(void *ptr
)
97 return (void *)((unsigned long)ptr
| RADIX_TREE_INTERNAL_NODE
);
100 #define RADIX_TREE_RETRY node_to_entry(NULL)
102 #ifdef CONFIG_RADIX_TREE_MULTIORDER
103 /* Sibling slots point directly to another slot in the same node */
105 bool is_sibling_entry(const struct radix_tree_node
*parent
, void *node
)
107 void __rcu
**ptr
= node
;
108 return (parent
->slots
<= ptr
) &&
109 (ptr
< parent
->slots
+ RADIX_TREE_MAP_SIZE
);
113 bool is_sibling_entry(const struct radix_tree_node
*parent
, void *node
)
119 static inline unsigned long
120 get_slot_offset(const struct radix_tree_node
*parent
, void __rcu
**slot
)
122 return slot
- parent
->slots
;
125 static unsigned int radix_tree_descend(const struct radix_tree_node
*parent
,
126 struct radix_tree_node
**nodep
, unsigned long index
)
128 unsigned int offset
= (index
>> parent
->shift
) & RADIX_TREE_MAP_MASK
;
129 void __rcu
**entry
= rcu_dereference_raw(parent
->slots
[offset
]);
131 #ifdef CONFIG_RADIX_TREE_MULTIORDER
132 if (radix_tree_is_internal_node(entry
)) {
133 if (is_sibling_entry(parent
, entry
)) {
134 void __rcu
**sibentry
;
135 sibentry
= (void __rcu
**) entry_to_node(entry
);
136 offset
= get_slot_offset(parent
, sibentry
);
137 entry
= rcu_dereference_raw(*sibentry
);
142 *nodep
= (void *)entry
;
146 static inline gfp_t
root_gfp_mask(const struct radix_tree_root
*root
)
148 return root
->gfp_mask
& __GFP_BITS_MASK
;
151 static inline void tag_set(struct radix_tree_node
*node
, unsigned int tag
,
154 __set_bit(offset
, node
->tags
[tag
]);
157 static inline void tag_clear(struct radix_tree_node
*node
, unsigned int tag
,
160 __clear_bit(offset
, node
->tags
[tag
]);
163 static inline int tag_get(const struct radix_tree_node
*node
, unsigned int tag
,
166 return test_bit(offset
, node
->tags
[tag
]);
169 static inline void root_tag_set(struct radix_tree_root
*root
, unsigned tag
)
171 root
->gfp_mask
|= (__force gfp_t
)(1 << (tag
+ ROOT_TAG_SHIFT
));
174 static inline void root_tag_clear(struct radix_tree_root
*root
, unsigned tag
)
176 root
->gfp_mask
&= (__force gfp_t
)~(1 << (tag
+ ROOT_TAG_SHIFT
));
179 static inline void root_tag_clear_all(struct radix_tree_root
*root
)
181 root
->gfp_mask
&= (1 << ROOT_TAG_SHIFT
) - 1;
184 static inline int root_tag_get(const struct radix_tree_root
*root
, unsigned tag
)
186 return (__force
int)root
->gfp_mask
& (1 << (tag
+ ROOT_TAG_SHIFT
));
189 static inline unsigned root_tags_get(const struct radix_tree_root
*root
)
191 return (__force
unsigned)root
->gfp_mask
>> ROOT_TAG_SHIFT
;
194 static inline bool is_idr(const struct radix_tree_root
*root
)
196 return !!(root
->gfp_mask
& ROOT_IS_IDR
);
200 * Returns 1 if any slot in the node has this tag set.
201 * Otherwise returns 0.
203 static inline int any_tag_set(const struct radix_tree_node
*node
,
207 for (idx
= 0; idx
< RADIX_TREE_TAG_LONGS
; idx
++) {
208 if (node
->tags
[tag
][idx
])
214 static inline void all_tag_set(struct radix_tree_node
*node
, unsigned int tag
)
216 bitmap_fill(node
->tags
[tag
], RADIX_TREE_MAP_SIZE
);
220 * radix_tree_find_next_bit - find the next set bit in a memory region
222 * @addr: The address to base the search on
223 * @size: The bitmap size in bits
224 * @offset: The bitnumber to start searching at
226 * Unrollable variant of find_next_bit() for constant size arrays.
227 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
228 * Returns next bit offset, or size if nothing found.
230 static __always_inline
unsigned long
231 radix_tree_find_next_bit(struct radix_tree_node
*node
, unsigned int tag
,
232 unsigned long offset
)
234 const unsigned long *addr
= node
->tags
[tag
];
236 if (offset
< RADIX_TREE_MAP_SIZE
) {
239 addr
+= offset
/ BITS_PER_LONG
;
240 tmp
= *addr
>> (offset
% BITS_PER_LONG
);
242 return __ffs(tmp
) + offset
;
243 offset
= (offset
+ BITS_PER_LONG
) & ~(BITS_PER_LONG
- 1);
244 while (offset
< RADIX_TREE_MAP_SIZE
) {
247 return __ffs(tmp
) + offset
;
248 offset
+= BITS_PER_LONG
;
251 return RADIX_TREE_MAP_SIZE
;
254 static unsigned int iter_offset(const struct radix_tree_iter
*iter
)
256 return (iter
->index
>> iter_shift(iter
)) & RADIX_TREE_MAP_MASK
;
260 * The maximum index which can be stored in a radix tree
262 static inline unsigned long shift_maxindex(unsigned int shift
)
264 return (RADIX_TREE_MAP_SIZE
<< shift
) - 1;
267 static inline unsigned long node_maxindex(const struct radix_tree_node
*node
)
269 return shift_maxindex(node
->shift
);
272 static unsigned long next_index(unsigned long index
,
273 const struct radix_tree_node
*node
,
274 unsigned long offset
)
276 return (index
& ~node_maxindex(node
)) + (offset
<< node
->shift
);
280 static void dump_node(struct radix_tree_node
*node
, unsigned long index
)
284 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
285 node
, node
->offset
, index
, index
| node_maxindex(node
),
287 node
->tags
[0][0], node
->tags
[1][0], node
->tags
[2][0],
288 node
->shift
, node
->count
, node
->exceptional
);
290 for (i
= 0; i
< RADIX_TREE_MAP_SIZE
; i
++) {
291 unsigned long first
= index
| (i
<< node
->shift
);
292 unsigned long last
= first
| ((1UL << node
->shift
) - 1);
293 void *entry
= node
->slots
[i
];
296 if (entry
== RADIX_TREE_RETRY
) {
297 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
298 i
, first
, last
, node
);
299 } else if (!radix_tree_is_internal_node(entry
)) {
300 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
301 entry
, i
, first
, last
, node
);
302 } else if (is_sibling_entry(node
, entry
)) {
303 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
304 entry
, i
, first
, last
, node
,
305 *(void **)entry_to_node(entry
));
307 dump_node(entry_to_node(entry
), first
);
313 static void radix_tree_dump(struct radix_tree_root
*root
)
315 pr_debug("radix root: %p rnode %p tags %x\n",
317 root
->gfp_mask
>> ROOT_TAG_SHIFT
);
318 if (!radix_tree_is_internal_node(root
->rnode
))
320 dump_node(entry_to_node(root
->rnode
), 0);
323 static void dump_ida_node(void *entry
, unsigned long index
)
330 if (radix_tree_is_internal_node(entry
)) {
331 struct radix_tree_node
*node
= entry_to_node(entry
);
333 pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
334 node
, node
->offset
, index
* IDA_BITMAP_BITS
,
335 ((index
| node_maxindex(node
)) + 1) *
337 node
->parent
, node
->tags
[0][0], node
->shift
,
339 for (i
= 0; i
< RADIX_TREE_MAP_SIZE
; i
++)
340 dump_ida_node(node
->slots
[i
],
341 index
| (i
<< node
->shift
));
342 } else if (radix_tree_exceptional_entry(entry
)) {
343 pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
344 entry
, (int)(index
& RADIX_TREE_MAP_MASK
),
345 index
* IDA_BITMAP_BITS
,
346 index
* IDA_BITMAP_BITS
+ BITS_PER_LONG
-
347 RADIX_TREE_EXCEPTIONAL_SHIFT
,
348 (unsigned long)entry
>>
349 RADIX_TREE_EXCEPTIONAL_SHIFT
);
351 struct ida_bitmap
*bitmap
= entry
;
353 pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap
,
354 (int)(index
& RADIX_TREE_MAP_MASK
),
355 index
* IDA_BITMAP_BITS
,
356 (index
+ 1) * IDA_BITMAP_BITS
- 1);
357 for (i
= 0; i
< IDA_BITMAP_LONGS
; i
++)
358 pr_cont(" %lx", bitmap
->bitmap
[i
]);
363 static void ida_dump(struct ida
*ida
)
365 struct radix_tree_root
*root
= &ida
->ida_rt
;
366 pr_debug("ida: %p node %p free %d\n", ida
, root
->rnode
,
367 root
->gfp_mask
>> ROOT_TAG_SHIFT
);
368 dump_ida_node(root
->rnode
, 0);
373 * This assumes that the caller has performed appropriate preallocation, and
374 * that the caller has pinned this thread of control to the current CPU.
376 static struct radix_tree_node
*
377 radix_tree_node_alloc(gfp_t gfp_mask
, struct radix_tree_node
*parent
,
378 struct radix_tree_root
*root
,
379 unsigned int shift
, unsigned int offset
,
380 unsigned int count
, unsigned int exceptional
)
382 struct radix_tree_node
*ret
= NULL
;
385 * Preload code isn't irq safe and it doesn't make sense to use
386 * preloading during an interrupt anyway as all the allocations have
387 * to be atomic. So just do normal allocation when in interrupt.
389 if (!gfpflags_allow_blocking(gfp_mask
) && !in_interrupt()) {
390 struct radix_tree_preload
*rtp
;
393 * Even if the caller has preloaded, try to allocate from the
394 * cache first for the new node to get accounted to the memory
397 ret
= kmem_cache_alloc(radix_tree_node_cachep
,
398 gfp_mask
| __GFP_NOWARN
);
403 * Provided the caller has preloaded here, we will always
404 * succeed in getting a node here (and never reach
407 rtp
= this_cpu_ptr(&radix_tree_preloads
);
410 rtp
->nodes
= ret
->parent
;
414 * Update the allocation stack trace as this is more useful
417 kmemleak_update_trace(ret
);
420 ret
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
422 BUG_ON(radix_tree_is_internal_node(ret
));
425 ret
->offset
= offset
;
427 ret
->exceptional
= exceptional
;
428 ret
->parent
= parent
;
434 static void radix_tree_node_rcu_free(struct rcu_head
*head
)
436 struct radix_tree_node
*node
=
437 container_of(head
, struct radix_tree_node
, rcu_head
);
440 * Must only free zeroed nodes into the slab. We can be left with
441 * non-NULL entries by radix_tree_free_nodes, so clear the entries
444 memset(node
->slots
, 0, sizeof(node
->slots
));
445 memset(node
->tags
, 0, sizeof(node
->tags
));
446 INIT_LIST_HEAD(&node
->private_list
);
448 kmem_cache_free(radix_tree_node_cachep
, node
);
452 radix_tree_node_free(struct radix_tree_node
*node
)
454 call_rcu(&node
->rcu_head
, radix_tree_node_rcu_free
);
458 * Load up this CPU's radix_tree_node buffer with sufficient objects to
459 * ensure that the addition of a single element in the tree cannot fail. On
460 * success, return zero, with preemption disabled. On error, return -ENOMEM
461 * with preemption not disabled.
463 * To make use of this facility, the radix tree must be initialised without
464 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
466 static __must_check
int __radix_tree_preload(gfp_t gfp_mask
, unsigned nr
)
468 struct radix_tree_preload
*rtp
;
469 struct radix_tree_node
*node
;
473 * Nodes preloaded by one cgroup can be be used by another cgroup, so
474 * they should never be accounted to any particular memory cgroup.
476 gfp_mask
&= ~__GFP_ACCOUNT
;
479 rtp
= this_cpu_ptr(&radix_tree_preloads
);
480 while (rtp
->nr
< nr
) {
482 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
486 rtp
= this_cpu_ptr(&radix_tree_preloads
);
488 node
->parent
= rtp
->nodes
;
492 kmem_cache_free(radix_tree_node_cachep
, node
);
501 * Load up this CPU's radix_tree_node buffer with sufficient objects to
502 * ensure that the addition of a single element in the tree cannot fail. On
503 * success, return zero, with preemption disabled. On error, return -ENOMEM
504 * with preemption not disabled.
506 * To make use of this facility, the radix tree must be initialised without
507 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
509 int radix_tree_preload(gfp_t gfp_mask
)
511 /* Warn on non-sensical use... */
512 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask
));
513 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
515 EXPORT_SYMBOL(radix_tree_preload
);
518 * The same as above function, except we don't guarantee preloading happens.
519 * We do it, if we decide it helps. On success, return zero with preemption
520 * disabled. On error, return -ENOMEM with preemption not disabled.
522 int radix_tree_maybe_preload(gfp_t gfp_mask
)
524 if (gfpflags_allow_blocking(gfp_mask
))
525 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
526 /* Preloading doesn't help anything with this gfp mask, skip it */
530 EXPORT_SYMBOL(radix_tree_maybe_preload
);
532 #ifdef CONFIG_RADIX_TREE_MULTIORDER
534 * Preload with enough objects to ensure that we can split a single entry
535 * of order @old_order into many entries of size @new_order
537 int radix_tree_split_preload(unsigned int old_order
, unsigned int new_order
,
540 unsigned top
= 1 << (old_order
% RADIX_TREE_MAP_SHIFT
);
541 unsigned layers
= (old_order
/ RADIX_TREE_MAP_SHIFT
) -
542 (new_order
/ RADIX_TREE_MAP_SHIFT
);
545 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask
));
546 BUG_ON(new_order
>= old_order
);
549 nr
= nr
* RADIX_TREE_MAP_SIZE
+ 1;
550 return __radix_tree_preload(gfp_mask
, top
* nr
);
555 * The same as function above, but preload number of nodes required to insert
556 * (1 << order) continuous naturally-aligned elements.
558 int radix_tree_maybe_preload_order(gfp_t gfp_mask
, int order
)
560 unsigned long nr_subtrees
;
561 int nr_nodes
, subtree_height
;
563 /* Preloading doesn't help anything with this gfp mask, skip it */
564 if (!gfpflags_allow_blocking(gfp_mask
)) {
570 * Calculate number and height of fully populated subtrees it takes to
571 * store (1 << order) elements.
573 nr_subtrees
= 1 << order
;
574 for (subtree_height
= 0; nr_subtrees
> RADIX_TREE_MAP_SIZE
;
576 nr_subtrees
>>= RADIX_TREE_MAP_SHIFT
;
579 * The worst case is zero height tree with a single item at index 0 and
580 * then inserting items starting at ULONG_MAX - (1 << order).
582 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
585 nr_nodes
= RADIX_TREE_MAX_PATH
;
587 /* Plus branch to fully populated subtrees. */
588 nr_nodes
+= RADIX_TREE_MAX_PATH
- subtree_height
;
590 /* Root node is shared. */
593 /* Plus nodes required to build subtrees. */
594 nr_nodes
+= nr_subtrees
* height_to_maxnodes
[subtree_height
];
596 return __radix_tree_preload(gfp_mask
, nr_nodes
);
599 static unsigned radix_tree_load_root(const struct radix_tree_root
*root
,
600 struct radix_tree_node
**nodep
, unsigned long *maxindex
)
602 struct radix_tree_node
*node
= rcu_dereference_raw(root
->rnode
);
606 if (likely(radix_tree_is_internal_node(node
))) {
607 node
= entry_to_node(node
);
608 *maxindex
= node_maxindex(node
);
609 return node
->shift
+ RADIX_TREE_MAP_SHIFT
;
617 * Extend a radix tree so it can store key @index.
619 static int radix_tree_extend(struct radix_tree_root
*root
, gfp_t gfp
,
620 unsigned long index
, unsigned int shift
)
623 unsigned int maxshift
;
626 /* Figure out what the shift should be. */
628 while (index
> shift_maxindex(maxshift
))
629 maxshift
+= RADIX_TREE_MAP_SHIFT
;
631 entry
= rcu_dereference_raw(root
->rnode
);
632 if (!entry
&& (!is_idr(root
) || root_tag_get(root
, IDR_FREE
)))
636 struct radix_tree_node
*node
= radix_tree_node_alloc(gfp
, NULL
,
637 root
, shift
, 0, 1, 0);
642 all_tag_set(node
, IDR_FREE
);
643 if (!root_tag_get(root
, IDR_FREE
)) {
644 tag_clear(node
, IDR_FREE
, 0);
645 root_tag_set(root
, IDR_FREE
);
648 /* Propagate the aggregated tag info to the new child */
649 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
650 if (root_tag_get(root
, tag
))
651 tag_set(node
, tag
, 0);
655 BUG_ON(shift
> BITS_PER_LONG
);
656 if (radix_tree_is_internal_node(entry
)) {
657 entry_to_node(entry
)->parent
= node
;
658 } else if (radix_tree_exceptional_entry(entry
)) {
659 /* Moving an exceptional root->rnode to a node */
660 node
->exceptional
= 1;
663 * entry was already in the radix tree, so we do not need
664 * rcu_assign_pointer here
666 node
->slots
[0] = (void __rcu
*)entry
;
667 entry
= node_to_entry(node
);
668 rcu_assign_pointer(root
->rnode
, entry
);
669 shift
+= RADIX_TREE_MAP_SHIFT
;
670 } while (shift
<= maxshift
);
672 return maxshift
+ RADIX_TREE_MAP_SHIFT
;
676 * radix_tree_shrink - shrink radix tree to minimum height
677 * @root radix tree root
679 static inline bool radix_tree_shrink(struct radix_tree_root
*root
,
680 radix_tree_update_node_t update_node
)
685 struct radix_tree_node
*node
= rcu_dereference_raw(root
->rnode
);
686 struct radix_tree_node
*child
;
688 if (!radix_tree_is_internal_node(node
))
690 node
= entry_to_node(node
);
693 * The candidate node has more than one child, or its child
694 * is not at the leftmost slot, or the child is a multiorder
695 * entry, we cannot shrink.
697 if (node
->count
!= 1)
699 child
= rcu_dereference_raw(node
->slots
[0]);
702 if (!radix_tree_is_internal_node(child
) && node
->shift
)
705 if (radix_tree_is_internal_node(child
))
706 entry_to_node(child
)->parent
= NULL
;
709 * We don't need rcu_assign_pointer(), since we are simply
710 * moving the node from one part of the tree to another: if it
711 * was safe to dereference the old pointer to it
712 * (node->slots[0]), it will be safe to dereference the new
713 * one (root->rnode) as far as dependent read barriers go.
715 root
->rnode
= (void __rcu
*)child
;
716 if (is_idr(root
) && !tag_get(node
, IDR_FREE
, 0))
717 root_tag_clear(root
, IDR_FREE
);
720 * We have a dilemma here. The node's slot[0] must not be
721 * NULLed in case there are concurrent lookups expecting to
722 * find the item. However if this was a bottom-level node,
723 * then it may be subject to the slot pointer being visible
724 * to callers dereferencing it. If item corresponding to
725 * slot[0] is subsequently deleted, these callers would expect
726 * their slot to become empty sooner or later.
728 * For example, lockless pagecache will look up a slot, deref
729 * the page pointer, and if the page has 0 refcount it means it
730 * was concurrently deleted from pagecache so try the deref
731 * again. Fortunately there is already a requirement for logic
732 * to retry the entire slot lookup -- the indirect pointer
733 * problem (replacing direct root node with an indirect pointer
734 * also results in a stale slot). So tag the slot as indirect
735 * to force callers to retry.
738 if (!radix_tree_is_internal_node(child
)) {
739 node
->slots
[0] = (void __rcu
*)RADIX_TREE_RETRY
;
744 WARN_ON_ONCE(!list_empty(&node
->private_list
));
745 radix_tree_node_free(node
);
752 static bool delete_node(struct radix_tree_root
*root
,
753 struct radix_tree_node
*node
,
754 radix_tree_update_node_t update_node
)
756 bool deleted
= false;
759 struct radix_tree_node
*parent
;
762 if (node_to_entry(node
) ==
763 rcu_dereference_raw(root
->rnode
))
764 deleted
|= radix_tree_shrink(root
,
769 parent
= node
->parent
;
771 parent
->slots
[node
->offset
] = NULL
;
775 * Shouldn't the tags already have all been cleared
779 root_tag_clear_all(root
);
783 WARN_ON_ONCE(!list_empty(&node
->private_list
));
784 radix_tree_node_free(node
);
794 * __radix_tree_create - create a slot in a radix tree
795 * @root: radix tree root
797 * @order: index occupies 2^order aligned slots
798 * @nodep: returns node
799 * @slotp: returns slot
801 * Create, if necessary, and return the node and slot for an item
802 * at position @index in the radix tree @root.
804 * Until there is more than one item in the tree, no nodes are
805 * allocated and @root->rnode is used as a direct slot instead of
806 * pointing to a node, in which case *@nodep will be NULL.
808 * Returns -ENOMEM, or 0 for success.
810 int __radix_tree_create(struct radix_tree_root
*root
, unsigned long index
,
811 unsigned order
, struct radix_tree_node
**nodep
,
814 struct radix_tree_node
*node
= NULL
, *child
;
815 void __rcu
**slot
= (void __rcu
**)&root
->rnode
;
816 unsigned long maxindex
;
817 unsigned int shift
, offset
= 0;
818 unsigned long max
= index
| ((1UL << order
) - 1);
819 gfp_t gfp
= root_gfp_mask(root
);
821 shift
= radix_tree_load_root(root
, &child
, &maxindex
);
823 /* Make sure the tree is high enough. */
824 if (order
> 0 && max
== ((1UL << order
) - 1))
826 if (max
> maxindex
) {
827 int error
= radix_tree_extend(root
, gfp
, max
, shift
);
831 child
= rcu_dereference_raw(root
->rnode
);
834 while (shift
> order
) {
835 shift
-= RADIX_TREE_MAP_SHIFT
;
837 /* Have to add a child node. */
838 child
= radix_tree_node_alloc(gfp
, node
, root
, shift
,
842 rcu_assign_pointer(*slot
, node_to_entry(child
));
845 } else if (!radix_tree_is_internal_node(child
))
848 /* Go a level down */
849 node
= entry_to_node(child
);
850 offset
= radix_tree_descend(node
, &child
, index
);
851 slot
= &node
->slots
[offset
];
862 * Free any nodes below this node. The tree is presumed to not need
863 * shrinking, and any user data in the tree is presumed to not need a
864 * destructor called on it. If we need to add a destructor, we can
865 * add that functionality later. Note that we may not clear tags or
866 * slots from the tree as an RCU walker may still have a pointer into
867 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
868 * but we'll still have to clear those in rcu_free.
870 static void radix_tree_free_nodes(struct radix_tree_node
*node
)
873 struct radix_tree_node
*child
= entry_to_node(node
);
876 void *entry
= rcu_dereference_raw(child
->slots
[offset
]);
877 if (radix_tree_is_internal_node(entry
) &&
878 !is_sibling_entry(child
, entry
)) {
879 child
= entry_to_node(entry
);
884 while (offset
== RADIX_TREE_MAP_SIZE
) {
885 struct radix_tree_node
*old
= child
;
886 offset
= child
->offset
+ 1;
887 child
= child
->parent
;
888 WARN_ON_ONCE(!list_empty(&old
->private_list
));
889 radix_tree_node_free(old
);
890 if (old
== entry_to_node(node
))
896 #ifdef CONFIG_RADIX_TREE_MULTIORDER
897 static inline int insert_entries(struct radix_tree_node
*node
,
898 void __rcu
**slot
, void *item
, unsigned order
, bool replace
)
900 struct radix_tree_node
*child
;
901 unsigned i
, n
, tag
, offset
, tags
= 0;
904 if (order
> node
->shift
)
905 n
= 1 << (order
- node
->shift
);
908 offset
= get_slot_offset(node
, slot
);
915 offset
= offset
& ~(n
- 1);
916 slot
= &node
->slots
[offset
];
918 child
= node_to_entry(slot
);
920 for (i
= 0; i
< n
; i
++) {
924 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
925 if (tag_get(node
, tag
, offset
+ i
))
932 for (i
= 0; i
< n
; i
++) {
933 struct radix_tree_node
*old
= rcu_dereference_raw(slot
[i
]);
935 rcu_assign_pointer(slot
[i
], child
);
936 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
937 if (tags
& (1 << tag
))
938 tag_clear(node
, tag
, offset
+ i
);
940 rcu_assign_pointer(slot
[i
], item
);
941 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
942 if (tags
& (1 << tag
))
943 tag_set(node
, tag
, offset
);
945 if (radix_tree_is_internal_node(old
) &&
946 !is_sibling_entry(node
, old
) &&
947 (old
!= RADIX_TREE_RETRY
))
948 radix_tree_free_nodes(old
);
949 if (radix_tree_exceptional_entry(old
))
954 if (radix_tree_exceptional_entry(item
))
955 node
->exceptional
+= n
;
960 static inline int insert_entries(struct radix_tree_node
*node
,
961 void __rcu
**slot
, void *item
, unsigned order
, bool replace
)
965 rcu_assign_pointer(*slot
, item
);
968 if (radix_tree_exceptional_entry(item
))
976 * __radix_tree_insert - insert into a radix tree
977 * @root: radix tree root
979 * @order: key covers the 2^order indices around index
980 * @item: item to insert
982 * Insert an item into the radix tree at position @index.
984 int __radix_tree_insert(struct radix_tree_root
*root
, unsigned long index
,
985 unsigned order
, void *item
)
987 struct radix_tree_node
*node
;
991 BUG_ON(radix_tree_is_internal_node(item
));
993 error
= __radix_tree_create(root
, index
, order
, &node
, &slot
);
997 error
= insert_entries(node
, slot
, item
, order
, false);
1002 unsigned offset
= get_slot_offset(node
, slot
);
1003 BUG_ON(tag_get(node
, 0, offset
));
1004 BUG_ON(tag_get(node
, 1, offset
));
1005 BUG_ON(tag_get(node
, 2, offset
));
1007 BUG_ON(root_tags_get(root
));
1012 EXPORT_SYMBOL(__radix_tree_insert
);
1015 * __radix_tree_lookup - lookup an item in a radix tree
1016 * @root: radix tree root
1018 * @nodep: returns node
1019 * @slotp: returns slot
1021 * Lookup and return the item at position @index in the radix
1024 * Until there is more than one item in the tree, no nodes are
1025 * allocated and @root->rnode is used as a direct slot instead of
1026 * pointing to a node, in which case *@nodep will be NULL.
1028 void *__radix_tree_lookup(const struct radix_tree_root
*root
,
1029 unsigned long index
, struct radix_tree_node
**nodep
,
1030 void __rcu
***slotp
)
1032 struct radix_tree_node
*node
, *parent
;
1033 unsigned long maxindex
;
1038 slot
= (void __rcu
**)&root
->rnode
;
1039 radix_tree_load_root(root
, &node
, &maxindex
);
1040 if (index
> maxindex
)
1043 while (radix_tree_is_internal_node(node
)) {
1046 if (node
== RADIX_TREE_RETRY
)
1048 parent
= entry_to_node(node
);
1049 offset
= radix_tree_descend(parent
, &node
, index
);
1050 slot
= parent
->slots
+ offset
;
1061 * radix_tree_lookup_slot - lookup a slot in a radix tree
1062 * @root: radix tree root
1065 * Returns: the slot corresponding to the position @index in the
1066 * radix tree @root. This is useful for update-if-exists operations.
1068 * This function can be called under rcu_read_lock iff the slot is not
1069 * modified by radix_tree_replace_slot, otherwise it must be called
1070 * exclusive from other writers. Any dereference of the slot must be done
1071 * using radix_tree_deref_slot.
1073 void __rcu
**radix_tree_lookup_slot(const struct radix_tree_root
*root
,
1074 unsigned long index
)
1078 if (!__radix_tree_lookup(root
, index
, NULL
, &slot
))
1082 EXPORT_SYMBOL(radix_tree_lookup_slot
);
1085 * radix_tree_lookup - perform lookup operation on a radix tree
1086 * @root: radix tree root
1089 * Lookup the item at the position @index in the radix tree @root.
1091 * This function can be called under rcu_read_lock, however the caller
1092 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1093 * them safely). No RCU barriers are required to access or modify the
1094 * returned item, however.
1096 void *radix_tree_lookup(const struct radix_tree_root
*root
, unsigned long index
)
1098 return __radix_tree_lookup(root
, index
, NULL
, NULL
);
1100 EXPORT_SYMBOL(radix_tree_lookup
);
1102 static inline void replace_sibling_entries(struct radix_tree_node
*node
,
1103 void __rcu
**slot
, int count
, int exceptional
)
1105 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1106 void *ptr
= node_to_entry(slot
);
1107 unsigned offset
= get_slot_offset(node
, slot
) + 1;
1109 while (offset
< RADIX_TREE_MAP_SIZE
) {
1110 if (rcu_dereference_raw(node
->slots
[offset
]) != ptr
)
1113 node
->slots
[offset
] = NULL
;
1116 node
->exceptional
+= exceptional
;
1122 static void replace_slot(void __rcu
**slot
, void *item
,
1123 struct radix_tree_node
*node
, int count
, int exceptional
)
1125 if (WARN_ON_ONCE(radix_tree_is_internal_node(item
)))
1128 if (node
&& (count
|| exceptional
)) {
1129 node
->count
+= count
;
1130 node
->exceptional
+= exceptional
;
1131 replace_sibling_entries(node
, slot
, count
, exceptional
);
1134 rcu_assign_pointer(*slot
, item
);
1137 static bool node_tag_get(const struct radix_tree_root
*root
,
1138 const struct radix_tree_node
*node
,
1139 unsigned int tag
, unsigned int offset
)
1142 return tag_get(node
, tag
, offset
);
1143 return root_tag_get(root
, tag
);
1147 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1148 * free, don't adjust the count, even if it's transitioning between NULL and
1149 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
1150 * have empty bits, but it only stores NULL in slots when they're being
1153 static int calculate_count(struct radix_tree_root
*root
,
1154 struct radix_tree_node
*node
, void __rcu
**slot
,
1155 void *item
, void *old
)
1158 unsigned offset
= get_slot_offset(node
, slot
);
1159 bool free
= node_tag_get(root
, node
, IDR_FREE
, offset
);
1165 return !!item
- !!old
;
1169 * __radix_tree_replace - replace item in a slot
1170 * @root: radix tree root
1171 * @node: pointer to tree node
1172 * @slot: pointer to slot in @node
1173 * @item: new item to store in the slot.
1174 * @update_node: callback for changing leaf nodes
1176 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1177 * across slot lookup and replacement.
1179 void __radix_tree_replace(struct radix_tree_root
*root
,
1180 struct radix_tree_node
*node
,
1181 void __rcu
**slot
, void *item
,
1182 radix_tree_update_node_t update_node
)
1184 void *old
= rcu_dereference_raw(*slot
);
1185 int exceptional
= !!radix_tree_exceptional_entry(item
) -
1186 !!radix_tree_exceptional_entry(old
);
1187 int count
= calculate_count(root
, node
, slot
, item
, old
);
1190 * This function supports replacing exceptional entries and
1191 * deleting entries, but that needs accounting against the
1192 * node unless the slot is root->rnode.
1194 WARN_ON_ONCE(!node
&& (slot
!= (void __rcu
**)&root
->rnode
) &&
1195 (count
|| exceptional
));
1196 replace_slot(slot
, item
, node
, count
, exceptional
);
1204 delete_node(root
, node
, update_node
);
1208 * radix_tree_replace_slot - replace item in a slot
1209 * @root: radix tree root
1210 * @slot: pointer to slot
1211 * @item: new item to store in the slot.
1213 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1214 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1215 * across slot lookup and replacement.
1217 * NOTE: This cannot be used to switch between non-entries (empty slots),
1218 * regular entries, and exceptional entries, as that requires accounting
1219 * inside the radix tree node. When switching from one type of entry or
1220 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1221 * radix_tree_iter_replace().
1223 void radix_tree_replace_slot(struct radix_tree_root
*root
,
1224 void __rcu
**slot
, void *item
)
1226 __radix_tree_replace(root
, NULL
, slot
, item
, NULL
);
1228 EXPORT_SYMBOL(radix_tree_replace_slot
);
1231 * radix_tree_iter_replace - replace item in a slot
1232 * @root: radix tree root
1233 * @slot: pointer to slot
1234 * @item: new item to store in the slot.
1236 * For use with radix_tree_split() and radix_tree_for_each_slot().
1237 * Caller must hold tree write locked across split and replacement.
1239 void radix_tree_iter_replace(struct radix_tree_root
*root
,
1240 const struct radix_tree_iter
*iter
,
1241 void __rcu
**slot
, void *item
)
1243 __radix_tree_replace(root
, iter
->node
, slot
, item
, NULL
);
1246 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1248 * radix_tree_join - replace multiple entries with one multiorder entry
1249 * @root: radix tree root
1250 * @index: an index inside the new entry
1251 * @order: order of the new entry
1254 * Call this function to replace several entries with one larger entry.
1255 * The existing entries are presumed to not need freeing as a result of
1258 * The replacement entry will have all the tags set on it that were set
1259 * on any of the entries it is replacing.
1261 int radix_tree_join(struct radix_tree_root
*root
, unsigned long index
,
1262 unsigned order
, void *item
)
1264 struct radix_tree_node
*node
;
1268 BUG_ON(radix_tree_is_internal_node(item
));
1270 error
= __radix_tree_create(root
, index
, order
, &node
, &slot
);
1272 error
= insert_entries(node
, slot
, item
, order
, true);
1280 * radix_tree_split - Split an entry into smaller entries
1281 * @root: radix tree root
1282 * @index: An index within the large entry
1283 * @order: Order of new entries
1285 * Call this function as the first step in replacing a multiorder entry
1286 * with several entries of lower order. After this function returns,
1287 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1288 * and call radix_tree_iter_replace() to set up each new entry.
1290 * The tags from this entry are replicated to all the new entries.
1292 * The radix tree should be locked against modification during the entire
1293 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1294 * should prompt RCU walkers to restart the lookup from the root.
1296 int radix_tree_split(struct radix_tree_root
*root
, unsigned long index
,
1299 struct radix_tree_node
*parent
, *node
, *child
;
1301 unsigned int offset
, end
;
1302 unsigned n
, tag
, tags
= 0;
1303 gfp_t gfp
= root_gfp_mask(root
);
1305 if (!__radix_tree_lookup(root
, index
, &parent
, &slot
))
1310 offset
= get_slot_offset(parent
, slot
);
1312 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1313 if (tag_get(parent
, tag
, offset
))
1316 for (end
= offset
+ 1; end
< RADIX_TREE_MAP_SIZE
; end
++) {
1317 if (!is_sibling_entry(parent
,
1318 rcu_dereference_raw(parent
->slots
[end
])))
1320 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1321 if (tags
& (1 << tag
))
1322 tag_set(parent
, tag
, end
);
1323 /* rcu_assign_pointer ensures tags are set before RETRY */
1324 rcu_assign_pointer(parent
->slots
[end
], RADIX_TREE_RETRY
);
1326 rcu_assign_pointer(parent
->slots
[offset
], RADIX_TREE_RETRY
);
1327 parent
->exceptional
-= (end
- offset
);
1329 if (order
== parent
->shift
)
1331 if (order
> parent
->shift
) {
1332 while (offset
< end
)
1333 offset
+= insert_entries(parent
, &parent
->slots
[offset
],
1334 RADIX_TREE_RETRY
, order
, true);
1341 if (node
->shift
> order
) {
1342 child
= radix_tree_node_alloc(gfp
, node
, root
,
1343 node
->shift
- RADIX_TREE_MAP_SHIFT
,
1347 if (node
!= parent
) {
1349 rcu_assign_pointer(node
->slots
[offset
],
1350 node_to_entry(child
));
1351 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1352 if (tags
& (1 << tag
))
1353 tag_set(node
, tag
, offset
);
1361 n
= insert_entries(node
, &node
->slots
[offset
],
1362 RADIX_TREE_RETRY
, order
, false);
1363 BUG_ON(n
> RADIX_TREE_MAP_SIZE
);
1365 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1366 if (tags
& (1 << tag
))
1367 tag_set(node
, tag
, offset
);
1370 while (offset
== RADIX_TREE_MAP_SIZE
) {
1373 offset
= node
->offset
;
1375 node
= node
->parent
;
1376 rcu_assign_pointer(node
->slots
[offset
],
1377 node_to_entry(child
));
1380 if ((node
== parent
) && (offset
== end
))
1385 /* Shouldn't happen; did user forget to preload? */
1386 /* TODO: free all the allocated nodes */
1392 static void node_tag_set(struct radix_tree_root
*root
,
1393 struct radix_tree_node
*node
,
1394 unsigned int tag
, unsigned int offset
)
1397 if (tag_get(node
, tag
, offset
))
1399 tag_set(node
, tag
, offset
);
1400 offset
= node
->offset
;
1401 node
= node
->parent
;
1404 if (!root_tag_get(root
, tag
))
1405 root_tag_set(root
, tag
);
1409 * radix_tree_tag_set - set a tag on a radix tree node
1410 * @root: radix tree root
1414 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1415 * corresponding to @index in the radix tree. From
1416 * the root all the way down to the leaf node.
1418 * Returns the address of the tagged item. Setting a tag on a not-present
1421 void *radix_tree_tag_set(struct radix_tree_root
*root
,
1422 unsigned long index
, unsigned int tag
)
1424 struct radix_tree_node
*node
, *parent
;
1425 unsigned long maxindex
;
1427 radix_tree_load_root(root
, &node
, &maxindex
);
1428 BUG_ON(index
> maxindex
);
1430 while (radix_tree_is_internal_node(node
)) {
1433 parent
= entry_to_node(node
);
1434 offset
= radix_tree_descend(parent
, &node
, index
);
1437 if (!tag_get(parent
, tag
, offset
))
1438 tag_set(parent
, tag
, offset
);
1441 /* set the root's tag bit */
1442 if (!root_tag_get(root
, tag
))
1443 root_tag_set(root
, tag
);
1447 EXPORT_SYMBOL(radix_tree_tag_set
);
1450 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1451 * @root: radix tree root
1452 * @iter: iterator state
1455 void radix_tree_iter_tag_set(struct radix_tree_root
*root
,
1456 const struct radix_tree_iter
*iter
, unsigned int tag
)
1458 node_tag_set(root
, iter
->node
, tag
, iter_offset(iter
));
1461 static void node_tag_clear(struct radix_tree_root
*root
,
1462 struct radix_tree_node
*node
,
1463 unsigned int tag
, unsigned int offset
)
1466 if (!tag_get(node
, tag
, offset
))
1468 tag_clear(node
, tag
, offset
);
1469 if (any_tag_set(node
, tag
))
1472 offset
= node
->offset
;
1473 node
= node
->parent
;
1476 /* clear the root's tag bit */
1477 if (root_tag_get(root
, tag
))
1478 root_tag_clear(root
, tag
);
1482 * radix_tree_tag_clear - clear a tag on a radix tree node
1483 * @root: radix tree root
1487 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1488 * corresponding to @index in the radix tree. If this causes
1489 * the leaf node to have no tags set then clear the tag in the
1490 * next-to-leaf node, etc.
1492 * Returns the address of the tagged item on success, else NULL. ie:
1493 * has the same return value and semantics as radix_tree_lookup().
1495 void *radix_tree_tag_clear(struct radix_tree_root
*root
,
1496 unsigned long index
, unsigned int tag
)
1498 struct radix_tree_node
*node
, *parent
;
1499 unsigned long maxindex
;
1500 int uninitialized_var(offset
);
1502 radix_tree_load_root(root
, &node
, &maxindex
);
1503 if (index
> maxindex
)
1508 while (radix_tree_is_internal_node(node
)) {
1509 parent
= entry_to_node(node
);
1510 offset
= radix_tree_descend(parent
, &node
, index
);
1514 node_tag_clear(root
, parent
, tag
, offset
);
1518 EXPORT_SYMBOL(radix_tree_tag_clear
);
1521 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1522 * @root: radix tree root
1523 * @iter: iterator state
1524 * @tag: tag to clear
1526 void radix_tree_iter_tag_clear(struct radix_tree_root
*root
,
1527 const struct radix_tree_iter
*iter
, unsigned int tag
)
1529 node_tag_clear(root
, iter
->node
, tag
, iter_offset(iter
));
1533 * radix_tree_tag_get - get a tag on a radix tree node
1534 * @root: radix tree root
1536 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1540 * 0: tag not present or not set
1543 * Note that the return value of this function may not be relied on, even if
1544 * the RCU lock is held, unless tag modification and node deletion are excluded
1547 int radix_tree_tag_get(const struct radix_tree_root
*root
,
1548 unsigned long index
, unsigned int tag
)
1550 struct radix_tree_node
*node
, *parent
;
1551 unsigned long maxindex
;
1553 if (!root_tag_get(root
, tag
))
1556 radix_tree_load_root(root
, &node
, &maxindex
);
1557 if (index
> maxindex
)
1560 while (radix_tree_is_internal_node(node
)) {
1563 parent
= entry_to_node(node
);
1564 offset
= radix_tree_descend(parent
, &node
, index
);
1566 if (!tag_get(parent
, tag
, offset
))
1568 if (node
== RADIX_TREE_RETRY
)
1574 EXPORT_SYMBOL(radix_tree_tag_get
);
1576 static inline void __set_iter_shift(struct radix_tree_iter
*iter
,
1579 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1580 iter
->shift
= shift
;
1584 /* Construct iter->tags bit-mask from node->tags[tag] array */
1585 static void set_iter_tags(struct radix_tree_iter
*iter
,
1586 struct radix_tree_node
*node
, unsigned offset
,
1589 unsigned tag_long
= offset
/ BITS_PER_LONG
;
1590 unsigned tag_bit
= offset
% BITS_PER_LONG
;
1597 iter
->tags
= node
->tags
[tag
][tag_long
] >> tag_bit
;
1599 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1600 if (tag_long
< RADIX_TREE_TAG_LONGS
- 1) {
1601 /* Pick tags from next element */
1603 iter
->tags
|= node
->tags
[tag
][tag_long
+ 1] <<
1604 (BITS_PER_LONG
- tag_bit
);
1605 /* Clip chunk size, here only BITS_PER_LONG tags */
1606 iter
->next_index
= __radix_tree_iter_add(iter
, BITS_PER_LONG
);
1610 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1611 static void __rcu
**skip_siblings(struct radix_tree_node
**nodep
,
1612 void __rcu
**slot
, struct radix_tree_iter
*iter
)
1614 void *sib
= node_to_entry(slot
- 1);
1616 while (iter
->index
< iter
->next_index
) {
1617 *nodep
= rcu_dereference_raw(*slot
);
1618 if (*nodep
&& *nodep
!= sib
)
1621 iter
->index
= __radix_tree_iter_add(iter
, 1);
1629 void __rcu
**__radix_tree_next_slot(void __rcu
**slot
,
1630 struct radix_tree_iter
*iter
, unsigned flags
)
1632 unsigned tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
1633 struct radix_tree_node
*node
= rcu_dereference_raw(*slot
);
1635 slot
= skip_siblings(&node
, slot
, iter
);
1637 while (radix_tree_is_internal_node(node
)) {
1639 unsigned long next_index
;
1641 if (node
== RADIX_TREE_RETRY
)
1643 node
= entry_to_node(node
);
1645 iter
->shift
= node
->shift
;
1647 if (flags
& RADIX_TREE_ITER_TAGGED
) {
1648 offset
= radix_tree_find_next_bit(node
, tag
, 0);
1649 if (offset
== RADIX_TREE_MAP_SIZE
)
1651 slot
= &node
->slots
[offset
];
1652 iter
->index
= __radix_tree_iter_add(iter
, offset
);
1653 set_iter_tags(iter
, node
, offset
, tag
);
1654 node
= rcu_dereference_raw(*slot
);
1657 slot
= &node
->slots
[0];
1659 node
= rcu_dereference_raw(*slot
);
1664 if (offset
== RADIX_TREE_MAP_SIZE
)
1667 iter
->index
= __radix_tree_iter_add(iter
, offset
);
1669 if ((flags
& RADIX_TREE_ITER_CONTIG
) && (offset
> 0))
1671 next_index
= (iter
->index
| shift_maxindex(iter
->shift
)) + 1;
1672 if (next_index
< iter
->next_index
)
1673 iter
->next_index
= next_index
;
1678 iter
->next_index
= 0;
1681 EXPORT_SYMBOL(__radix_tree_next_slot
);
1683 static void __rcu
**skip_siblings(struct radix_tree_node
**nodep
,
1684 void __rcu
**slot
, struct radix_tree_iter
*iter
)
1690 void __rcu
**radix_tree_iter_resume(void __rcu
**slot
,
1691 struct radix_tree_iter
*iter
)
1693 struct radix_tree_node
*node
;
1696 iter
->index
= __radix_tree_iter_add(iter
, 1);
1697 skip_siblings(&node
, slot
, iter
);
1698 iter
->next_index
= iter
->index
;
1702 EXPORT_SYMBOL(radix_tree_iter_resume
);
1705 * radix_tree_next_chunk - find next chunk of slots for iteration
1707 * @root: radix tree root
1708 * @iter: iterator state
1709 * @flags: RADIX_TREE_ITER_* flags and tag index
1710 * Returns: pointer to chunk first slot, or NULL if iteration is over
1712 void __rcu
**radix_tree_next_chunk(const struct radix_tree_root
*root
,
1713 struct radix_tree_iter
*iter
, unsigned flags
)
1715 unsigned tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
1716 struct radix_tree_node
*node
, *child
;
1717 unsigned long index
, offset
, maxindex
;
1719 if ((flags
& RADIX_TREE_ITER_TAGGED
) && !root_tag_get(root
, tag
))
1723 * Catch next_index overflow after ~0UL. iter->index never overflows
1724 * during iterating; it can be zero only at the beginning.
1725 * And we cannot overflow iter->next_index in a single step,
1726 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1728 * This condition also used by radix_tree_next_slot() to stop
1729 * contiguous iterating, and forbid switching to the next chunk.
1731 index
= iter
->next_index
;
1732 if (!index
&& iter
->index
)
1736 radix_tree_load_root(root
, &child
, &maxindex
);
1737 if (index
> maxindex
)
1742 if (!radix_tree_is_internal_node(child
)) {
1743 /* Single-slot tree */
1744 iter
->index
= index
;
1745 iter
->next_index
= maxindex
+ 1;
1748 __set_iter_shift(iter
, 0);
1749 return (void __rcu
**)&root
->rnode
;
1753 node
= entry_to_node(child
);
1754 offset
= radix_tree_descend(node
, &child
, index
);
1756 if ((flags
& RADIX_TREE_ITER_TAGGED
) ?
1757 !tag_get(node
, tag
, offset
) : !child
) {
1759 if (flags
& RADIX_TREE_ITER_CONTIG
)
1762 if (flags
& RADIX_TREE_ITER_TAGGED
)
1763 offset
= radix_tree_find_next_bit(node
, tag
,
1766 while (++offset
< RADIX_TREE_MAP_SIZE
) {
1767 void *slot
= rcu_dereference_raw(
1768 node
->slots
[offset
]);
1769 if (is_sibling_entry(node
, slot
))
1774 index
&= ~node_maxindex(node
);
1775 index
+= offset
<< node
->shift
;
1776 /* Overflow after ~0UL */
1779 if (offset
== RADIX_TREE_MAP_SIZE
)
1781 child
= rcu_dereference_raw(node
->slots
[offset
]);
1786 if (child
== RADIX_TREE_RETRY
)
1788 } while (radix_tree_is_internal_node(child
));
1790 /* Update the iterator state */
1791 iter
->index
= (index
&~ node_maxindex(node
)) | (offset
<< node
->shift
);
1792 iter
->next_index
= (index
| node_maxindex(node
)) + 1;
1794 __set_iter_shift(iter
, node
->shift
);
1796 if (flags
& RADIX_TREE_ITER_TAGGED
)
1797 set_iter_tags(iter
, node
, offset
, tag
);
1799 return node
->slots
+ offset
;
1801 EXPORT_SYMBOL(radix_tree_next_chunk
);
1804 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1805 * @root: radix tree root
1806 * @results: where the results of the lookup are placed
1807 * @first_index: start the lookup from this key
1808 * @max_items: place up to this many items at *results
1810 * Performs an index-ascending scan of the tree for present items. Places
1811 * them at *@results and returns the number of items which were placed at
1814 * The implementation is naive.
1816 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1817 * rcu_read_lock. In this case, rather than the returned results being
1818 * an atomic snapshot of the tree at a single point in time, the
1819 * semantics of an RCU protected gang lookup are as though multiple
1820 * radix_tree_lookups have been issued in individual locks, and results
1821 * stored in 'results'.
1824 radix_tree_gang_lookup(const struct radix_tree_root
*root
, void **results
,
1825 unsigned long first_index
, unsigned int max_items
)
1827 struct radix_tree_iter iter
;
1829 unsigned int ret
= 0;
1831 if (unlikely(!max_items
))
1834 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1835 results
[ret
] = rcu_dereference_raw(*slot
);
1838 if (radix_tree_is_internal_node(results
[ret
])) {
1839 slot
= radix_tree_iter_retry(&iter
);
1842 if (++ret
== max_items
)
1848 EXPORT_SYMBOL(radix_tree_gang_lookup
);
1851 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1852 * @root: radix tree root
1853 * @results: where the results of the lookup are placed
1854 * @indices: where their indices should be placed (but usually NULL)
1855 * @first_index: start the lookup from this key
1856 * @max_items: place up to this many items at *results
1858 * Performs an index-ascending scan of the tree for present items. Places
1859 * their slots at *@results and returns the number of items which were
1860 * placed at *@results.
1862 * The implementation is naive.
1864 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1865 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1866 * protection, radix_tree_deref_slot may fail requiring a retry.
1869 radix_tree_gang_lookup_slot(const struct radix_tree_root
*root
,
1870 void __rcu
***results
, unsigned long *indices
,
1871 unsigned long first_index
, unsigned int max_items
)
1873 struct radix_tree_iter iter
;
1875 unsigned int ret
= 0;
1877 if (unlikely(!max_items
))
1880 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1881 results
[ret
] = slot
;
1883 indices
[ret
] = iter
.index
;
1884 if (++ret
== max_items
)
1890 EXPORT_SYMBOL(radix_tree_gang_lookup_slot
);
1893 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1895 * @root: radix tree root
1896 * @results: where the results of the lookup are placed
1897 * @first_index: start the lookup from this key
1898 * @max_items: place up to this many items at *results
1899 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1901 * Performs an index-ascending scan of the tree for present items which
1902 * have the tag indexed by @tag set. Places the items at *@results and
1903 * returns the number of items which were placed at *@results.
1906 radix_tree_gang_lookup_tag(const struct radix_tree_root
*root
, void **results
,
1907 unsigned long first_index
, unsigned int max_items
,
1910 struct radix_tree_iter iter
;
1912 unsigned int ret
= 0;
1914 if (unlikely(!max_items
))
1917 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1918 results
[ret
] = rcu_dereference_raw(*slot
);
1921 if (radix_tree_is_internal_node(results
[ret
])) {
1922 slot
= radix_tree_iter_retry(&iter
);
1925 if (++ret
== max_items
)
1931 EXPORT_SYMBOL(radix_tree_gang_lookup_tag
);
1934 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1935 * radix tree based on a tag
1936 * @root: radix tree root
1937 * @results: where the results of the lookup are placed
1938 * @first_index: start the lookup from this key
1939 * @max_items: place up to this many items at *results
1940 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1942 * Performs an index-ascending scan of the tree for present items which
1943 * have the tag indexed by @tag set. Places the slots at *@results and
1944 * returns the number of slots which were placed at *@results.
1947 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root
*root
,
1948 void __rcu
***results
, unsigned long first_index
,
1949 unsigned int max_items
, unsigned int tag
)
1951 struct radix_tree_iter iter
;
1953 unsigned int ret
= 0;
1955 if (unlikely(!max_items
))
1958 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1959 results
[ret
] = slot
;
1960 if (++ret
== max_items
)
1966 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot
);
1969 * __radix_tree_delete_node - try to free node after clearing a slot
1970 * @root: radix tree root
1971 * @node: node containing @index
1972 * @update_node: callback for changing leaf nodes
1974 * After clearing the slot at @index in @node from radix tree
1975 * rooted at @root, call this function to attempt freeing the
1976 * node and shrinking the tree.
1978 void __radix_tree_delete_node(struct radix_tree_root
*root
,
1979 struct radix_tree_node
*node
,
1980 radix_tree_update_node_t update_node
)
1982 delete_node(root
, node
, update_node
);
1985 static bool __radix_tree_delete(struct radix_tree_root
*root
,
1986 struct radix_tree_node
*node
, void __rcu
**slot
)
1988 void *old
= rcu_dereference_raw(*slot
);
1989 int exceptional
= radix_tree_exceptional_entry(old
) ? -1 : 0;
1990 unsigned offset
= get_slot_offset(node
, slot
);
1994 node_tag_set(root
, node
, IDR_FREE
, offset
);
1996 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1997 node_tag_clear(root
, node
, tag
, offset
);
1999 replace_slot(slot
, NULL
, node
, -1, exceptional
);
2000 return node
&& delete_node(root
, node
, NULL
);
2004 * radix_tree_iter_delete - delete the entry at this iterator position
2005 * @root: radix tree root
2006 * @iter: iterator state
2007 * @slot: pointer to slot
2009 * Delete the entry at the position currently pointed to by the iterator.
2010 * This may result in the current node being freed; if it is, the iterator
2011 * is advanced so that it will not reference the freed memory. This
2012 * function may be called without any locking if there are no other threads
2013 * which can access this tree.
2015 void radix_tree_iter_delete(struct radix_tree_root
*root
,
2016 struct radix_tree_iter
*iter
, void __rcu
**slot
)
2018 if (__radix_tree_delete(root
, iter
->node
, slot
))
2019 iter
->index
= iter
->next_index
;
2021 EXPORT_SYMBOL(radix_tree_iter_delete
);
2024 * radix_tree_delete_item - delete an item from a radix tree
2025 * @root: radix tree root
2027 * @item: expected item
2029 * Remove @item at @index from the radix tree rooted at @root.
2031 * Return: the deleted entry, or %NULL if it was not present
2032 * or the entry at the given @index was not @item.
2034 void *radix_tree_delete_item(struct radix_tree_root
*root
,
2035 unsigned long index
, void *item
)
2037 struct radix_tree_node
*node
= NULL
;
2041 entry
= __radix_tree_lookup(root
, index
, &node
, &slot
);
2042 if (!entry
&& (!is_idr(root
) || node_tag_get(root
, node
, IDR_FREE
,
2043 get_slot_offset(node
, slot
))))
2046 if (item
&& entry
!= item
)
2049 __radix_tree_delete(root
, node
, slot
);
2053 EXPORT_SYMBOL(radix_tree_delete_item
);
2056 * radix_tree_delete - delete an entry from a radix tree
2057 * @root: radix tree root
2060 * Remove the entry at @index from the radix tree rooted at @root.
2062 * Return: The deleted entry, or %NULL if it was not present.
2064 void *radix_tree_delete(struct radix_tree_root
*root
, unsigned long index
)
2066 return radix_tree_delete_item(root
, index
, NULL
);
2068 EXPORT_SYMBOL(radix_tree_delete
);
2070 void radix_tree_clear_tags(struct radix_tree_root
*root
,
2071 struct radix_tree_node
*node
,
2075 unsigned int tag
, offset
= get_slot_offset(node
, slot
);
2076 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
2077 node_tag_clear(root
, node
, tag
, offset
);
2079 root_tag_clear_all(root
);
2084 * radix_tree_tagged - test whether any items in the tree are tagged
2085 * @root: radix tree root
2088 int radix_tree_tagged(const struct radix_tree_root
*root
, unsigned int tag
)
2090 return root_tag_get(root
, tag
);
2092 EXPORT_SYMBOL(radix_tree_tagged
);
2095 * idr_preload - preload for idr_alloc()
2096 * @gfp_mask: allocation mask to use for preloading
2098 * Preallocate memory to use for the next call to idr_alloc(). This function
2099 * returns with preemption disabled. It will be enabled by idr_preload_end().
2101 void idr_preload(gfp_t gfp_mask
)
2103 if (__radix_tree_preload(gfp_mask
, IDR_PRELOAD_SIZE
))
2106 EXPORT_SYMBOL(idr_preload
);
2109 * ida_pre_get - reserve resources for ida allocation
2111 * @gfp: memory allocation flags
2113 * This function should be called before calling ida_get_new_above(). If it
2114 * is unable to allocate memory, it will return %0. On success, it returns %1.
2116 int ida_pre_get(struct ida
*ida
, gfp_t gfp
)
2119 * The IDA API has no preload_end() equivalent. Instead,
2120 * ida_get_new() can return -EAGAIN, prompting the caller
2121 * to return to the ida_pre_get() step.
2123 if (!__radix_tree_preload(gfp
, IDA_PRELOAD_SIZE
))
2126 if (!this_cpu_read(ida_bitmap
)) {
2127 struct ida_bitmap
*bitmap
= kmalloc(sizeof(*bitmap
), gfp
);
2130 if (this_cpu_cmpxchg(ida_bitmap
, NULL
, bitmap
))
2136 EXPORT_SYMBOL(ida_pre_get
);
2138 void __rcu
**idr_get_free_cmn(struct radix_tree_root
*root
,
2139 struct radix_tree_iter
*iter
, gfp_t gfp
,
2142 struct radix_tree_node
*node
= NULL
, *child
;
2143 void __rcu
**slot
= (void __rcu
**)&root
->rnode
;
2144 unsigned long maxindex
, start
= iter
->next_index
;
2145 unsigned int shift
, offset
= 0;
2148 shift
= radix_tree_load_root(root
, &child
, &maxindex
);
2149 if (!radix_tree_tagged(root
, IDR_FREE
))
2150 start
= max(start
, maxindex
+ 1);
2152 return ERR_PTR(-ENOSPC
);
2154 if (start
> maxindex
) {
2155 int error
= radix_tree_extend(root
, gfp
, start
, shift
);
2157 return ERR_PTR(error
);
2159 child
= rcu_dereference_raw(root
->rnode
);
2163 shift
-= RADIX_TREE_MAP_SHIFT
;
2164 if (child
== NULL
) {
2165 /* Have to add a child node. */
2166 child
= radix_tree_node_alloc(gfp
, node
, root
, shift
,
2169 return ERR_PTR(-ENOMEM
);
2170 all_tag_set(child
, IDR_FREE
);
2171 rcu_assign_pointer(*slot
, node_to_entry(child
));
2174 } else if (!radix_tree_is_internal_node(child
))
2177 node
= entry_to_node(child
);
2178 offset
= radix_tree_descend(node
, &child
, start
);
2179 if (!tag_get(node
, IDR_FREE
, offset
)) {
2180 offset
= radix_tree_find_next_bit(node
, IDR_FREE
,
2182 start
= next_index(start
, node
, offset
);
2184 return ERR_PTR(-ENOSPC
);
2185 while (offset
== RADIX_TREE_MAP_SIZE
) {
2186 offset
= node
->offset
+ 1;
2187 node
= node
->parent
;
2190 shift
= node
->shift
;
2192 child
= rcu_dereference_raw(node
->slots
[offset
]);
2194 slot
= &node
->slots
[offset
];
2197 iter
->index
= start
;
2199 iter
->next_index
= 1 + min(max
, (start
| node_maxindex(node
)));
2201 iter
->next_index
= 1;
2203 __set_iter_shift(iter
, shift
);
2204 set_iter_tags(iter
, node
, offset
, IDR_FREE
);
2210 * idr_destroy - release all internal memory from an IDR
2213 * After this function is called, the IDR is empty, and may be reused or
2214 * the data structure containing it may be freed.
2216 * A typical clean-up sequence for objects stored in an idr tree will use
2217 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2218 * free the memory used to keep track of those objects.
2220 void idr_destroy(struct idr
*idr
)
2222 struct radix_tree_node
*node
= rcu_dereference_raw(idr
->idr_rt
.rnode
);
2223 if (radix_tree_is_internal_node(node
))
2224 radix_tree_free_nodes(node
);
2225 idr
->idr_rt
.rnode
= NULL
;
2226 root_tag_set(&idr
->idr_rt
, IDR_FREE
);
2228 EXPORT_SYMBOL(idr_destroy
);
2231 radix_tree_node_ctor(void *arg
)
2233 struct radix_tree_node
*node
= arg
;
2235 memset(node
, 0, sizeof(*node
));
2236 INIT_LIST_HEAD(&node
->private_list
);
2239 static __init
unsigned long __maxindex(unsigned int height
)
2241 unsigned int width
= height
* RADIX_TREE_MAP_SHIFT
;
2242 int shift
= RADIX_TREE_INDEX_BITS
- width
;
2246 if (shift
>= BITS_PER_LONG
)
2248 return ~0UL >> shift
;
2251 static __init
void radix_tree_init_maxnodes(void)
2253 unsigned long height_to_maxindex
[RADIX_TREE_MAX_PATH
+ 1];
2256 for (i
= 0; i
< ARRAY_SIZE(height_to_maxindex
); i
++)
2257 height_to_maxindex
[i
] = __maxindex(i
);
2258 for (i
= 0; i
< ARRAY_SIZE(height_to_maxnodes
); i
++) {
2259 for (j
= i
; j
> 0; j
--)
2260 height_to_maxnodes
[i
] += height_to_maxindex
[j
- 1] + 1;
2264 static int radix_tree_cpu_dead(unsigned int cpu
)
2266 struct radix_tree_preload
*rtp
;
2267 struct radix_tree_node
*node
;
2269 /* Free per-cpu pool of preloaded nodes */
2270 rtp
= &per_cpu(radix_tree_preloads
, cpu
);
2273 rtp
->nodes
= node
->parent
;
2274 kmem_cache_free(radix_tree_node_cachep
, node
);
2277 kfree(per_cpu(ida_bitmap
, cpu
));
2278 per_cpu(ida_bitmap
, cpu
) = NULL
;
2282 void __init
radix_tree_init(void)
2286 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS
+ __GFP_BITS_SHIFT
> 32);
2287 radix_tree_node_cachep
= kmem_cache_create("radix_tree_node",
2288 sizeof(struct radix_tree_node
), 0,
2289 SLAB_PANIC
| SLAB_RECLAIM_ACCOUNT
,
2290 radix_tree_node_ctor
);
2291 radix_tree_init_maxnodes();
2292 ret
= cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD
, "lib/radix:dead",
2293 NULL
, radix_tree_cpu_dead
);