powerpc: Update powermac MAINTAINERS entry
[linux/fpc-iii.git] / kernel / audit.c
blob17b0d523afb35cea50ee0ea8c5063c08b4cd209e
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
51 #include <linux/audit.h>
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
63 #include "audit.h"
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66 * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED -1
68 #define AUDIT_UNINITIALIZED 0
69 #define AUDIT_INITIALIZED 1
70 static int audit_initialized;
72 u32 audit_enabled = AUDIT_OFF;
73 bool audit_ever_enabled = !!AUDIT_OFF;
75 EXPORT_SYMBOL_GPL(audit_enabled);
77 /* Default state when kernel boots without any parameters. */
78 static u32 audit_default = AUDIT_OFF;
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32 audit_failure = AUDIT_FAIL_PRINTK;
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
86 /**
87 * struct audit_net - audit private network namespace data
88 * @sk: communication socket
90 struct audit_net {
91 struct sock *sk;
94 /**
95 * struct auditd_connection - kernel/auditd connection state
96 * @pid: auditd PID
97 * @portid: netlink portid
98 * @net: the associated network namespace
99 * @rcu: RCU head
101 * Description:
102 * This struct is RCU protected; you must either hold the RCU lock for reading
103 * or the associated spinlock for writing.
105 struct auditd_connection {
106 struct pid *pid;
107 u32 portid;
108 struct net *net;
109 struct rcu_head rcu;
111 static struct auditd_connection __rcu *auditd_conn;
112 static DEFINE_SPINLOCK(auditd_conn_lock);
114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
115 * to that number per second. This prevents DoS attacks, but results in
116 * audit records being dropped. */
117 static u32 audit_rate_limit;
119 /* Number of outstanding audit_buffers allowed.
120 * When set to zero, this means unlimited. */
121 static u32 audit_backlog_limit = 64;
122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
125 /* The identity of the user shutting down the audit system. */
126 kuid_t audit_sig_uid = INVALID_UID;
127 pid_t audit_sig_pid = -1;
128 u32 audit_sig_sid = 0;
130 /* Records can be lost in several ways:
131 0) [suppressed in audit_alloc]
132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
133 2) out of memory in audit_log_move [alloc_skb]
134 3) suppressed due to audit_rate_limit
135 4) suppressed due to audit_backlog_limit
137 static atomic_t audit_lost = ATOMIC_INIT(0);
139 /* Hash for inode-based rules */
140 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
142 static struct kmem_cache *audit_buffer_cache;
144 /* queue msgs to send via kauditd_task */
145 static struct sk_buff_head audit_queue;
146 /* queue msgs due to temporary unicast send problems */
147 static struct sk_buff_head audit_retry_queue;
148 /* queue msgs waiting for new auditd connection */
149 static struct sk_buff_head audit_hold_queue;
151 /* queue servicing thread */
152 static struct task_struct *kauditd_task;
153 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
155 /* waitqueue for callers who are blocked on the audit backlog */
156 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
158 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
159 .mask = -1,
160 .features = 0,
161 .lock = 0,};
163 static char *audit_feature_names[2] = {
164 "only_unset_loginuid",
165 "loginuid_immutable",
169 * struct audit_ctl_mutex - serialize requests from userspace
170 * @lock: the mutex used for locking
171 * @owner: the task which owns the lock
173 * Description:
174 * This is the lock struct used to ensure we only process userspace requests
175 * in an orderly fashion. We can't simply use a mutex/lock here because we
176 * need to track lock ownership so we don't end up blocking the lock owner in
177 * audit_log_start() or similar.
179 static struct audit_ctl_mutex {
180 struct mutex lock;
181 void *owner;
182 } audit_cmd_mutex;
184 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
185 * audit records. Since printk uses a 1024 byte buffer, this buffer
186 * should be at least that large. */
187 #define AUDIT_BUFSIZ 1024
189 /* The audit_buffer is used when formatting an audit record. The caller
190 * locks briefly to get the record off the freelist or to allocate the
191 * buffer, and locks briefly to send the buffer to the netlink layer or
192 * to place it on a transmit queue. Multiple audit_buffers can be in
193 * use simultaneously. */
194 struct audit_buffer {
195 struct sk_buff *skb; /* formatted skb ready to send */
196 struct audit_context *ctx; /* NULL or associated context */
197 gfp_t gfp_mask;
200 struct audit_reply {
201 __u32 portid;
202 struct net *net;
203 struct sk_buff *skb;
207 * auditd_test_task - Check to see if a given task is an audit daemon
208 * @task: the task to check
210 * Description:
211 * Return 1 if the task is a registered audit daemon, 0 otherwise.
213 int auditd_test_task(struct task_struct *task)
215 int rc;
216 struct auditd_connection *ac;
218 rcu_read_lock();
219 ac = rcu_dereference(auditd_conn);
220 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
221 rcu_read_unlock();
223 return rc;
227 * audit_ctl_lock - Take the audit control lock
229 void audit_ctl_lock(void)
231 mutex_lock(&audit_cmd_mutex.lock);
232 audit_cmd_mutex.owner = current;
236 * audit_ctl_unlock - Drop the audit control lock
238 void audit_ctl_unlock(void)
240 audit_cmd_mutex.owner = NULL;
241 mutex_unlock(&audit_cmd_mutex.lock);
245 * audit_ctl_owner_current - Test to see if the current task owns the lock
247 * Description:
248 * Return true if the current task owns the audit control lock, false if it
249 * doesn't own the lock.
251 static bool audit_ctl_owner_current(void)
253 return (current == audit_cmd_mutex.owner);
257 * auditd_pid_vnr - Return the auditd PID relative to the namespace
259 * Description:
260 * Returns the PID in relation to the namespace, 0 on failure.
262 static pid_t auditd_pid_vnr(void)
264 pid_t pid;
265 const struct auditd_connection *ac;
267 rcu_read_lock();
268 ac = rcu_dereference(auditd_conn);
269 if (!ac || !ac->pid)
270 pid = 0;
271 else
272 pid = pid_vnr(ac->pid);
273 rcu_read_unlock();
275 return pid;
279 * audit_get_sk - Return the audit socket for the given network namespace
280 * @net: the destination network namespace
282 * Description:
283 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
284 * that a reference is held for the network namespace while the sock is in use.
286 static struct sock *audit_get_sk(const struct net *net)
288 struct audit_net *aunet;
290 if (!net)
291 return NULL;
293 aunet = net_generic(net, audit_net_id);
294 return aunet->sk;
297 void audit_panic(const char *message)
299 switch (audit_failure) {
300 case AUDIT_FAIL_SILENT:
301 break;
302 case AUDIT_FAIL_PRINTK:
303 if (printk_ratelimit())
304 pr_err("%s\n", message);
305 break;
306 case AUDIT_FAIL_PANIC:
307 panic("audit: %s\n", message);
308 break;
312 static inline int audit_rate_check(void)
314 static unsigned long last_check = 0;
315 static int messages = 0;
316 static DEFINE_SPINLOCK(lock);
317 unsigned long flags;
318 unsigned long now;
319 unsigned long elapsed;
320 int retval = 0;
322 if (!audit_rate_limit) return 1;
324 spin_lock_irqsave(&lock, flags);
325 if (++messages < audit_rate_limit) {
326 retval = 1;
327 } else {
328 now = jiffies;
329 elapsed = now - last_check;
330 if (elapsed > HZ) {
331 last_check = now;
332 messages = 0;
333 retval = 1;
336 spin_unlock_irqrestore(&lock, flags);
338 return retval;
342 * audit_log_lost - conditionally log lost audit message event
343 * @message: the message stating reason for lost audit message
345 * Emit at least 1 message per second, even if audit_rate_check is
346 * throttling.
347 * Always increment the lost messages counter.
349 void audit_log_lost(const char *message)
351 static unsigned long last_msg = 0;
352 static DEFINE_SPINLOCK(lock);
353 unsigned long flags;
354 unsigned long now;
355 int print;
357 atomic_inc(&audit_lost);
359 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
361 if (!print) {
362 spin_lock_irqsave(&lock, flags);
363 now = jiffies;
364 if (now - last_msg > HZ) {
365 print = 1;
366 last_msg = now;
368 spin_unlock_irqrestore(&lock, flags);
371 if (print) {
372 if (printk_ratelimit())
373 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
374 atomic_read(&audit_lost),
375 audit_rate_limit,
376 audit_backlog_limit);
377 audit_panic(message);
381 static int audit_log_config_change(char *function_name, u32 new, u32 old,
382 int allow_changes)
384 struct audit_buffer *ab;
385 int rc = 0;
387 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
388 if (unlikely(!ab))
389 return rc;
390 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
391 audit_log_session_info(ab);
392 rc = audit_log_task_context(ab);
393 if (rc)
394 allow_changes = 0; /* Something weird, deny request */
395 audit_log_format(ab, " res=%d", allow_changes);
396 audit_log_end(ab);
397 return rc;
400 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
402 int allow_changes, rc = 0;
403 u32 old = *to_change;
405 /* check if we are locked */
406 if (audit_enabled == AUDIT_LOCKED)
407 allow_changes = 0;
408 else
409 allow_changes = 1;
411 if (audit_enabled != AUDIT_OFF) {
412 rc = audit_log_config_change(function_name, new, old, allow_changes);
413 if (rc)
414 allow_changes = 0;
417 /* If we are allowed, make the change */
418 if (allow_changes == 1)
419 *to_change = new;
420 /* Not allowed, update reason */
421 else if (rc == 0)
422 rc = -EPERM;
423 return rc;
426 static int audit_set_rate_limit(u32 limit)
428 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
431 static int audit_set_backlog_limit(u32 limit)
433 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
436 static int audit_set_backlog_wait_time(u32 timeout)
438 return audit_do_config_change("audit_backlog_wait_time",
439 &audit_backlog_wait_time, timeout);
442 static int audit_set_enabled(u32 state)
444 int rc;
445 if (state > AUDIT_LOCKED)
446 return -EINVAL;
448 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
449 if (!rc)
450 audit_ever_enabled |= !!state;
452 return rc;
455 static int audit_set_failure(u32 state)
457 if (state != AUDIT_FAIL_SILENT
458 && state != AUDIT_FAIL_PRINTK
459 && state != AUDIT_FAIL_PANIC)
460 return -EINVAL;
462 return audit_do_config_change("audit_failure", &audit_failure, state);
466 * auditd_conn_free - RCU helper to release an auditd connection struct
467 * @rcu: RCU head
469 * Description:
470 * Drop any references inside the auditd connection tracking struct and free
471 * the memory.
473 static void auditd_conn_free(struct rcu_head *rcu)
475 struct auditd_connection *ac;
477 ac = container_of(rcu, struct auditd_connection, rcu);
478 put_pid(ac->pid);
479 put_net(ac->net);
480 kfree(ac);
484 * auditd_set - Set/Reset the auditd connection state
485 * @pid: auditd PID
486 * @portid: auditd netlink portid
487 * @net: auditd network namespace pointer
489 * Description:
490 * This function will obtain and drop network namespace references as
491 * necessary. Returns zero on success, negative values on failure.
493 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
495 unsigned long flags;
496 struct auditd_connection *ac_old, *ac_new;
498 if (!pid || !net)
499 return -EINVAL;
501 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
502 if (!ac_new)
503 return -ENOMEM;
504 ac_new->pid = get_pid(pid);
505 ac_new->portid = portid;
506 ac_new->net = get_net(net);
508 spin_lock_irqsave(&auditd_conn_lock, flags);
509 ac_old = rcu_dereference_protected(auditd_conn,
510 lockdep_is_held(&auditd_conn_lock));
511 rcu_assign_pointer(auditd_conn, ac_new);
512 spin_unlock_irqrestore(&auditd_conn_lock, flags);
514 if (ac_old)
515 call_rcu(&ac_old->rcu, auditd_conn_free);
517 return 0;
521 * kauditd_print_skb - Print the audit record to the ring buffer
522 * @skb: audit record
524 * Whatever the reason, this packet may not make it to the auditd connection
525 * so write it via printk so the information isn't completely lost.
527 static void kauditd_printk_skb(struct sk_buff *skb)
529 struct nlmsghdr *nlh = nlmsg_hdr(skb);
530 char *data = nlmsg_data(nlh);
532 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
533 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
537 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
538 * @skb: audit record
540 * Description:
541 * This should only be used by the kauditd_thread when it fails to flush the
542 * hold queue.
544 static void kauditd_rehold_skb(struct sk_buff *skb)
546 /* put the record back in the queue at the same place */
547 skb_queue_head(&audit_hold_queue, skb);
551 * kauditd_hold_skb - Queue an audit record, waiting for auditd
552 * @skb: audit record
554 * Description:
555 * Queue the audit record, waiting for an instance of auditd. When this
556 * function is called we haven't given up yet on sending the record, but things
557 * are not looking good. The first thing we want to do is try to write the
558 * record via printk and then see if we want to try and hold on to the record
559 * and queue it, if we have room. If we want to hold on to the record, but we
560 * don't have room, record a record lost message.
562 static void kauditd_hold_skb(struct sk_buff *skb)
564 /* at this point it is uncertain if we will ever send this to auditd so
565 * try to send the message via printk before we go any further */
566 kauditd_printk_skb(skb);
568 /* can we just silently drop the message? */
569 if (!audit_default) {
570 kfree_skb(skb);
571 return;
574 /* if we have room, queue the message */
575 if (!audit_backlog_limit ||
576 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
577 skb_queue_tail(&audit_hold_queue, skb);
578 return;
581 /* we have no other options - drop the message */
582 audit_log_lost("kauditd hold queue overflow");
583 kfree_skb(skb);
587 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
588 * @skb: audit record
590 * Description:
591 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
592 * but for some reason we are having problems sending it audit records so
593 * queue the given record and attempt to resend.
595 static void kauditd_retry_skb(struct sk_buff *skb)
597 /* NOTE: because records should only live in the retry queue for a
598 * short period of time, before either being sent or moved to the hold
599 * queue, we don't currently enforce a limit on this queue */
600 skb_queue_tail(&audit_retry_queue, skb);
604 * auditd_reset - Disconnect the auditd connection
605 * @ac: auditd connection state
607 * Description:
608 * Break the auditd/kauditd connection and move all the queued records into the
609 * hold queue in case auditd reconnects. It is important to note that the @ac
610 * pointer should never be dereferenced inside this function as it may be NULL
611 * or invalid, you can only compare the memory address! If @ac is NULL then
612 * the connection will always be reset.
614 static void auditd_reset(const struct auditd_connection *ac)
616 unsigned long flags;
617 struct sk_buff *skb;
618 struct auditd_connection *ac_old;
620 /* if it isn't already broken, break the connection */
621 spin_lock_irqsave(&auditd_conn_lock, flags);
622 ac_old = rcu_dereference_protected(auditd_conn,
623 lockdep_is_held(&auditd_conn_lock));
624 if (ac && ac != ac_old) {
625 /* someone already registered a new auditd connection */
626 spin_unlock_irqrestore(&auditd_conn_lock, flags);
627 return;
629 rcu_assign_pointer(auditd_conn, NULL);
630 spin_unlock_irqrestore(&auditd_conn_lock, flags);
632 if (ac_old)
633 call_rcu(&ac_old->rcu, auditd_conn_free);
635 /* flush the retry queue to the hold queue, but don't touch the main
636 * queue since we need to process that normally for multicast */
637 while ((skb = skb_dequeue(&audit_retry_queue)))
638 kauditd_hold_skb(skb);
642 * auditd_send_unicast_skb - Send a record via unicast to auditd
643 * @skb: audit record
645 * Description:
646 * Send a skb to the audit daemon, returns positive/zero values on success and
647 * negative values on failure; in all cases the skb will be consumed by this
648 * function. If the send results in -ECONNREFUSED the connection with auditd
649 * will be reset. This function may sleep so callers should not hold any locks
650 * where this would cause a problem.
652 static int auditd_send_unicast_skb(struct sk_buff *skb)
654 int rc;
655 u32 portid;
656 struct net *net;
657 struct sock *sk;
658 struct auditd_connection *ac;
660 /* NOTE: we can't call netlink_unicast while in the RCU section so
661 * take a reference to the network namespace and grab local
662 * copies of the namespace, the sock, and the portid; the
663 * namespace and sock aren't going to go away while we hold a
664 * reference and if the portid does become invalid after the RCU
665 * section netlink_unicast() should safely return an error */
667 rcu_read_lock();
668 ac = rcu_dereference(auditd_conn);
669 if (!ac) {
670 rcu_read_unlock();
671 kfree_skb(skb);
672 rc = -ECONNREFUSED;
673 goto err;
675 net = get_net(ac->net);
676 sk = audit_get_sk(net);
677 portid = ac->portid;
678 rcu_read_unlock();
680 rc = netlink_unicast(sk, skb, portid, 0);
681 put_net(net);
682 if (rc < 0)
683 goto err;
685 return rc;
687 err:
688 if (ac && rc == -ECONNREFUSED)
689 auditd_reset(ac);
690 return rc;
694 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
695 * @sk: the sending sock
696 * @portid: the netlink destination
697 * @queue: the skb queue to process
698 * @retry_limit: limit on number of netlink unicast failures
699 * @skb_hook: per-skb hook for additional processing
700 * @err_hook: hook called if the skb fails the netlink unicast send
702 * Description:
703 * Run through the given queue and attempt to send the audit records to auditd,
704 * returns zero on success, negative values on failure. It is up to the caller
705 * to ensure that the @sk is valid for the duration of this function.
708 static int kauditd_send_queue(struct sock *sk, u32 portid,
709 struct sk_buff_head *queue,
710 unsigned int retry_limit,
711 void (*skb_hook)(struct sk_buff *skb),
712 void (*err_hook)(struct sk_buff *skb))
714 int rc = 0;
715 struct sk_buff *skb;
716 static unsigned int failed = 0;
718 /* NOTE: kauditd_thread takes care of all our locking, we just use
719 * the netlink info passed to us (e.g. sk and portid) */
721 while ((skb = skb_dequeue(queue))) {
722 /* call the skb_hook for each skb we touch */
723 if (skb_hook)
724 (*skb_hook)(skb);
726 /* can we send to anyone via unicast? */
727 if (!sk) {
728 if (err_hook)
729 (*err_hook)(skb);
730 continue;
733 /* grab an extra skb reference in case of error */
734 skb_get(skb);
735 rc = netlink_unicast(sk, skb, portid, 0);
736 if (rc < 0) {
737 /* fatal failure for our queue flush attempt? */
738 if (++failed >= retry_limit ||
739 rc == -ECONNREFUSED || rc == -EPERM) {
740 /* yes - error processing for the queue */
741 sk = NULL;
742 if (err_hook)
743 (*err_hook)(skb);
744 if (!skb_hook)
745 goto out;
746 /* keep processing with the skb_hook */
747 continue;
748 } else
749 /* no - requeue to preserve ordering */
750 skb_queue_head(queue, skb);
751 } else {
752 /* it worked - drop the extra reference and continue */
753 consume_skb(skb);
754 failed = 0;
758 out:
759 return (rc >= 0 ? 0 : rc);
763 * kauditd_send_multicast_skb - Send a record to any multicast listeners
764 * @skb: audit record
766 * Description:
767 * Write a multicast message to anyone listening in the initial network
768 * namespace. This function doesn't consume an skb as might be expected since
769 * it has to copy it anyways.
771 static void kauditd_send_multicast_skb(struct sk_buff *skb)
773 struct sk_buff *copy;
774 struct sock *sock = audit_get_sk(&init_net);
775 struct nlmsghdr *nlh;
777 /* NOTE: we are not taking an additional reference for init_net since
778 * we don't have to worry about it going away */
780 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
781 return;
784 * The seemingly wasteful skb_copy() rather than bumping the refcount
785 * using skb_get() is necessary because non-standard mods are made to
786 * the skb by the original kaudit unicast socket send routine. The
787 * existing auditd daemon assumes this breakage. Fixing this would
788 * require co-ordinating a change in the established protocol between
789 * the kaudit kernel subsystem and the auditd userspace code. There is
790 * no reason for new multicast clients to continue with this
791 * non-compliance.
793 copy = skb_copy(skb, GFP_KERNEL);
794 if (!copy)
795 return;
796 nlh = nlmsg_hdr(copy);
797 nlh->nlmsg_len = skb->len;
799 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
803 * kauditd_thread - Worker thread to send audit records to userspace
804 * @dummy: unused
806 static int kauditd_thread(void *dummy)
808 int rc;
809 u32 portid = 0;
810 struct net *net = NULL;
811 struct sock *sk = NULL;
812 struct auditd_connection *ac;
814 #define UNICAST_RETRIES 5
816 set_freezable();
817 while (!kthread_should_stop()) {
818 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
819 rcu_read_lock();
820 ac = rcu_dereference(auditd_conn);
821 if (!ac) {
822 rcu_read_unlock();
823 goto main_queue;
825 net = get_net(ac->net);
826 sk = audit_get_sk(net);
827 portid = ac->portid;
828 rcu_read_unlock();
830 /* attempt to flush the hold queue */
831 rc = kauditd_send_queue(sk, portid,
832 &audit_hold_queue, UNICAST_RETRIES,
833 NULL, kauditd_rehold_skb);
834 if (rc < 0) {
835 sk = NULL;
836 auditd_reset(ac);
837 goto main_queue;
840 /* attempt to flush the retry queue */
841 rc = kauditd_send_queue(sk, portid,
842 &audit_retry_queue, UNICAST_RETRIES,
843 NULL, kauditd_hold_skb);
844 if (rc < 0) {
845 sk = NULL;
846 auditd_reset(ac);
847 goto main_queue;
850 main_queue:
851 /* process the main queue - do the multicast send and attempt
852 * unicast, dump failed record sends to the retry queue; if
853 * sk == NULL due to previous failures we will just do the
854 * multicast send and move the record to the hold queue */
855 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
856 kauditd_send_multicast_skb,
857 (sk ?
858 kauditd_retry_skb : kauditd_hold_skb));
859 if (ac && rc < 0)
860 auditd_reset(ac);
861 sk = NULL;
863 /* drop our netns reference, no auditd sends past this line */
864 if (net) {
865 put_net(net);
866 net = NULL;
869 /* we have processed all the queues so wake everyone */
870 wake_up(&audit_backlog_wait);
872 /* NOTE: we want to wake up if there is anything on the queue,
873 * regardless of if an auditd is connected, as we need to
874 * do the multicast send and rotate records from the
875 * main queue to the retry/hold queues */
876 wait_event_freezable(kauditd_wait,
877 (skb_queue_len(&audit_queue) ? 1 : 0));
880 return 0;
883 int audit_send_list(void *_dest)
885 struct audit_netlink_list *dest = _dest;
886 struct sk_buff *skb;
887 struct sock *sk = audit_get_sk(dest->net);
889 /* wait for parent to finish and send an ACK */
890 audit_ctl_lock();
891 audit_ctl_unlock();
893 while ((skb = __skb_dequeue(&dest->q)) != NULL)
894 netlink_unicast(sk, skb, dest->portid, 0);
896 put_net(dest->net);
897 kfree(dest);
899 return 0;
902 struct sk_buff *audit_make_reply(int seq, int type, int done,
903 int multi, const void *payload, int size)
905 struct sk_buff *skb;
906 struct nlmsghdr *nlh;
907 void *data;
908 int flags = multi ? NLM_F_MULTI : 0;
909 int t = done ? NLMSG_DONE : type;
911 skb = nlmsg_new(size, GFP_KERNEL);
912 if (!skb)
913 return NULL;
915 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
916 if (!nlh)
917 goto out_kfree_skb;
918 data = nlmsg_data(nlh);
919 memcpy(data, payload, size);
920 return skb;
922 out_kfree_skb:
923 kfree_skb(skb);
924 return NULL;
927 static int audit_send_reply_thread(void *arg)
929 struct audit_reply *reply = (struct audit_reply *)arg;
930 struct sock *sk = audit_get_sk(reply->net);
932 audit_ctl_lock();
933 audit_ctl_unlock();
935 /* Ignore failure. It'll only happen if the sender goes away,
936 because our timeout is set to infinite. */
937 netlink_unicast(sk, reply->skb, reply->portid, 0);
938 put_net(reply->net);
939 kfree(reply);
940 return 0;
944 * audit_send_reply - send an audit reply message via netlink
945 * @request_skb: skb of request we are replying to (used to target the reply)
946 * @seq: sequence number
947 * @type: audit message type
948 * @done: done (last) flag
949 * @multi: multi-part message flag
950 * @payload: payload data
951 * @size: payload size
953 * Allocates an skb, builds the netlink message, and sends it to the port id.
954 * No failure notifications.
956 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
957 int multi, const void *payload, int size)
959 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
960 struct sk_buff *skb;
961 struct task_struct *tsk;
962 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
963 GFP_KERNEL);
965 if (!reply)
966 return;
968 skb = audit_make_reply(seq, type, done, multi, payload, size);
969 if (!skb)
970 goto out;
972 reply->net = get_net(net);
973 reply->portid = NETLINK_CB(request_skb).portid;
974 reply->skb = skb;
976 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
977 if (!IS_ERR(tsk))
978 return;
979 kfree_skb(skb);
980 out:
981 kfree(reply);
985 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
986 * control messages.
988 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
990 int err = 0;
992 /* Only support initial user namespace for now. */
994 * We return ECONNREFUSED because it tricks userspace into thinking
995 * that audit was not configured into the kernel. Lots of users
996 * configure their PAM stack (because that's what the distro does)
997 * to reject login if unable to send messages to audit. If we return
998 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
999 * configured in and will let login proceed. If we return EPERM
1000 * userspace will reject all logins. This should be removed when we
1001 * support non init namespaces!!
1003 if (current_user_ns() != &init_user_ns)
1004 return -ECONNREFUSED;
1006 switch (msg_type) {
1007 case AUDIT_LIST:
1008 case AUDIT_ADD:
1009 case AUDIT_DEL:
1010 return -EOPNOTSUPP;
1011 case AUDIT_GET:
1012 case AUDIT_SET:
1013 case AUDIT_GET_FEATURE:
1014 case AUDIT_SET_FEATURE:
1015 case AUDIT_LIST_RULES:
1016 case AUDIT_ADD_RULE:
1017 case AUDIT_DEL_RULE:
1018 case AUDIT_SIGNAL_INFO:
1019 case AUDIT_TTY_GET:
1020 case AUDIT_TTY_SET:
1021 case AUDIT_TRIM:
1022 case AUDIT_MAKE_EQUIV:
1023 /* Only support auditd and auditctl in initial pid namespace
1024 * for now. */
1025 if (task_active_pid_ns(current) != &init_pid_ns)
1026 return -EPERM;
1028 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1029 err = -EPERM;
1030 break;
1031 case AUDIT_USER:
1032 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1033 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1034 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1035 err = -EPERM;
1036 break;
1037 default: /* bad msg */
1038 err = -EINVAL;
1041 return err;
1044 static void audit_log_common_recv_msg(struct audit_context *context,
1045 struct audit_buffer **ab, u16 msg_type)
1047 uid_t uid = from_kuid(&init_user_ns, current_uid());
1048 pid_t pid = task_tgid_nr(current);
1050 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1051 *ab = NULL;
1052 return;
1055 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1056 if (unlikely(!*ab))
1057 return;
1058 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1059 audit_log_session_info(*ab);
1060 audit_log_task_context(*ab);
1063 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1064 u16 msg_type)
1066 audit_log_common_recv_msg(NULL, ab, msg_type);
1069 int is_audit_feature_set(int i)
1071 return af.features & AUDIT_FEATURE_TO_MASK(i);
1075 static int audit_get_feature(struct sk_buff *skb)
1077 u32 seq;
1079 seq = nlmsg_hdr(skb)->nlmsg_seq;
1081 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1083 return 0;
1086 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1087 u32 old_lock, u32 new_lock, int res)
1089 struct audit_buffer *ab;
1091 if (audit_enabled == AUDIT_OFF)
1092 return;
1094 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1095 if (!ab)
1096 return;
1097 audit_log_task_info(ab);
1098 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1099 audit_feature_names[which], !!old_feature, !!new_feature,
1100 !!old_lock, !!new_lock, res);
1101 audit_log_end(ab);
1104 static int audit_set_feature(struct sk_buff *skb)
1106 struct audit_features *uaf;
1107 int i;
1109 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1110 uaf = nlmsg_data(nlmsg_hdr(skb));
1112 /* if there is ever a version 2 we should handle that here */
1114 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1115 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1116 u32 old_feature, new_feature, old_lock, new_lock;
1118 /* if we are not changing this feature, move along */
1119 if (!(feature & uaf->mask))
1120 continue;
1122 old_feature = af.features & feature;
1123 new_feature = uaf->features & feature;
1124 new_lock = (uaf->lock | af.lock) & feature;
1125 old_lock = af.lock & feature;
1127 /* are we changing a locked feature? */
1128 if (old_lock && (new_feature != old_feature)) {
1129 audit_log_feature_change(i, old_feature, new_feature,
1130 old_lock, new_lock, 0);
1131 return -EPERM;
1134 /* nothing invalid, do the changes */
1135 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1136 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1137 u32 old_feature, new_feature, old_lock, new_lock;
1139 /* if we are not changing this feature, move along */
1140 if (!(feature & uaf->mask))
1141 continue;
1143 old_feature = af.features & feature;
1144 new_feature = uaf->features & feature;
1145 old_lock = af.lock & feature;
1146 new_lock = (uaf->lock | af.lock) & feature;
1148 if (new_feature != old_feature)
1149 audit_log_feature_change(i, old_feature, new_feature,
1150 old_lock, new_lock, 1);
1152 if (new_feature)
1153 af.features |= feature;
1154 else
1155 af.features &= ~feature;
1156 af.lock |= new_lock;
1159 return 0;
1162 static int audit_replace(struct pid *pid)
1164 pid_t pvnr;
1165 struct sk_buff *skb;
1167 pvnr = pid_vnr(pid);
1168 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1169 if (!skb)
1170 return -ENOMEM;
1171 return auditd_send_unicast_skb(skb);
1174 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1176 u32 seq;
1177 void *data;
1178 int err;
1179 struct audit_buffer *ab;
1180 u16 msg_type = nlh->nlmsg_type;
1181 struct audit_sig_info *sig_data;
1182 char *ctx = NULL;
1183 u32 len;
1185 err = audit_netlink_ok(skb, msg_type);
1186 if (err)
1187 return err;
1189 seq = nlh->nlmsg_seq;
1190 data = nlmsg_data(nlh);
1192 switch (msg_type) {
1193 case AUDIT_GET: {
1194 struct audit_status s;
1195 memset(&s, 0, sizeof(s));
1196 s.enabled = audit_enabled;
1197 s.failure = audit_failure;
1198 /* NOTE: use pid_vnr() so the PID is relative to the current
1199 * namespace */
1200 s.pid = auditd_pid_vnr();
1201 s.rate_limit = audit_rate_limit;
1202 s.backlog_limit = audit_backlog_limit;
1203 s.lost = atomic_read(&audit_lost);
1204 s.backlog = skb_queue_len(&audit_queue);
1205 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1206 s.backlog_wait_time = audit_backlog_wait_time;
1207 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1208 break;
1210 case AUDIT_SET: {
1211 struct audit_status s;
1212 memset(&s, 0, sizeof(s));
1213 /* guard against past and future API changes */
1214 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1215 if (s.mask & AUDIT_STATUS_ENABLED) {
1216 err = audit_set_enabled(s.enabled);
1217 if (err < 0)
1218 return err;
1220 if (s.mask & AUDIT_STATUS_FAILURE) {
1221 err = audit_set_failure(s.failure);
1222 if (err < 0)
1223 return err;
1225 if (s.mask & AUDIT_STATUS_PID) {
1226 /* NOTE: we are using the vnr PID functions below
1227 * because the s.pid value is relative to the
1228 * namespace of the caller; at present this
1229 * doesn't matter much since you can really only
1230 * run auditd from the initial pid namespace, but
1231 * something to keep in mind if this changes */
1232 pid_t new_pid = s.pid;
1233 pid_t auditd_pid;
1234 struct pid *req_pid = task_tgid(current);
1236 /* Sanity check - PID values must match. Setting
1237 * pid to 0 is how auditd ends auditing. */
1238 if (new_pid && (new_pid != pid_vnr(req_pid)))
1239 return -EINVAL;
1241 /* test the auditd connection */
1242 audit_replace(req_pid);
1244 auditd_pid = auditd_pid_vnr();
1245 if (auditd_pid) {
1246 /* replacing a healthy auditd is not allowed */
1247 if (new_pid) {
1248 audit_log_config_change("audit_pid",
1249 new_pid, auditd_pid, 0);
1250 return -EEXIST;
1252 /* only current auditd can unregister itself */
1253 if (pid_vnr(req_pid) != auditd_pid) {
1254 audit_log_config_change("audit_pid",
1255 new_pid, auditd_pid, 0);
1256 return -EACCES;
1260 if (new_pid) {
1261 /* register a new auditd connection */
1262 err = auditd_set(req_pid,
1263 NETLINK_CB(skb).portid,
1264 sock_net(NETLINK_CB(skb).sk));
1265 if (audit_enabled != AUDIT_OFF)
1266 audit_log_config_change("audit_pid",
1267 new_pid,
1268 auditd_pid,
1269 err ? 0 : 1);
1270 if (err)
1271 return err;
1273 /* try to process any backlog */
1274 wake_up_interruptible(&kauditd_wait);
1275 } else {
1276 if (audit_enabled != AUDIT_OFF)
1277 audit_log_config_change("audit_pid",
1278 new_pid,
1279 auditd_pid, 1);
1281 /* unregister the auditd connection */
1282 auditd_reset(NULL);
1285 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1286 err = audit_set_rate_limit(s.rate_limit);
1287 if (err < 0)
1288 return err;
1290 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1291 err = audit_set_backlog_limit(s.backlog_limit);
1292 if (err < 0)
1293 return err;
1295 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1296 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1297 return -EINVAL;
1298 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1299 return -EINVAL;
1300 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1301 if (err < 0)
1302 return err;
1304 if (s.mask == AUDIT_STATUS_LOST) {
1305 u32 lost = atomic_xchg(&audit_lost, 0);
1307 audit_log_config_change("lost", 0, lost, 1);
1308 return lost;
1310 break;
1312 case AUDIT_GET_FEATURE:
1313 err = audit_get_feature(skb);
1314 if (err)
1315 return err;
1316 break;
1317 case AUDIT_SET_FEATURE:
1318 err = audit_set_feature(skb);
1319 if (err)
1320 return err;
1321 break;
1322 case AUDIT_USER:
1323 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1324 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1325 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1326 return 0;
1328 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1329 if (err == 1) { /* match or error */
1330 err = 0;
1331 if (msg_type == AUDIT_USER_TTY) {
1332 err = tty_audit_push();
1333 if (err)
1334 break;
1336 audit_log_user_recv_msg(&ab, msg_type);
1337 if (msg_type != AUDIT_USER_TTY)
1338 audit_log_format(ab, " msg='%.*s'",
1339 AUDIT_MESSAGE_TEXT_MAX,
1340 (char *)data);
1341 else {
1342 int size;
1344 audit_log_format(ab, " data=");
1345 size = nlmsg_len(nlh);
1346 if (size > 0 &&
1347 ((unsigned char *)data)[size - 1] == '\0')
1348 size--;
1349 audit_log_n_untrustedstring(ab, data, size);
1351 audit_log_end(ab);
1353 break;
1354 case AUDIT_ADD_RULE:
1355 case AUDIT_DEL_RULE:
1356 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1357 return -EINVAL;
1358 if (audit_enabled == AUDIT_LOCKED) {
1359 audit_log_common_recv_msg(audit_context(), &ab,
1360 AUDIT_CONFIG_CHANGE);
1361 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1362 msg_type == AUDIT_ADD_RULE ?
1363 "add_rule" : "remove_rule",
1364 audit_enabled);
1365 audit_log_end(ab);
1366 return -EPERM;
1368 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1369 break;
1370 case AUDIT_LIST_RULES:
1371 err = audit_list_rules_send(skb, seq);
1372 break;
1373 case AUDIT_TRIM:
1374 audit_trim_trees();
1375 audit_log_common_recv_msg(audit_context(), &ab,
1376 AUDIT_CONFIG_CHANGE);
1377 audit_log_format(ab, " op=trim res=1");
1378 audit_log_end(ab);
1379 break;
1380 case AUDIT_MAKE_EQUIV: {
1381 void *bufp = data;
1382 u32 sizes[2];
1383 size_t msglen = nlmsg_len(nlh);
1384 char *old, *new;
1386 err = -EINVAL;
1387 if (msglen < 2 * sizeof(u32))
1388 break;
1389 memcpy(sizes, bufp, 2 * sizeof(u32));
1390 bufp += 2 * sizeof(u32);
1391 msglen -= 2 * sizeof(u32);
1392 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1393 if (IS_ERR(old)) {
1394 err = PTR_ERR(old);
1395 break;
1397 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1398 if (IS_ERR(new)) {
1399 err = PTR_ERR(new);
1400 kfree(old);
1401 break;
1403 /* OK, here comes... */
1404 err = audit_tag_tree(old, new);
1406 audit_log_common_recv_msg(audit_context(), &ab,
1407 AUDIT_CONFIG_CHANGE);
1408 audit_log_format(ab, " op=make_equiv old=");
1409 audit_log_untrustedstring(ab, old);
1410 audit_log_format(ab, " new=");
1411 audit_log_untrustedstring(ab, new);
1412 audit_log_format(ab, " res=%d", !err);
1413 audit_log_end(ab);
1414 kfree(old);
1415 kfree(new);
1416 break;
1418 case AUDIT_SIGNAL_INFO:
1419 len = 0;
1420 if (audit_sig_sid) {
1421 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1422 if (err)
1423 return err;
1425 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1426 if (!sig_data) {
1427 if (audit_sig_sid)
1428 security_release_secctx(ctx, len);
1429 return -ENOMEM;
1431 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1432 sig_data->pid = audit_sig_pid;
1433 if (audit_sig_sid) {
1434 memcpy(sig_data->ctx, ctx, len);
1435 security_release_secctx(ctx, len);
1437 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1438 sig_data, sizeof(*sig_data) + len);
1439 kfree(sig_data);
1440 break;
1441 case AUDIT_TTY_GET: {
1442 struct audit_tty_status s;
1443 unsigned int t;
1445 t = READ_ONCE(current->signal->audit_tty);
1446 s.enabled = t & AUDIT_TTY_ENABLE;
1447 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1449 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1450 break;
1452 case AUDIT_TTY_SET: {
1453 struct audit_tty_status s, old;
1454 struct audit_buffer *ab;
1455 unsigned int t;
1457 memset(&s, 0, sizeof(s));
1458 /* guard against past and future API changes */
1459 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1460 /* check if new data is valid */
1461 if ((s.enabled != 0 && s.enabled != 1) ||
1462 (s.log_passwd != 0 && s.log_passwd != 1))
1463 err = -EINVAL;
1465 if (err)
1466 t = READ_ONCE(current->signal->audit_tty);
1467 else {
1468 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1469 t = xchg(&current->signal->audit_tty, t);
1471 old.enabled = t & AUDIT_TTY_ENABLE;
1472 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1474 audit_log_common_recv_msg(audit_context(), &ab,
1475 AUDIT_CONFIG_CHANGE);
1476 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1477 " old-log_passwd=%d new-log_passwd=%d res=%d",
1478 old.enabled, s.enabled, old.log_passwd,
1479 s.log_passwd, !err);
1480 audit_log_end(ab);
1481 break;
1483 default:
1484 err = -EINVAL;
1485 break;
1488 return err < 0 ? err : 0;
1492 * audit_receive - receive messages from a netlink control socket
1493 * @skb: the message buffer
1495 * Parse the provided skb and deal with any messages that may be present,
1496 * malformed skbs are discarded.
1498 static void audit_receive(struct sk_buff *skb)
1500 struct nlmsghdr *nlh;
1502 * len MUST be signed for nlmsg_next to be able to dec it below 0
1503 * if the nlmsg_len was not aligned
1505 int len;
1506 int err;
1508 nlh = nlmsg_hdr(skb);
1509 len = skb->len;
1511 audit_ctl_lock();
1512 while (nlmsg_ok(nlh, len)) {
1513 err = audit_receive_msg(skb, nlh);
1514 /* if err or if this message says it wants a response */
1515 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1516 netlink_ack(skb, nlh, err, NULL);
1518 nlh = nlmsg_next(nlh, &len);
1520 audit_ctl_unlock();
1523 /* Run custom bind function on netlink socket group connect or bind requests. */
1524 static int audit_bind(struct net *net, int group)
1526 if (!capable(CAP_AUDIT_READ))
1527 return -EPERM;
1529 return 0;
1532 static int __net_init audit_net_init(struct net *net)
1534 struct netlink_kernel_cfg cfg = {
1535 .input = audit_receive,
1536 .bind = audit_bind,
1537 .flags = NL_CFG_F_NONROOT_RECV,
1538 .groups = AUDIT_NLGRP_MAX,
1541 struct audit_net *aunet = net_generic(net, audit_net_id);
1543 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1544 if (aunet->sk == NULL) {
1545 audit_panic("cannot initialize netlink socket in namespace");
1546 return -ENOMEM;
1548 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1550 return 0;
1553 static void __net_exit audit_net_exit(struct net *net)
1555 struct audit_net *aunet = net_generic(net, audit_net_id);
1557 /* NOTE: you would think that we would want to check the auditd
1558 * connection and potentially reset it here if it lives in this
1559 * namespace, but since the auditd connection tracking struct holds a
1560 * reference to this namespace (see auditd_set()) we are only ever
1561 * going to get here after that connection has been released */
1563 netlink_kernel_release(aunet->sk);
1566 static struct pernet_operations audit_net_ops __net_initdata = {
1567 .init = audit_net_init,
1568 .exit = audit_net_exit,
1569 .id = &audit_net_id,
1570 .size = sizeof(struct audit_net),
1573 /* Initialize audit support at boot time. */
1574 static int __init audit_init(void)
1576 int i;
1578 if (audit_initialized == AUDIT_DISABLED)
1579 return 0;
1581 audit_buffer_cache = kmem_cache_create("audit_buffer",
1582 sizeof(struct audit_buffer),
1583 0, SLAB_PANIC, NULL);
1585 skb_queue_head_init(&audit_queue);
1586 skb_queue_head_init(&audit_retry_queue);
1587 skb_queue_head_init(&audit_hold_queue);
1589 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1590 INIT_LIST_HEAD(&audit_inode_hash[i]);
1592 mutex_init(&audit_cmd_mutex.lock);
1593 audit_cmd_mutex.owner = NULL;
1595 pr_info("initializing netlink subsys (%s)\n",
1596 audit_default ? "enabled" : "disabled");
1597 register_pernet_subsys(&audit_net_ops);
1599 audit_initialized = AUDIT_INITIALIZED;
1601 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1602 if (IS_ERR(kauditd_task)) {
1603 int err = PTR_ERR(kauditd_task);
1604 panic("audit: failed to start the kauditd thread (%d)\n", err);
1607 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1608 "state=initialized audit_enabled=%u res=1",
1609 audit_enabled);
1611 return 0;
1613 postcore_initcall(audit_init);
1616 * Process kernel command-line parameter at boot time.
1617 * audit={0|off} or audit={1|on}.
1619 static int __init audit_enable(char *str)
1621 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1622 audit_default = AUDIT_OFF;
1623 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1624 audit_default = AUDIT_ON;
1625 else {
1626 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1627 audit_default = AUDIT_ON;
1630 if (audit_default == AUDIT_OFF)
1631 audit_initialized = AUDIT_DISABLED;
1632 if (audit_set_enabled(audit_default))
1633 pr_err("audit: error setting audit state (%d)\n",
1634 audit_default);
1636 pr_info("%s\n", audit_default ?
1637 "enabled (after initialization)" : "disabled (until reboot)");
1639 return 1;
1641 __setup("audit=", audit_enable);
1643 /* Process kernel command-line parameter at boot time.
1644 * audit_backlog_limit=<n> */
1645 static int __init audit_backlog_limit_set(char *str)
1647 u32 audit_backlog_limit_arg;
1649 pr_info("audit_backlog_limit: ");
1650 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1651 pr_cont("using default of %u, unable to parse %s\n",
1652 audit_backlog_limit, str);
1653 return 1;
1656 audit_backlog_limit = audit_backlog_limit_arg;
1657 pr_cont("%d\n", audit_backlog_limit);
1659 return 1;
1661 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1663 static void audit_buffer_free(struct audit_buffer *ab)
1665 if (!ab)
1666 return;
1668 kfree_skb(ab->skb);
1669 kmem_cache_free(audit_buffer_cache, ab);
1672 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1673 gfp_t gfp_mask, int type)
1675 struct audit_buffer *ab;
1677 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1678 if (!ab)
1679 return NULL;
1681 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1682 if (!ab->skb)
1683 goto err;
1684 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1685 goto err;
1687 ab->ctx = ctx;
1688 ab->gfp_mask = gfp_mask;
1690 return ab;
1692 err:
1693 audit_buffer_free(ab);
1694 return NULL;
1698 * audit_serial - compute a serial number for the audit record
1700 * Compute a serial number for the audit record. Audit records are
1701 * written to user-space as soon as they are generated, so a complete
1702 * audit record may be written in several pieces. The timestamp of the
1703 * record and this serial number are used by the user-space tools to
1704 * determine which pieces belong to the same audit record. The
1705 * (timestamp,serial) tuple is unique for each syscall and is live from
1706 * syscall entry to syscall exit.
1708 * NOTE: Another possibility is to store the formatted records off the
1709 * audit context (for those records that have a context), and emit them
1710 * all at syscall exit. However, this could delay the reporting of
1711 * significant errors until syscall exit (or never, if the system
1712 * halts).
1714 unsigned int audit_serial(void)
1716 static atomic_t serial = ATOMIC_INIT(0);
1718 return atomic_add_return(1, &serial);
1721 static inline void audit_get_stamp(struct audit_context *ctx,
1722 struct timespec64 *t, unsigned int *serial)
1724 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1725 ktime_get_coarse_real_ts64(t);
1726 *serial = audit_serial();
1731 * audit_log_start - obtain an audit buffer
1732 * @ctx: audit_context (may be NULL)
1733 * @gfp_mask: type of allocation
1734 * @type: audit message type
1736 * Returns audit_buffer pointer on success or NULL on error.
1738 * Obtain an audit buffer. This routine does locking to obtain the
1739 * audit buffer, but then no locking is required for calls to
1740 * audit_log_*format. If the task (ctx) is a task that is currently in a
1741 * syscall, then the syscall is marked as auditable and an audit record
1742 * will be written at syscall exit. If there is no associated task, then
1743 * task context (ctx) should be NULL.
1745 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1746 int type)
1748 struct audit_buffer *ab;
1749 struct timespec64 t;
1750 unsigned int uninitialized_var(serial);
1752 if (audit_initialized != AUDIT_INITIALIZED)
1753 return NULL;
1755 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1756 return NULL;
1758 /* NOTE: don't ever fail/sleep on these two conditions:
1759 * 1. auditd generated record - since we need auditd to drain the
1760 * queue; also, when we are checking for auditd, compare PIDs using
1761 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1762 * using a PID anchored in the caller's namespace
1763 * 2. generator holding the audit_cmd_mutex - we don't want to block
1764 * while holding the mutex */
1765 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1766 long stime = audit_backlog_wait_time;
1768 while (audit_backlog_limit &&
1769 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1770 /* wake kauditd to try and flush the queue */
1771 wake_up_interruptible(&kauditd_wait);
1773 /* sleep if we are allowed and we haven't exhausted our
1774 * backlog wait limit */
1775 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1776 DECLARE_WAITQUEUE(wait, current);
1778 add_wait_queue_exclusive(&audit_backlog_wait,
1779 &wait);
1780 set_current_state(TASK_UNINTERRUPTIBLE);
1781 stime = schedule_timeout(stime);
1782 remove_wait_queue(&audit_backlog_wait, &wait);
1783 } else {
1784 if (audit_rate_check() && printk_ratelimit())
1785 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1786 skb_queue_len(&audit_queue),
1787 audit_backlog_limit);
1788 audit_log_lost("backlog limit exceeded");
1789 return NULL;
1794 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1795 if (!ab) {
1796 audit_log_lost("out of memory in audit_log_start");
1797 return NULL;
1800 audit_get_stamp(ab->ctx, &t, &serial);
1801 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1802 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1804 return ab;
1808 * audit_expand - expand skb in the audit buffer
1809 * @ab: audit_buffer
1810 * @extra: space to add at tail of the skb
1812 * Returns 0 (no space) on failed expansion, or available space if
1813 * successful.
1815 static inline int audit_expand(struct audit_buffer *ab, int extra)
1817 struct sk_buff *skb = ab->skb;
1818 int oldtail = skb_tailroom(skb);
1819 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1820 int newtail = skb_tailroom(skb);
1822 if (ret < 0) {
1823 audit_log_lost("out of memory in audit_expand");
1824 return 0;
1827 skb->truesize += newtail - oldtail;
1828 return newtail;
1832 * Format an audit message into the audit buffer. If there isn't enough
1833 * room in the audit buffer, more room will be allocated and vsnprint
1834 * will be called a second time. Currently, we assume that a printk
1835 * can't format message larger than 1024 bytes, so we don't either.
1837 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1838 va_list args)
1840 int len, avail;
1841 struct sk_buff *skb;
1842 va_list args2;
1844 if (!ab)
1845 return;
1847 BUG_ON(!ab->skb);
1848 skb = ab->skb;
1849 avail = skb_tailroom(skb);
1850 if (avail == 0) {
1851 avail = audit_expand(ab, AUDIT_BUFSIZ);
1852 if (!avail)
1853 goto out;
1855 va_copy(args2, args);
1856 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1857 if (len >= avail) {
1858 /* The printk buffer is 1024 bytes long, so if we get
1859 * here and AUDIT_BUFSIZ is at least 1024, then we can
1860 * log everything that printk could have logged. */
1861 avail = audit_expand(ab,
1862 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1863 if (!avail)
1864 goto out_va_end;
1865 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1867 if (len > 0)
1868 skb_put(skb, len);
1869 out_va_end:
1870 va_end(args2);
1871 out:
1872 return;
1876 * audit_log_format - format a message into the audit buffer.
1877 * @ab: audit_buffer
1878 * @fmt: format string
1879 * @...: optional parameters matching @fmt string
1881 * All the work is done in audit_log_vformat.
1883 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1885 va_list args;
1887 if (!ab)
1888 return;
1889 va_start(args, fmt);
1890 audit_log_vformat(ab, fmt, args);
1891 va_end(args);
1895 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1896 * @ab: the audit_buffer
1897 * @buf: buffer to convert to hex
1898 * @len: length of @buf to be converted
1900 * No return value; failure to expand is silently ignored.
1902 * This function will take the passed buf and convert it into a string of
1903 * ascii hex digits. The new string is placed onto the skb.
1905 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1906 size_t len)
1908 int i, avail, new_len;
1909 unsigned char *ptr;
1910 struct sk_buff *skb;
1912 if (!ab)
1913 return;
1915 BUG_ON(!ab->skb);
1916 skb = ab->skb;
1917 avail = skb_tailroom(skb);
1918 new_len = len<<1;
1919 if (new_len >= avail) {
1920 /* Round the buffer request up to the next multiple */
1921 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1922 avail = audit_expand(ab, new_len);
1923 if (!avail)
1924 return;
1927 ptr = skb_tail_pointer(skb);
1928 for (i = 0; i < len; i++)
1929 ptr = hex_byte_pack_upper(ptr, buf[i]);
1930 *ptr = 0;
1931 skb_put(skb, len << 1); /* new string is twice the old string */
1935 * Format a string of no more than slen characters into the audit buffer,
1936 * enclosed in quote marks.
1938 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1939 size_t slen)
1941 int avail, new_len;
1942 unsigned char *ptr;
1943 struct sk_buff *skb;
1945 if (!ab)
1946 return;
1948 BUG_ON(!ab->skb);
1949 skb = ab->skb;
1950 avail = skb_tailroom(skb);
1951 new_len = slen + 3; /* enclosing quotes + null terminator */
1952 if (new_len > avail) {
1953 avail = audit_expand(ab, new_len);
1954 if (!avail)
1955 return;
1957 ptr = skb_tail_pointer(skb);
1958 *ptr++ = '"';
1959 memcpy(ptr, string, slen);
1960 ptr += slen;
1961 *ptr++ = '"';
1962 *ptr = 0;
1963 skb_put(skb, slen + 2); /* don't include null terminator */
1967 * audit_string_contains_control - does a string need to be logged in hex
1968 * @string: string to be checked
1969 * @len: max length of the string to check
1971 bool audit_string_contains_control(const char *string, size_t len)
1973 const unsigned char *p;
1974 for (p = string; p < (const unsigned char *)string + len; p++) {
1975 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1976 return true;
1978 return false;
1982 * audit_log_n_untrustedstring - log a string that may contain random characters
1983 * @ab: audit_buffer
1984 * @len: length of string (not including trailing null)
1985 * @string: string to be logged
1987 * This code will escape a string that is passed to it if the string
1988 * contains a control character, unprintable character, double quote mark,
1989 * or a space. Unescaped strings will start and end with a double quote mark.
1990 * Strings that are escaped are printed in hex (2 digits per char).
1992 * The caller specifies the number of characters in the string to log, which may
1993 * or may not be the entire string.
1995 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1996 size_t len)
1998 if (audit_string_contains_control(string, len))
1999 audit_log_n_hex(ab, string, len);
2000 else
2001 audit_log_n_string(ab, string, len);
2005 * audit_log_untrustedstring - log a string that may contain random characters
2006 * @ab: audit_buffer
2007 * @string: string to be logged
2009 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2010 * determine string length.
2012 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2014 audit_log_n_untrustedstring(ab, string, strlen(string));
2017 /* This is a helper-function to print the escaped d_path */
2018 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2019 const struct path *path)
2021 char *p, *pathname;
2023 if (prefix)
2024 audit_log_format(ab, "%s", prefix);
2026 /* We will allow 11 spaces for ' (deleted)' to be appended */
2027 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2028 if (!pathname) {
2029 audit_log_string(ab, "<no_memory>");
2030 return;
2032 p = d_path(path, pathname, PATH_MAX+11);
2033 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2034 /* FIXME: can we save some information here? */
2035 audit_log_string(ab, "<too_long>");
2036 } else
2037 audit_log_untrustedstring(ab, p);
2038 kfree(pathname);
2041 void audit_log_session_info(struct audit_buffer *ab)
2043 unsigned int sessionid = audit_get_sessionid(current);
2044 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2046 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2049 void audit_log_key(struct audit_buffer *ab, char *key)
2051 audit_log_format(ab, " key=");
2052 if (key)
2053 audit_log_untrustedstring(ab, key);
2054 else
2055 audit_log_format(ab, "(null)");
2058 int audit_log_task_context(struct audit_buffer *ab)
2060 char *ctx = NULL;
2061 unsigned len;
2062 int error;
2063 u32 sid;
2065 security_task_getsecid(current, &sid);
2066 if (!sid)
2067 return 0;
2069 error = security_secid_to_secctx(sid, &ctx, &len);
2070 if (error) {
2071 if (error != -EINVAL)
2072 goto error_path;
2073 return 0;
2076 audit_log_format(ab, " subj=%s", ctx);
2077 security_release_secctx(ctx, len);
2078 return 0;
2080 error_path:
2081 audit_panic("error in audit_log_task_context");
2082 return error;
2084 EXPORT_SYMBOL(audit_log_task_context);
2086 void audit_log_d_path_exe(struct audit_buffer *ab,
2087 struct mm_struct *mm)
2089 struct file *exe_file;
2091 if (!mm)
2092 goto out_null;
2094 exe_file = get_mm_exe_file(mm);
2095 if (!exe_file)
2096 goto out_null;
2098 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2099 fput(exe_file);
2100 return;
2101 out_null:
2102 audit_log_format(ab, " exe=(null)");
2105 struct tty_struct *audit_get_tty(void)
2107 struct tty_struct *tty = NULL;
2108 unsigned long flags;
2110 spin_lock_irqsave(&current->sighand->siglock, flags);
2111 if (current->signal)
2112 tty = tty_kref_get(current->signal->tty);
2113 spin_unlock_irqrestore(&current->sighand->siglock, flags);
2114 return tty;
2117 void audit_put_tty(struct tty_struct *tty)
2119 tty_kref_put(tty);
2122 void audit_log_task_info(struct audit_buffer *ab)
2124 const struct cred *cred;
2125 char comm[sizeof(current->comm)];
2126 struct tty_struct *tty;
2128 if (!ab)
2129 return;
2131 cred = current_cred();
2132 tty = audit_get_tty();
2133 audit_log_format(ab,
2134 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2135 " euid=%u suid=%u fsuid=%u"
2136 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2137 task_ppid_nr(current),
2138 task_tgid_nr(current),
2139 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2140 from_kuid(&init_user_ns, cred->uid),
2141 from_kgid(&init_user_ns, cred->gid),
2142 from_kuid(&init_user_ns, cred->euid),
2143 from_kuid(&init_user_ns, cred->suid),
2144 from_kuid(&init_user_ns, cred->fsuid),
2145 from_kgid(&init_user_ns, cred->egid),
2146 from_kgid(&init_user_ns, cred->sgid),
2147 from_kgid(&init_user_ns, cred->fsgid),
2148 tty ? tty_name(tty) : "(none)",
2149 audit_get_sessionid(current));
2150 audit_put_tty(tty);
2151 audit_log_format(ab, " comm=");
2152 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2153 audit_log_d_path_exe(ab, current->mm);
2154 audit_log_task_context(ab);
2156 EXPORT_SYMBOL(audit_log_task_info);
2159 * audit_log_path_denied - report a path restriction denial
2160 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2161 * @operation: specific operation name
2163 void audit_log_path_denied(int type, const char *operation)
2165 struct audit_buffer *ab;
2167 if (!audit_enabled || audit_dummy_context())
2168 return;
2170 /* Generate log with subject, operation, outcome. */
2171 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2172 if (!ab)
2173 return;
2174 audit_log_format(ab, "op=%s", operation);
2175 audit_log_task_info(ab);
2176 audit_log_format(ab, " res=0");
2177 audit_log_end(ab);
2180 /* global counter which is incremented every time something logs in */
2181 static atomic_t session_id = ATOMIC_INIT(0);
2183 static int audit_set_loginuid_perm(kuid_t loginuid)
2185 /* if we are unset, we don't need privs */
2186 if (!audit_loginuid_set(current))
2187 return 0;
2188 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2189 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2190 return -EPERM;
2191 /* it is set, you need permission */
2192 if (!capable(CAP_AUDIT_CONTROL))
2193 return -EPERM;
2194 /* reject if this is not an unset and we don't allow that */
2195 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2196 && uid_valid(loginuid))
2197 return -EPERM;
2198 return 0;
2201 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2202 unsigned int oldsessionid,
2203 unsigned int sessionid, int rc)
2205 struct audit_buffer *ab;
2206 uid_t uid, oldloginuid, loginuid;
2207 struct tty_struct *tty;
2209 if (!audit_enabled)
2210 return;
2212 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2213 if (!ab)
2214 return;
2216 uid = from_kuid(&init_user_ns, task_uid(current));
2217 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2218 loginuid = from_kuid(&init_user_ns, kloginuid),
2219 tty = audit_get_tty();
2221 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2222 audit_log_task_context(ab);
2223 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2224 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2225 oldsessionid, sessionid, !rc);
2226 audit_put_tty(tty);
2227 audit_log_end(ab);
2231 * audit_set_loginuid - set current task's loginuid
2232 * @loginuid: loginuid value
2234 * Returns 0.
2236 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2238 int audit_set_loginuid(kuid_t loginuid)
2240 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2241 kuid_t oldloginuid;
2242 int rc;
2244 oldloginuid = audit_get_loginuid(current);
2245 oldsessionid = audit_get_sessionid(current);
2247 rc = audit_set_loginuid_perm(loginuid);
2248 if (rc)
2249 goto out;
2251 /* are we setting or clearing? */
2252 if (uid_valid(loginuid)) {
2253 sessionid = (unsigned int)atomic_inc_return(&session_id);
2254 if (unlikely(sessionid == AUDIT_SID_UNSET))
2255 sessionid = (unsigned int)atomic_inc_return(&session_id);
2258 current->sessionid = sessionid;
2259 current->loginuid = loginuid;
2260 out:
2261 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2262 return rc;
2266 * audit_signal_info - record signal info for shutting down audit subsystem
2267 * @sig: signal value
2268 * @t: task being signaled
2270 * If the audit subsystem is being terminated, record the task (pid)
2271 * and uid that is doing that.
2273 int audit_signal_info(int sig, struct task_struct *t)
2275 kuid_t uid = current_uid(), auid;
2277 if (auditd_test_task(t) &&
2278 (sig == SIGTERM || sig == SIGHUP ||
2279 sig == SIGUSR1 || sig == SIGUSR2)) {
2280 audit_sig_pid = task_tgid_nr(current);
2281 auid = audit_get_loginuid(current);
2282 if (uid_valid(auid))
2283 audit_sig_uid = auid;
2284 else
2285 audit_sig_uid = uid;
2286 security_task_getsecid(current, &audit_sig_sid);
2289 return audit_signal_info_syscall(t);
2293 * audit_log_end - end one audit record
2294 * @ab: the audit_buffer
2296 * We can not do a netlink send inside an irq context because it blocks (last
2297 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2298 * queue and a tasklet is scheduled to remove them from the queue outside the
2299 * irq context. May be called in any context.
2301 void audit_log_end(struct audit_buffer *ab)
2303 struct sk_buff *skb;
2304 struct nlmsghdr *nlh;
2306 if (!ab)
2307 return;
2309 if (audit_rate_check()) {
2310 skb = ab->skb;
2311 ab->skb = NULL;
2313 /* setup the netlink header, see the comments in
2314 * kauditd_send_multicast_skb() for length quirks */
2315 nlh = nlmsg_hdr(skb);
2316 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2318 /* queue the netlink packet and poke the kauditd thread */
2319 skb_queue_tail(&audit_queue, skb);
2320 wake_up_interruptible(&kauditd_wait);
2321 } else
2322 audit_log_lost("rate limit exceeded");
2324 audit_buffer_free(ab);
2328 * audit_log - Log an audit record
2329 * @ctx: audit context
2330 * @gfp_mask: type of allocation
2331 * @type: audit message type
2332 * @fmt: format string to use
2333 * @...: variable parameters matching the format string
2335 * This is a convenience function that calls audit_log_start,
2336 * audit_log_vformat, and audit_log_end. It may be called
2337 * in any context.
2339 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2340 const char *fmt, ...)
2342 struct audit_buffer *ab;
2343 va_list args;
2345 ab = audit_log_start(ctx, gfp_mask, type);
2346 if (ab) {
2347 va_start(args, fmt);
2348 audit_log_vformat(ab, fmt, args);
2349 va_end(args);
2350 audit_log_end(ab);
2354 EXPORT_SYMBOL(audit_log_start);
2355 EXPORT_SYMBOL(audit_log_end);
2356 EXPORT_SYMBOL(audit_log_format);
2357 EXPORT_SYMBOL(audit_log);