dmaengine: ste_dma40: fix unneeded variable warning
[linux/fpc-iii.git] / net / ipv4 / tcp_bbr.c
blob7e44d23b03281624f413dfe2e25ff422bf34c7af
1 /* Bottleneck Bandwidth and RTT (BBR) congestion control
3 * BBR congestion control computes the sending rate based on the delivery
4 * rate (throughput) estimated from ACKs. In a nutshell:
6 * On each ACK, update our model of the network path:
7 * bottleneck_bandwidth = windowed_max(delivered / elapsed, 10 round trips)
8 * min_rtt = windowed_min(rtt, 10 seconds)
9 * pacing_rate = pacing_gain * bottleneck_bandwidth
10 * cwnd = max(cwnd_gain * bottleneck_bandwidth * min_rtt, 4)
12 * The core algorithm does not react directly to packet losses or delays,
13 * although BBR may adjust the size of next send per ACK when loss is
14 * observed, or adjust the sending rate if it estimates there is a
15 * traffic policer, in order to keep the drop rate reasonable.
17 * BBR is described in detail in:
18 * "BBR: Congestion-Based Congestion Control",
19 * Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
20 * Van Jacobson. ACM Queue, Vol. 14 No. 5, September-October 2016.
22 * There is a public e-mail list for discussing BBR development and testing:
23 * https://groups.google.com/forum/#!forum/bbr-dev
25 * NOTE: BBR *must* be used with the fq qdisc ("man tc-fq") with pacing enabled,
26 * since pacing is integral to the BBR design and implementation.
27 * BBR without pacing would not function properly, and may incur unnecessary
28 * high packet loss rates.
30 #include <linux/module.h>
31 #include <net/tcp.h>
32 #include <linux/inet_diag.h>
33 #include <linux/inet.h>
34 #include <linux/random.h>
35 #include <linux/win_minmax.h>
37 /* Scale factor for rate in pkt/uSec unit to avoid truncation in bandwidth
38 * estimation. The rate unit ~= (1500 bytes / 1 usec / 2^24) ~= 715 bps.
39 * This handles bandwidths from 0.06pps (715bps) to 256Mpps (3Tbps) in a u32.
40 * Since the minimum window is >=4 packets, the lower bound isn't
41 * an issue. The upper bound isn't an issue with existing technologies.
43 #define BW_SCALE 24
44 #define BW_UNIT (1 << BW_SCALE)
46 #define BBR_SCALE 8 /* scaling factor for fractions in BBR (e.g. gains) */
47 #define BBR_UNIT (1 << BBR_SCALE)
49 /* BBR has the following modes for deciding how fast to send: */
50 enum bbr_mode {
51 BBR_STARTUP, /* ramp up sending rate rapidly to fill pipe */
52 BBR_DRAIN, /* drain any queue created during startup */
53 BBR_PROBE_BW, /* discover, share bw: pace around estimated bw */
54 BBR_PROBE_RTT, /* cut cwnd to min to probe min_rtt */
57 /* BBR congestion control block */
58 struct bbr {
59 u32 min_rtt_us; /* min RTT in min_rtt_win_sec window */
60 u32 min_rtt_stamp; /* timestamp of min_rtt_us */
61 u32 probe_rtt_done_stamp; /* end time for BBR_PROBE_RTT mode */
62 struct minmax bw; /* Max recent delivery rate in pkts/uS << 24 */
63 u32 rtt_cnt; /* count of packet-timed rounds elapsed */
64 u32 next_rtt_delivered; /* scb->tx.delivered at end of round */
65 struct skb_mstamp cycle_mstamp; /* time of this cycle phase start */
66 u32 mode:3, /* current bbr_mode in state machine */
67 prev_ca_state:3, /* CA state on previous ACK */
68 packet_conservation:1, /* use packet conservation? */
69 restore_cwnd:1, /* decided to revert cwnd to old value */
70 round_start:1, /* start of packet-timed tx->ack round? */
71 tso_segs_goal:7, /* segments we want in each skb we send */
72 idle_restart:1, /* restarting after idle? */
73 probe_rtt_round_done:1, /* a BBR_PROBE_RTT round at 4 pkts? */
74 unused:5,
75 lt_is_sampling:1, /* taking long-term ("LT") samples now? */
76 lt_rtt_cnt:7, /* round trips in long-term interval */
77 lt_use_bw:1; /* use lt_bw as our bw estimate? */
78 u32 lt_bw; /* LT est delivery rate in pkts/uS << 24 */
79 u32 lt_last_delivered; /* LT intvl start: tp->delivered */
80 u32 lt_last_stamp; /* LT intvl start: tp->delivered_mstamp */
81 u32 lt_last_lost; /* LT intvl start: tp->lost */
82 u32 pacing_gain:10, /* current gain for setting pacing rate */
83 cwnd_gain:10, /* current gain for setting cwnd */
84 full_bw_reached:1, /* reached full bw in Startup? */
85 full_bw_cnt:2, /* number of rounds without large bw gains */
86 cycle_idx:3, /* current index in pacing_gain cycle array */
87 has_seen_rtt:1, /* have we seen an RTT sample yet? */
88 unused_b:5;
89 u32 prior_cwnd; /* prior cwnd upon entering loss recovery */
90 u32 full_bw; /* recent bw, to estimate if pipe is full */
93 #define CYCLE_LEN 8 /* number of phases in a pacing gain cycle */
95 /* Window length of bw filter (in rounds): */
96 static const int bbr_bw_rtts = CYCLE_LEN + 2;
97 /* Window length of min_rtt filter (in sec): */
98 static const u32 bbr_min_rtt_win_sec = 10;
99 /* Minimum time (in ms) spent at bbr_cwnd_min_target in BBR_PROBE_RTT mode: */
100 static const u32 bbr_probe_rtt_mode_ms = 200;
101 /* Skip TSO below the following bandwidth (bits/sec): */
102 static const int bbr_min_tso_rate = 1200000;
104 /* We use a high_gain value of 2/ln(2) because it's the smallest pacing gain
105 * that will allow a smoothly increasing pacing rate that will double each RTT
106 * and send the same number of packets per RTT that an un-paced, slow-starting
107 * Reno or CUBIC flow would:
109 static const int bbr_high_gain = BBR_UNIT * 2885 / 1000 + 1;
110 /* The pacing gain of 1/high_gain in BBR_DRAIN is calculated to typically drain
111 * the queue created in BBR_STARTUP in a single round:
113 static const int bbr_drain_gain = BBR_UNIT * 1000 / 2885;
114 /* The gain for deriving steady-state cwnd tolerates delayed/stretched ACKs: */
115 static const int bbr_cwnd_gain = BBR_UNIT * 2;
116 /* The pacing_gain values for the PROBE_BW gain cycle, to discover/share bw: */
117 static const int bbr_pacing_gain[] = {
118 BBR_UNIT * 5 / 4, /* probe for more available bw */
119 BBR_UNIT * 3 / 4, /* drain queue and/or yield bw to other flows */
120 BBR_UNIT, BBR_UNIT, BBR_UNIT, /* cruise at 1.0*bw to utilize pipe, */
121 BBR_UNIT, BBR_UNIT, BBR_UNIT /* without creating excess queue... */
123 /* Randomize the starting gain cycling phase over N phases: */
124 static const u32 bbr_cycle_rand = 7;
126 /* Try to keep at least this many packets in flight, if things go smoothly. For
127 * smooth functioning, a sliding window protocol ACKing every other packet
128 * needs at least 4 packets in flight:
130 static const u32 bbr_cwnd_min_target = 4;
132 /* To estimate if BBR_STARTUP mode (i.e. high_gain) has filled pipe... */
133 /* If bw has increased significantly (1.25x), there may be more bw available: */
134 static const u32 bbr_full_bw_thresh = BBR_UNIT * 5 / 4;
135 /* But after 3 rounds w/o significant bw growth, estimate pipe is full: */
136 static const u32 bbr_full_bw_cnt = 3;
138 /* "long-term" ("LT") bandwidth estimator parameters... */
139 /* The minimum number of rounds in an LT bw sampling interval: */
140 static const u32 bbr_lt_intvl_min_rtts = 4;
141 /* If lost/delivered ratio > 20%, interval is "lossy" and we may be policed: */
142 static const u32 bbr_lt_loss_thresh = 50;
143 /* If 2 intervals have a bw ratio <= 1/8, their bw is "consistent": */
144 static const u32 bbr_lt_bw_ratio = BBR_UNIT / 8;
145 /* If 2 intervals have a bw diff <= 4 Kbit/sec their bw is "consistent": */
146 static const u32 bbr_lt_bw_diff = 4000 / 8;
147 /* If we estimate we're policed, use lt_bw for this many round trips: */
148 static const u32 bbr_lt_bw_max_rtts = 48;
150 /* Do we estimate that STARTUP filled the pipe? */
151 static bool bbr_full_bw_reached(const struct sock *sk)
153 const struct bbr *bbr = inet_csk_ca(sk);
155 return bbr->full_bw_reached;
158 /* Return the windowed max recent bandwidth sample, in pkts/uS << BW_SCALE. */
159 static u32 bbr_max_bw(const struct sock *sk)
161 struct bbr *bbr = inet_csk_ca(sk);
163 return minmax_get(&bbr->bw);
166 /* Return the estimated bandwidth of the path, in pkts/uS << BW_SCALE. */
167 static u32 bbr_bw(const struct sock *sk)
169 struct bbr *bbr = inet_csk_ca(sk);
171 return bbr->lt_use_bw ? bbr->lt_bw : bbr_max_bw(sk);
174 /* Return rate in bytes per second, optionally with a gain.
175 * The order here is chosen carefully to avoid overflow of u64. This should
176 * work for input rates of up to 2.9Tbit/sec and gain of 2.89x.
178 static u64 bbr_rate_bytes_per_sec(struct sock *sk, u64 rate, int gain)
180 rate *= tcp_mss_to_mtu(sk, tcp_sk(sk)->mss_cache);
181 rate *= gain;
182 rate >>= BBR_SCALE;
183 rate *= USEC_PER_SEC;
184 return rate >> BW_SCALE;
187 /* Convert a BBR bw and gain factor to a pacing rate in bytes per second. */
188 static u32 bbr_bw_to_pacing_rate(struct sock *sk, u32 bw, int gain)
190 u64 rate = bw;
192 rate = bbr_rate_bytes_per_sec(sk, rate, gain);
193 rate = min_t(u64, rate, sk->sk_max_pacing_rate);
194 return rate;
197 /* Initialize pacing rate to: high_gain * init_cwnd / RTT. */
198 static void bbr_init_pacing_rate_from_rtt(struct sock *sk)
200 struct tcp_sock *tp = tcp_sk(sk);
201 struct bbr *bbr = inet_csk_ca(sk);
202 u64 bw;
203 u32 rtt_us;
205 if (tp->srtt_us) { /* any RTT sample yet? */
206 rtt_us = max(tp->srtt_us >> 3, 1U);
207 bbr->has_seen_rtt = 1;
208 } else { /* no RTT sample yet */
209 rtt_us = USEC_PER_MSEC; /* use nominal default RTT */
211 bw = (u64)tp->snd_cwnd * BW_UNIT;
212 do_div(bw, rtt_us);
213 sk->sk_pacing_rate = bbr_bw_to_pacing_rate(sk, bw, bbr_high_gain);
216 /* Pace using current bw estimate and a gain factor. In order to help drive the
217 * network toward lower queues while maintaining high utilization and low
218 * latency, the average pacing rate aims to be slightly (~1%) lower than the
219 * estimated bandwidth. This is an important aspect of the design. In this
220 * implementation this slightly lower pacing rate is achieved implicitly by not
221 * including link-layer headers in the packet size used for the pacing rate.
223 static void bbr_set_pacing_rate(struct sock *sk, u32 bw, int gain)
225 struct tcp_sock *tp = tcp_sk(sk);
226 struct bbr *bbr = inet_csk_ca(sk);
227 u32 rate = bbr_bw_to_pacing_rate(sk, bw, gain);
229 if (unlikely(!bbr->has_seen_rtt && tp->srtt_us))
230 bbr_init_pacing_rate_from_rtt(sk);
231 if (bbr_full_bw_reached(sk) || rate > sk->sk_pacing_rate)
232 sk->sk_pacing_rate = rate;
235 /* Return count of segments we want in the skbs we send, or 0 for default. */
236 static u32 bbr_tso_segs_goal(struct sock *sk)
238 struct bbr *bbr = inet_csk_ca(sk);
240 return bbr->tso_segs_goal;
243 static void bbr_set_tso_segs_goal(struct sock *sk)
245 struct tcp_sock *tp = tcp_sk(sk);
246 struct bbr *bbr = inet_csk_ca(sk);
247 u32 min_segs;
249 min_segs = sk->sk_pacing_rate < (bbr_min_tso_rate >> 3) ? 1 : 2;
250 bbr->tso_segs_goal = min(tcp_tso_autosize(sk, tp->mss_cache, min_segs),
251 0x7FU);
254 /* Save "last known good" cwnd so we can restore it after losses or PROBE_RTT */
255 static void bbr_save_cwnd(struct sock *sk)
257 struct tcp_sock *tp = tcp_sk(sk);
258 struct bbr *bbr = inet_csk_ca(sk);
260 if (bbr->prev_ca_state < TCP_CA_Recovery && bbr->mode != BBR_PROBE_RTT)
261 bbr->prior_cwnd = tp->snd_cwnd; /* this cwnd is good enough */
262 else /* loss recovery or BBR_PROBE_RTT have temporarily cut cwnd */
263 bbr->prior_cwnd = max(bbr->prior_cwnd, tp->snd_cwnd);
266 static void bbr_cwnd_event(struct sock *sk, enum tcp_ca_event event)
268 struct tcp_sock *tp = tcp_sk(sk);
269 struct bbr *bbr = inet_csk_ca(sk);
271 if (event == CA_EVENT_TX_START && tp->app_limited) {
272 bbr->idle_restart = 1;
273 /* Avoid pointless buffer overflows: pace at est. bw if we don't
274 * need more speed (we're restarting from idle and app-limited).
276 if (bbr->mode == BBR_PROBE_BW)
277 bbr_set_pacing_rate(sk, bbr_bw(sk), BBR_UNIT);
281 /* Find target cwnd. Right-size the cwnd based on min RTT and the
282 * estimated bottleneck bandwidth:
284 * cwnd = bw * min_rtt * gain = BDP * gain
286 * The key factor, gain, controls the amount of queue. While a small gain
287 * builds a smaller queue, it becomes more vulnerable to noise in RTT
288 * measurements (e.g., delayed ACKs or other ACK compression effects). This
289 * noise may cause BBR to under-estimate the rate.
291 * To achieve full performance in high-speed paths, we budget enough cwnd to
292 * fit full-sized skbs in-flight on both end hosts to fully utilize the path:
293 * - one skb in sending host Qdisc,
294 * - one skb in sending host TSO/GSO engine
295 * - one skb being received by receiver host LRO/GRO/delayed-ACK engine
296 * Don't worry, at low rates (bbr_min_tso_rate) this won't bloat cwnd because
297 * in such cases tso_segs_goal is 1. The minimum cwnd is 4 packets,
298 * which allows 2 outstanding 2-packet sequences, to try to keep pipe
299 * full even with ACK-every-other-packet delayed ACKs.
301 static u32 bbr_target_cwnd(struct sock *sk, u32 bw, int gain)
303 struct bbr *bbr = inet_csk_ca(sk);
304 u32 cwnd;
305 u64 w;
307 /* If we've never had a valid RTT sample, cap cwnd at the initial
308 * default. This should only happen when the connection is not using TCP
309 * timestamps and has retransmitted all of the SYN/SYNACK/data packets
310 * ACKed so far. In this case, an RTO can cut cwnd to 1, in which
311 * case we need to slow-start up toward something safe: TCP_INIT_CWND.
313 if (unlikely(bbr->min_rtt_us == ~0U)) /* no valid RTT samples yet? */
314 return TCP_INIT_CWND; /* be safe: cap at default initial cwnd*/
316 w = (u64)bw * bbr->min_rtt_us;
318 /* Apply a gain to the given value, then remove the BW_SCALE shift. */
319 cwnd = (((w * gain) >> BBR_SCALE) + BW_UNIT - 1) / BW_UNIT;
321 /* Allow enough full-sized skbs in flight to utilize end systems. */
322 cwnd += 3 * bbr->tso_segs_goal;
324 /* Reduce delayed ACKs by rounding up cwnd to the next even number. */
325 cwnd = (cwnd + 1) & ~1U;
327 /* Ensure gain cycling gets inflight above BDP even for small BDPs. */
328 if (bbr->mode == BBR_PROBE_BW && gain > BBR_UNIT)
329 cwnd += 2;
331 return cwnd;
334 /* An optimization in BBR to reduce losses: On the first round of recovery, we
335 * follow the packet conservation principle: send P packets per P packets acked.
336 * After that, we slow-start and send at most 2*P packets per P packets acked.
337 * After recovery finishes, or upon undo, we restore the cwnd we had when
338 * recovery started (capped by the target cwnd based on estimated BDP).
340 * TODO(ycheng/ncardwell): implement a rate-based approach.
342 static bool bbr_set_cwnd_to_recover_or_restore(
343 struct sock *sk, const struct rate_sample *rs, u32 acked, u32 *new_cwnd)
345 struct tcp_sock *tp = tcp_sk(sk);
346 struct bbr *bbr = inet_csk_ca(sk);
347 u8 prev_state = bbr->prev_ca_state, state = inet_csk(sk)->icsk_ca_state;
348 u32 cwnd = tp->snd_cwnd;
350 /* An ACK for P pkts should release at most 2*P packets. We do this
351 * in two steps. First, here we deduct the number of lost packets.
352 * Then, in bbr_set_cwnd() we slow start up toward the target cwnd.
354 if (rs->losses > 0)
355 cwnd = max_t(s32, cwnd - rs->losses, 1);
357 if (state == TCP_CA_Recovery && prev_state != TCP_CA_Recovery) {
358 /* Starting 1st round of Recovery, so do packet conservation. */
359 bbr->packet_conservation = 1;
360 bbr->next_rtt_delivered = tp->delivered; /* start round now */
361 /* Cut unused cwnd from app behavior, TSQ, or TSO deferral: */
362 cwnd = tcp_packets_in_flight(tp) + acked;
363 } else if (prev_state >= TCP_CA_Recovery && state < TCP_CA_Recovery) {
364 /* Exiting loss recovery; restore cwnd saved before recovery. */
365 bbr->restore_cwnd = 1;
366 bbr->packet_conservation = 0;
368 bbr->prev_ca_state = state;
370 if (bbr->restore_cwnd) {
371 /* Restore cwnd after exiting loss recovery or PROBE_RTT. */
372 cwnd = max(cwnd, bbr->prior_cwnd);
373 bbr->restore_cwnd = 0;
376 if (bbr->packet_conservation) {
377 *new_cwnd = max(cwnd, tcp_packets_in_flight(tp) + acked);
378 return true; /* yes, using packet conservation */
380 *new_cwnd = cwnd;
381 return false;
384 /* Slow-start up toward target cwnd (if bw estimate is growing, or packet loss
385 * has drawn us down below target), or snap down to target if we're above it.
387 static void bbr_set_cwnd(struct sock *sk, const struct rate_sample *rs,
388 u32 acked, u32 bw, int gain)
390 struct tcp_sock *tp = tcp_sk(sk);
391 struct bbr *bbr = inet_csk_ca(sk);
392 u32 cwnd = 0, target_cwnd = 0;
394 if (!acked)
395 return;
397 if (bbr_set_cwnd_to_recover_or_restore(sk, rs, acked, &cwnd))
398 goto done;
400 /* If we're below target cwnd, slow start cwnd toward target cwnd. */
401 target_cwnd = bbr_target_cwnd(sk, bw, gain);
402 if (bbr_full_bw_reached(sk)) /* only cut cwnd if we filled the pipe */
403 cwnd = min(cwnd + acked, target_cwnd);
404 else if (cwnd < target_cwnd || tp->delivered < TCP_INIT_CWND)
405 cwnd = cwnd + acked;
406 cwnd = max(cwnd, bbr_cwnd_min_target);
408 done:
409 tp->snd_cwnd = min(cwnd, tp->snd_cwnd_clamp); /* apply global cap */
410 if (bbr->mode == BBR_PROBE_RTT) /* drain queue, refresh min_rtt */
411 tp->snd_cwnd = min(tp->snd_cwnd, bbr_cwnd_min_target);
414 /* End cycle phase if it's time and/or we hit the phase's in-flight target. */
415 static bool bbr_is_next_cycle_phase(struct sock *sk,
416 const struct rate_sample *rs)
418 struct tcp_sock *tp = tcp_sk(sk);
419 struct bbr *bbr = inet_csk_ca(sk);
420 bool is_full_length =
421 skb_mstamp_us_delta(&tp->delivered_mstamp, &bbr->cycle_mstamp) >
422 bbr->min_rtt_us;
423 u32 inflight, bw;
425 /* The pacing_gain of 1.0 paces at the estimated bw to try to fully
426 * use the pipe without increasing the queue.
428 if (bbr->pacing_gain == BBR_UNIT)
429 return is_full_length; /* just use wall clock time */
431 inflight = rs->prior_in_flight; /* what was in-flight before ACK? */
432 bw = bbr_max_bw(sk);
434 /* A pacing_gain > 1.0 probes for bw by trying to raise inflight to at
435 * least pacing_gain*BDP; this may take more than min_rtt if min_rtt is
436 * small (e.g. on a LAN). We do not persist if packets are lost, since
437 * a path with small buffers may not hold that much.
439 if (bbr->pacing_gain > BBR_UNIT)
440 return is_full_length &&
441 (rs->losses || /* perhaps pacing_gain*BDP won't fit */
442 inflight >= bbr_target_cwnd(sk, bw, bbr->pacing_gain));
444 /* A pacing_gain < 1.0 tries to drain extra queue we added if bw
445 * probing didn't find more bw. If inflight falls to match BDP then we
446 * estimate queue is drained; persisting would underutilize the pipe.
448 return is_full_length ||
449 inflight <= bbr_target_cwnd(sk, bw, BBR_UNIT);
452 static void bbr_advance_cycle_phase(struct sock *sk)
454 struct tcp_sock *tp = tcp_sk(sk);
455 struct bbr *bbr = inet_csk_ca(sk);
457 bbr->cycle_idx = (bbr->cycle_idx + 1) & (CYCLE_LEN - 1);
458 bbr->cycle_mstamp = tp->delivered_mstamp;
459 bbr->pacing_gain = bbr->lt_use_bw ? BBR_UNIT :
460 bbr_pacing_gain[bbr->cycle_idx];
463 /* Gain cycling: cycle pacing gain to converge to fair share of available bw. */
464 static void bbr_update_cycle_phase(struct sock *sk,
465 const struct rate_sample *rs)
467 struct bbr *bbr = inet_csk_ca(sk);
469 if (bbr->mode == BBR_PROBE_BW && bbr_is_next_cycle_phase(sk, rs))
470 bbr_advance_cycle_phase(sk);
473 static void bbr_reset_startup_mode(struct sock *sk)
475 struct bbr *bbr = inet_csk_ca(sk);
477 bbr->mode = BBR_STARTUP;
478 bbr->pacing_gain = bbr_high_gain;
479 bbr->cwnd_gain = bbr_high_gain;
482 static void bbr_reset_probe_bw_mode(struct sock *sk)
484 struct bbr *bbr = inet_csk_ca(sk);
486 bbr->mode = BBR_PROBE_BW;
487 bbr->pacing_gain = BBR_UNIT;
488 bbr->cwnd_gain = bbr_cwnd_gain;
489 bbr->cycle_idx = CYCLE_LEN - 1 - prandom_u32_max(bbr_cycle_rand);
490 bbr_advance_cycle_phase(sk); /* flip to next phase of gain cycle */
493 static void bbr_reset_mode(struct sock *sk)
495 if (!bbr_full_bw_reached(sk))
496 bbr_reset_startup_mode(sk);
497 else
498 bbr_reset_probe_bw_mode(sk);
501 /* Start a new long-term sampling interval. */
502 static void bbr_reset_lt_bw_sampling_interval(struct sock *sk)
504 struct tcp_sock *tp = tcp_sk(sk);
505 struct bbr *bbr = inet_csk_ca(sk);
507 bbr->lt_last_stamp = tp->delivered_mstamp.stamp_jiffies;
508 bbr->lt_last_delivered = tp->delivered;
509 bbr->lt_last_lost = tp->lost;
510 bbr->lt_rtt_cnt = 0;
513 /* Completely reset long-term bandwidth sampling. */
514 static void bbr_reset_lt_bw_sampling(struct sock *sk)
516 struct bbr *bbr = inet_csk_ca(sk);
518 bbr->lt_bw = 0;
519 bbr->lt_use_bw = 0;
520 bbr->lt_is_sampling = false;
521 bbr_reset_lt_bw_sampling_interval(sk);
524 /* Long-term bw sampling interval is done. Estimate whether we're policed. */
525 static void bbr_lt_bw_interval_done(struct sock *sk, u32 bw)
527 struct bbr *bbr = inet_csk_ca(sk);
528 u32 diff;
530 if (bbr->lt_bw) { /* do we have bw from a previous interval? */
531 /* Is new bw close to the lt_bw from the previous interval? */
532 diff = abs(bw - bbr->lt_bw);
533 if ((diff * BBR_UNIT <= bbr_lt_bw_ratio * bbr->lt_bw) ||
534 (bbr_rate_bytes_per_sec(sk, diff, BBR_UNIT) <=
535 bbr_lt_bw_diff)) {
536 /* All criteria are met; estimate we're policed. */
537 bbr->lt_bw = (bw + bbr->lt_bw) >> 1; /* avg 2 intvls */
538 bbr->lt_use_bw = 1;
539 bbr->pacing_gain = BBR_UNIT; /* try to avoid drops */
540 bbr->lt_rtt_cnt = 0;
541 return;
544 bbr->lt_bw = bw;
545 bbr_reset_lt_bw_sampling_interval(sk);
548 /* Token-bucket traffic policers are common (see "An Internet-Wide Analysis of
549 * Traffic Policing", SIGCOMM 2016). BBR detects token-bucket policers and
550 * explicitly models their policed rate, to reduce unnecessary losses. We
551 * estimate that we're policed if we see 2 consecutive sampling intervals with
552 * consistent throughput and high packet loss. If we think we're being policed,
553 * set lt_bw to the "long-term" average delivery rate from those 2 intervals.
555 static void bbr_lt_bw_sampling(struct sock *sk, const struct rate_sample *rs)
557 struct tcp_sock *tp = tcp_sk(sk);
558 struct bbr *bbr = inet_csk_ca(sk);
559 u32 lost, delivered;
560 u64 bw;
561 s32 t;
563 if (bbr->lt_use_bw) { /* already using long-term rate, lt_bw? */
564 if (bbr->mode == BBR_PROBE_BW && bbr->round_start &&
565 ++bbr->lt_rtt_cnt >= bbr_lt_bw_max_rtts) {
566 bbr_reset_lt_bw_sampling(sk); /* stop using lt_bw */
567 bbr_reset_probe_bw_mode(sk); /* restart gain cycling */
569 return;
572 /* Wait for the first loss before sampling, to let the policer exhaust
573 * its tokens and estimate the steady-state rate allowed by the policer.
574 * Starting samples earlier includes bursts that over-estimate the bw.
576 if (!bbr->lt_is_sampling) {
577 if (!rs->losses)
578 return;
579 bbr_reset_lt_bw_sampling_interval(sk);
580 bbr->lt_is_sampling = true;
583 /* To avoid underestimates, reset sampling if we run out of data. */
584 if (rs->is_app_limited) {
585 bbr_reset_lt_bw_sampling(sk);
586 return;
589 if (bbr->round_start)
590 bbr->lt_rtt_cnt++; /* count round trips in this interval */
591 if (bbr->lt_rtt_cnt < bbr_lt_intvl_min_rtts)
592 return; /* sampling interval needs to be longer */
593 if (bbr->lt_rtt_cnt > 4 * bbr_lt_intvl_min_rtts) {
594 bbr_reset_lt_bw_sampling(sk); /* interval is too long */
595 return;
598 /* End sampling interval when a packet is lost, so we estimate the
599 * policer tokens were exhausted. Stopping the sampling before the
600 * tokens are exhausted under-estimates the policed rate.
602 if (!rs->losses)
603 return;
605 /* Calculate packets lost and delivered in sampling interval. */
606 lost = tp->lost - bbr->lt_last_lost;
607 delivered = tp->delivered - bbr->lt_last_delivered;
608 /* Is loss rate (lost/delivered) >= lt_loss_thresh? If not, wait. */
609 if (!delivered || (lost << BBR_SCALE) < bbr_lt_loss_thresh * delivered)
610 return;
612 /* Find average delivery rate in this sampling interval. */
613 t = (s32)(tp->delivered_mstamp.stamp_jiffies - bbr->lt_last_stamp);
614 if (t < 1)
615 return; /* interval is less than one jiffy, so wait */
616 t = jiffies_to_usecs(t);
617 /* Interval long enough for jiffies_to_usecs() to return a bogus 0? */
618 if (t < 1) {
619 bbr_reset_lt_bw_sampling(sk); /* interval too long; reset */
620 return;
622 bw = (u64)delivered * BW_UNIT;
623 do_div(bw, t);
624 bbr_lt_bw_interval_done(sk, bw);
627 /* Estimate the bandwidth based on how fast packets are delivered */
628 static void bbr_update_bw(struct sock *sk, const struct rate_sample *rs)
630 struct tcp_sock *tp = tcp_sk(sk);
631 struct bbr *bbr = inet_csk_ca(sk);
632 u64 bw;
634 bbr->round_start = 0;
635 if (rs->delivered < 0 || rs->interval_us <= 0)
636 return; /* Not a valid observation */
638 /* See if we've reached the next RTT */
639 if (!before(rs->prior_delivered, bbr->next_rtt_delivered)) {
640 bbr->next_rtt_delivered = tp->delivered;
641 bbr->rtt_cnt++;
642 bbr->round_start = 1;
643 bbr->packet_conservation = 0;
646 bbr_lt_bw_sampling(sk, rs);
648 /* Divide delivered by the interval to find a (lower bound) bottleneck
649 * bandwidth sample. Delivered is in packets and interval_us in uS and
650 * ratio will be <<1 for most connections. So delivered is first scaled.
652 bw = (u64)rs->delivered * BW_UNIT;
653 do_div(bw, rs->interval_us);
655 /* If this sample is application-limited, it is likely to have a very
656 * low delivered count that represents application behavior rather than
657 * the available network rate. Such a sample could drag down estimated
658 * bw, causing needless slow-down. Thus, to continue to send at the
659 * last measured network rate, we filter out app-limited samples unless
660 * they describe the path bw at least as well as our bw model.
662 * So the goal during app-limited phase is to proceed with the best
663 * network rate no matter how long. We automatically leave this
664 * phase when app writes faster than the network can deliver :)
666 if (!rs->is_app_limited || bw >= bbr_max_bw(sk)) {
667 /* Incorporate new sample into our max bw filter. */
668 minmax_running_max(&bbr->bw, bbr_bw_rtts, bbr->rtt_cnt, bw);
672 /* Estimate when the pipe is full, using the change in delivery rate: BBR
673 * estimates that STARTUP filled the pipe if the estimated bw hasn't changed by
674 * at least bbr_full_bw_thresh (25%) after bbr_full_bw_cnt (3) non-app-limited
675 * rounds. Why 3 rounds: 1: rwin autotuning grows the rwin, 2: we fill the
676 * higher rwin, 3: we get higher delivery rate samples. Or transient
677 * cross-traffic or radio noise can go away. CUBIC Hystart shares a similar
678 * design goal, but uses delay and inter-ACK spacing instead of bandwidth.
680 static void bbr_check_full_bw_reached(struct sock *sk,
681 const struct rate_sample *rs)
683 struct bbr *bbr = inet_csk_ca(sk);
684 u32 bw_thresh;
686 if (bbr_full_bw_reached(sk) || !bbr->round_start || rs->is_app_limited)
687 return;
689 bw_thresh = (u64)bbr->full_bw * bbr_full_bw_thresh >> BBR_SCALE;
690 if (bbr_max_bw(sk) >= bw_thresh) {
691 bbr->full_bw = bbr_max_bw(sk);
692 bbr->full_bw_cnt = 0;
693 return;
695 ++bbr->full_bw_cnt;
696 bbr->full_bw_reached = bbr->full_bw_cnt >= bbr_full_bw_cnt;
699 /* If pipe is probably full, drain the queue and then enter steady-state. */
700 static void bbr_check_drain(struct sock *sk, const struct rate_sample *rs)
702 struct bbr *bbr = inet_csk_ca(sk);
704 if (bbr->mode == BBR_STARTUP && bbr_full_bw_reached(sk)) {
705 bbr->mode = BBR_DRAIN; /* drain queue we created */
706 bbr->pacing_gain = bbr_drain_gain; /* pace slow to drain */
707 bbr->cwnd_gain = bbr_high_gain; /* maintain cwnd */
708 } /* fall through to check if in-flight is already small: */
709 if (bbr->mode == BBR_DRAIN &&
710 tcp_packets_in_flight(tcp_sk(sk)) <=
711 bbr_target_cwnd(sk, bbr_max_bw(sk), BBR_UNIT))
712 bbr_reset_probe_bw_mode(sk); /* we estimate queue is drained */
715 /* The goal of PROBE_RTT mode is to have BBR flows cooperatively and
716 * periodically drain the bottleneck queue, to converge to measure the true
717 * min_rtt (unloaded propagation delay). This allows the flows to keep queues
718 * small (reducing queuing delay and packet loss) and achieve fairness among
719 * BBR flows.
721 * The min_rtt filter window is 10 seconds. When the min_rtt estimate expires,
722 * we enter PROBE_RTT mode and cap the cwnd at bbr_cwnd_min_target=4 packets.
723 * After at least bbr_probe_rtt_mode_ms=200ms and at least one packet-timed
724 * round trip elapsed with that flight size <= 4, we leave PROBE_RTT mode and
725 * re-enter the previous mode. BBR uses 200ms to approximately bound the
726 * performance penalty of PROBE_RTT's cwnd capping to roughly 2% (200ms/10s).
728 * Note that flows need only pay 2% if they are busy sending over the last 10
729 * seconds. Interactive applications (e.g., Web, RPCs, video chunks) often have
730 * natural silences or low-rate periods within 10 seconds where the rate is low
731 * enough for long enough to drain its queue in the bottleneck. We pick up
732 * these min RTT measurements opportunistically with our min_rtt filter. :-)
734 static void bbr_update_min_rtt(struct sock *sk, const struct rate_sample *rs)
736 struct tcp_sock *tp = tcp_sk(sk);
737 struct bbr *bbr = inet_csk_ca(sk);
738 bool filter_expired;
740 /* Track min RTT seen in the min_rtt_win_sec filter window: */
741 filter_expired = after(tcp_time_stamp,
742 bbr->min_rtt_stamp + bbr_min_rtt_win_sec * HZ);
743 if (rs->rtt_us >= 0 &&
744 (rs->rtt_us <= bbr->min_rtt_us || filter_expired)) {
745 bbr->min_rtt_us = rs->rtt_us;
746 bbr->min_rtt_stamp = tcp_time_stamp;
749 if (bbr_probe_rtt_mode_ms > 0 && filter_expired &&
750 !bbr->idle_restart && bbr->mode != BBR_PROBE_RTT) {
751 bbr->mode = BBR_PROBE_RTT; /* dip, drain queue */
752 bbr->pacing_gain = BBR_UNIT;
753 bbr->cwnd_gain = BBR_UNIT;
754 bbr_save_cwnd(sk); /* note cwnd so we can restore it */
755 bbr->probe_rtt_done_stamp = 0;
758 if (bbr->mode == BBR_PROBE_RTT) {
759 /* Ignore low rate samples during this mode. */
760 tp->app_limited =
761 (tp->delivered + tcp_packets_in_flight(tp)) ? : 1;
762 /* Maintain min packets in flight for max(200 ms, 1 round). */
763 if (!bbr->probe_rtt_done_stamp &&
764 tcp_packets_in_flight(tp) <= bbr_cwnd_min_target) {
765 bbr->probe_rtt_done_stamp = tcp_time_stamp +
766 msecs_to_jiffies(bbr_probe_rtt_mode_ms);
767 bbr->probe_rtt_round_done = 0;
768 bbr->next_rtt_delivered = tp->delivered;
769 } else if (bbr->probe_rtt_done_stamp) {
770 if (bbr->round_start)
771 bbr->probe_rtt_round_done = 1;
772 if (bbr->probe_rtt_round_done &&
773 after(tcp_time_stamp, bbr->probe_rtt_done_stamp)) {
774 bbr->min_rtt_stamp = tcp_time_stamp;
775 bbr->restore_cwnd = 1; /* snap to prior_cwnd */
776 bbr_reset_mode(sk);
780 /* Restart after idle ends only once we process a new S/ACK for data */
781 if (rs->delivered > 0)
782 bbr->idle_restart = 0;
785 static void bbr_update_model(struct sock *sk, const struct rate_sample *rs)
787 bbr_update_bw(sk, rs);
788 bbr_update_cycle_phase(sk, rs);
789 bbr_check_full_bw_reached(sk, rs);
790 bbr_check_drain(sk, rs);
791 bbr_update_min_rtt(sk, rs);
794 static void bbr_main(struct sock *sk, const struct rate_sample *rs)
796 struct bbr *bbr = inet_csk_ca(sk);
797 u32 bw;
799 bbr_update_model(sk, rs);
801 bw = bbr_bw(sk);
802 bbr_set_pacing_rate(sk, bw, bbr->pacing_gain);
803 bbr_set_tso_segs_goal(sk);
804 bbr_set_cwnd(sk, rs, rs->acked_sacked, bw, bbr->cwnd_gain);
807 static void bbr_init(struct sock *sk)
809 struct tcp_sock *tp = tcp_sk(sk);
810 struct bbr *bbr = inet_csk_ca(sk);
812 bbr->prior_cwnd = 0;
813 bbr->tso_segs_goal = 0; /* default segs per skb until first ACK */
814 bbr->rtt_cnt = 0;
815 bbr->next_rtt_delivered = 0;
816 bbr->prev_ca_state = TCP_CA_Open;
817 bbr->packet_conservation = 0;
819 bbr->probe_rtt_done_stamp = 0;
820 bbr->probe_rtt_round_done = 0;
821 bbr->min_rtt_us = tcp_min_rtt(tp);
822 bbr->min_rtt_stamp = tcp_time_stamp;
824 minmax_reset(&bbr->bw, bbr->rtt_cnt, 0); /* init max bw to 0 */
826 bbr->has_seen_rtt = 0;
827 bbr_init_pacing_rate_from_rtt(sk);
829 bbr->restore_cwnd = 0;
830 bbr->round_start = 0;
831 bbr->idle_restart = 0;
832 bbr->full_bw_reached = 0;
833 bbr->full_bw = 0;
834 bbr->full_bw_cnt = 0;
835 bbr->cycle_mstamp.v64 = 0;
836 bbr->cycle_idx = 0;
837 bbr_reset_lt_bw_sampling(sk);
838 bbr_reset_startup_mode(sk);
841 static u32 bbr_sndbuf_expand(struct sock *sk)
843 /* Provision 3 * cwnd since BBR may slow-start even during recovery. */
844 return 3;
847 /* In theory BBR does not need to undo the cwnd since it does not
848 * always reduce cwnd on losses (see bbr_main()). Keep it for now.
850 static u32 bbr_undo_cwnd(struct sock *sk)
852 struct bbr *bbr = inet_csk_ca(sk);
854 bbr->full_bw = 0; /* spurious slow-down; reset full pipe detection */
855 bbr->full_bw_cnt = 0;
856 bbr_reset_lt_bw_sampling(sk);
857 return tcp_sk(sk)->snd_cwnd;
860 /* Entering loss recovery, so save cwnd for when we exit or undo recovery. */
861 static u32 bbr_ssthresh(struct sock *sk)
863 bbr_save_cwnd(sk);
864 return TCP_INFINITE_SSTHRESH; /* BBR does not use ssthresh */
867 static size_t bbr_get_info(struct sock *sk, u32 ext, int *attr,
868 union tcp_cc_info *info)
870 if (ext & (1 << (INET_DIAG_BBRINFO - 1)) ||
871 ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
872 struct tcp_sock *tp = tcp_sk(sk);
873 struct bbr *bbr = inet_csk_ca(sk);
874 u64 bw = bbr_bw(sk);
876 bw = bw * tp->mss_cache * USEC_PER_SEC >> BW_SCALE;
877 memset(&info->bbr, 0, sizeof(info->bbr));
878 info->bbr.bbr_bw_lo = (u32)bw;
879 info->bbr.bbr_bw_hi = (u32)(bw >> 32);
880 info->bbr.bbr_min_rtt = bbr->min_rtt_us;
881 info->bbr.bbr_pacing_gain = bbr->pacing_gain;
882 info->bbr.bbr_cwnd_gain = bbr->cwnd_gain;
883 *attr = INET_DIAG_BBRINFO;
884 return sizeof(info->bbr);
886 return 0;
889 static void bbr_set_state(struct sock *sk, u8 new_state)
891 struct bbr *bbr = inet_csk_ca(sk);
893 if (new_state == TCP_CA_Loss) {
894 struct rate_sample rs = { .losses = 1 };
896 bbr->prev_ca_state = TCP_CA_Loss;
897 bbr->full_bw = 0;
898 bbr->round_start = 1; /* treat RTO like end of a round */
899 bbr_lt_bw_sampling(sk, &rs);
903 static struct tcp_congestion_ops tcp_bbr_cong_ops __read_mostly = {
904 .flags = TCP_CONG_NON_RESTRICTED,
905 .name = "bbr",
906 .owner = THIS_MODULE,
907 .init = bbr_init,
908 .cong_control = bbr_main,
909 .sndbuf_expand = bbr_sndbuf_expand,
910 .undo_cwnd = bbr_undo_cwnd,
911 .cwnd_event = bbr_cwnd_event,
912 .ssthresh = bbr_ssthresh,
913 .tso_segs_goal = bbr_tso_segs_goal,
914 .get_info = bbr_get_info,
915 .set_state = bbr_set_state,
918 static int __init bbr_register(void)
920 BUILD_BUG_ON(sizeof(struct bbr) > ICSK_CA_PRIV_SIZE);
921 return tcp_register_congestion_control(&tcp_bbr_cong_ops);
924 static void __exit bbr_unregister(void)
926 tcp_unregister_congestion_control(&tcp_bbr_cong_ops);
929 module_init(bbr_register);
930 module_exit(bbr_unregister);
932 MODULE_AUTHOR("Van Jacobson <vanj@google.com>");
933 MODULE_AUTHOR("Neal Cardwell <ncardwell@google.com>");
934 MODULE_AUTHOR("Yuchung Cheng <ycheng@google.com>");
935 MODULE_AUTHOR("Soheil Hassas Yeganeh <soheil@google.com>");
936 MODULE_LICENSE("Dual BSD/GPL");
937 MODULE_DESCRIPTION("TCP BBR (Bottleneck Bandwidth and RTT)");