2 * intel_pstate.c: Native P state management for Intel processors
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
34 #include <asm/div64.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
40 #define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
41 #define INTEL_PSTATE_HWP_SAMPLING_INTERVAL (50 * NSEC_PER_MSEC)
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
60 static inline int32_t mul_fp(int32_t x
, int32_t y
)
62 return ((int64_t)x
* (int64_t)y
) >> FRAC_BITS
;
65 static inline int32_t div_fp(s64 x
, s64 y
)
67 return div64_s64((int64_t)x
<< FRAC_BITS
, y
);
70 static inline int ceiling_fp(int32_t x
)
75 mask
= (1 << FRAC_BITS
) - 1;
81 static inline int32_t percent_fp(int percent
)
83 return div_fp(percent
, 100);
86 static inline u64
mul_ext_fp(u64 x
, u64 y
)
88 return (x
* y
) >> EXT_FRAC_BITS
;
91 static inline u64
div_ext_fp(u64 x
, u64 y
)
93 return div64_u64(x
<< EXT_FRAC_BITS
, y
);
96 static inline int32_t percent_ext_fp(int percent
)
98 return div_ext_fp(percent
, 100);
102 * struct sample - Store performance sample
103 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
104 * performance during last sample period
105 * @busy_scaled: Scaled busy value which is used to calculate next
106 * P state. This can be different than core_avg_perf
107 * to account for cpu idle period
108 * @aperf: Difference of actual performance frequency clock count
109 * read from APERF MSR between last and current sample
110 * @mperf: Difference of maximum performance frequency clock count
111 * read from MPERF MSR between last and current sample
112 * @tsc: Difference of time stamp counter between last and
114 * @time: Current time from scheduler
116 * This structure is used in the cpudata structure to store performance sample
117 * data for choosing next P State.
120 int32_t core_avg_perf
;
129 * struct pstate_data - Store P state data
130 * @current_pstate: Current requested P state
131 * @min_pstate: Min P state possible for this platform
132 * @max_pstate: Max P state possible for this platform
133 * @max_pstate_physical:This is physical Max P state for a processor
134 * This can be higher than the max_pstate which can
135 * be limited by platform thermal design power limits
136 * @scaling: Scaling factor to convert frequency to cpufreq
138 * @turbo_pstate: Max Turbo P state possible for this platform
139 * @max_freq: @max_pstate frequency in cpufreq units
140 * @turbo_freq: @turbo_pstate frequency in cpufreq units
142 * Stores the per cpu model P state limits and current P state.
148 int max_pstate_physical
;
151 unsigned int max_freq
;
152 unsigned int turbo_freq
;
156 * struct vid_data - Stores voltage information data
157 * @min: VID data for this platform corresponding to
159 * @max: VID data corresponding to the highest P State.
160 * @turbo: VID data for turbo P state
161 * @ratio: Ratio of (vid max - vid min) /
162 * (max P state - Min P State)
164 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165 * This data is used in Atom platforms, where in addition to target P state,
166 * the voltage data needs to be specified to select next P State.
176 * struct _pid - Stores PID data
177 * @setpoint: Target set point for busyness or performance
178 * @integral: Storage for accumulated error values
179 * @p_gain: PID proportional gain
180 * @i_gain: PID integral gain
181 * @d_gain: PID derivative gain
182 * @deadband: PID deadband
183 * @last_err: Last error storage for integral part of PID calculation
185 * Stores PID coefficients and last error for PID controller.
198 * struct global_params - Global parameters, mostly tunable via sysfs.
199 * @no_turbo: Whether or not to use turbo P-states.
200 * @turbo_disabled: Whethet or not turbo P-states are available at all,
201 * based on the MSR_IA32_MISC_ENABLE value and whether or
202 * not the maximum reported turbo P-state is different from
203 * the maximum reported non-turbo one.
204 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
206 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
209 struct global_params
{
217 * struct cpudata - Per CPU instance data storage
218 * @cpu: CPU number for this instance data
219 * @policy: CPUFreq policy value
220 * @update_util: CPUFreq utility callback information
221 * @update_util_set: CPUFreq utility callback is set
222 * @iowait_boost: iowait-related boost fraction
223 * @last_update: Time of the last update.
224 * @pstate: Stores P state limits for this CPU
225 * @vid: Stores VID limits for this CPU
226 * @pid: Stores PID parameters for this CPU
227 * @last_sample_time: Last Sample time
228 * @prev_aperf: Last APERF value read from APERF MSR
229 * @prev_mperf: Last MPERF value read from MPERF MSR
230 * @prev_tsc: Last timestamp counter (TSC) value
231 * @prev_cummulative_iowait: IO Wait time difference from last and
233 * @sample: Storage for storing last Sample data
234 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
235 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
236 * @acpi_perf_data: Stores ACPI perf information read from _PSS
237 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
238 * @epp_powersave: Last saved HWP energy performance preference
239 * (EPP) or energy performance bias (EPB),
240 * when policy switched to performance
241 * @epp_policy: Last saved policy used to set EPP/EPB
242 * @epp_default: Power on default HWP energy performance
244 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
247 * This structure stores per CPU instance data for all CPUs.
253 struct update_util_data update_util
;
254 bool update_util_set
;
256 struct pstate_data pstate
;
261 u64 last_sample_time
;
265 u64 prev_cummulative_iowait
;
266 struct sample sample
;
267 int32_t min_perf_ratio
;
268 int32_t max_perf_ratio
;
270 struct acpi_processor_performance acpi_perf_data
;
271 bool valid_pss_table
;
273 unsigned int iowait_boost
;
280 static struct cpudata
**all_cpu_data
;
283 * struct pstate_adjust_policy - Stores static PID configuration data
284 * @sample_rate_ms: PID calculation sample rate in ms
285 * @sample_rate_ns: Sample rate calculation in ns
286 * @deadband: PID deadband
287 * @setpoint: PID Setpoint
288 * @p_gain_pct: PID proportional gain
289 * @i_gain_pct: PID integral gain
290 * @d_gain_pct: PID derivative gain
292 * Stores per CPU model static PID configuration data.
294 struct pstate_adjust_policy
{
305 * struct pstate_funcs - Per CPU model specific callbacks
306 * @get_max: Callback to get maximum non turbo effective P state
307 * @get_max_physical: Callback to get maximum non turbo physical P state
308 * @get_min: Callback to get minimum P state
309 * @get_turbo: Callback to get turbo P state
310 * @get_scaling: Callback to get frequency scaling factor
311 * @get_val: Callback to convert P state to actual MSR write value
312 * @get_vid: Callback to get VID data for Atom platforms
313 * @update_util: Active mode utilization update callback.
315 * Core and Atom CPU models have different way to get P State limits. This
316 * structure is used to store those callbacks.
318 struct pstate_funcs
{
319 int (*get_max
)(void);
320 int (*get_max_physical
)(void);
321 int (*get_min
)(void);
322 int (*get_turbo
)(void);
323 int (*get_scaling
)(void);
324 u64 (*get_val
)(struct cpudata
*, int pstate
);
325 void (*get_vid
)(struct cpudata
*);
326 void (*update_util
)(struct update_util_data
*data
, u64 time
,
330 static struct pstate_funcs pstate_funcs __read_mostly
;
331 static struct pstate_adjust_policy pid_params __read_mostly
= {
332 .sample_rate_ms
= 10,
333 .sample_rate_ns
= 10 * NSEC_PER_MSEC
,
341 static int hwp_active __read_mostly
;
342 static bool per_cpu_limits __read_mostly
;
344 static struct cpufreq_driver
*intel_pstate_driver __read_mostly
;
347 static bool acpi_ppc
;
350 static struct global_params global
;
352 static DEFINE_MUTEX(intel_pstate_driver_lock
);
353 static DEFINE_MUTEX(intel_pstate_limits_lock
);
357 static bool intel_pstate_get_ppc_enable_status(void)
359 if (acpi_gbl_FADT
.preferred_profile
== PM_ENTERPRISE_SERVER
||
360 acpi_gbl_FADT
.preferred_profile
== PM_PERFORMANCE_SERVER
)
366 #ifdef CONFIG_ACPI_CPPC_LIB
368 /* The work item is needed to avoid CPU hotplug locking issues */
369 static void intel_pstste_sched_itmt_work_fn(struct work_struct
*work
)
371 sched_set_itmt_support();
374 static DECLARE_WORK(sched_itmt_work
, intel_pstste_sched_itmt_work_fn
);
376 static void intel_pstate_set_itmt_prio(int cpu
)
378 struct cppc_perf_caps cppc_perf
;
379 static u32 max_highest_perf
= 0, min_highest_perf
= U32_MAX
;
382 ret
= cppc_get_perf_caps(cpu
, &cppc_perf
);
387 * The priorities can be set regardless of whether or not
388 * sched_set_itmt_support(true) has been called and it is valid to
389 * update them at any time after it has been called.
391 sched_set_itmt_core_prio(cppc_perf
.highest_perf
, cpu
);
393 if (max_highest_perf
<= min_highest_perf
) {
394 if (cppc_perf
.highest_perf
> max_highest_perf
)
395 max_highest_perf
= cppc_perf
.highest_perf
;
397 if (cppc_perf
.highest_perf
< min_highest_perf
)
398 min_highest_perf
= cppc_perf
.highest_perf
;
400 if (max_highest_perf
> min_highest_perf
) {
402 * This code can be run during CPU online under the
403 * CPU hotplug locks, so sched_set_itmt_support()
404 * cannot be called from here. Queue up a work item
407 schedule_work(&sched_itmt_work
);
412 static void intel_pstate_set_itmt_prio(int cpu
)
417 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
424 intel_pstate_set_itmt_prio(policy
->cpu
);
428 if (!intel_pstate_get_ppc_enable_status())
431 cpu
= all_cpu_data
[policy
->cpu
];
433 ret
= acpi_processor_register_performance(&cpu
->acpi_perf_data
,
439 * Check if the control value in _PSS is for PERF_CTL MSR, which should
440 * guarantee that the states returned by it map to the states in our
443 if (cpu
->acpi_perf_data
.control_register
.space_id
!=
444 ACPI_ADR_SPACE_FIXED_HARDWARE
)
448 * If there is only one entry _PSS, simply ignore _PSS and continue as
449 * usual without taking _PSS into account
451 if (cpu
->acpi_perf_data
.state_count
< 2)
454 pr_debug("CPU%u - ACPI _PSS perf data\n", policy
->cpu
);
455 for (i
= 0; i
< cpu
->acpi_perf_data
.state_count
; i
++) {
456 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
457 (i
== cpu
->acpi_perf_data
.state
? '*' : ' '), i
,
458 (u32
) cpu
->acpi_perf_data
.states
[i
].core_frequency
,
459 (u32
) cpu
->acpi_perf_data
.states
[i
].power
,
460 (u32
) cpu
->acpi_perf_data
.states
[i
].control
);
464 * The _PSS table doesn't contain whole turbo frequency range.
465 * This just contains +1 MHZ above the max non turbo frequency,
466 * with control value corresponding to max turbo ratio. But
467 * when cpufreq set policy is called, it will call with this
468 * max frequency, which will cause a reduced performance as
469 * this driver uses real max turbo frequency as the max
470 * frequency. So correct this frequency in _PSS table to
471 * correct max turbo frequency based on the turbo state.
472 * Also need to convert to MHz as _PSS freq is in MHz.
474 if (!global
.turbo_disabled
)
475 cpu
->acpi_perf_data
.states
[0].core_frequency
=
476 policy
->cpuinfo
.max_freq
/ 1000;
477 cpu
->valid_pss_table
= true;
478 pr_debug("_PPC limits will be enforced\n");
483 cpu
->valid_pss_table
= false;
484 acpi_processor_unregister_performance(policy
->cpu
);
487 static void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
491 cpu
= all_cpu_data
[policy
->cpu
];
492 if (!cpu
->valid_pss_table
)
495 acpi_processor_unregister_performance(policy
->cpu
);
498 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
502 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
507 static signed int pid_calc(struct _pid
*pid
, int32_t busy
)
510 int32_t pterm
, dterm
, fp_error
;
511 int32_t integral_limit
;
513 fp_error
= pid
->setpoint
- busy
;
515 if (abs(fp_error
) <= pid
->deadband
)
518 pterm
= mul_fp(pid
->p_gain
, fp_error
);
520 pid
->integral
+= fp_error
;
523 * We limit the integral here so that it will never
524 * get higher than 30. This prevents it from becoming
525 * too large an input over long periods of time and allows
526 * it to get factored out sooner.
528 * The value of 30 was chosen through experimentation.
530 integral_limit
= int_tofp(30);
531 if (pid
->integral
> integral_limit
)
532 pid
->integral
= integral_limit
;
533 if (pid
->integral
< -integral_limit
)
534 pid
->integral
= -integral_limit
;
536 dterm
= mul_fp(pid
->d_gain
, fp_error
- pid
->last_err
);
537 pid
->last_err
= fp_error
;
539 result
= pterm
+ mul_fp(pid
->integral
, pid
->i_gain
) + dterm
;
540 result
= result
+ (1 << (FRAC_BITS
-1));
541 return (signed int)fp_toint(result
);
544 static inline void intel_pstate_pid_reset(struct cpudata
*cpu
)
546 struct _pid
*pid
= &cpu
->pid
;
548 pid
->p_gain
= percent_fp(pid_params
.p_gain_pct
);
549 pid
->d_gain
= percent_fp(pid_params
.d_gain_pct
);
550 pid
->i_gain
= percent_fp(pid_params
.i_gain_pct
);
551 pid
->setpoint
= int_tofp(pid_params
.setpoint
);
552 pid
->last_err
= pid
->setpoint
- int_tofp(100);
553 pid
->deadband
= int_tofp(pid_params
.deadband
);
557 static inline void update_turbo_state(void)
562 cpu
= all_cpu_data
[0];
563 rdmsrl(MSR_IA32_MISC_ENABLE
, misc_en
);
564 global
.turbo_disabled
=
565 (misc_en
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
||
566 cpu
->pstate
.max_pstate
== cpu
->pstate
.turbo_pstate
);
569 static int min_perf_pct_min(void)
571 struct cpudata
*cpu
= all_cpu_data
[0];
572 int turbo_pstate
= cpu
->pstate
.turbo_pstate
;
574 return turbo_pstate
?
575 DIV_ROUND_UP(cpu
->pstate
.min_pstate
* 100, turbo_pstate
) : 0;
578 static s16
intel_pstate_get_epb(struct cpudata
*cpu_data
)
583 if (!static_cpu_has(X86_FEATURE_EPB
))
586 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
590 return (s16
)(epb
& 0x0f);
593 static s16
intel_pstate_get_epp(struct cpudata
*cpu_data
, u64 hwp_req_data
)
597 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
599 * When hwp_req_data is 0, means that caller didn't read
600 * MSR_HWP_REQUEST, so need to read and get EPP.
603 epp
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
,
608 epp
= (hwp_req_data
>> 24) & 0xff;
610 /* When there is no EPP present, HWP uses EPB settings */
611 epp
= intel_pstate_get_epb(cpu_data
);
617 static int intel_pstate_set_epb(int cpu
, s16 pref
)
622 if (!static_cpu_has(X86_FEATURE_EPB
))
625 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
629 epb
= (epb
& ~0x0f) | pref
;
630 wrmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, epb
);
636 * EPP/EPB display strings corresponding to EPP index in the
637 * energy_perf_strings[]
639 *-------------------------------------
642 * 2 balance_performance
646 static const char * const energy_perf_strings
[] = {
649 "balance_performance",
654 static const unsigned int epp_values
[] = {
656 HWP_EPP_BALANCE_PERFORMANCE
,
657 HWP_EPP_BALANCE_POWERSAVE
,
661 static int intel_pstate_get_energy_pref_index(struct cpudata
*cpu_data
)
666 epp
= intel_pstate_get_epp(cpu_data
, 0);
670 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
671 if (epp
== HWP_EPP_PERFORMANCE
)
673 if (epp
<= HWP_EPP_BALANCE_PERFORMANCE
)
675 if (epp
<= HWP_EPP_BALANCE_POWERSAVE
)
679 } else if (static_cpu_has(X86_FEATURE_EPB
)) {
682 * 0x00-0x03 : Performance
683 * 0x04-0x07 : Balance performance
684 * 0x08-0x0B : Balance power
686 * The EPB is a 4 bit value, but our ranges restrict the
687 * value which can be set. Here only using top two bits
690 index
= (epp
>> 2) + 1;
696 static int intel_pstate_set_energy_pref_index(struct cpudata
*cpu_data
,
703 epp
= cpu_data
->epp_default
;
705 mutex_lock(&intel_pstate_limits_lock
);
707 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
710 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, &value
);
714 value
&= ~GENMASK_ULL(31, 24);
717 epp
= epp_values
[pref_index
- 1];
719 value
|= (u64
)epp
<< 24;
720 ret
= wrmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, value
);
723 epp
= (pref_index
- 1) << 2;
724 ret
= intel_pstate_set_epb(cpu_data
->cpu
, epp
);
727 mutex_unlock(&intel_pstate_limits_lock
);
732 static ssize_t
show_energy_performance_available_preferences(
733 struct cpufreq_policy
*policy
, char *buf
)
738 while (energy_perf_strings
[i
] != NULL
)
739 ret
+= sprintf(&buf
[ret
], "%s ", energy_perf_strings
[i
++]);
741 ret
+= sprintf(&buf
[ret
], "\n");
746 cpufreq_freq_attr_ro(energy_performance_available_preferences
);
748 static ssize_t
store_energy_performance_preference(
749 struct cpufreq_policy
*policy
, const char *buf
, size_t count
)
751 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
752 char str_preference
[21];
755 ret
= sscanf(buf
, "%20s", str_preference
);
759 while (energy_perf_strings
[i
] != NULL
) {
760 if (!strcmp(str_preference
, energy_perf_strings
[i
])) {
761 intel_pstate_set_energy_pref_index(cpu_data
, i
);
770 static ssize_t
show_energy_performance_preference(
771 struct cpufreq_policy
*policy
, char *buf
)
773 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
776 preference
= intel_pstate_get_energy_pref_index(cpu_data
);
780 return sprintf(buf
, "%s\n", energy_perf_strings
[preference
]);
783 cpufreq_freq_attr_rw(energy_performance_preference
);
785 static struct freq_attr
*hwp_cpufreq_attrs
[] = {
786 &energy_performance_preference
,
787 &energy_performance_available_preferences
,
791 static void intel_pstate_get_hwp_max(unsigned int cpu
, int *phy_max
,
796 rdmsrl_on_cpu(cpu
, MSR_HWP_CAPABILITIES
, &cap
);
798 *current_max
= HWP_GUARANTEED_PERF(cap
);
800 *current_max
= HWP_HIGHEST_PERF(cap
);
802 *phy_max
= HWP_HIGHEST_PERF(cap
);
805 static void intel_pstate_hwp_set(unsigned int cpu
)
807 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
812 max
= cpu_data
->max_perf_ratio
;
813 min
= cpu_data
->min_perf_ratio
;
815 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
)
818 rdmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, &value
);
820 value
&= ~HWP_MIN_PERF(~0L);
821 value
|= HWP_MIN_PERF(min
);
823 value
&= ~HWP_MAX_PERF(~0L);
824 value
|= HWP_MAX_PERF(max
);
826 if (cpu_data
->epp_policy
== cpu_data
->policy
)
829 cpu_data
->epp_policy
= cpu_data
->policy
;
831 if (cpu_data
->epp_saved
>= 0) {
832 epp
= cpu_data
->epp_saved
;
833 cpu_data
->epp_saved
= -EINVAL
;
837 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
838 epp
= intel_pstate_get_epp(cpu_data
, value
);
839 cpu_data
->epp_powersave
= epp
;
840 /* If EPP read was failed, then don't try to write */
846 /* skip setting EPP, when saved value is invalid */
847 if (cpu_data
->epp_powersave
< 0)
851 * No need to restore EPP when it is not zero. This
853 * - Policy is not changed
854 * - user has manually changed
855 * - Error reading EPB
857 epp
= intel_pstate_get_epp(cpu_data
, value
);
861 epp
= cpu_data
->epp_powersave
;
864 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
865 value
&= ~GENMASK_ULL(31, 24);
866 value
|= (u64
)epp
<< 24;
868 intel_pstate_set_epb(cpu
, epp
);
871 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
874 static int intel_pstate_hwp_save_state(struct cpufreq_policy
*policy
)
876 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
881 cpu_data
->epp_saved
= intel_pstate_get_epp(cpu_data
, 0);
886 static int intel_pstate_resume(struct cpufreq_policy
*policy
)
891 mutex_lock(&intel_pstate_limits_lock
);
893 all_cpu_data
[policy
->cpu
]->epp_policy
= 0;
894 intel_pstate_hwp_set(policy
->cpu
);
896 mutex_unlock(&intel_pstate_limits_lock
);
901 static void intel_pstate_update_policies(void)
905 for_each_possible_cpu(cpu
)
906 cpufreq_update_policy(cpu
);
909 /************************** debugfs begin ************************/
910 static int pid_param_set(void *data
, u64 val
)
915 pid_params
.sample_rate_ns
= pid_params
.sample_rate_ms
* NSEC_PER_MSEC
;
916 for_each_possible_cpu(cpu
)
917 if (all_cpu_data
[cpu
])
918 intel_pstate_pid_reset(all_cpu_data
[cpu
]);
923 static int pid_param_get(void *data
, u64
*val
)
928 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param
, pid_param_get
, pid_param_set
, "%llu\n");
930 static struct dentry
*debugfs_parent
;
935 struct dentry
*dentry
;
938 static struct pid_param pid_files
[] = {
939 {"sample_rate_ms", &pid_params
.sample_rate_ms
, },
940 {"d_gain_pct", &pid_params
.d_gain_pct
, },
941 {"i_gain_pct", &pid_params
.i_gain_pct
, },
942 {"deadband", &pid_params
.deadband
, },
943 {"setpoint", &pid_params
.setpoint
, },
944 {"p_gain_pct", &pid_params
.p_gain_pct
, },
948 static void intel_pstate_debug_expose_params(void)
952 debugfs_parent
= debugfs_create_dir("pstate_snb", NULL
);
953 if (IS_ERR_OR_NULL(debugfs_parent
))
956 for (i
= 0; pid_files
[i
].name
; i
++) {
957 struct dentry
*dentry
;
959 dentry
= debugfs_create_file(pid_files
[i
].name
, 0660,
960 debugfs_parent
, pid_files
[i
].value
,
963 pid_files
[i
].dentry
= dentry
;
967 static void intel_pstate_debug_hide_params(void)
971 if (IS_ERR_OR_NULL(debugfs_parent
))
974 for (i
= 0; pid_files
[i
].name
; i
++) {
975 debugfs_remove(pid_files
[i
].dentry
);
976 pid_files
[i
].dentry
= NULL
;
979 debugfs_remove(debugfs_parent
);
980 debugfs_parent
= NULL
;
983 /************************** debugfs end ************************/
985 /************************** sysfs begin ************************/
986 #define show_one(file_name, object) \
987 static ssize_t show_##file_name \
988 (struct kobject *kobj, struct attribute *attr, char *buf) \
990 return sprintf(buf, "%u\n", global.object); \
993 static ssize_t
intel_pstate_show_status(char *buf
);
994 static int intel_pstate_update_status(const char *buf
, size_t size
);
996 static ssize_t
show_status(struct kobject
*kobj
,
997 struct attribute
*attr
, char *buf
)
1001 mutex_lock(&intel_pstate_driver_lock
);
1002 ret
= intel_pstate_show_status(buf
);
1003 mutex_unlock(&intel_pstate_driver_lock
);
1008 static ssize_t
store_status(struct kobject
*a
, struct attribute
*b
,
1009 const char *buf
, size_t count
)
1011 char *p
= memchr(buf
, '\n', count
);
1014 mutex_lock(&intel_pstate_driver_lock
);
1015 ret
= intel_pstate_update_status(buf
, p
? p
- buf
: count
);
1016 mutex_unlock(&intel_pstate_driver_lock
);
1018 return ret
< 0 ? ret
: count
;
1021 static ssize_t
show_turbo_pct(struct kobject
*kobj
,
1022 struct attribute
*attr
, char *buf
)
1024 struct cpudata
*cpu
;
1025 int total
, no_turbo
, turbo_pct
;
1028 mutex_lock(&intel_pstate_driver_lock
);
1030 if (!intel_pstate_driver
) {
1031 mutex_unlock(&intel_pstate_driver_lock
);
1035 cpu
= all_cpu_data
[0];
1037 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
1038 no_turbo
= cpu
->pstate
.max_pstate
- cpu
->pstate
.min_pstate
+ 1;
1039 turbo_fp
= div_fp(no_turbo
, total
);
1040 turbo_pct
= 100 - fp_toint(mul_fp(turbo_fp
, int_tofp(100)));
1042 mutex_unlock(&intel_pstate_driver_lock
);
1044 return sprintf(buf
, "%u\n", turbo_pct
);
1047 static ssize_t
show_num_pstates(struct kobject
*kobj
,
1048 struct attribute
*attr
, char *buf
)
1050 struct cpudata
*cpu
;
1053 mutex_lock(&intel_pstate_driver_lock
);
1055 if (!intel_pstate_driver
) {
1056 mutex_unlock(&intel_pstate_driver_lock
);
1060 cpu
= all_cpu_data
[0];
1061 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
1063 mutex_unlock(&intel_pstate_driver_lock
);
1065 return sprintf(buf
, "%u\n", total
);
1068 static ssize_t
show_no_turbo(struct kobject
*kobj
,
1069 struct attribute
*attr
, char *buf
)
1073 mutex_lock(&intel_pstate_driver_lock
);
1075 if (!intel_pstate_driver
) {
1076 mutex_unlock(&intel_pstate_driver_lock
);
1080 update_turbo_state();
1081 if (global
.turbo_disabled
)
1082 ret
= sprintf(buf
, "%u\n", global
.turbo_disabled
);
1084 ret
= sprintf(buf
, "%u\n", global
.no_turbo
);
1086 mutex_unlock(&intel_pstate_driver_lock
);
1091 static ssize_t
store_no_turbo(struct kobject
*a
, struct attribute
*b
,
1092 const char *buf
, size_t count
)
1097 ret
= sscanf(buf
, "%u", &input
);
1101 mutex_lock(&intel_pstate_driver_lock
);
1103 if (!intel_pstate_driver
) {
1104 mutex_unlock(&intel_pstate_driver_lock
);
1108 mutex_lock(&intel_pstate_limits_lock
);
1110 update_turbo_state();
1111 if (global
.turbo_disabled
) {
1112 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1113 mutex_unlock(&intel_pstate_limits_lock
);
1114 mutex_unlock(&intel_pstate_driver_lock
);
1118 global
.no_turbo
= clamp_t(int, input
, 0, 1);
1120 if (global
.no_turbo
) {
1121 struct cpudata
*cpu
= all_cpu_data
[0];
1122 int pct
= cpu
->pstate
.max_pstate
* 100 / cpu
->pstate
.turbo_pstate
;
1124 /* Squash the global minimum into the permitted range. */
1125 if (global
.min_perf_pct
> pct
)
1126 global
.min_perf_pct
= pct
;
1129 mutex_unlock(&intel_pstate_limits_lock
);
1131 intel_pstate_update_policies();
1133 mutex_unlock(&intel_pstate_driver_lock
);
1138 static ssize_t
store_max_perf_pct(struct kobject
*a
, struct attribute
*b
,
1139 const char *buf
, size_t count
)
1144 ret
= sscanf(buf
, "%u", &input
);
1148 mutex_lock(&intel_pstate_driver_lock
);
1150 if (!intel_pstate_driver
) {
1151 mutex_unlock(&intel_pstate_driver_lock
);
1155 mutex_lock(&intel_pstate_limits_lock
);
1157 global
.max_perf_pct
= clamp_t(int, input
, global
.min_perf_pct
, 100);
1159 mutex_unlock(&intel_pstate_limits_lock
);
1161 intel_pstate_update_policies();
1163 mutex_unlock(&intel_pstate_driver_lock
);
1168 static ssize_t
store_min_perf_pct(struct kobject
*a
, struct attribute
*b
,
1169 const char *buf
, size_t count
)
1174 ret
= sscanf(buf
, "%u", &input
);
1178 mutex_lock(&intel_pstate_driver_lock
);
1180 if (!intel_pstate_driver
) {
1181 mutex_unlock(&intel_pstate_driver_lock
);
1185 mutex_lock(&intel_pstate_limits_lock
);
1187 global
.min_perf_pct
= clamp_t(int, input
,
1188 min_perf_pct_min(), global
.max_perf_pct
);
1190 mutex_unlock(&intel_pstate_limits_lock
);
1192 intel_pstate_update_policies();
1194 mutex_unlock(&intel_pstate_driver_lock
);
1199 show_one(max_perf_pct
, max_perf_pct
);
1200 show_one(min_perf_pct
, min_perf_pct
);
1202 define_one_global_rw(status
);
1203 define_one_global_rw(no_turbo
);
1204 define_one_global_rw(max_perf_pct
);
1205 define_one_global_rw(min_perf_pct
);
1206 define_one_global_ro(turbo_pct
);
1207 define_one_global_ro(num_pstates
);
1209 static struct attribute
*intel_pstate_attributes
[] = {
1217 static struct attribute_group intel_pstate_attr_group
= {
1218 .attrs
= intel_pstate_attributes
,
1221 static void __init
intel_pstate_sysfs_expose_params(void)
1223 struct kobject
*intel_pstate_kobject
;
1226 intel_pstate_kobject
= kobject_create_and_add("intel_pstate",
1227 &cpu_subsys
.dev_root
->kobj
);
1228 if (WARN_ON(!intel_pstate_kobject
))
1231 rc
= sysfs_create_group(intel_pstate_kobject
, &intel_pstate_attr_group
);
1236 * If per cpu limits are enforced there are no global limits, so
1237 * return without creating max/min_perf_pct attributes
1242 rc
= sysfs_create_file(intel_pstate_kobject
, &max_perf_pct
.attr
);
1245 rc
= sysfs_create_file(intel_pstate_kobject
, &min_perf_pct
.attr
);
1249 /************************** sysfs end ************************/
1251 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
)
1253 /* First disable HWP notification interrupt as we don't process them */
1254 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY
))
1255 wrmsrl_on_cpu(cpudata
->cpu
, MSR_HWP_INTERRUPT
, 0x00);
1257 wrmsrl_on_cpu(cpudata
->cpu
, MSR_PM_ENABLE
, 0x1);
1258 cpudata
->epp_policy
= 0;
1259 if (cpudata
->epp_default
== -EINVAL
)
1260 cpudata
->epp_default
= intel_pstate_get_epp(cpudata
, 0);
1263 #define MSR_IA32_POWER_CTL_BIT_EE 19
1265 /* Disable energy efficiency optimization */
1266 static void intel_pstate_disable_ee(int cpu
)
1271 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_POWER_CTL
, &power_ctl
);
1275 if (!(power_ctl
& BIT(MSR_IA32_POWER_CTL_BIT_EE
))) {
1276 pr_info("Disabling energy efficiency optimization\n");
1277 power_ctl
|= BIT(MSR_IA32_POWER_CTL_BIT_EE
);
1278 wrmsrl_on_cpu(cpu
, MSR_IA32_POWER_CTL
, power_ctl
);
1282 static int atom_get_min_pstate(void)
1286 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1287 return (value
>> 8) & 0x7F;
1290 static int atom_get_max_pstate(void)
1294 rdmsrl(MSR_ATOM_CORE_RATIOS
, value
);
1295 return (value
>> 16) & 0x7F;
1298 static int atom_get_turbo_pstate(void)
1302 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS
, value
);
1303 return value
& 0x7F;
1306 static u64
atom_get_val(struct cpudata
*cpudata
, int pstate
)
1312 val
= (u64
)pstate
<< 8;
1313 if (global
.no_turbo
&& !global
.turbo_disabled
)
1314 val
|= (u64
)1 << 32;
1316 vid_fp
= cpudata
->vid
.min
+ mul_fp(
1317 int_tofp(pstate
- cpudata
->pstate
.min_pstate
),
1318 cpudata
->vid
.ratio
);
1320 vid_fp
= clamp_t(int32_t, vid_fp
, cpudata
->vid
.min
, cpudata
->vid
.max
);
1321 vid
= ceiling_fp(vid_fp
);
1323 if (pstate
> cpudata
->pstate
.max_pstate
)
1324 vid
= cpudata
->vid
.turbo
;
1329 static int silvermont_get_scaling(void)
1333 /* Defined in Table 35-6 from SDM (Sept 2015) */
1334 static int silvermont_freq_table
[] = {
1335 83300, 100000, 133300, 116700, 80000};
1337 rdmsrl(MSR_FSB_FREQ
, value
);
1341 return silvermont_freq_table
[i
];
1344 static int airmont_get_scaling(void)
1348 /* Defined in Table 35-10 from SDM (Sept 2015) */
1349 static int airmont_freq_table
[] = {
1350 83300, 100000, 133300, 116700, 80000,
1351 93300, 90000, 88900, 87500};
1353 rdmsrl(MSR_FSB_FREQ
, value
);
1357 return airmont_freq_table
[i
];
1360 static void atom_get_vid(struct cpudata
*cpudata
)
1364 rdmsrl(MSR_ATOM_CORE_VIDS
, value
);
1365 cpudata
->vid
.min
= int_tofp((value
>> 8) & 0x7f);
1366 cpudata
->vid
.max
= int_tofp((value
>> 16) & 0x7f);
1367 cpudata
->vid
.ratio
= div_fp(
1368 cpudata
->vid
.max
- cpudata
->vid
.min
,
1369 int_tofp(cpudata
->pstate
.max_pstate
-
1370 cpudata
->pstate
.min_pstate
));
1372 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS
, value
);
1373 cpudata
->vid
.turbo
= value
& 0x7f;
1376 static int core_get_min_pstate(void)
1380 rdmsrl(MSR_PLATFORM_INFO
, value
);
1381 return (value
>> 40) & 0xFF;
1384 static int core_get_max_pstate_physical(void)
1388 rdmsrl(MSR_PLATFORM_INFO
, value
);
1389 return (value
>> 8) & 0xFF;
1392 static int core_get_tdp_ratio(u64 plat_info
)
1394 /* Check how many TDP levels present */
1395 if (plat_info
& 0x600000000) {
1401 /* Get the TDP level (0, 1, 2) to get ratios */
1402 err
= rdmsrl_safe(MSR_CONFIG_TDP_CONTROL
, &tdp_ctrl
);
1406 /* TDP MSR are continuous starting at 0x648 */
1407 tdp_msr
= MSR_CONFIG_TDP_NOMINAL
+ (tdp_ctrl
& 0x03);
1408 err
= rdmsrl_safe(tdp_msr
, &tdp_ratio
);
1412 /* For level 1 and 2, bits[23:16] contain the ratio */
1413 if (tdp_ctrl
& 0x03)
1416 tdp_ratio
&= 0xff; /* ratios are only 8 bits long */
1417 pr_debug("tdp_ratio %x\n", (int)tdp_ratio
);
1419 return (int)tdp_ratio
;
1425 static int core_get_max_pstate(void)
1433 rdmsrl(MSR_PLATFORM_INFO
, plat_info
);
1434 max_pstate
= (plat_info
>> 8) & 0xFF;
1436 tdp_ratio
= core_get_tdp_ratio(plat_info
);
1441 /* Turbo activation ratio is not used on HWP platforms */
1445 err
= rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO
, &tar
);
1449 /* Do some sanity checking for safety */
1450 tar_levels
= tar
& 0xff;
1451 if (tdp_ratio
- 1 == tar_levels
) {
1452 max_pstate
= tar_levels
;
1453 pr_debug("max_pstate=TAC %x\n", max_pstate
);
1460 static int core_get_turbo_pstate(void)
1465 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1466 nont
= core_get_max_pstate();
1467 ret
= (value
) & 255;
1473 static inline int core_get_scaling(void)
1478 static u64
core_get_val(struct cpudata
*cpudata
, int pstate
)
1482 val
= (u64
)pstate
<< 8;
1483 if (global
.no_turbo
&& !global
.turbo_disabled
)
1484 val
|= (u64
)1 << 32;
1489 static int knl_get_turbo_pstate(void)
1494 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1495 nont
= core_get_max_pstate();
1496 ret
= (((value
) >> 8) & 0xFF);
1502 static int intel_pstate_get_base_pstate(struct cpudata
*cpu
)
1504 return global
.no_turbo
|| global
.turbo_disabled
?
1505 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1508 static void intel_pstate_set_pstate(struct cpudata
*cpu
, int pstate
)
1510 trace_cpu_frequency(pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1511 cpu
->pstate
.current_pstate
= pstate
;
1513 * Generally, there is no guarantee that this code will always run on
1514 * the CPU being updated, so force the register update to run on the
1517 wrmsrl_on_cpu(cpu
->cpu
, MSR_IA32_PERF_CTL
,
1518 pstate_funcs
.get_val(cpu
, pstate
));
1521 static void intel_pstate_set_min_pstate(struct cpudata
*cpu
)
1523 intel_pstate_set_pstate(cpu
, cpu
->pstate
.min_pstate
);
1526 static void intel_pstate_max_within_limits(struct cpudata
*cpu
)
1530 update_turbo_state();
1531 pstate
= intel_pstate_get_base_pstate(cpu
);
1532 pstate
= max(cpu
->pstate
.min_pstate
, cpu
->max_perf_ratio
);
1533 intel_pstate_set_pstate(cpu
, pstate
);
1536 static void intel_pstate_get_cpu_pstates(struct cpudata
*cpu
)
1538 cpu
->pstate
.min_pstate
= pstate_funcs
.get_min();
1539 cpu
->pstate
.max_pstate
= pstate_funcs
.get_max();
1540 cpu
->pstate
.max_pstate_physical
= pstate_funcs
.get_max_physical();
1541 cpu
->pstate
.turbo_pstate
= pstate_funcs
.get_turbo();
1542 cpu
->pstate
.scaling
= pstate_funcs
.get_scaling();
1543 cpu
->pstate
.max_freq
= cpu
->pstate
.max_pstate
* cpu
->pstate
.scaling
;
1544 cpu
->pstate
.turbo_freq
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1546 if (pstate_funcs
.get_vid
)
1547 pstate_funcs
.get_vid(cpu
);
1549 intel_pstate_set_min_pstate(cpu
);
1552 static inline void intel_pstate_calc_avg_perf(struct cpudata
*cpu
)
1554 struct sample
*sample
= &cpu
->sample
;
1556 sample
->core_avg_perf
= div_ext_fp(sample
->aperf
, sample
->mperf
);
1559 static inline bool intel_pstate_sample(struct cpudata
*cpu
, u64 time
)
1562 unsigned long flags
;
1565 local_irq_save(flags
);
1566 rdmsrl(MSR_IA32_APERF
, aperf
);
1567 rdmsrl(MSR_IA32_MPERF
, mperf
);
1569 if (cpu
->prev_mperf
== mperf
|| cpu
->prev_tsc
== tsc
) {
1570 local_irq_restore(flags
);
1573 local_irq_restore(flags
);
1575 cpu
->last_sample_time
= cpu
->sample
.time
;
1576 cpu
->sample
.time
= time
;
1577 cpu
->sample
.aperf
= aperf
;
1578 cpu
->sample
.mperf
= mperf
;
1579 cpu
->sample
.tsc
= tsc
;
1580 cpu
->sample
.aperf
-= cpu
->prev_aperf
;
1581 cpu
->sample
.mperf
-= cpu
->prev_mperf
;
1582 cpu
->sample
.tsc
-= cpu
->prev_tsc
;
1584 cpu
->prev_aperf
= aperf
;
1585 cpu
->prev_mperf
= mperf
;
1586 cpu
->prev_tsc
= tsc
;
1588 * First time this function is invoked in a given cycle, all of the
1589 * previous sample data fields are equal to zero or stale and they must
1590 * be populated with meaningful numbers for things to work, so assume
1591 * that sample.time will always be reset before setting the utilization
1592 * update hook and make the caller skip the sample then.
1594 if (cpu
->last_sample_time
) {
1595 intel_pstate_calc_avg_perf(cpu
);
1601 static inline int32_t get_avg_frequency(struct cpudata
*cpu
)
1603 return mul_ext_fp(cpu
->sample
.core_avg_perf
,
1604 cpu
->pstate
.max_pstate_physical
* cpu
->pstate
.scaling
);
1607 static inline int32_t get_avg_pstate(struct cpudata
*cpu
)
1609 return mul_ext_fp(cpu
->pstate
.max_pstate_physical
,
1610 cpu
->sample
.core_avg_perf
);
1613 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata
*cpu
)
1615 struct sample
*sample
= &cpu
->sample
;
1616 int32_t busy_frac
, boost
;
1617 int target
, avg_pstate
;
1619 busy_frac
= div_fp(sample
->mperf
, sample
->tsc
);
1621 boost
= cpu
->iowait_boost
;
1622 cpu
->iowait_boost
>>= 1;
1624 if (busy_frac
< boost
)
1627 sample
->busy_scaled
= busy_frac
* 100;
1629 target
= global
.no_turbo
|| global
.turbo_disabled
?
1630 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1631 target
+= target
>> 2;
1632 target
= mul_fp(target
, busy_frac
);
1633 if (target
< cpu
->pstate
.min_pstate
)
1634 target
= cpu
->pstate
.min_pstate
;
1637 * If the average P-state during the previous cycle was higher than the
1638 * current target, add 50% of the difference to the target to reduce
1639 * possible performance oscillations and offset possible performance
1640 * loss related to moving the workload from one CPU to another within
1643 avg_pstate
= get_avg_pstate(cpu
);
1644 if (avg_pstate
> target
)
1645 target
+= (avg_pstate
- target
) >> 1;
1650 static inline int32_t get_target_pstate_use_performance(struct cpudata
*cpu
)
1652 int32_t perf_scaled
, max_pstate
, current_pstate
, sample_ratio
;
1656 * perf_scaled is the ratio of the average P-state during the last
1657 * sampling period to the P-state requested last time (in percent).
1659 * That measures the system's response to the previous P-state
1662 max_pstate
= cpu
->pstate
.max_pstate_physical
;
1663 current_pstate
= cpu
->pstate
.current_pstate
;
1664 perf_scaled
= mul_ext_fp(cpu
->sample
.core_avg_perf
,
1665 div_fp(100 * max_pstate
, current_pstate
));
1668 * Since our utilization update callback will not run unless we are
1669 * in C0, check if the actual elapsed time is significantly greater (3x)
1670 * than our sample interval. If it is, then we were idle for a long
1671 * enough period of time to adjust our performance metric.
1673 duration_ns
= cpu
->sample
.time
- cpu
->last_sample_time
;
1674 if ((s64
)duration_ns
> pid_params
.sample_rate_ns
* 3) {
1675 sample_ratio
= div_fp(pid_params
.sample_rate_ns
, duration_ns
);
1676 perf_scaled
= mul_fp(perf_scaled
, sample_ratio
);
1678 sample_ratio
= div_fp(100 * cpu
->sample
.mperf
, cpu
->sample
.tsc
);
1679 if (sample_ratio
< int_tofp(1))
1683 cpu
->sample
.busy_scaled
= perf_scaled
;
1684 return cpu
->pstate
.current_pstate
- pid_calc(&cpu
->pid
, perf_scaled
);
1687 static int intel_pstate_prepare_request(struct cpudata
*cpu
, int pstate
)
1689 int max_pstate
= intel_pstate_get_base_pstate(cpu
);
1692 min_pstate
= max(cpu
->pstate
.min_pstate
, cpu
->min_perf_ratio
);
1693 max_pstate
= max(min_pstate
, cpu
->max_perf_ratio
);
1694 return clamp_t(int, pstate
, min_pstate
, max_pstate
);
1697 static void intel_pstate_update_pstate(struct cpudata
*cpu
, int pstate
)
1699 if (pstate
== cpu
->pstate
.current_pstate
)
1702 cpu
->pstate
.current_pstate
= pstate
;
1703 wrmsrl(MSR_IA32_PERF_CTL
, pstate_funcs
.get_val(cpu
, pstate
));
1706 static void intel_pstate_adjust_pstate(struct cpudata
*cpu
, int target_pstate
)
1708 int from
= cpu
->pstate
.current_pstate
;
1709 struct sample
*sample
;
1711 update_turbo_state();
1713 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
1714 trace_cpu_frequency(target_pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1715 intel_pstate_update_pstate(cpu
, target_pstate
);
1717 sample
= &cpu
->sample
;
1718 trace_pstate_sample(mul_ext_fp(100, sample
->core_avg_perf
),
1719 fp_toint(sample
->busy_scaled
),
1721 cpu
->pstate
.current_pstate
,
1725 get_avg_frequency(cpu
),
1726 fp_toint(cpu
->iowait_boost
* 100));
1729 static void intel_pstate_update_util_pid(struct update_util_data
*data
,
1730 u64 time
, unsigned int flags
)
1732 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1733 u64 delta_ns
= time
- cpu
->sample
.time
;
1735 if ((s64
)delta_ns
< pid_params
.sample_rate_ns
)
1738 if (intel_pstate_sample(cpu
, time
)) {
1741 target_pstate
= get_target_pstate_use_performance(cpu
);
1742 intel_pstate_adjust_pstate(cpu
, target_pstate
);
1746 static void intel_pstate_update_util(struct update_util_data
*data
, u64 time
,
1749 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1752 if (flags
& SCHED_CPUFREQ_IOWAIT
) {
1753 cpu
->iowait_boost
= int_tofp(1);
1754 } else if (cpu
->iowait_boost
) {
1755 /* Clear iowait_boost if the CPU may have been idle. */
1756 delta_ns
= time
- cpu
->last_update
;
1757 if (delta_ns
> TICK_NSEC
)
1758 cpu
->iowait_boost
= 0;
1760 cpu
->last_update
= time
;
1761 delta_ns
= time
- cpu
->sample
.time
;
1762 if ((s64
)delta_ns
< INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL
)
1765 if (intel_pstate_sample(cpu
, time
)) {
1768 target_pstate
= get_target_pstate_use_cpu_load(cpu
);
1769 intel_pstate_adjust_pstate(cpu
, target_pstate
);
1773 static struct pstate_funcs core_funcs
= {
1774 .get_max
= core_get_max_pstate
,
1775 .get_max_physical
= core_get_max_pstate_physical
,
1776 .get_min
= core_get_min_pstate
,
1777 .get_turbo
= core_get_turbo_pstate
,
1778 .get_scaling
= core_get_scaling
,
1779 .get_val
= core_get_val
,
1780 .update_util
= intel_pstate_update_util_pid
,
1783 static const struct pstate_funcs silvermont_funcs
= {
1784 .get_max
= atom_get_max_pstate
,
1785 .get_max_physical
= atom_get_max_pstate
,
1786 .get_min
= atom_get_min_pstate
,
1787 .get_turbo
= atom_get_turbo_pstate
,
1788 .get_val
= atom_get_val
,
1789 .get_scaling
= silvermont_get_scaling
,
1790 .get_vid
= atom_get_vid
,
1791 .update_util
= intel_pstate_update_util
,
1794 static const struct pstate_funcs airmont_funcs
= {
1795 .get_max
= atom_get_max_pstate
,
1796 .get_max_physical
= atom_get_max_pstate
,
1797 .get_min
= atom_get_min_pstate
,
1798 .get_turbo
= atom_get_turbo_pstate
,
1799 .get_val
= atom_get_val
,
1800 .get_scaling
= airmont_get_scaling
,
1801 .get_vid
= atom_get_vid
,
1802 .update_util
= intel_pstate_update_util
,
1805 static const struct pstate_funcs knl_funcs
= {
1806 .get_max
= core_get_max_pstate
,
1807 .get_max_physical
= core_get_max_pstate_physical
,
1808 .get_min
= core_get_min_pstate
,
1809 .get_turbo
= knl_get_turbo_pstate
,
1810 .get_scaling
= core_get_scaling
,
1811 .get_val
= core_get_val
,
1812 .update_util
= intel_pstate_update_util_pid
,
1815 static const struct pstate_funcs bxt_funcs
= {
1816 .get_max
= core_get_max_pstate
,
1817 .get_max_physical
= core_get_max_pstate_physical
,
1818 .get_min
= core_get_min_pstate
,
1819 .get_turbo
= core_get_turbo_pstate
,
1820 .get_scaling
= core_get_scaling
,
1821 .get_val
= core_get_val
,
1822 .update_util
= intel_pstate_update_util
,
1825 #define ICPU(model, policy) \
1826 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1827 (unsigned long)&policy }
1829 static const struct x86_cpu_id intel_pstate_cpu_ids
[] = {
1830 ICPU(INTEL_FAM6_SANDYBRIDGE
, core_funcs
),
1831 ICPU(INTEL_FAM6_SANDYBRIDGE_X
, core_funcs
),
1832 ICPU(INTEL_FAM6_ATOM_SILVERMONT1
, silvermont_funcs
),
1833 ICPU(INTEL_FAM6_IVYBRIDGE
, core_funcs
),
1834 ICPU(INTEL_FAM6_HASWELL_CORE
, core_funcs
),
1835 ICPU(INTEL_FAM6_BROADWELL_CORE
, core_funcs
),
1836 ICPU(INTEL_FAM6_IVYBRIDGE_X
, core_funcs
),
1837 ICPU(INTEL_FAM6_HASWELL_X
, core_funcs
),
1838 ICPU(INTEL_FAM6_HASWELL_ULT
, core_funcs
),
1839 ICPU(INTEL_FAM6_HASWELL_GT3E
, core_funcs
),
1840 ICPU(INTEL_FAM6_BROADWELL_GT3E
, core_funcs
),
1841 ICPU(INTEL_FAM6_ATOM_AIRMONT
, airmont_funcs
),
1842 ICPU(INTEL_FAM6_SKYLAKE_MOBILE
, core_funcs
),
1843 ICPU(INTEL_FAM6_BROADWELL_X
, core_funcs
),
1844 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP
, core_funcs
),
1845 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, core_funcs
),
1846 ICPU(INTEL_FAM6_XEON_PHI_KNL
, knl_funcs
),
1847 ICPU(INTEL_FAM6_XEON_PHI_KNM
, knl_funcs
),
1848 ICPU(INTEL_FAM6_ATOM_GOLDMONT
, bxt_funcs
),
1849 ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE
, bxt_funcs
),
1852 MODULE_DEVICE_TABLE(x86cpu
, intel_pstate_cpu_ids
);
1854 static const struct x86_cpu_id intel_pstate_cpu_oob_ids
[] __initconst
= {
1855 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, core_funcs
),
1856 ICPU(INTEL_FAM6_BROADWELL_X
, core_funcs
),
1857 ICPU(INTEL_FAM6_SKYLAKE_X
, core_funcs
),
1861 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids
[] = {
1862 ICPU(INTEL_FAM6_KABYLAKE_DESKTOP
, core_funcs
),
1866 static bool pid_in_use(void);
1868 static int intel_pstate_init_cpu(unsigned int cpunum
)
1870 struct cpudata
*cpu
;
1872 cpu
= all_cpu_data
[cpunum
];
1875 cpu
= kzalloc(sizeof(*cpu
), GFP_KERNEL
);
1879 all_cpu_data
[cpunum
] = cpu
;
1881 cpu
->epp_default
= -EINVAL
;
1882 cpu
->epp_powersave
= -EINVAL
;
1883 cpu
->epp_saved
= -EINVAL
;
1886 cpu
= all_cpu_data
[cpunum
];
1891 const struct x86_cpu_id
*id
;
1893 id
= x86_match_cpu(intel_pstate_cpu_ee_disable_ids
);
1895 intel_pstate_disable_ee(cpunum
);
1897 intel_pstate_hwp_enable(cpu
);
1898 } else if (pid_in_use()) {
1899 intel_pstate_pid_reset(cpu
);
1902 intel_pstate_get_cpu_pstates(cpu
);
1904 pr_debug("controlling: cpu %d\n", cpunum
);
1909 static unsigned int intel_pstate_get(unsigned int cpu_num
)
1911 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1913 return cpu
? get_avg_frequency(cpu
) : 0;
1916 static void intel_pstate_set_update_util_hook(unsigned int cpu_num
)
1918 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1923 if (cpu
->update_util_set
)
1926 /* Prevent intel_pstate_update_util() from using stale data. */
1927 cpu
->sample
.time
= 0;
1928 cpufreq_add_update_util_hook(cpu_num
, &cpu
->update_util
,
1929 pstate_funcs
.update_util
);
1930 cpu
->update_util_set
= true;
1933 static void intel_pstate_clear_update_util_hook(unsigned int cpu
)
1935 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
1937 if (!cpu_data
->update_util_set
)
1940 cpufreq_remove_update_util_hook(cpu
);
1941 cpu_data
->update_util_set
= false;
1942 synchronize_sched();
1945 static int intel_pstate_get_max_freq(struct cpudata
*cpu
)
1947 return global
.turbo_disabled
|| global
.no_turbo
?
1948 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
1951 static void intel_pstate_update_perf_limits(struct cpufreq_policy
*policy
,
1952 struct cpudata
*cpu
)
1954 int max_freq
= intel_pstate_get_max_freq(cpu
);
1955 int32_t max_policy_perf
, min_policy_perf
;
1956 int max_state
, turbo_max
;
1959 * HWP needs some special consideration, because on BDX the
1960 * HWP_REQUEST uses abstract value to represent performance
1961 * rather than pure ratios.
1964 intel_pstate_get_hwp_max(cpu
->cpu
, &turbo_max
, &max_state
);
1966 max_state
= intel_pstate_get_base_pstate(cpu
);
1967 turbo_max
= cpu
->pstate
.turbo_pstate
;
1970 max_policy_perf
= max_state
* policy
->max
/ max_freq
;
1971 if (policy
->max
== policy
->min
) {
1972 min_policy_perf
= max_policy_perf
;
1974 min_policy_perf
= max_state
* policy
->min
/ max_freq
;
1975 min_policy_perf
= clamp_t(int32_t, min_policy_perf
,
1976 0, max_policy_perf
);
1979 pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1980 policy
->cpu
, max_state
,
1981 min_policy_perf
, max_policy_perf
);
1983 /* Normalize user input to [min_perf, max_perf] */
1984 if (per_cpu_limits
) {
1985 cpu
->min_perf_ratio
= min_policy_perf
;
1986 cpu
->max_perf_ratio
= max_policy_perf
;
1988 int32_t global_min
, global_max
;
1990 /* Global limits are in percent of the maximum turbo P-state. */
1991 global_max
= DIV_ROUND_UP(turbo_max
* global
.max_perf_pct
, 100);
1992 global_min
= DIV_ROUND_UP(turbo_max
* global
.min_perf_pct
, 100);
1993 global_min
= clamp_t(int32_t, global_min
, 0, global_max
);
1995 pr_debug("cpu:%d global_min:%d global_max:%d\n", policy
->cpu
,
1996 global_min
, global_max
);
1998 cpu
->min_perf_ratio
= max(min_policy_perf
, global_min
);
1999 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
, max_policy_perf
);
2000 cpu
->max_perf_ratio
= min(max_policy_perf
, global_max
);
2001 cpu
->max_perf_ratio
= max(min_policy_perf
, cpu
->max_perf_ratio
);
2003 /* Make sure min_perf <= max_perf */
2004 cpu
->min_perf_ratio
= min(cpu
->min_perf_ratio
,
2005 cpu
->max_perf_ratio
);
2008 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy
->cpu
,
2009 cpu
->max_perf_ratio
,
2010 cpu
->min_perf_ratio
);
2013 static int intel_pstate_set_policy(struct cpufreq_policy
*policy
)
2015 struct cpudata
*cpu
;
2017 if (!policy
->cpuinfo
.max_freq
)
2020 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2021 policy
->cpuinfo
.max_freq
, policy
->max
);
2023 cpu
= all_cpu_data
[policy
->cpu
];
2024 cpu
->policy
= policy
->policy
;
2026 mutex_lock(&intel_pstate_limits_lock
);
2028 intel_pstate_update_perf_limits(policy
, cpu
);
2030 if (cpu
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
2032 * NOHZ_FULL CPUs need this as the governor callback may not
2033 * be invoked on them.
2035 intel_pstate_clear_update_util_hook(policy
->cpu
);
2036 intel_pstate_max_within_limits(cpu
);
2038 intel_pstate_set_update_util_hook(policy
->cpu
);
2042 intel_pstate_hwp_set(policy
->cpu
);
2044 mutex_unlock(&intel_pstate_limits_lock
);
2049 static void intel_pstate_adjust_policy_max(struct cpufreq_policy
*policy
,
2050 struct cpudata
*cpu
)
2052 if (cpu
->pstate
.max_pstate_physical
> cpu
->pstate
.max_pstate
&&
2053 policy
->max
< policy
->cpuinfo
.max_freq
&&
2054 policy
->max
> cpu
->pstate
.max_freq
) {
2055 pr_debug("policy->max > max non turbo frequency\n");
2056 policy
->max
= policy
->cpuinfo
.max_freq
;
2060 static int intel_pstate_verify_policy(struct cpufreq_policy
*policy
)
2062 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2064 update_turbo_state();
2065 cpufreq_verify_within_limits(policy
, policy
->cpuinfo
.min_freq
,
2066 intel_pstate_get_max_freq(cpu
));
2068 if (policy
->policy
!= CPUFREQ_POLICY_POWERSAVE
&&
2069 policy
->policy
!= CPUFREQ_POLICY_PERFORMANCE
)
2072 intel_pstate_adjust_policy_max(policy
, cpu
);
2077 static void intel_cpufreq_stop_cpu(struct cpufreq_policy
*policy
)
2079 intel_pstate_set_min_pstate(all_cpu_data
[policy
->cpu
]);
2082 static void intel_pstate_stop_cpu(struct cpufreq_policy
*policy
)
2084 pr_debug("CPU %d exiting\n", policy
->cpu
);
2086 intel_pstate_clear_update_util_hook(policy
->cpu
);
2088 intel_pstate_hwp_save_state(policy
);
2090 intel_cpufreq_stop_cpu(policy
);
2093 static int intel_pstate_cpu_exit(struct cpufreq_policy
*policy
)
2095 intel_pstate_exit_perf_limits(policy
);
2097 policy
->fast_switch_possible
= false;
2102 static int __intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2104 struct cpudata
*cpu
;
2107 rc
= intel_pstate_init_cpu(policy
->cpu
);
2111 cpu
= all_cpu_data
[policy
->cpu
];
2113 cpu
->max_perf_ratio
= 0xFF;
2114 cpu
->min_perf_ratio
= 0;
2116 policy
->min
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2117 policy
->max
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
2119 /* cpuinfo and default policy values */
2120 policy
->cpuinfo
.min_freq
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2121 update_turbo_state();
2122 policy
->cpuinfo
.max_freq
= global
.turbo_disabled
?
2123 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
2124 policy
->cpuinfo
.max_freq
*= cpu
->pstate
.scaling
;
2126 intel_pstate_init_acpi_perf_limits(policy
);
2127 cpumask_set_cpu(policy
->cpu
, policy
->cpus
);
2129 policy
->fast_switch_possible
= true;
2134 static int intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2136 int ret
= __intel_pstate_cpu_init(policy
);
2141 policy
->cpuinfo
.transition_latency
= CPUFREQ_ETERNAL
;
2142 if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
))
2143 policy
->policy
= CPUFREQ_POLICY_PERFORMANCE
;
2145 policy
->policy
= CPUFREQ_POLICY_POWERSAVE
;
2150 static struct cpufreq_driver intel_pstate
= {
2151 .flags
= CPUFREQ_CONST_LOOPS
,
2152 .verify
= intel_pstate_verify_policy
,
2153 .setpolicy
= intel_pstate_set_policy
,
2154 .suspend
= intel_pstate_hwp_save_state
,
2155 .resume
= intel_pstate_resume
,
2156 .get
= intel_pstate_get
,
2157 .init
= intel_pstate_cpu_init
,
2158 .exit
= intel_pstate_cpu_exit
,
2159 .stop_cpu
= intel_pstate_stop_cpu
,
2160 .name
= "intel_pstate",
2163 static int intel_cpufreq_verify_policy(struct cpufreq_policy
*policy
)
2165 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2167 update_turbo_state();
2168 cpufreq_verify_within_limits(policy
, policy
->cpuinfo
.min_freq
,
2169 intel_pstate_get_max_freq(cpu
));
2171 intel_pstate_adjust_policy_max(policy
, cpu
);
2173 intel_pstate_update_perf_limits(policy
, cpu
);
2178 static int intel_cpufreq_target(struct cpufreq_policy
*policy
,
2179 unsigned int target_freq
,
2180 unsigned int relation
)
2182 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2183 struct cpufreq_freqs freqs
;
2186 update_turbo_state();
2188 freqs
.old
= policy
->cur
;
2189 freqs
.new = target_freq
;
2191 cpufreq_freq_transition_begin(policy
, &freqs
);
2193 case CPUFREQ_RELATION_L
:
2194 target_pstate
= DIV_ROUND_UP(freqs
.new, cpu
->pstate
.scaling
);
2196 case CPUFREQ_RELATION_H
:
2197 target_pstate
= freqs
.new / cpu
->pstate
.scaling
;
2200 target_pstate
= DIV_ROUND_CLOSEST(freqs
.new, cpu
->pstate
.scaling
);
2203 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
2204 if (target_pstate
!= cpu
->pstate
.current_pstate
) {
2205 cpu
->pstate
.current_pstate
= target_pstate
;
2206 wrmsrl_on_cpu(policy
->cpu
, MSR_IA32_PERF_CTL
,
2207 pstate_funcs
.get_val(cpu
, target_pstate
));
2209 freqs
.new = target_pstate
* cpu
->pstate
.scaling
;
2210 cpufreq_freq_transition_end(policy
, &freqs
, false);
2215 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy
*policy
,
2216 unsigned int target_freq
)
2218 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2221 update_turbo_state();
2223 target_pstate
= DIV_ROUND_UP(target_freq
, cpu
->pstate
.scaling
);
2224 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
2225 intel_pstate_update_pstate(cpu
, target_pstate
);
2226 return target_pstate
* cpu
->pstate
.scaling
;
2229 static int intel_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
2231 int ret
= __intel_pstate_cpu_init(policy
);
2236 policy
->cpuinfo
.transition_latency
= INTEL_CPUFREQ_TRANSITION_LATENCY
;
2237 policy
->transition_delay_us
= INTEL_CPUFREQ_TRANSITION_DELAY
;
2238 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2239 policy
->cur
= policy
->cpuinfo
.min_freq
;
2244 static struct cpufreq_driver intel_cpufreq
= {
2245 .flags
= CPUFREQ_CONST_LOOPS
,
2246 .verify
= intel_cpufreq_verify_policy
,
2247 .target
= intel_cpufreq_target
,
2248 .fast_switch
= intel_cpufreq_fast_switch
,
2249 .init
= intel_cpufreq_cpu_init
,
2250 .exit
= intel_pstate_cpu_exit
,
2251 .stop_cpu
= intel_cpufreq_stop_cpu
,
2252 .name
= "intel_cpufreq",
2255 static struct cpufreq_driver
*default_driver
= &intel_pstate
;
2257 static bool pid_in_use(void)
2259 return intel_pstate_driver
== &intel_pstate
&&
2260 pstate_funcs
.update_util
== intel_pstate_update_util_pid
;
2263 static void intel_pstate_driver_cleanup(void)
2268 for_each_online_cpu(cpu
) {
2269 if (all_cpu_data
[cpu
]) {
2270 if (intel_pstate_driver
== &intel_pstate
)
2271 intel_pstate_clear_update_util_hook(cpu
);
2273 kfree(all_cpu_data
[cpu
]);
2274 all_cpu_data
[cpu
] = NULL
;
2278 intel_pstate_driver
= NULL
;
2281 static int intel_pstate_register_driver(struct cpufreq_driver
*driver
)
2285 memset(&global
, 0, sizeof(global
));
2286 global
.max_perf_pct
= 100;
2288 intel_pstate_driver
= driver
;
2289 ret
= cpufreq_register_driver(intel_pstate_driver
);
2291 intel_pstate_driver_cleanup();
2295 global
.min_perf_pct
= min_perf_pct_min();
2298 intel_pstate_debug_expose_params();
2303 static int intel_pstate_unregister_driver(void)
2309 intel_pstate_debug_hide_params();
2311 cpufreq_unregister_driver(intel_pstate_driver
);
2312 intel_pstate_driver_cleanup();
2317 static ssize_t
intel_pstate_show_status(char *buf
)
2319 if (!intel_pstate_driver
)
2320 return sprintf(buf
, "off\n");
2322 return sprintf(buf
, "%s\n", intel_pstate_driver
== &intel_pstate
?
2323 "active" : "passive");
2326 static int intel_pstate_update_status(const char *buf
, size_t size
)
2330 if (size
== 3 && !strncmp(buf
, "off", size
))
2331 return intel_pstate_driver
?
2332 intel_pstate_unregister_driver() : -EINVAL
;
2334 if (size
== 6 && !strncmp(buf
, "active", size
)) {
2335 if (intel_pstate_driver
) {
2336 if (intel_pstate_driver
== &intel_pstate
)
2339 ret
= intel_pstate_unregister_driver();
2344 return intel_pstate_register_driver(&intel_pstate
);
2347 if (size
== 7 && !strncmp(buf
, "passive", size
)) {
2348 if (intel_pstate_driver
) {
2349 if (intel_pstate_driver
== &intel_cpufreq
)
2352 ret
= intel_pstate_unregister_driver();
2357 return intel_pstate_register_driver(&intel_cpufreq
);
2363 static int no_load __initdata
;
2364 static int no_hwp __initdata
;
2365 static int hwp_only __initdata
;
2366 static unsigned int force_load __initdata
;
2368 static int __init
intel_pstate_msrs_not_valid(void)
2370 if (!pstate_funcs
.get_max() ||
2371 !pstate_funcs
.get_min() ||
2372 !pstate_funcs
.get_turbo())
2379 static void intel_pstate_use_acpi_profile(void)
2381 switch (acpi_gbl_FADT
.preferred_profile
) {
2384 case PM_APPLIANCE_PC
:
2386 case PM_WORKSTATION
:
2387 pstate_funcs
.update_util
= intel_pstate_update_util
;
2391 static void intel_pstate_use_acpi_profile(void)
2396 static void __init
copy_cpu_funcs(struct pstate_funcs
*funcs
)
2398 pstate_funcs
.get_max
= funcs
->get_max
;
2399 pstate_funcs
.get_max_physical
= funcs
->get_max_physical
;
2400 pstate_funcs
.get_min
= funcs
->get_min
;
2401 pstate_funcs
.get_turbo
= funcs
->get_turbo
;
2402 pstate_funcs
.get_scaling
= funcs
->get_scaling
;
2403 pstate_funcs
.get_val
= funcs
->get_val
;
2404 pstate_funcs
.get_vid
= funcs
->get_vid
;
2405 pstate_funcs
.update_util
= funcs
->update_util
;
2407 intel_pstate_use_acpi_profile();
2412 static bool __init
intel_pstate_no_acpi_pss(void)
2416 for_each_possible_cpu(i
) {
2418 union acpi_object
*pss
;
2419 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
2420 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2425 status
= acpi_evaluate_object(pr
->handle
, "_PSS", NULL
, &buffer
);
2426 if (ACPI_FAILURE(status
))
2429 pss
= buffer
.pointer
;
2430 if (pss
&& pss
->type
== ACPI_TYPE_PACKAGE
) {
2441 static bool __init
intel_pstate_has_acpi_ppc(void)
2445 for_each_possible_cpu(i
) {
2446 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2450 if (acpi_has_method(pr
->handle
, "_PPC"))
2461 struct hw_vendor_info
{
2463 char oem_id
[ACPI_OEM_ID_SIZE
];
2464 char oem_table_id
[ACPI_OEM_TABLE_ID_SIZE
];
2468 /* Hardware vendor-specific info that has its own power management modes */
2469 static struct hw_vendor_info vendor_info
[] __initdata
= {
2470 {1, "HP ", "ProLiant", PSS
},
2471 {1, "ORACLE", "X4-2 ", PPC
},
2472 {1, "ORACLE", "X4-2L ", PPC
},
2473 {1, "ORACLE", "X4-2B ", PPC
},
2474 {1, "ORACLE", "X3-2 ", PPC
},
2475 {1, "ORACLE", "X3-2L ", PPC
},
2476 {1, "ORACLE", "X3-2B ", PPC
},
2477 {1, "ORACLE", "X4470M2 ", PPC
},
2478 {1, "ORACLE", "X4270M3 ", PPC
},
2479 {1, "ORACLE", "X4270M2 ", PPC
},
2480 {1, "ORACLE", "X4170M2 ", PPC
},
2481 {1, "ORACLE", "X4170 M3", PPC
},
2482 {1, "ORACLE", "X4275 M3", PPC
},
2483 {1, "ORACLE", "X6-2 ", PPC
},
2484 {1, "ORACLE", "Sudbury ", PPC
},
2488 static bool __init
intel_pstate_platform_pwr_mgmt_exists(void)
2490 struct acpi_table_header hdr
;
2491 struct hw_vendor_info
*v_info
;
2492 const struct x86_cpu_id
*id
;
2495 id
= x86_match_cpu(intel_pstate_cpu_oob_ids
);
2497 rdmsrl(MSR_MISC_PWR_MGMT
, misc_pwr
);
2498 if ( misc_pwr
& (1 << 8))
2502 if (acpi_disabled
||
2503 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT
, 0, &hdr
)))
2506 for (v_info
= vendor_info
; v_info
->valid
; v_info
++) {
2507 if (!strncmp(hdr
.oem_id
, v_info
->oem_id
, ACPI_OEM_ID_SIZE
) &&
2508 !strncmp(hdr
.oem_table_id
, v_info
->oem_table_id
,
2509 ACPI_OEM_TABLE_ID_SIZE
))
2510 switch (v_info
->oem_pwr_table
) {
2512 return intel_pstate_no_acpi_pss();
2514 return intel_pstate_has_acpi_ppc() &&
2522 static void intel_pstate_request_control_from_smm(void)
2525 * It may be unsafe to request P-states control from SMM if _PPC support
2526 * has not been enabled.
2529 acpi_processor_pstate_control();
2531 #else /* CONFIG_ACPI not enabled */
2532 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2533 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2534 static inline void intel_pstate_request_control_from_smm(void) {}
2535 #endif /* CONFIG_ACPI */
2537 static const struct x86_cpu_id hwp_support_ids
[] __initconst
= {
2538 { X86_VENDOR_INTEL
, 6, X86_MODEL_ANY
, X86_FEATURE_HWP
},
2542 static int __init
intel_pstate_init(void)
2549 if (x86_match_cpu(hwp_support_ids
)) {
2550 copy_cpu_funcs(&core_funcs
);
2552 pstate_funcs
.update_util
= intel_pstate_update_util
;
2555 intel_pstate
.attr
= hwp_cpufreq_attrs
;
2556 goto hwp_cpu_matched
;
2559 const struct x86_cpu_id
*id
;
2561 id
= x86_match_cpu(intel_pstate_cpu_ids
);
2565 copy_cpu_funcs((struct pstate_funcs
*)id
->driver_data
);
2568 if (intel_pstate_msrs_not_valid())
2573 * The Intel pstate driver will be ignored if the platform
2574 * firmware has its own power management modes.
2576 if (intel_pstate_platform_pwr_mgmt_exists())
2579 if (!hwp_active
&& hwp_only
)
2582 pr_info("Intel P-state driver initializing\n");
2584 all_cpu_data
= vzalloc(sizeof(void *) * num_possible_cpus());
2588 intel_pstate_request_control_from_smm();
2590 intel_pstate_sysfs_expose_params();
2592 mutex_lock(&intel_pstate_driver_lock
);
2593 rc
= intel_pstate_register_driver(default_driver
);
2594 mutex_unlock(&intel_pstate_driver_lock
);
2599 pr_info("HWP enabled\n");
2603 device_initcall(intel_pstate_init
);
2605 static int __init
intel_pstate_setup(char *str
)
2610 if (!strcmp(str
, "disable")) {
2612 } else if (!strcmp(str
, "passive")) {
2613 pr_info("Passive mode enabled\n");
2614 default_driver
= &intel_cpufreq
;
2617 if (!strcmp(str
, "no_hwp")) {
2618 pr_info("HWP disabled\n");
2621 if (!strcmp(str
, "force"))
2623 if (!strcmp(str
, "hwp_only"))
2625 if (!strcmp(str
, "per_cpu_perf_limits"))
2626 per_cpu_limits
= true;
2629 if (!strcmp(str
, "support_acpi_ppc"))
2635 early_param("intel_pstate", intel_pstate_setup
);
2637 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2638 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2639 MODULE_LICENSE("GPL");