2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
53 unsigned short buf_len
:15;
54 unsigned short reversed
:1;
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
69 /* reused for each extent */
71 struct btrfs_root
*root
;
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
82 struct file
*send_filp
;
88 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
89 u64 flags
; /* 'flags' member of btrfs_ioctl_send_args is u64 */
91 struct btrfs_root
*send_root
;
92 struct btrfs_root
*parent_root
;
93 struct clone_root
*clone_roots
;
96 /* current state of the compare_tree call */
97 struct btrfs_path
*left_path
;
98 struct btrfs_path
*right_path
;
99 struct btrfs_key
*cmp_key
;
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
108 int cur_inode_new_gen
;
109 int cur_inode_deleted
;
113 u64 cur_inode_last_extent
;
117 struct list_head new_refs
;
118 struct list_head deleted_refs
;
120 struct radix_tree_root name_cache
;
121 struct list_head name_cache_list
;
124 struct file_ra_state ra
;
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
139 * Tree state when the first send was performed:
151 * Tree state when the second (incremental) send is performed:
160 * The sequence of steps that lead to the second state was:
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves
;
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
180 struct rb_root waiting_dir_moves
;
183 * A directory that is going to be rm'ed might have a child directory
184 * which is in the pending directory moves index above. In this case,
185 * the directory can only be removed after the move/rename of its child
186 * is performed. Example:
206 * Sequence of steps that lead to the send snapshot:
207 * rm -f /a/b/c/foo.txt
209 * mv /a/b/c/x /a/b/YY
212 * When the child is processed, its move/rename is delayed until its
213 * parent is processed (as explained above), but all other operations
214 * like update utimes, chown, chgrp, etc, are performed and the paths
215 * that it uses for those operations must use the orphanized name of
216 * its parent (the directory we're going to rm later), so we need to
217 * memorize that name.
219 * Indexed by the inode number of the directory to be deleted.
221 struct rb_root orphan_dirs
;
224 struct pending_dir_move
{
226 struct list_head list
;
230 struct list_head update_refs
;
233 struct waiting_dir_move
{
237 * There might be some directory that could not be removed because it
238 * was waiting for this directory inode to be moved first. Therefore
239 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
245 struct orphan_dir_info
{
251 struct name_cache_entry
{
252 struct list_head list
;
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
261 struct list_head radix_list
;
267 int need_later_update
;
272 static void inconsistent_snapshot_error(struct send_ctx
*sctx
,
273 enum btrfs_compare_tree_result result
,
276 const char *result_string
;
279 case BTRFS_COMPARE_TREE_NEW
:
280 result_string
= "new";
282 case BTRFS_COMPARE_TREE_DELETED
:
283 result_string
= "deleted";
285 case BTRFS_COMPARE_TREE_CHANGED
:
286 result_string
= "updated";
288 case BTRFS_COMPARE_TREE_SAME
:
290 result_string
= "unchanged";
294 result_string
= "unexpected";
297 btrfs_err(sctx
->send_root
->fs_info
,
298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 result_string
, what
, sctx
->cmp_key
->objectid
,
300 sctx
->send_root
->root_key
.objectid
,
302 sctx
->parent_root
->root_key
.objectid
: 0));
305 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
);
307 static struct waiting_dir_move
*
308 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
);
310 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
);
312 static int need_send_hole(struct send_ctx
*sctx
)
314 return (sctx
->parent_root
&& !sctx
->cur_inode_new
&&
315 !sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
&&
316 S_ISREG(sctx
->cur_inode_mode
));
319 static void fs_path_reset(struct fs_path
*p
)
322 p
->start
= p
->buf
+ p
->buf_len
- 1;
332 static struct fs_path
*fs_path_alloc(void)
336 p
= kmalloc(sizeof(*p
), GFP_KERNEL
);
340 p
->buf
= p
->inline_buf
;
341 p
->buf_len
= FS_PATH_INLINE_SIZE
;
346 static struct fs_path
*fs_path_alloc_reversed(void)
358 static void fs_path_free(struct fs_path
*p
)
362 if (p
->buf
!= p
->inline_buf
)
367 static int fs_path_len(struct fs_path
*p
)
369 return p
->end
- p
->start
;
372 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
380 if (p
->buf_len
>= len
)
383 if (len
> PATH_MAX
) {
388 path_len
= p
->end
- p
->start
;
389 old_buf_len
= p
->buf_len
;
392 * First time the inline_buf does not suffice
394 if (p
->buf
== p
->inline_buf
) {
395 tmp_buf
= kmalloc(len
, GFP_KERNEL
);
397 memcpy(tmp_buf
, p
->buf
, old_buf_len
);
399 tmp_buf
= krealloc(p
->buf
, len
, GFP_KERNEL
);
405 * The real size of the buffer is bigger, this will let the fast path
406 * happen most of the time
408 p
->buf_len
= ksize(p
->buf
);
411 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
412 p
->end
= p
->buf
+ p
->buf_len
- 1;
413 p
->start
= p
->end
- path_len
;
414 memmove(p
->start
, tmp_buf
, path_len
+ 1);
417 p
->end
= p
->start
+ path_len
;
422 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
,
428 new_len
= p
->end
- p
->start
+ name_len
;
429 if (p
->start
!= p
->end
)
431 ret
= fs_path_ensure_buf(p
, new_len
);
436 if (p
->start
!= p
->end
)
438 p
->start
-= name_len
;
439 *prepared
= p
->start
;
441 if (p
->start
!= p
->end
)
452 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
457 ret
= fs_path_prepare_for_add(p
, name_len
, &prepared
);
460 memcpy(prepared
, name
, name_len
);
466 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
471 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
, &prepared
);
474 memcpy(prepared
, p2
->start
, p2
->end
- p2
->start
);
480 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
481 struct extent_buffer
*eb
,
482 unsigned long off
, int len
)
487 ret
= fs_path_prepare_for_add(p
, len
, &prepared
);
491 read_extent_buffer(eb
, prepared
, off
, len
);
497 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
501 p
->reversed
= from
->reversed
;
504 ret
= fs_path_add_path(p
, from
);
510 static void fs_path_unreverse(struct fs_path
*p
)
519 len
= p
->end
- p
->start
;
521 p
->end
= p
->start
+ len
;
522 memmove(p
->start
, tmp
, len
+ 1);
526 static struct btrfs_path
*alloc_path_for_send(void)
528 struct btrfs_path
*path
;
530 path
= btrfs_alloc_path();
533 path
->search_commit_root
= 1;
534 path
->skip_locking
= 1;
535 path
->need_commit_sem
= 1;
539 static int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
549 ret
= vfs_write(filp
, (__force
const char __user
*)buf
+ pos
,
551 /* TODO handle that correctly */
552 /*if (ret == -ERESTARTSYS) {
571 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
573 struct btrfs_tlv_header
*hdr
;
574 int total_len
= sizeof(*hdr
) + len
;
575 int left
= sctx
->send_max_size
- sctx
->send_size
;
577 if (unlikely(left
< total_len
))
580 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
581 hdr
->tlv_type
= cpu_to_le16(attr
);
582 hdr
->tlv_len
= cpu_to_le16(len
);
583 memcpy(hdr
+ 1, data
, len
);
584 sctx
->send_size
+= total_len
;
589 #define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
597 TLV_PUT_DEFINE_INT(64)
599 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
600 const char *str
, int len
)
604 return tlv_put(sctx
, attr
, str
, len
);
607 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
610 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
613 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
614 struct extent_buffer
*eb
,
615 struct btrfs_timespec
*ts
)
617 struct btrfs_timespec bts
;
618 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
619 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
623 #define TLV_PUT(sctx, attrtype, attrlen, data) \
625 ret = tlv_put(sctx, attrtype, attrlen, data); \
627 goto tlv_put_failure; \
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
634 goto tlv_put_failure; \
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
645 goto tlv_put_failure; \
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
652 goto tlv_put_failure; \
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
658 goto tlv_put_failure; \
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
664 goto tlv_put_failure; \
667 static int send_header(struct send_ctx
*sctx
)
669 struct btrfs_stream_header hdr
;
671 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
672 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
674 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
679 * For each command/item we want to send to userspace, we call this function.
681 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
683 struct btrfs_cmd_header
*hdr
;
685 if (WARN_ON(!sctx
->send_buf
))
688 BUG_ON(sctx
->send_size
);
690 sctx
->send_size
+= sizeof(*hdr
);
691 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
692 hdr
->cmd
= cpu_to_le16(cmd
);
697 static int send_cmd(struct send_ctx
*sctx
)
700 struct btrfs_cmd_header
*hdr
;
703 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
704 hdr
->len
= cpu_to_le32(sctx
->send_size
- sizeof(*hdr
));
707 crc
= btrfs_crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
708 hdr
->crc
= cpu_to_le32(crc
);
710 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
713 sctx
->total_send_size
+= sctx
->send_size
;
714 sctx
->cmd_send_size
[le16_to_cpu(hdr
->cmd
)] += sctx
->send_size
;
721 * Sends a move instruction to user space
723 static int send_rename(struct send_ctx
*sctx
,
724 struct fs_path
*from
, struct fs_path
*to
)
726 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
729 btrfs_debug(fs_info
, "send_rename %s -> %s", from
->start
, to
->start
);
731 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
735 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
736 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
738 ret
= send_cmd(sctx
);
746 * Sends a link instruction to user space
748 static int send_link(struct send_ctx
*sctx
,
749 struct fs_path
*path
, struct fs_path
*lnk
)
751 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
754 btrfs_debug(fs_info
, "send_link %s -> %s", path
->start
, lnk
->start
);
756 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
760 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
761 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
763 ret
= send_cmd(sctx
);
771 * Sends an unlink instruction to user space
773 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
775 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
778 btrfs_debug(fs_info
, "send_unlink %s", path
->start
);
780 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
784 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
786 ret
= send_cmd(sctx
);
794 * Sends a rmdir instruction to user space
796 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
798 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
801 btrfs_debug(fs_info
, "send_rmdir %s", path
->start
);
803 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
807 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
809 ret
= send_cmd(sctx
);
817 * Helper function to retrieve some fields from an inode item.
819 static int __get_inode_info(struct btrfs_root
*root
, struct btrfs_path
*path
,
820 u64 ino
, u64
*size
, u64
*gen
, u64
*mode
, u64
*uid
,
824 struct btrfs_inode_item
*ii
;
825 struct btrfs_key key
;
828 key
.type
= BTRFS_INODE_ITEM_KEY
;
830 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
837 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
838 struct btrfs_inode_item
);
840 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
842 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
844 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
846 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
848 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
850 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
855 static int get_inode_info(struct btrfs_root
*root
,
856 u64 ino
, u64
*size
, u64
*gen
,
857 u64
*mode
, u64
*uid
, u64
*gid
,
860 struct btrfs_path
*path
;
863 path
= alloc_path_for_send();
866 ret
= __get_inode_info(root
, path
, ino
, size
, gen
, mode
, uid
, gid
,
868 btrfs_free_path(path
);
872 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
882 * path must point to the INODE_REF or INODE_EXTREF when called.
884 static int iterate_inode_ref(struct btrfs_root
*root
, struct btrfs_path
*path
,
885 struct btrfs_key
*found_key
, int resolve
,
886 iterate_inode_ref_t iterate
, void *ctx
)
888 struct extent_buffer
*eb
= path
->nodes
[0];
889 struct btrfs_item
*item
;
890 struct btrfs_inode_ref
*iref
;
891 struct btrfs_inode_extref
*extref
;
892 struct btrfs_path
*tmp_path
;
896 int slot
= path
->slots
[0];
903 unsigned long name_off
;
904 unsigned long elem_size
;
907 p
= fs_path_alloc_reversed();
911 tmp_path
= alloc_path_for_send();
918 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
919 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
920 struct btrfs_inode_ref
);
921 item
= btrfs_item_nr(slot
);
922 total
= btrfs_item_size(eb
, item
);
923 elem_size
= sizeof(*iref
);
925 ptr
= btrfs_item_ptr_offset(eb
, slot
);
926 total
= btrfs_item_size_nr(eb
, slot
);
927 elem_size
= sizeof(*extref
);
930 while (cur
< total
) {
933 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
934 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
935 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
936 name_off
= (unsigned long)(iref
+ 1);
937 index
= btrfs_inode_ref_index(eb
, iref
);
938 dir
= found_key
->offset
;
940 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
941 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
942 name_off
= (unsigned long)&extref
->name
;
943 index
= btrfs_inode_extref_index(eb
, extref
);
944 dir
= btrfs_inode_extref_parent(eb
, extref
);
948 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
952 ret
= PTR_ERR(start
);
955 if (start
< p
->buf
) {
956 /* overflow , try again with larger buffer */
957 ret
= fs_path_ensure_buf(p
,
958 p
->buf_len
+ p
->buf
- start
);
961 start
= btrfs_ref_to_path(root
, tmp_path
,
966 ret
= PTR_ERR(start
);
969 BUG_ON(start
< p
->buf
);
973 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
979 cur
+= elem_size
+ name_len
;
980 ret
= iterate(num
, dir
, index
, p
, ctx
);
987 btrfs_free_path(tmp_path
);
992 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
993 const char *name
, int name_len
,
994 const char *data
, int data_len
,
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1002 * path must point to the dir item when called.
1004 static int iterate_dir_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
1005 struct btrfs_key
*found_key
,
1006 iterate_dir_item_t iterate
, void *ctx
)
1009 struct extent_buffer
*eb
;
1010 struct btrfs_item
*item
;
1011 struct btrfs_dir_item
*di
;
1012 struct btrfs_key di_key
;
1025 * Start with a small buffer (1 page). If later we end up needing more
1026 * space, which can happen for xattrs on a fs with a leaf size greater
1027 * then the page size, attempt to increase the buffer. Typically xattr
1031 buf
= kmalloc(buf_len
, GFP_KERNEL
);
1037 eb
= path
->nodes
[0];
1038 slot
= path
->slots
[0];
1039 item
= btrfs_item_nr(slot
);
1040 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
1043 total
= btrfs_item_size(eb
, item
);
1046 while (cur
< total
) {
1047 name_len
= btrfs_dir_name_len(eb
, di
);
1048 data_len
= btrfs_dir_data_len(eb
, di
);
1049 type
= btrfs_dir_type(eb
, di
);
1050 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1052 if (type
== BTRFS_FT_XATTR
) {
1053 if (name_len
> XATTR_NAME_MAX
) {
1054 ret
= -ENAMETOOLONG
;
1057 if (name_len
+ data_len
>
1058 BTRFS_MAX_XATTR_SIZE(root
->fs_info
)) {
1066 if (name_len
+ data_len
> PATH_MAX
) {
1067 ret
= -ENAMETOOLONG
;
1072 if (name_len
+ data_len
> buf_len
) {
1073 buf_len
= name_len
+ data_len
;
1074 if (is_vmalloc_addr(buf
)) {
1078 char *tmp
= krealloc(buf
, buf_len
,
1079 GFP_KERNEL
| __GFP_NOWARN
);
1086 buf
= vmalloc(buf_len
);
1094 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
1095 name_len
+ data_len
);
1097 len
= sizeof(*di
) + name_len
+ data_len
;
1098 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
1101 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
1102 data_len
, type
, ctx
);
1118 static int __copy_first_ref(int num
, u64 dir
, int index
,
1119 struct fs_path
*p
, void *ctx
)
1122 struct fs_path
*pt
= ctx
;
1124 ret
= fs_path_copy(pt
, p
);
1128 /* we want the first only */
1133 * Retrieve the first path of an inode. If an inode has more then one
1134 * ref/hardlink, this is ignored.
1136 static int get_inode_path(struct btrfs_root
*root
,
1137 u64 ino
, struct fs_path
*path
)
1140 struct btrfs_key key
, found_key
;
1141 struct btrfs_path
*p
;
1143 p
= alloc_path_for_send();
1147 fs_path_reset(path
);
1150 key
.type
= BTRFS_INODE_REF_KEY
;
1153 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1160 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1161 if (found_key
.objectid
!= ino
||
1162 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1163 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1168 ret
= iterate_inode_ref(root
, p
, &found_key
, 1,
1169 __copy_first_ref
, path
);
1179 struct backref_ctx
{
1180 struct send_ctx
*sctx
;
1182 struct btrfs_path
*path
;
1183 /* number of total found references */
1187 * used for clones found in send_root. clones found behind cur_objectid
1188 * and cur_offset are not considered as allowed clones.
1193 /* may be truncated in case it's the last extent in a file */
1196 /* data offset in the file extent item */
1199 /* Just to check for bugs in backref resolving */
1203 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1205 u64 root
= (u64
)(uintptr_t)key
;
1206 struct clone_root
*cr
= (struct clone_root
*)elt
;
1208 if (root
< cr
->root
->objectid
)
1210 if (root
> cr
->root
->objectid
)
1215 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1217 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1218 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1220 if (cr1
->root
->objectid
< cr2
->root
->objectid
)
1222 if (cr1
->root
->objectid
> cr2
->root
->objectid
)
1228 * Called for every backref that is found for the current extent.
1229 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1231 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1233 struct backref_ctx
*bctx
= ctx_
;
1234 struct clone_root
*found
;
1238 /* First check if the root is in the list of accepted clone sources */
1239 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1240 bctx
->sctx
->clone_roots_cnt
,
1241 sizeof(struct clone_root
),
1242 __clone_root_cmp_bsearch
);
1246 if (found
->root
== bctx
->sctx
->send_root
&&
1247 ino
== bctx
->cur_objectid
&&
1248 offset
== bctx
->cur_offset
) {
1249 bctx
->found_itself
= 1;
1253 * There are inodes that have extents that lie behind its i_size. Don't
1254 * accept clones from these extents.
1256 ret
= __get_inode_info(found
->root
, bctx
->path
, ino
, &i_size
, NULL
, NULL
,
1258 btrfs_release_path(bctx
->path
);
1262 if (offset
+ bctx
->data_offset
+ bctx
->extent_len
> i_size
)
1266 * Make sure we don't consider clones from send_root that are
1267 * behind the current inode/offset.
1269 if (found
->root
== bctx
->sctx
->send_root
) {
1271 * TODO for the moment we don't accept clones from the inode
1272 * that is currently send. We may change this when
1273 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1276 if (ino
>= bctx
->cur_objectid
)
1279 if (ino
> bctx
->cur_objectid
)
1281 if (offset
+ bctx
->extent_len
> bctx
->cur_offset
)
1287 found
->found_refs
++;
1288 if (ino
< found
->ino
) {
1290 found
->offset
= offset
;
1291 } else if (found
->ino
== ino
) {
1293 * same extent found more then once in the same file.
1295 if (found
->offset
> offset
+ bctx
->extent_len
)
1296 found
->offset
= offset
;
1303 * Given an inode, offset and extent item, it finds a good clone for a clone
1304 * instruction. Returns -ENOENT when none could be found. The function makes
1305 * sure that the returned clone is usable at the point where sending is at the
1306 * moment. This means, that no clones are accepted which lie behind the current
1309 * path must point to the extent item when called.
1311 static int find_extent_clone(struct send_ctx
*sctx
,
1312 struct btrfs_path
*path
,
1313 u64 ino
, u64 data_offset
,
1315 struct clone_root
**found
)
1317 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
1323 u64 extent_item_pos
;
1325 struct btrfs_file_extent_item
*fi
;
1326 struct extent_buffer
*eb
= path
->nodes
[0];
1327 struct backref_ctx
*backref_ctx
= NULL
;
1328 struct clone_root
*cur_clone_root
;
1329 struct btrfs_key found_key
;
1330 struct btrfs_path
*tmp_path
;
1334 tmp_path
= alloc_path_for_send();
1338 /* We only use this path under the commit sem */
1339 tmp_path
->need_commit_sem
= 0;
1341 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_KERNEL
);
1347 backref_ctx
->path
= tmp_path
;
1349 if (data_offset
>= ino_size
) {
1351 * There may be extents that lie behind the file's size.
1352 * I at least had this in combination with snapshotting while
1353 * writing large files.
1359 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1360 struct btrfs_file_extent_item
);
1361 extent_type
= btrfs_file_extent_type(eb
, fi
);
1362 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1366 compressed
= btrfs_file_extent_compression(eb
, fi
);
1368 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1369 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1370 if (disk_byte
== 0) {
1374 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1376 down_read(&fs_info
->commit_root_sem
);
1377 ret
= extent_from_logical(fs_info
, disk_byte
, tmp_path
,
1378 &found_key
, &flags
);
1379 up_read(&fs_info
->commit_root_sem
);
1380 btrfs_release_path(tmp_path
);
1384 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1390 * Setup the clone roots.
1392 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1393 cur_clone_root
= sctx
->clone_roots
+ i
;
1394 cur_clone_root
->ino
= (u64
)-1;
1395 cur_clone_root
->offset
= 0;
1396 cur_clone_root
->found_refs
= 0;
1399 backref_ctx
->sctx
= sctx
;
1400 backref_ctx
->found
= 0;
1401 backref_ctx
->cur_objectid
= ino
;
1402 backref_ctx
->cur_offset
= data_offset
;
1403 backref_ctx
->found_itself
= 0;
1404 backref_ctx
->extent_len
= num_bytes
;
1406 * For non-compressed extents iterate_extent_inodes() gives us extent
1407 * offsets that already take into account the data offset, but not for
1408 * compressed extents, since the offset is logical and not relative to
1409 * the physical extent locations. We must take this into account to
1410 * avoid sending clone offsets that go beyond the source file's size,
1411 * which would result in the clone ioctl failing with -EINVAL on the
1414 if (compressed
== BTRFS_COMPRESS_NONE
)
1415 backref_ctx
->data_offset
= 0;
1417 backref_ctx
->data_offset
= btrfs_file_extent_offset(eb
, fi
);
1420 * The last extent of a file may be too large due to page alignment.
1421 * We need to adjust extent_len in this case so that the checks in
1422 * __iterate_backrefs work.
1424 if (data_offset
+ num_bytes
>= ino_size
)
1425 backref_ctx
->extent_len
= ino_size
- data_offset
;
1428 * Now collect all backrefs.
1430 if (compressed
== BTRFS_COMPRESS_NONE
)
1431 extent_item_pos
= logical
- found_key
.objectid
;
1433 extent_item_pos
= 0;
1434 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1435 extent_item_pos
, 1, __iterate_backrefs
,
1441 if (!backref_ctx
->found_itself
) {
1442 /* found a bug in backref code? */
1445 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1446 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1450 btrfs_debug(fs_info
,
1451 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1452 data_offset
, ino
, num_bytes
, logical
);
1454 if (!backref_ctx
->found
)
1455 btrfs_debug(fs_info
, "no clones found");
1457 cur_clone_root
= NULL
;
1458 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1459 if (sctx
->clone_roots
[i
].found_refs
) {
1460 if (!cur_clone_root
)
1461 cur_clone_root
= sctx
->clone_roots
+ i
;
1462 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1463 /* prefer clones from send_root over others */
1464 cur_clone_root
= sctx
->clone_roots
+ i
;
1469 if (cur_clone_root
) {
1470 *found
= cur_clone_root
;
1477 btrfs_free_path(tmp_path
);
1482 static int read_symlink(struct btrfs_root
*root
,
1484 struct fs_path
*dest
)
1487 struct btrfs_path
*path
;
1488 struct btrfs_key key
;
1489 struct btrfs_file_extent_item
*ei
;
1495 path
= alloc_path_for_send();
1500 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1502 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1507 * An empty symlink inode. Can happen in rare error paths when
1508 * creating a symlink (transaction committed before the inode
1509 * eviction handler removed the symlink inode items and a crash
1510 * happened in between or the subvol was snapshoted in between).
1511 * Print an informative message to dmesg/syslog so that the user
1512 * can delete the symlink.
1514 btrfs_err(root
->fs_info
,
1515 "Found empty symlink inode %llu at root %llu",
1516 ino
, root
->root_key
.objectid
);
1521 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1522 struct btrfs_file_extent_item
);
1523 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1524 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1525 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1526 BUG_ON(compression
);
1528 off
= btrfs_file_extent_inline_start(ei
);
1529 len
= btrfs_file_extent_inline_len(path
->nodes
[0], path
->slots
[0], ei
);
1531 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1534 btrfs_free_path(path
);
1539 * Helper function to generate a file name that is unique in the root of
1540 * send_root and parent_root. This is used to generate names for orphan inodes.
1542 static int gen_unique_name(struct send_ctx
*sctx
,
1544 struct fs_path
*dest
)
1547 struct btrfs_path
*path
;
1548 struct btrfs_dir_item
*di
;
1553 path
= alloc_path_for_send();
1558 len
= snprintf(tmp
, sizeof(tmp
), "o%llu-%llu-%llu",
1560 ASSERT(len
< sizeof(tmp
));
1562 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1563 path
, BTRFS_FIRST_FREE_OBJECTID
,
1564 tmp
, strlen(tmp
), 0);
1565 btrfs_release_path(path
);
1571 /* not unique, try again */
1576 if (!sctx
->parent_root
) {
1582 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1583 path
, BTRFS_FIRST_FREE_OBJECTID
,
1584 tmp
, strlen(tmp
), 0);
1585 btrfs_release_path(path
);
1591 /* not unique, try again */
1599 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1602 btrfs_free_path(path
);
1607 inode_state_no_change
,
1608 inode_state_will_create
,
1609 inode_state_did_create
,
1610 inode_state_will_delete
,
1611 inode_state_did_delete
,
1614 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1622 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1624 if (ret
< 0 && ret
!= -ENOENT
)
1628 if (!sctx
->parent_root
) {
1629 right_ret
= -ENOENT
;
1631 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1632 NULL
, NULL
, NULL
, NULL
);
1633 if (ret
< 0 && ret
!= -ENOENT
)
1638 if (!left_ret
&& !right_ret
) {
1639 if (left_gen
== gen
&& right_gen
== gen
) {
1640 ret
= inode_state_no_change
;
1641 } else if (left_gen
== gen
) {
1642 if (ino
< sctx
->send_progress
)
1643 ret
= inode_state_did_create
;
1645 ret
= inode_state_will_create
;
1646 } else if (right_gen
== gen
) {
1647 if (ino
< sctx
->send_progress
)
1648 ret
= inode_state_did_delete
;
1650 ret
= inode_state_will_delete
;
1654 } else if (!left_ret
) {
1655 if (left_gen
== gen
) {
1656 if (ino
< sctx
->send_progress
)
1657 ret
= inode_state_did_create
;
1659 ret
= inode_state_will_create
;
1663 } else if (!right_ret
) {
1664 if (right_gen
== gen
) {
1665 if (ino
< sctx
->send_progress
)
1666 ret
= inode_state_did_delete
;
1668 ret
= inode_state_will_delete
;
1680 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1684 if (ino
== BTRFS_FIRST_FREE_OBJECTID
)
1687 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1691 if (ret
== inode_state_no_change
||
1692 ret
== inode_state_did_create
||
1693 ret
== inode_state_will_delete
)
1703 * Helper function to lookup a dir item in a dir.
1705 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1706 u64 dir
, const char *name
, int name_len
,
1711 struct btrfs_dir_item
*di
;
1712 struct btrfs_key key
;
1713 struct btrfs_path
*path
;
1715 path
= alloc_path_for_send();
1719 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1720 dir
, name
, name_len
, 0);
1729 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1730 if (key
.type
== BTRFS_ROOT_ITEM_KEY
) {
1734 *found_inode
= key
.objectid
;
1735 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1738 btrfs_free_path(path
);
1743 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1744 * generation of the parent dir and the name of the dir entry.
1746 static int get_first_ref(struct btrfs_root
*root
, u64 ino
,
1747 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1750 struct btrfs_key key
;
1751 struct btrfs_key found_key
;
1752 struct btrfs_path
*path
;
1756 path
= alloc_path_for_send();
1761 key
.type
= BTRFS_INODE_REF_KEY
;
1764 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1768 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1770 if (ret
|| found_key
.objectid
!= ino
||
1771 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1772 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1777 if (found_key
.type
== BTRFS_INODE_REF_KEY
) {
1778 struct btrfs_inode_ref
*iref
;
1779 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1780 struct btrfs_inode_ref
);
1781 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1782 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1783 (unsigned long)(iref
+ 1),
1785 parent_dir
= found_key
.offset
;
1787 struct btrfs_inode_extref
*extref
;
1788 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1789 struct btrfs_inode_extref
);
1790 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1791 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1792 (unsigned long)&extref
->name
, len
);
1793 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1797 btrfs_release_path(path
);
1800 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
,
1809 btrfs_free_path(path
);
1813 static int is_first_ref(struct btrfs_root
*root
,
1815 const char *name
, int name_len
)
1818 struct fs_path
*tmp_name
;
1821 tmp_name
= fs_path_alloc();
1825 ret
= get_first_ref(root
, ino
, &tmp_dir
, NULL
, tmp_name
);
1829 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1834 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1837 fs_path_free(tmp_name
);
1842 * Used by process_recorded_refs to determine if a new ref would overwrite an
1843 * already existing ref. In case it detects an overwrite, it returns the
1844 * inode/gen in who_ino/who_gen.
1845 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1846 * to make sure later references to the overwritten inode are possible.
1847 * Orphanizing is however only required for the first ref of an inode.
1848 * process_recorded_refs does an additional is_first_ref check to see if
1849 * orphanizing is really required.
1851 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1852 const char *name
, int name_len
,
1853 u64
*who_ino
, u64
*who_gen
)
1857 u64 other_inode
= 0;
1860 if (!sctx
->parent_root
)
1863 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1868 * If we have a parent root we need to verify that the parent dir was
1869 * not deleted and then re-created, if it was then we have no overwrite
1870 * and we can just unlink this entry.
1872 if (sctx
->parent_root
&& dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1873 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
,
1875 if (ret
< 0 && ret
!= -ENOENT
)
1885 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1886 &other_inode
, &other_type
);
1887 if (ret
< 0 && ret
!= -ENOENT
)
1895 * Check if the overwritten ref was already processed. If yes, the ref
1896 * was already unlinked/moved, so we can safely assume that we will not
1897 * overwrite anything at this point in time.
1899 if (other_inode
> sctx
->send_progress
||
1900 is_waiting_for_move(sctx
, other_inode
)) {
1901 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1902 who_gen
, NULL
, NULL
, NULL
, NULL
);
1907 *who_ino
= other_inode
;
1917 * Checks if the ref was overwritten by an already processed inode. This is
1918 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1919 * thus the orphan name needs be used.
1920 * process_recorded_refs also uses it to avoid unlinking of refs that were
1923 static int did_overwrite_ref(struct send_ctx
*sctx
,
1924 u64 dir
, u64 dir_gen
,
1925 u64 ino
, u64 ino_gen
,
1926 const char *name
, int name_len
)
1933 if (!sctx
->parent_root
)
1936 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1940 if (dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1941 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &gen
, NULL
,
1943 if (ret
< 0 && ret
!= -ENOENT
)
1953 /* check if the ref was overwritten by another ref */
1954 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1955 &ow_inode
, &other_type
);
1956 if (ret
< 0 && ret
!= -ENOENT
)
1959 /* was never and will never be overwritten */
1964 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1969 if (ow_inode
== ino
&& gen
== ino_gen
) {
1975 * We know that it is or will be overwritten. Check this now.
1976 * The current inode being processed might have been the one that caused
1977 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1978 * the current inode being processed.
1980 if ((ow_inode
< sctx
->send_progress
) ||
1981 (ino
!= sctx
->cur_ino
&& ow_inode
== sctx
->cur_ino
&&
1982 gen
== sctx
->cur_inode_gen
))
1992 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1993 * that got overwritten. This is used by process_recorded_refs to determine
1994 * if it has to use the path as returned by get_cur_path or the orphan name.
1996 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1999 struct fs_path
*name
= NULL
;
2003 if (!sctx
->parent_root
)
2006 name
= fs_path_alloc();
2010 ret
= get_first_ref(sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
2014 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
2015 name
->start
, fs_path_len(name
));
2023 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2024 * so we need to do some special handling in case we have clashes. This function
2025 * takes care of this with the help of name_cache_entry::radix_list.
2026 * In case of error, nce is kfreed.
2028 static int name_cache_insert(struct send_ctx
*sctx
,
2029 struct name_cache_entry
*nce
)
2032 struct list_head
*nce_head
;
2034 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2035 (unsigned long)nce
->ino
);
2037 nce_head
= kmalloc(sizeof(*nce_head
), GFP_KERNEL
);
2042 INIT_LIST_HEAD(nce_head
);
2044 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
2051 list_add_tail(&nce
->radix_list
, nce_head
);
2052 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2053 sctx
->name_cache_size
++;
2058 static void name_cache_delete(struct send_ctx
*sctx
,
2059 struct name_cache_entry
*nce
)
2061 struct list_head
*nce_head
;
2063 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2064 (unsigned long)nce
->ino
);
2066 btrfs_err(sctx
->send_root
->fs_info
,
2067 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2068 nce
->ino
, sctx
->name_cache_size
);
2071 list_del(&nce
->radix_list
);
2072 list_del(&nce
->list
);
2073 sctx
->name_cache_size
--;
2076 * We may not get to the final release of nce_head if the lookup fails
2078 if (nce_head
&& list_empty(nce_head
)) {
2079 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
2084 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
2087 struct list_head
*nce_head
;
2088 struct name_cache_entry
*cur
;
2090 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
2094 list_for_each_entry(cur
, nce_head
, radix_list
) {
2095 if (cur
->ino
== ino
&& cur
->gen
== gen
)
2102 * Removes the entry from the list and adds it back to the end. This marks the
2103 * entry as recently used so that name_cache_clean_unused does not remove it.
2105 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
2107 list_del(&nce
->list
);
2108 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2112 * Remove some entries from the beginning of name_cache_list.
2114 static void name_cache_clean_unused(struct send_ctx
*sctx
)
2116 struct name_cache_entry
*nce
;
2118 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
2121 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
2122 nce
= list_entry(sctx
->name_cache_list
.next
,
2123 struct name_cache_entry
, list
);
2124 name_cache_delete(sctx
, nce
);
2129 static void name_cache_free(struct send_ctx
*sctx
)
2131 struct name_cache_entry
*nce
;
2133 while (!list_empty(&sctx
->name_cache_list
)) {
2134 nce
= list_entry(sctx
->name_cache_list
.next
,
2135 struct name_cache_entry
, list
);
2136 name_cache_delete(sctx
, nce
);
2142 * Used by get_cur_path for each ref up to the root.
2143 * Returns 0 if it succeeded.
2144 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2145 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2146 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2147 * Returns <0 in case of error.
2149 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
2153 struct fs_path
*dest
)
2157 struct name_cache_entry
*nce
= NULL
;
2160 * First check if we already did a call to this function with the same
2161 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2162 * return the cached result.
2164 nce
= name_cache_search(sctx
, ino
, gen
);
2166 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
2167 name_cache_delete(sctx
, nce
);
2171 name_cache_used(sctx
, nce
);
2172 *parent_ino
= nce
->parent_ino
;
2173 *parent_gen
= nce
->parent_gen
;
2174 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
2183 * If the inode is not existent yet, add the orphan name and return 1.
2184 * This should only happen for the parent dir that we determine in
2187 ret
= is_inode_existent(sctx
, ino
, gen
);
2192 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2200 * Depending on whether the inode was already processed or not, use
2201 * send_root or parent_root for ref lookup.
2203 if (ino
< sctx
->send_progress
)
2204 ret
= get_first_ref(sctx
->send_root
, ino
,
2205 parent_ino
, parent_gen
, dest
);
2207 ret
= get_first_ref(sctx
->parent_root
, ino
,
2208 parent_ino
, parent_gen
, dest
);
2213 * Check if the ref was overwritten by an inode's ref that was processed
2214 * earlier. If yes, treat as orphan and return 1.
2216 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
2217 dest
->start
, dest
->end
- dest
->start
);
2221 fs_path_reset(dest
);
2222 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2230 * Store the result of the lookup in the name cache.
2232 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_KERNEL
);
2240 nce
->parent_ino
= *parent_ino
;
2241 nce
->parent_gen
= *parent_gen
;
2242 nce
->name_len
= fs_path_len(dest
);
2244 strcpy(nce
->name
, dest
->start
);
2246 if (ino
< sctx
->send_progress
)
2247 nce
->need_later_update
= 0;
2249 nce
->need_later_update
= 1;
2251 nce_ret
= name_cache_insert(sctx
, nce
);
2254 name_cache_clean_unused(sctx
);
2261 * Magic happens here. This function returns the first ref to an inode as it
2262 * would look like while receiving the stream at this point in time.
2263 * We walk the path up to the root. For every inode in between, we check if it
2264 * was already processed/sent. If yes, we continue with the parent as found
2265 * in send_root. If not, we continue with the parent as found in parent_root.
2266 * If we encounter an inode that was deleted at this point in time, we use the
2267 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2268 * that were not created yet and overwritten inodes/refs.
2270 * When do we have have orphan inodes:
2271 * 1. When an inode is freshly created and thus no valid refs are available yet
2272 * 2. When a directory lost all it's refs (deleted) but still has dir items
2273 * inside which were not processed yet (pending for move/delete). If anyone
2274 * tried to get the path to the dir items, it would get a path inside that
2276 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2277 * of an unprocessed inode. If in that case the first ref would be
2278 * overwritten, the overwritten inode gets "orphanized". Later when we
2279 * process this overwritten inode, it is restored at a new place by moving
2282 * sctx->send_progress tells this function at which point in time receiving
2285 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2286 struct fs_path
*dest
)
2289 struct fs_path
*name
= NULL
;
2290 u64 parent_inode
= 0;
2294 name
= fs_path_alloc();
2301 fs_path_reset(dest
);
2303 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2304 struct waiting_dir_move
*wdm
;
2306 fs_path_reset(name
);
2308 if (is_waiting_for_rm(sctx
, ino
)) {
2309 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2312 ret
= fs_path_add_path(dest
, name
);
2316 wdm
= get_waiting_dir_move(sctx
, ino
);
2317 if (wdm
&& wdm
->orphanized
) {
2318 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2321 ret
= get_first_ref(sctx
->parent_root
, ino
,
2322 &parent_inode
, &parent_gen
, name
);
2324 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2334 ret
= fs_path_add_path(dest
, name
);
2345 fs_path_unreverse(dest
);
2350 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2352 static int send_subvol_begin(struct send_ctx
*sctx
)
2355 struct btrfs_root
*send_root
= sctx
->send_root
;
2356 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2357 struct btrfs_path
*path
;
2358 struct btrfs_key key
;
2359 struct btrfs_root_ref
*ref
;
2360 struct extent_buffer
*leaf
;
2364 path
= btrfs_alloc_path();
2368 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_KERNEL
);
2370 btrfs_free_path(path
);
2374 key
.objectid
= send_root
->objectid
;
2375 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2378 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2387 leaf
= path
->nodes
[0];
2388 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2389 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2390 key
.objectid
!= send_root
->objectid
) {
2394 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2395 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2396 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2397 btrfs_release_path(path
);
2400 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2404 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2409 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2411 if (!btrfs_is_empty_uuid(sctx
->send_root
->root_item
.received_uuid
))
2412 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2413 sctx
->send_root
->root_item
.received_uuid
);
2415 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2416 sctx
->send_root
->root_item
.uuid
);
2418 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2419 le64_to_cpu(sctx
->send_root
->root_item
.ctransid
));
2421 if (!btrfs_is_empty_uuid(parent_root
->root_item
.received_uuid
))
2422 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2423 parent_root
->root_item
.received_uuid
);
2425 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2426 parent_root
->root_item
.uuid
);
2427 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2428 le64_to_cpu(sctx
->parent_root
->root_item
.ctransid
));
2431 ret
= send_cmd(sctx
);
2435 btrfs_free_path(path
);
2440 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2442 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2446 btrfs_debug(fs_info
, "send_truncate %llu size=%llu", ino
, size
);
2448 p
= fs_path_alloc();
2452 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2456 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2459 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2460 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2462 ret
= send_cmd(sctx
);
2470 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2472 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2476 btrfs_debug(fs_info
, "send_chmod %llu mode=%llu", ino
, mode
);
2478 p
= fs_path_alloc();
2482 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2486 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2489 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2490 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2492 ret
= send_cmd(sctx
);
2500 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2502 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2506 btrfs_debug(fs_info
, "send_chown %llu uid=%llu, gid=%llu",
2509 p
= fs_path_alloc();
2513 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2517 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2520 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2521 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2522 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2524 ret
= send_cmd(sctx
);
2532 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2534 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2536 struct fs_path
*p
= NULL
;
2537 struct btrfs_inode_item
*ii
;
2538 struct btrfs_path
*path
= NULL
;
2539 struct extent_buffer
*eb
;
2540 struct btrfs_key key
;
2543 btrfs_debug(fs_info
, "send_utimes %llu", ino
);
2545 p
= fs_path_alloc();
2549 path
= alloc_path_for_send();
2556 key
.type
= BTRFS_INODE_ITEM_KEY
;
2558 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2564 eb
= path
->nodes
[0];
2565 slot
= path
->slots
[0];
2566 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2568 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2572 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2575 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2576 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
, &ii
->atime
);
2577 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
, &ii
->mtime
);
2578 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
, &ii
->ctime
);
2579 /* TODO Add otime support when the otime patches get into upstream */
2581 ret
= send_cmd(sctx
);
2586 btrfs_free_path(path
);
2591 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2592 * a valid path yet because we did not process the refs yet. So, the inode
2593 * is created as orphan.
2595 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2597 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2605 btrfs_debug(fs_info
, "send_create_inode %llu", ino
);
2607 p
= fs_path_alloc();
2611 if (ino
!= sctx
->cur_ino
) {
2612 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
,
2617 gen
= sctx
->cur_inode_gen
;
2618 mode
= sctx
->cur_inode_mode
;
2619 rdev
= sctx
->cur_inode_rdev
;
2622 if (S_ISREG(mode
)) {
2623 cmd
= BTRFS_SEND_C_MKFILE
;
2624 } else if (S_ISDIR(mode
)) {
2625 cmd
= BTRFS_SEND_C_MKDIR
;
2626 } else if (S_ISLNK(mode
)) {
2627 cmd
= BTRFS_SEND_C_SYMLINK
;
2628 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2629 cmd
= BTRFS_SEND_C_MKNOD
;
2630 } else if (S_ISFIFO(mode
)) {
2631 cmd
= BTRFS_SEND_C_MKFIFO
;
2632 } else if (S_ISSOCK(mode
)) {
2633 cmd
= BTRFS_SEND_C_MKSOCK
;
2635 btrfs_warn(sctx
->send_root
->fs_info
, "unexpected inode type %o",
2636 (int)(mode
& S_IFMT
));
2641 ret
= begin_cmd(sctx
, cmd
);
2645 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2649 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2650 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2652 if (S_ISLNK(mode
)) {
2654 ret
= read_symlink(sctx
->send_root
, ino
, p
);
2657 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2658 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2659 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2660 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2661 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2664 ret
= send_cmd(sctx
);
2676 * We need some special handling for inodes that get processed before the parent
2677 * directory got created. See process_recorded_refs for details.
2678 * This function does the check if we already created the dir out of order.
2680 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2683 struct btrfs_path
*path
= NULL
;
2684 struct btrfs_key key
;
2685 struct btrfs_key found_key
;
2686 struct btrfs_key di_key
;
2687 struct extent_buffer
*eb
;
2688 struct btrfs_dir_item
*di
;
2691 path
= alloc_path_for_send();
2698 key
.type
= BTRFS_DIR_INDEX_KEY
;
2700 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2705 eb
= path
->nodes
[0];
2706 slot
= path
->slots
[0];
2707 if (slot
>= btrfs_header_nritems(eb
)) {
2708 ret
= btrfs_next_leaf(sctx
->send_root
, path
);
2711 } else if (ret
> 0) {
2718 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2719 if (found_key
.objectid
!= key
.objectid
||
2720 found_key
.type
!= key
.type
) {
2725 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2726 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2728 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
&&
2729 di_key
.objectid
< sctx
->send_progress
) {
2738 btrfs_free_path(path
);
2743 * Only creates the inode if it is:
2744 * 1. Not a directory
2745 * 2. Or a directory which was not created already due to out of order
2746 * directories. See did_create_dir and process_recorded_refs for details.
2748 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2752 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2753 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2762 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2770 struct recorded_ref
{
2771 struct list_head list
;
2774 struct fs_path
*full_path
;
2782 * We need to process new refs before deleted refs, but compare_tree gives us
2783 * everything mixed. So we first record all refs and later process them.
2784 * This function is a helper to record one ref.
2786 static int __record_ref(struct list_head
*head
, u64 dir
,
2787 u64 dir_gen
, struct fs_path
*path
)
2789 struct recorded_ref
*ref
;
2791 ref
= kmalloc(sizeof(*ref
), GFP_KERNEL
);
2796 ref
->dir_gen
= dir_gen
;
2797 ref
->full_path
= path
;
2799 ref
->name
= (char *)kbasename(ref
->full_path
->start
);
2800 ref
->name_len
= ref
->full_path
->end
- ref
->name
;
2801 ref
->dir_path
= ref
->full_path
->start
;
2802 if (ref
->name
== ref
->full_path
->start
)
2803 ref
->dir_path_len
= 0;
2805 ref
->dir_path_len
= ref
->full_path
->end
-
2806 ref
->full_path
->start
- 1 - ref
->name_len
;
2808 list_add_tail(&ref
->list
, head
);
2812 static int dup_ref(struct recorded_ref
*ref
, struct list_head
*list
)
2814 struct recorded_ref
*new;
2816 new = kmalloc(sizeof(*ref
), GFP_KERNEL
);
2820 new->dir
= ref
->dir
;
2821 new->dir_gen
= ref
->dir_gen
;
2822 new->full_path
= NULL
;
2823 INIT_LIST_HEAD(&new->list
);
2824 list_add_tail(&new->list
, list
);
2828 static void __free_recorded_refs(struct list_head
*head
)
2830 struct recorded_ref
*cur
;
2832 while (!list_empty(head
)) {
2833 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2834 fs_path_free(cur
->full_path
);
2835 list_del(&cur
->list
);
2840 static void free_recorded_refs(struct send_ctx
*sctx
)
2842 __free_recorded_refs(&sctx
->new_refs
);
2843 __free_recorded_refs(&sctx
->deleted_refs
);
2847 * Renames/moves a file/dir to its orphan name. Used when the first
2848 * ref of an unprocessed inode gets overwritten and for all non empty
2851 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2852 struct fs_path
*path
)
2855 struct fs_path
*orphan
;
2857 orphan
= fs_path_alloc();
2861 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2865 ret
= send_rename(sctx
, path
, orphan
);
2868 fs_path_free(orphan
);
2872 static struct orphan_dir_info
*
2873 add_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2875 struct rb_node
**p
= &sctx
->orphan_dirs
.rb_node
;
2876 struct rb_node
*parent
= NULL
;
2877 struct orphan_dir_info
*entry
, *odi
;
2879 odi
= kmalloc(sizeof(*odi
), GFP_KERNEL
);
2881 return ERR_PTR(-ENOMEM
);
2887 entry
= rb_entry(parent
, struct orphan_dir_info
, node
);
2888 if (dir_ino
< entry
->ino
) {
2890 } else if (dir_ino
> entry
->ino
) {
2891 p
= &(*p
)->rb_right
;
2898 rb_link_node(&odi
->node
, parent
, p
);
2899 rb_insert_color(&odi
->node
, &sctx
->orphan_dirs
);
2903 static struct orphan_dir_info
*
2904 get_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2906 struct rb_node
*n
= sctx
->orphan_dirs
.rb_node
;
2907 struct orphan_dir_info
*entry
;
2910 entry
= rb_entry(n
, struct orphan_dir_info
, node
);
2911 if (dir_ino
< entry
->ino
)
2913 else if (dir_ino
> entry
->ino
)
2921 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
)
2923 struct orphan_dir_info
*odi
= get_orphan_dir_info(sctx
, dir_ino
);
2928 static void free_orphan_dir_info(struct send_ctx
*sctx
,
2929 struct orphan_dir_info
*odi
)
2933 rb_erase(&odi
->node
, &sctx
->orphan_dirs
);
2938 * Returns 1 if a directory can be removed at this point in time.
2939 * We check this by iterating all dir items and checking if the inode behind
2940 * the dir item was already processed.
2942 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
2946 struct btrfs_root
*root
= sctx
->parent_root
;
2947 struct btrfs_path
*path
;
2948 struct btrfs_key key
;
2949 struct btrfs_key found_key
;
2950 struct btrfs_key loc
;
2951 struct btrfs_dir_item
*di
;
2954 * Don't try to rmdir the top/root subvolume dir.
2956 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2959 path
= alloc_path_for_send();
2964 key
.type
= BTRFS_DIR_INDEX_KEY
;
2966 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2971 struct waiting_dir_move
*dm
;
2973 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
2974 ret
= btrfs_next_leaf(root
, path
);
2981 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2983 if (found_key
.objectid
!= key
.objectid
||
2984 found_key
.type
!= key
.type
)
2987 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2988 struct btrfs_dir_item
);
2989 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2991 dm
= get_waiting_dir_move(sctx
, loc
.objectid
);
2993 struct orphan_dir_info
*odi
;
2995 odi
= add_orphan_dir_info(sctx
, dir
);
3001 dm
->rmdir_ino
= dir
;
3006 if (loc
.objectid
> send_progress
) {
3007 struct orphan_dir_info
*odi
;
3009 odi
= get_orphan_dir_info(sctx
, dir
);
3010 free_orphan_dir_info(sctx
, odi
);
3021 btrfs_free_path(path
);
3025 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
)
3027 struct waiting_dir_move
*entry
= get_waiting_dir_move(sctx
, ino
);
3029 return entry
!= NULL
;
3032 static int add_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
, bool orphanized
)
3034 struct rb_node
**p
= &sctx
->waiting_dir_moves
.rb_node
;
3035 struct rb_node
*parent
= NULL
;
3036 struct waiting_dir_move
*entry
, *dm
;
3038 dm
= kmalloc(sizeof(*dm
), GFP_KERNEL
);
3043 dm
->orphanized
= orphanized
;
3047 entry
= rb_entry(parent
, struct waiting_dir_move
, node
);
3048 if (ino
< entry
->ino
) {
3050 } else if (ino
> entry
->ino
) {
3051 p
= &(*p
)->rb_right
;
3058 rb_link_node(&dm
->node
, parent
, p
);
3059 rb_insert_color(&dm
->node
, &sctx
->waiting_dir_moves
);
3063 static struct waiting_dir_move
*
3064 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
)
3066 struct rb_node
*n
= sctx
->waiting_dir_moves
.rb_node
;
3067 struct waiting_dir_move
*entry
;
3070 entry
= rb_entry(n
, struct waiting_dir_move
, node
);
3071 if (ino
< entry
->ino
)
3073 else if (ino
> entry
->ino
)
3081 static void free_waiting_dir_move(struct send_ctx
*sctx
,
3082 struct waiting_dir_move
*dm
)
3086 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
3090 static int add_pending_dir_move(struct send_ctx
*sctx
,
3094 struct list_head
*new_refs
,
3095 struct list_head
*deleted_refs
,
3096 const bool is_orphan
)
3098 struct rb_node
**p
= &sctx
->pending_dir_moves
.rb_node
;
3099 struct rb_node
*parent
= NULL
;
3100 struct pending_dir_move
*entry
= NULL
, *pm
;
3101 struct recorded_ref
*cur
;
3105 pm
= kmalloc(sizeof(*pm
), GFP_KERNEL
);
3108 pm
->parent_ino
= parent_ino
;
3111 INIT_LIST_HEAD(&pm
->list
);
3112 INIT_LIST_HEAD(&pm
->update_refs
);
3113 RB_CLEAR_NODE(&pm
->node
);
3117 entry
= rb_entry(parent
, struct pending_dir_move
, node
);
3118 if (parent_ino
< entry
->parent_ino
) {
3120 } else if (parent_ino
> entry
->parent_ino
) {
3121 p
= &(*p
)->rb_right
;
3128 list_for_each_entry(cur
, deleted_refs
, list
) {
3129 ret
= dup_ref(cur
, &pm
->update_refs
);
3133 list_for_each_entry(cur
, new_refs
, list
) {
3134 ret
= dup_ref(cur
, &pm
->update_refs
);
3139 ret
= add_waiting_dir_move(sctx
, pm
->ino
, is_orphan
);
3144 list_add_tail(&pm
->list
, &entry
->list
);
3146 rb_link_node(&pm
->node
, parent
, p
);
3147 rb_insert_color(&pm
->node
, &sctx
->pending_dir_moves
);
3152 __free_recorded_refs(&pm
->update_refs
);
3158 static struct pending_dir_move
*get_pending_dir_moves(struct send_ctx
*sctx
,
3161 struct rb_node
*n
= sctx
->pending_dir_moves
.rb_node
;
3162 struct pending_dir_move
*entry
;
3165 entry
= rb_entry(n
, struct pending_dir_move
, node
);
3166 if (parent_ino
< entry
->parent_ino
)
3168 else if (parent_ino
> entry
->parent_ino
)
3176 static int path_loop(struct send_ctx
*sctx
, struct fs_path
*name
,
3177 u64 ino
, u64 gen
, u64
*ancestor_ino
)
3180 u64 parent_inode
= 0;
3182 u64 start_ino
= ino
;
3185 while (ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
3186 fs_path_reset(name
);
3188 if (is_waiting_for_rm(sctx
, ino
))
3190 if (is_waiting_for_move(sctx
, ino
)) {
3191 if (*ancestor_ino
== 0)
3192 *ancestor_ino
= ino
;
3193 ret
= get_first_ref(sctx
->parent_root
, ino
,
3194 &parent_inode
, &parent_gen
, name
);
3196 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
3206 if (parent_inode
== start_ino
) {
3208 if (*ancestor_ino
== 0)
3209 *ancestor_ino
= ino
;
3218 static int apply_dir_move(struct send_ctx
*sctx
, struct pending_dir_move
*pm
)
3220 struct fs_path
*from_path
= NULL
;
3221 struct fs_path
*to_path
= NULL
;
3222 struct fs_path
*name
= NULL
;
3223 u64 orig_progress
= sctx
->send_progress
;
3224 struct recorded_ref
*cur
;
3225 u64 parent_ino
, parent_gen
;
3226 struct waiting_dir_move
*dm
= NULL
;
3232 name
= fs_path_alloc();
3233 from_path
= fs_path_alloc();
3234 if (!name
|| !from_path
) {
3239 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3241 rmdir_ino
= dm
->rmdir_ino
;
3242 is_orphan
= dm
->orphanized
;
3243 free_waiting_dir_move(sctx
, dm
);
3246 ret
= gen_unique_name(sctx
, pm
->ino
,
3247 pm
->gen
, from_path
);
3249 ret
= get_first_ref(sctx
->parent_root
, pm
->ino
,
3250 &parent_ino
, &parent_gen
, name
);
3253 ret
= get_cur_path(sctx
, parent_ino
, parent_gen
,
3257 ret
= fs_path_add_path(from_path
, name
);
3262 sctx
->send_progress
= sctx
->cur_ino
+ 1;
3263 ret
= path_loop(sctx
, name
, pm
->ino
, pm
->gen
, &ancestor
);
3267 LIST_HEAD(deleted_refs
);
3268 ASSERT(ancestor
> BTRFS_FIRST_FREE_OBJECTID
);
3269 ret
= add_pending_dir_move(sctx
, pm
->ino
, pm
->gen
, ancestor
,
3270 &pm
->update_refs
, &deleted_refs
,
3275 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3277 dm
->rmdir_ino
= rmdir_ino
;
3281 fs_path_reset(name
);
3284 ret
= get_cur_path(sctx
, pm
->ino
, pm
->gen
, to_path
);
3288 ret
= send_rename(sctx
, from_path
, to_path
);
3293 struct orphan_dir_info
*odi
;
3295 odi
= get_orphan_dir_info(sctx
, rmdir_ino
);
3297 /* already deleted */
3300 ret
= can_rmdir(sctx
, rmdir_ino
, odi
->gen
, sctx
->cur_ino
);
3306 name
= fs_path_alloc();
3311 ret
= get_cur_path(sctx
, rmdir_ino
, odi
->gen
, name
);
3314 ret
= send_rmdir(sctx
, name
);
3317 free_orphan_dir_info(sctx
, odi
);
3321 ret
= send_utimes(sctx
, pm
->ino
, pm
->gen
);
3326 * After rename/move, need to update the utimes of both new parent(s)
3327 * and old parent(s).
3329 list_for_each_entry(cur
, &pm
->update_refs
, list
) {
3331 * The parent inode might have been deleted in the send snapshot
3333 ret
= get_inode_info(sctx
->send_root
, cur
->dir
, NULL
,
3334 NULL
, NULL
, NULL
, NULL
, NULL
);
3335 if (ret
== -ENOENT
) {
3342 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3349 fs_path_free(from_path
);
3350 fs_path_free(to_path
);
3351 sctx
->send_progress
= orig_progress
;
3356 static void free_pending_move(struct send_ctx
*sctx
, struct pending_dir_move
*m
)
3358 if (!list_empty(&m
->list
))
3360 if (!RB_EMPTY_NODE(&m
->node
))
3361 rb_erase(&m
->node
, &sctx
->pending_dir_moves
);
3362 __free_recorded_refs(&m
->update_refs
);
3366 static void tail_append_pending_moves(struct pending_dir_move
*moves
,
3367 struct list_head
*stack
)
3369 if (list_empty(&moves
->list
)) {
3370 list_add_tail(&moves
->list
, stack
);
3373 list_splice_init(&moves
->list
, &list
);
3374 list_add_tail(&moves
->list
, stack
);
3375 list_splice_tail(&list
, stack
);
3379 static int apply_children_dir_moves(struct send_ctx
*sctx
)
3381 struct pending_dir_move
*pm
;
3382 struct list_head stack
;
3383 u64 parent_ino
= sctx
->cur_ino
;
3386 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3390 INIT_LIST_HEAD(&stack
);
3391 tail_append_pending_moves(pm
, &stack
);
3393 while (!list_empty(&stack
)) {
3394 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3395 parent_ino
= pm
->ino
;
3396 ret
= apply_dir_move(sctx
, pm
);
3397 free_pending_move(sctx
, pm
);
3400 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3402 tail_append_pending_moves(pm
, &stack
);
3407 while (!list_empty(&stack
)) {
3408 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3409 free_pending_move(sctx
, pm
);
3415 * We might need to delay a directory rename even when no ancestor directory
3416 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3417 * renamed. This happens when we rename a directory to the old name (the name
3418 * in the parent root) of some other unrelated directory that got its rename
3419 * delayed due to some ancestor with higher number that got renamed.
3425 * |---- a/ (ino 257)
3426 * | |---- file (ino 260)
3428 * |---- b/ (ino 258)
3429 * |---- c/ (ino 259)
3433 * |---- a/ (ino 258)
3434 * |---- x/ (ino 259)
3435 * |---- y/ (ino 257)
3436 * |----- file (ino 260)
3438 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3439 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3440 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3443 * 1 - rename 259 from 'c' to 'x'
3444 * 2 - rename 257 from 'a' to 'x/y'
3445 * 3 - rename 258 from 'b' to 'a'
3447 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3448 * be done right away and < 0 on error.
3450 static int wait_for_dest_dir_move(struct send_ctx
*sctx
,
3451 struct recorded_ref
*parent_ref
,
3452 const bool is_orphan
)
3454 struct btrfs_fs_info
*fs_info
= sctx
->parent_root
->fs_info
;
3455 struct btrfs_path
*path
;
3456 struct btrfs_key key
;
3457 struct btrfs_key di_key
;
3458 struct btrfs_dir_item
*di
;
3462 struct waiting_dir_move
*wdm
;
3464 if (RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
))
3467 path
= alloc_path_for_send();
3471 key
.objectid
= parent_ref
->dir
;
3472 key
.type
= BTRFS_DIR_ITEM_KEY
;
3473 key
.offset
= btrfs_name_hash(parent_ref
->name
, parent_ref
->name_len
);
3475 ret
= btrfs_search_slot(NULL
, sctx
->parent_root
, &key
, path
, 0, 0);
3478 } else if (ret
> 0) {
3483 di
= btrfs_match_dir_item_name(fs_info
, path
, parent_ref
->name
,
3484 parent_ref
->name_len
);
3490 * di_key.objectid has the number of the inode that has a dentry in the
3491 * parent directory with the same name that sctx->cur_ino is being
3492 * renamed to. We need to check if that inode is in the send root as
3493 * well and if it is currently marked as an inode with a pending rename,
3494 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3495 * that it happens after that other inode is renamed.
3497 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &di_key
);
3498 if (di_key
.type
!= BTRFS_INODE_ITEM_KEY
) {
3503 ret
= get_inode_info(sctx
->parent_root
, di_key
.objectid
, NULL
,
3504 &left_gen
, NULL
, NULL
, NULL
, NULL
);
3507 ret
= get_inode_info(sctx
->send_root
, di_key
.objectid
, NULL
,
3508 &right_gen
, NULL
, NULL
, NULL
, NULL
);
3515 /* Different inode, no need to delay the rename of sctx->cur_ino */
3516 if (right_gen
!= left_gen
) {
3521 wdm
= get_waiting_dir_move(sctx
, di_key
.objectid
);
3522 if (wdm
&& !wdm
->orphanized
) {
3523 ret
= add_pending_dir_move(sctx
,
3525 sctx
->cur_inode_gen
,
3528 &sctx
->deleted_refs
,
3534 btrfs_free_path(path
);
3539 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3540 * Return 1 if true, 0 if false and < 0 on error.
3542 static int is_ancestor(struct btrfs_root
*root
,
3546 struct fs_path
*fs_path
)
3550 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3555 fs_path_reset(fs_path
);
3556 ret
= get_first_ref(root
, ino
, &parent
, &parent_gen
, fs_path
);
3558 if (ret
== -ENOENT
&& ino
== ino2
)
3563 return parent_gen
== ino1_gen
? 1 : 0;
3569 static int wait_for_parent_move(struct send_ctx
*sctx
,
3570 struct recorded_ref
*parent_ref
,
3571 const bool is_orphan
)
3574 u64 ino
= parent_ref
->dir
;
3575 u64 ino_gen
= parent_ref
->dir_gen
;
3576 u64 parent_ino_before
, parent_ino_after
;
3577 struct fs_path
*path_before
= NULL
;
3578 struct fs_path
*path_after
= NULL
;
3581 path_after
= fs_path_alloc();
3582 path_before
= fs_path_alloc();
3583 if (!path_after
|| !path_before
) {
3589 * Our current directory inode may not yet be renamed/moved because some
3590 * ancestor (immediate or not) has to be renamed/moved first. So find if
3591 * such ancestor exists and make sure our own rename/move happens after
3592 * that ancestor is processed to avoid path build infinite loops (done
3593 * at get_cur_path()).
3595 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3596 u64 parent_ino_after_gen
;
3598 if (is_waiting_for_move(sctx
, ino
)) {
3600 * If the current inode is an ancestor of ino in the
3601 * parent root, we need to delay the rename of the
3602 * current inode, otherwise don't delayed the rename
3603 * because we can end up with a circular dependency
3604 * of renames, resulting in some directories never
3605 * getting the respective rename operations issued in
3606 * the send stream or getting into infinite path build
3609 ret
= is_ancestor(sctx
->parent_root
,
3610 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3616 fs_path_reset(path_before
);
3617 fs_path_reset(path_after
);
3619 ret
= get_first_ref(sctx
->send_root
, ino
, &parent_ino_after
,
3620 &parent_ino_after_gen
, path_after
);
3623 ret
= get_first_ref(sctx
->parent_root
, ino
, &parent_ino_before
,
3625 if (ret
< 0 && ret
!= -ENOENT
) {
3627 } else if (ret
== -ENOENT
) {
3632 len1
= fs_path_len(path_before
);
3633 len2
= fs_path_len(path_after
);
3634 if (ino
> sctx
->cur_ino
&&
3635 (parent_ino_before
!= parent_ino_after
|| len1
!= len2
||
3636 memcmp(path_before
->start
, path_after
->start
, len1
))) {
3639 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
,
3640 &parent_ino_gen
, NULL
, NULL
, NULL
,
3644 if (ino_gen
== parent_ino_gen
) {
3649 ino
= parent_ino_after
;
3650 ino_gen
= parent_ino_after_gen
;
3654 fs_path_free(path_before
);
3655 fs_path_free(path_after
);
3658 ret
= add_pending_dir_move(sctx
,
3660 sctx
->cur_inode_gen
,
3663 &sctx
->deleted_refs
,
3673 * This does all the move/link/unlink/rmdir magic.
3675 static int process_recorded_refs(struct send_ctx
*sctx
, int *pending_move
)
3677 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
3679 struct recorded_ref
*cur
;
3680 struct recorded_ref
*cur2
;
3681 struct list_head check_dirs
;
3682 struct fs_path
*valid_path
= NULL
;
3685 int did_overwrite
= 0;
3687 u64 last_dir_ino_rm
= 0;
3688 bool can_rename
= true;
3690 btrfs_debug(fs_info
, "process_recorded_refs %llu", sctx
->cur_ino
);
3693 * This should never happen as the root dir always has the same ref
3694 * which is always '..'
3696 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
3697 INIT_LIST_HEAD(&check_dirs
);
3699 valid_path
= fs_path_alloc();
3706 * First, check if the first ref of the current inode was overwritten
3707 * before. If yes, we know that the current inode was already orphanized
3708 * and thus use the orphan name. If not, we can use get_cur_path to
3709 * get the path of the first ref as it would like while receiving at
3710 * this point in time.
3711 * New inodes are always orphan at the beginning, so force to use the
3712 * orphan name in this case.
3713 * The first ref is stored in valid_path and will be updated if it
3714 * gets moved around.
3716 if (!sctx
->cur_inode_new
) {
3717 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
3718 sctx
->cur_inode_gen
);
3724 if (sctx
->cur_inode_new
|| did_overwrite
) {
3725 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
3726 sctx
->cur_inode_gen
, valid_path
);
3731 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3737 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
3739 * We may have refs where the parent directory does not exist
3740 * yet. This happens if the parent directories inum is higher
3741 * the the current inum. To handle this case, we create the
3742 * parent directory out of order. But we need to check if this
3743 * did already happen before due to other refs in the same dir.
3745 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3748 if (ret
== inode_state_will_create
) {
3751 * First check if any of the current inodes refs did
3752 * already create the dir.
3754 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
3757 if (cur2
->dir
== cur
->dir
) {
3764 * If that did not happen, check if a previous inode
3765 * did already create the dir.
3768 ret
= did_create_dir(sctx
, cur
->dir
);
3772 ret
= send_create_inode(sctx
, cur
->dir
);
3779 * Check if this new ref would overwrite the first ref of
3780 * another unprocessed inode. If yes, orphanize the
3781 * overwritten inode. If we find an overwritten ref that is
3782 * not the first ref, simply unlink it.
3784 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3785 cur
->name
, cur
->name_len
,
3786 &ow_inode
, &ow_gen
);
3790 ret
= is_first_ref(sctx
->parent_root
,
3791 ow_inode
, cur
->dir
, cur
->name
,
3796 struct name_cache_entry
*nce
;
3797 struct waiting_dir_move
*wdm
;
3799 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
3805 * If ow_inode has its rename operation delayed
3806 * make sure that its orphanized name is used in
3807 * the source path when performing its rename
3810 if (is_waiting_for_move(sctx
, ow_inode
)) {
3811 wdm
= get_waiting_dir_move(sctx
,
3814 wdm
->orphanized
= true;
3818 * Make sure we clear our orphanized inode's
3819 * name from the name cache. This is because the
3820 * inode ow_inode might be an ancestor of some
3821 * other inode that will be orphanized as well
3822 * later and has an inode number greater than
3823 * sctx->send_progress. We need to prevent
3824 * future name lookups from using the old name
3825 * and get instead the orphan name.
3827 nce
= name_cache_search(sctx
, ow_inode
, ow_gen
);
3829 name_cache_delete(sctx
, nce
);
3834 * ow_inode might currently be an ancestor of
3835 * cur_ino, therefore compute valid_path (the
3836 * current path of cur_ino) again because it
3837 * might contain the pre-orphanization name of
3838 * ow_inode, which is no longer valid.
3840 fs_path_reset(valid_path
);
3841 ret
= get_cur_path(sctx
, sctx
->cur_ino
,
3842 sctx
->cur_inode_gen
, valid_path
);
3846 ret
= send_unlink(sctx
, cur
->full_path
);
3852 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
) {
3853 ret
= wait_for_dest_dir_move(sctx
, cur
, is_orphan
);
3862 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
&&
3864 ret
= wait_for_parent_move(sctx
, cur
, is_orphan
);
3874 * link/move the ref to the new place. If we have an orphan
3875 * inode, move it and update valid_path. If not, link or move
3876 * it depending on the inode mode.
3878 if (is_orphan
&& can_rename
) {
3879 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
3883 ret
= fs_path_copy(valid_path
, cur
->full_path
);
3886 } else if (can_rename
) {
3887 if (S_ISDIR(sctx
->cur_inode_mode
)) {
3889 * Dirs can't be linked, so move it. For moved
3890 * dirs, we always have one new and one deleted
3891 * ref. The deleted ref is ignored later.
3893 ret
= send_rename(sctx
, valid_path
,
3896 ret
= fs_path_copy(valid_path
,
3901 ret
= send_link(sctx
, cur
->full_path
,
3907 ret
= dup_ref(cur
, &check_dirs
);
3912 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
3914 * Check if we can already rmdir the directory. If not,
3915 * orphanize it. For every dir item inside that gets deleted
3916 * later, we do this check again and rmdir it then if possible.
3917 * See the use of check_dirs for more details.
3919 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3924 ret
= send_rmdir(sctx
, valid_path
);
3927 } else if (!is_orphan
) {
3928 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
3929 sctx
->cur_inode_gen
, valid_path
);
3935 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
3936 ret
= dup_ref(cur
, &check_dirs
);
3940 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
3941 !list_empty(&sctx
->deleted_refs
)) {
3943 * We have a moved dir. Add the old parent to check_dirs
3945 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
3947 ret
= dup_ref(cur
, &check_dirs
);
3950 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
3952 * We have a non dir inode. Go through all deleted refs and
3953 * unlink them if they were not already overwritten by other
3956 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
3957 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3958 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3959 cur
->name
, cur
->name_len
);
3963 ret
= send_unlink(sctx
, cur
->full_path
);
3967 ret
= dup_ref(cur
, &check_dirs
);
3972 * If the inode is still orphan, unlink the orphan. This may
3973 * happen when a previous inode did overwrite the first ref
3974 * of this inode and no new refs were added for the current
3975 * inode. Unlinking does not mean that the inode is deleted in
3976 * all cases. There may still be links to this inode in other
3980 ret
= send_unlink(sctx
, valid_path
);
3987 * We did collect all parent dirs where cur_inode was once located. We
3988 * now go through all these dirs and check if they are pending for
3989 * deletion and if it's finally possible to perform the rmdir now.
3990 * We also update the inode stats of the parent dirs here.
3992 list_for_each_entry(cur
, &check_dirs
, list
) {
3994 * In case we had refs into dirs that were not processed yet,
3995 * we don't need to do the utime and rmdir logic for these dirs.
3996 * The dir will be processed later.
3998 if (cur
->dir
> sctx
->cur_ino
)
4001 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
4005 if (ret
== inode_state_did_create
||
4006 ret
== inode_state_no_change
) {
4007 /* TODO delayed utimes */
4008 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
4011 } else if (ret
== inode_state_did_delete
&&
4012 cur
->dir
!= last_dir_ino_rm
) {
4013 ret
= can_rmdir(sctx
, cur
->dir
, cur
->dir_gen
,
4018 ret
= get_cur_path(sctx
, cur
->dir
,
4019 cur
->dir_gen
, valid_path
);
4022 ret
= send_rmdir(sctx
, valid_path
);
4025 last_dir_ino_rm
= cur
->dir
;
4033 __free_recorded_refs(&check_dirs
);
4034 free_recorded_refs(sctx
);
4035 fs_path_free(valid_path
);
4039 static int record_ref(struct btrfs_root
*root
, int num
, u64 dir
, int index
,
4040 struct fs_path
*name
, void *ctx
, struct list_head
*refs
)
4043 struct send_ctx
*sctx
= ctx
;
4047 p
= fs_path_alloc();
4051 ret
= get_inode_info(root
, dir
, NULL
, &gen
, NULL
, NULL
,
4056 ret
= get_cur_path(sctx
, dir
, gen
, p
);
4059 ret
= fs_path_add_path(p
, name
);
4063 ret
= __record_ref(refs
, dir
, gen
, p
);
4071 static int __record_new_ref(int num
, u64 dir
, int index
,
4072 struct fs_path
*name
,
4075 struct send_ctx
*sctx
= ctx
;
4076 return record_ref(sctx
->send_root
, num
, dir
, index
, name
,
4077 ctx
, &sctx
->new_refs
);
4081 static int __record_deleted_ref(int num
, u64 dir
, int index
,
4082 struct fs_path
*name
,
4085 struct send_ctx
*sctx
= ctx
;
4086 return record_ref(sctx
->parent_root
, num
, dir
, index
, name
,
4087 ctx
, &sctx
->deleted_refs
);
4090 static int record_new_ref(struct send_ctx
*sctx
)
4094 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4095 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
4104 static int record_deleted_ref(struct send_ctx
*sctx
)
4108 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4109 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
4118 struct find_ref_ctx
{
4121 struct btrfs_root
*root
;
4122 struct fs_path
*name
;
4126 static int __find_iref(int num
, u64 dir
, int index
,
4127 struct fs_path
*name
,
4130 struct find_ref_ctx
*ctx
= ctx_
;
4134 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
4135 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
4137 * To avoid doing extra lookups we'll only do this if everything
4140 ret
= get_inode_info(ctx
->root
, dir
, NULL
, &dir_gen
, NULL
,
4144 if (dir_gen
!= ctx
->dir_gen
)
4146 ctx
->found_idx
= num
;
4152 static int find_iref(struct btrfs_root
*root
,
4153 struct btrfs_path
*path
,
4154 struct btrfs_key
*key
,
4155 u64 dir
, u64 dir_gen
, struct fs_path
*name
)
4158 struct find_ref_ctx ctx
;
4162 ctx
.dir_gen
= dir_gen
;
4166 ret
= iterate_inode_ref(root
, path
, key
, 0, __find_iref
, &ctx
);
4170 if (ctx
.found_idx
== -1)
4173 return ctx
.found_idx
;
4176 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
4177 struct fs_path
*name
,
4182 struct send_ctx
*sctx
= ctx
;
4184 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &dir_gen
, NULL
,
4189 ret
= find_iref(sctx
->parent_root
, sctx
->right_path
,
4190 sctx
->cmp_key
, dir
, dir_gen
, name
);
4192 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
4199 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
4200 struct fs_path
*name
,
4205 struct send_ctx
*sctx
= ctx
;
4207 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &dir_gen
, NULL
,
4212 ret
= find_iref(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4213 dir
, dir_gen
, name
);
4215 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
4222 static int record_changed_ref(struct send_ctx
*sctx
)
4226 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4227 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
4230 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4231 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
4241 * Record and process all refs at once. Needed when an inode changes the
4242 * generation number, which means that it was deleted and recreated.
4244 static int process_all_refs(struct send_ctx
*sctx
,
4245 enum btrfs_compare_tree_result cmd
)
4248 struct btrfs_root
*root
;
4249 struct btrfs_path
*path
;
4250 struct btrfs_key key
;
4251 struct btrfs_key found_key
;
4252 struct extent_buffer
*eb
;
4254 iterate_inode_ref_t cb
;
4255 int pending_move
= 0;
4257 path
= alloc_path_for_send();
4261 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
4262 root
= sctx
->send_root
;
4263 cb
= __record_new_ref
;
4264 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
4265 root
= sctx
->parent_root
;
4266 cb
= __record_deleted_ref
;
4268 btrfs_err(sctx
->send_root
->fs_info
,
4269 "Wrong command %d in process_all_refs", cmd
);
4274 key
.objectid
= sctx
->cmp_key
->objectid
;
4275 key
.type
= BTRFS_INODE_REF_KEY
;
4277 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4282 eb
= path
->nodes
[0];
4283 slot
= path
->slots
[0];
4284 if (slot
>= btrfs_header_nritems(eb
)) {
4285 ret
= btrfs_next_leaf(root
, path
);
4293 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4295 if (found_key
.objectid
!= key
.objectid
||
4296 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
4297 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
4300 ret
= iterate_inode_ref(root
, path
, &found_key
, 0, cb
, sctx
);
4306 btrfs_release_path(path
);
4309 * We don't actually care about pending_move as we are simply
4310 * re-creating this inode and will be rename'ing it into place once we
4311 * rename the parent directory.
4313 ret
= process_recorded_refs(sctx
, &pending_move
);
4315 btrfs_free_path(path
);
4319 static int send_set_xattr(struct send_ctx
*sctx
,
4320 struct fs_path
*path
,
4321 const char *name
, int name_len
,
4322 const char *data
, int data_len
)
4326 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
4330 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4331 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4332 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
4334 ret
= send_cmd(sctx
);
4341 static int send_remove_xattr(struct send_ctx
*sctx
,
4342 struct fs_path
*path
,
4343 const char *name
, int name_len
)
4347 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
4351 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4352 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4354 ret
= send_cmd(sctx
);
4361 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
4362 const char *name
, int name_len
,
4363 const char *data
, int data_len
,
4367 struct send_ctx
*sctx
= ctx
;
4369 struct posix_acl_xattr_header dummy_acl
;
4371 p
= fs_path_alloc();
4376 * This hack is needed because empty acls are stored as zero byte
4377 * data in xattrs. Problem with that is, that receiving these zero byte
4378 * acls will fail later. To fix this, we send a dummy acl list that
4379 * only contains the version number and no entries.
4381 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
4382 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
4383 if (data_len
== 0) {
4384 dummy_acl
.a_version
=
4385 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
4386 data
= (char *)&dummy_acl
;
4387 data_len
= sizeof(dummy_acl
);
4391 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4395 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
4402 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4403 const char *name
, int name_len
,
4404 const char *data
, int data_len
,
4408 struct send_ctx
*sctx
= ctx
;
4411 p
= fs_path_alloc();
4415 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4419 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
4426 static int process_new_xattr(struct send_ctx
*sctx
)
4430 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4431 sctx
->cmp_key
, __process_new_xattr
, sctx
);
4436 static int process_deleted_xattr(struct send_ctx
*sctx
)
4438 return iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4439 sctx
->cmp_key
, __process_deleted_xattr
, sctx
);
4442 struct find_xattr_ctx
{
4450 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
4451 const char *name
, int name_len
,
4452 const char *data
, int data_len
,
4453 u8 type
, void *vctx
)
4455 struct find_xattr_ctx
*ctx
= vctx
;
4457 if (name_len
== ctx
->name_len
&&
4458 strncmp(name
, ctx
->name
, name_len
) == 0) {
4459 ctx
->found_idx
= num
;
4460 ctx
->found_data_len
= data_len
;
4461 ctx
->found_data
= kmemdup(data
, data_len
, GFP_KERNEL
);
4462 if (!ctx
->found_data
)
4469 static int find_xattr(struct btrfs_root
*root
,
4470 struct btrfs_path
*path
,
4471 struct btrfs_key
*key
,
4472 const char *name
, int name_len
,
4473 char **data
, int *data_len
)
4476 struct find_xattr_ctx ctx
;
4479 ctx
.name_len
= name_len
;
4481 ctx
.found_data
= NULL
;
4482 ctx
.found_data_len
= 0;
4484 ret
= iterate_dir_item(root
, path
, key
, __find_xattr
, &ctx
);
4488 if (ctx
.found_idx
== -1)
4491 *data
= ctx
.found_data
;
4492 *data_len
= ctx
.found_data_len
;
4494 kfree(ctx
.found_data
);
4496 return ctx
.found_idx
;
4500 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
4501 const char *name
, int name_len
,
4502 const char *data
, int data_len
,
4506 struct send_ctx
*sctx
= ctx
;
4507 char *found_data
= NULL
;
4508 int found_data_len
= 0;
4510 ret
= find_xattr(sctx
->parent_root
, sctx
->right_path
,
4511 sctx
->cmp_key
, name
, name_len
, &found_data
,
4513 if (ret
== -ENOENT
) {
4514 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
4515 data_len
, type
, ctx
);
4516 } else if (ret
>= 0) {
4517 if (data_len
!= found_data_len
||
4518 memcmp(data
, found_data
, data_len
)) {
4519 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
4520 data
, data_len
, type
, ctx
);
4530 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4531 const char *name
, int name_len
,
4532 const char *data
, int data_len
,
4536 struct send_ctx
*sctx
= ctx
;
4538 ret
= find_xattr(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4539 name
, name_len
, NULL
, NULL
);
4541 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
4542 data_len
, type
, ctx
);
4549 static int process_changed_xattr(struct send_ctx
*sctx
)
4553 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4554 sctx
->cmp_key
, __process_changed_new_xattr
, sctx
);
4557 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4558 sctx
->cmp_key
, __process_changed_deleted_xattr
, sctx
);
4564 static int process_all_new_xattrs(struct send_ctx
*sctx
)
4567 struct btrfs_root
*root
;
4568 struct btrfs_path
*path
;
4569 struct btrfs_key key
;
4570 struct btrfs_key found_key
;
4571 struct extent_buffer
*eb
;
4574 path
= alloc_path_for_send();
4578 root
= sctx
->send_root
;
4580 key
.objectid
= sctx
->cmp_key
->objectid
;
4581 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4583 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4588 eb
= path
->nodes
[0];
4589 slot
= path
->slots
[0];
4590 if (slot
>= btrfs_header_nritems(eb
)) {
4591 ret
= btrfs_next_leaf(root
, path
);
4594 } else if (ret
> 0) {
4601 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4602 if (found_key
.objectid
!= key
.objectid
||
4603 found_key
.type
!= key
.type
) {
4608 ret
= iterate_dir_item(root
, path
, &found_key
,
4609 __process_new_xattr
, sctx
);
4617 btrfs_free_path(path
);
4621 static ssize_t
fill_read_buf(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4623 struct btrfs_root
*root
= sctx
->send_root
;
4624 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4625 struct inode
*inode
;
4628 struct btrfs_key key
;
4629 pgoff_t index
= offset
>> PAGE_SHIFT
;
4631 unsigned pg_offset
= offset
& ~PAGE_MASK
;
4634 key
.objectid
= sctx
->cur_ino
;
4635 key
.type
= BTRFS_INODE_ITEM_KEY
;
4638 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
4640 return PTR_ERR(inode
);
4642 if (offset
+ len
> i_size_read(inode
)) {
4643 if (offset
> i_size_read(inode
))
4646 len
= offset
- i_size_read(inode
);
4651 last_index
= (offset
+ len
- 1) >> PAGE_SHIFT
;
4653 /* initial readahead */
4654 memset(&sctx
->ra
, 0, sizeof(struct file_ra_state
));
4655 file_ra_state_init(&sctx
->ra
, inode
->i_mapping
);
4656 btrfs_force_ra(inode
->i_mapping
, &sctx
->ra
, NULL
, index
,
4657 last_index
- index
+ 1);
4659 while (index
<= last_index
) {
4660 unsigned cur_len
= min_t(unsigned, len
,
4661 PAGE_SIZE
- pg_offset
);
4662 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_KERNEL
);
4668 if (!PageUptodate(page
)) {
4669 btrfs_readpage(NULL
, page
);
4671 if (!PageUptodate(page
)) {
4680 memcpy(sctx
->read_buf
+ ret
, addr
+ pg_offset
, cur_len
);
4695 * Read some bytes from the current inode/file and send a write command to
4698 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4700 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
4703 ssize_t num_read
= 0;
4705 p
= fs_path_alloc();
4709 btrfs_debug(fs_info
, "send_write offset=%llu, len=%d", offset
, len
);
4711 num_read
= fill_read_buf(sctx
, offset
, len
);
4712 if (num_read
<= 0) {
4718 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4722 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4726 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4727 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4728 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, num_read
);
4730 ret
= send_cmd(sctx
);
4741 * Send a clone command to user space.
4743 static int send_clone(struct send_ctx
*sctx
,
4744 u64 offset
, u32 len
,
4745 struct clone_root
*clone_root
)
4751 btrfs_debug(sctx
->send_root
->fs_info
,
4752 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4753 offset
, len
, clone_root
->root
->objectid
, clone_root
->ino
,
4754 clone_root
->offset
);
4756 p
= fs_path_alloc();
4760 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
4764 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4768 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4769 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
4770 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4772 if (clone_root
->root
== sctx
->send_root
) {
4773 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
4774 &gen
, NULL
, NULL
, NULL
, NULL
);
4777 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
4779 ret
= get_inode_path(clone_root
->root
, clone_root
->ino
, p
);
4785 * If the parent we're using has a received_uuid set then use that as
4786 * our clone source as that is what we will look for when doing a
4789 * This covers the case that we create a snapshot off of a received
4790 * subvolume and then use that as the parent and try to receive on a
4793 if (!btrfs_is_empty_uuid(clone_root
->root
->root_item
.received_uuid
))
4794 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4795 clone_root
->root
->root_item
.received_uuid
);
4797 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4798 clone_root
->root
->root_item
.uuid
);
4799 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
4800 le64_to_cpu(clone_root
->root
->root_item
.ctransid
));
4801 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
4802 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
4803 clone_root
->offset
);
4805 ret
= send_cmd(sctx
);
4814 * Send an update extent command to user space.
4816 static int send_update_extent(struct send_ctx
*sctx
,
4817 u64 offset
, u32 len
)
4822 p
= fs_path_alloc();
4826 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UPDATE_EXTENT
);
4830 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4834 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4835 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4836 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, len
);
4838 ret
= send_cmd(sctx
);
4846 static int send_hole(struct send_ctx
*sctx
, u64 end
)
4848 struct fs_path
*p
= NULL
;
4849 u64 offset
= sctx
->cur_inode_last_extent
;
4853 p
= fs_path_alloc();
4856 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4858 goto tlv_put_failure
;
4859 memset(sctx
->read_buf
, 0, BTRFS_SEND_READ_SIZE
);
4860 while (offset
< end
) {
4861 len
= min_t(u64
, end
- offset
, BTRFS_SEND_READ_SIZE
);
4863 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4866 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4867 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4868 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, len
);
4869 ret
= send_cmd(sctx
);
4879 static int send_extent_data(struct send_ctx
*sctx
,
4885 if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
)
4886 return send_update_extent(sctx
, offset
, len
);
4888 while (sent
< len
) {
4889 u64 size
= len
- sent
;
4892 if (size
> BTRFS_SEND_READ_SIZE
)
4893 size
= BTRFS_SEND_READ_SIZE
;
4894 ret
= send_write(sctx
, offset
+ sent
, size
);
4904 static int clone_range(struct send_ctx
*sctx
,
4905 struct clone_root
*clone_root
,
4906 const u64 disk_byte
,
4911 struct btrfs_path
*path
;
4912 struct btrfs_key key
;
4915 path
= alloc_path_for_send();
4920 * We can't send a clone operation for the entire range if we find
4921 * extent items in the respective range in the source file that
4922 * refer to different extents or if we find holes.
4923 * So check for that and do a mix of clone and regular write/copy
4924 * operations if needed.
4928 * mkfs.btrfs -f /dev/sda
4929 * mount /dev/sda /mnt
4930 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4931 * cp --reflink=always /mnt/foo /mnt/bar
4932 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4933 * btrfs subvolume snapshot -r /mnt /mnt/snap
4935 * If when we send the snapshot and we are processing file bar (which
4936 * has a higher inode number than foo) we blindly send a clone operation
4937 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4938 * a file bar that matches the content of file foo - iow, doesn't match
4939 * the content from bar in the original filesystem.
4941 key
.objectid
= clone_root
->ino
;
4942 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4943 key
.offset
= clone_root
->offset
;
4944 ret
= btrfs_search_slot(NULL
, clone_root
->root
, &key
, path
, 0, 0);
4947 if (ret
> 0 && path
->slots
[0] > 0) {
4948 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0] - 1);
4949 if (key
.objectid
== clone_root
->ino
&&
4950 key
.type
== BTRFS_EXTENT_DATA_KEY
)
4955 struct extent_buffer
*leaf
= path
->nodes
[0];
4956 int slot
= path
->slots
[0];
4957 struct btrfs_file_extent_item
*ei
;
4962 if (slot
>= btrfs_header_nritems(leaf
)) {
4963 ret
= btrfs_next_leaf(clone_root
->root
, path
);
4971 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4974 * We might have an implicit trailing hole (NO_HOLES feature
4975 * enabled). We deal with it after leaving this loop.
4977 if (key
.objectid
!= clone_root
->ino
||
4978 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4981 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
4982 type
= btrfs_file_extent_type(leaf
, ei
);
4983 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
4984 ext_len
= btrfs_file_extent_inline_len(leaf
, slot
, ei
);
4985 ext_len
= PAGE_ALIGN(ext_len
);
4987 ext_len
= btrfs_file_extent_num_bytes(leaf
, ei
);
4990 if (key
.offset
+ ext_len
<= clone_root
->offset
)
4993 if (key
.offset
> clone_root
->offset
) {
4994 /* Implicit hole, NO_HOLES feature enabled. */
4995 u64 hole_len
= key
.offset
- clone_root
->offset
;
4999 ret
= send_extent_data(sctx
, offset
, hole_len
);
5007 clone_root
->offset
+= hole_len
;
5008 data_offset
+= hole_len
;
5011 if (key
.offset
>= clone_root
->offset
+ len
)
5014 clone_len
= min_t(u64
, ext_len
, len
);
5016 if (btrfs_file_extent_disk_bytenr(leaf
, ei
) == disk_byte
&&
5017 btrfs_file_extent_offset(leaf
, ei
) == data_offset
)
5018 ret
= send_clone(sctx
, offset
, clone_len
, clone_root
);
5020 ret
= send_extent_data(sctx
, offset
, clone_len
);
5028 offset
+= clone_len
;
5029 clone_root
->offset
+= clone_len
;
5030 data_offset
+= clone_len
;
5036 ret
= send_extent_data(sctx
, offset
, len
);
5040 btrfs_free_path(path
);
5044 static int send_write_or_clone(struct send_ctx
*sctx
,
5045 struct btrfs_path
*path
,
5046 struct btrfs_key
*key
,
5047 struct clone_root
*clone_root
)
5050 struct btrfs_file_extent_item
*ei
;
5051 u64 offset
= key
->offset
;
5054 u64 bs
= sctx
->send_root
->fs_info
->sb
->s_blocksize
;
5056 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5057 struct btrfs_file_extent_item
);
5058 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5059 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5060 len
= btrfs_file_extent_inline_len(path
->nodes
[0],
5061 path
->slots
[0], ei
);
5063 * it is possible the inline item won't cover the whole page,
5064 * but there may be items after this page. Make
5065 * sure to send the whole thing
5067 len
= PAGE_ALIGN(len
);
5069 len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
5072 if (offset
+ len
> sctx
->cur_inode_size
)
5073 len
= sctx
->cur_inode_size
- offset
;
5079 if (clone_root
&& IS_ALIGNED(offset
+ len
, bs
)) {
5083 disk_byte
= btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
);
5084 data_offset
= btrfs_file_extent_offset(path
->nodes
[0], ei
);
5085 ret
= clone_range(sctx
, clone_root
, disk_byte
, data_offset
,
5088 ret
= send_extent_data(sctx
, offset
, len
);
5094 static int is_extent_unchanged(struct send_ctx
*sctx
,
5095 struct btrfs_path
*left_path
,
5096 struct btrfs_key
*ekey
)
5099 struct btrfs_key key
;
5100 struct btrfs_path
*path
= NULL
;
5101 struct extent_buffer
*eb
;
5103 struct btrfs_key found_key
;
5104 struct btrfs_file_extent_item
*ei
;
5109 u64 left_offset_fixed
;
5117 path
= alloc_path_for_send();
5121 eb
= left_path
->nodes
[0];
5122 slot
= left_path
->slots
[0];
5123 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5124 left_type
= btrfs_file_extent_type(eb
, ei
);
5126 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
5130 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5131 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5132 left_offset
= btrfs_file_extent_offset(eb
, ei
);
5133 left_gen
= btrfs_file_extent_generation(eb
, ei
);
5136 * Following comments will refer to these graphics. L is the left
5137 * extents which we are checking at the moment. 1-8 are the right
5138 * extents that we iterate.
5141 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5144 * |--1--|-2b-|...(same as above)
5146 * Alternative situation. Happens on files where extents got split.
5148 * |-----------7-----------|-6-|
5150 * Alternative situation. Happens on files which got larger.
5153 * Nothing follows after 8.
5156 key
.objectid
= ekey
->objectid
;
5157 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5158 key
.offset
= ekey
->offset
;
5159 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
5168 * Handle special case where the right side has no extents at all.
5170 eb
= path
->nodes
[0];
5171 slot
= path
->slots
[0];
5172 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5173 if (found_key
.objectid
!= key
.objectid
||
5174 found_key
.type
!= key
.type
) {
5175 /* If we're a hole then just pretend nothing changed */
5176 ret
= (left_disknr
) ? 0 : 1;
5181 * We're now on 2a, 2b or 7.
5184 while (key
.offset
< ekey
->offset
+ left_len
) {
5185 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5186 right_type
= btrfs_file_extent_type(eb
, ei
);
5187 if (right_type
!= BTRFS_FILE_EXTENT_REG
&&
5188 right_type
!= BTRFS_FILE_EXTENT_INLINE
) {
5193 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5194 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5195 right_len
= btrfs_file_extent_inline_len(eb
, slot
, ei
);
5196 right_len
= PAGE_ALIGN(right_len
);
5198 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5200 right_offset
= btrfs_file_extent_offset(eb
, ei
);
5201 right_gen
= btrfs_file_extent_generation(eb
, ei
);
5204 * Are we at extent 8? If yes, we know the extent is changed.
5205 * This may only happen on the first iteration.
5207 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
5208 /* If we're a hole just pretend nothing changed */
5209 ret
= (left_disknr
) ? 0 : 1;
5214 * We just wanted to see if when we have an inline extent, what
5215 * follows it is a regular extent (wanted to check the above
5216 * condition for inline extents too). This should normally not
5217 * happen but it's possible for example when we have an inline
5218 * compressed extent representing data with a size matching
5219 * the page size (currently the same as sector size).
5221 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5226 left_offset_fixed
= left_offset
;
5227 if (key
.offset
< ekey
->offset
) {
5228 /* Fix the right offset for 2a and 7. */
5229 right_offset
+= ekey
->offset
- key
.offset
;
5231 /* Fix the left offset for all behind 2a and 2b */
5232 left_offset_fixed
+= key
.offset
- ekey
->offset
;
5236 * Check if we have the same extent.
5238 if (left_disknr
!= right_disknr
||
5239 left_offset_fixed
!= right_offset
||
5240 left_gen
!= right_gen
) {
5246 * Go to the next extent.
5248 ret
= btrfs_next_item(sctx
->parent_root
, path
);
5252 eb
= path
->nodes
[0];
5253 slot
= path
->slots
[0];
5254 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5256 if (ret
|| found_key
.objectid
!= key
.objectid
||
5257 found_key
.type
!= key
.type
) {
5258 key
.offset
+= right_len
;
5261 if (found_key
.offset
!= key
.offset
+ right_len
) {
5269 * We're now behind the left extent (treat as unchanged) or at the end
5270 * of the right side (treat as changed).
5272 if (key
.offset
>= ekey
->offset
+ left_len
)
5279 btrfs_free_path(path
);
5283 static int get_last_extent(struct send_ctx
*sctx
, u64 offset
)
5285 struct btrfs_path
*path
;
5286 struct btrfs_root
*root
= sctx
->send_root
;
5287 struct btrfs_file_extent_item
*fi
;
5288 struct btrfs_key key
;
5293 path
= alloc_path_for_send();
5297 sctx
->cur_inode_last_extent
= 0;
5299 key
.objectid
= sctx
->cur_ino
;
5300 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5301 key
.offset
= offset
;
5302 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 0, 1);
5306 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
5307 if (key
.objectid
!= sctx
->cur_ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5310 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5311 struct btrfs_file_extent_item
);
5312 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5313 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5314 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
5315 path
->slots
[0], fi
);
5316 extent_end
= ALIGN(key
.offset
+ size
,
5317 sctx
->send_root
->fs_info
->sectorsize
);
5319 extent_end
= key
.offset
+
5320 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5322 sctx
->cur_inode_last_extent
= extent_end
;
5324 btrfs_free_path(path
);
5328 static int range_is_hole_in_parent(struct send_ctx
*sctx
,
5332 struct btrfs_path
*path
;
5333 struct btrfs_key key
;
5334 struct btrfs_root
*root
= sctx
->parent_root
;
5335 u64 search_start
= start
;
5338 path
= alloc_path_for_send();
5342 key
.objectid
= sctx
->cur_ino
;
5343 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5344 key
.offset
= search_start
;
5345 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5348 if (ret
> 0 && path
->slots
[0] > 0)
5351 while (search_start
< end
) {
5352 struct extent_buffer
*leaf
= path
->nodes
[0];
5353 int slot
= path
->slots
[0];
5354 struct btrfs_file_extent_item
*fi
;
5357 if (slot
>= btrfs_header_nritems(leaf
)) {
5358 ret
= btrfs_next_leaf(root
, path
);
5366 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5367 if (key
.objectid
< sctx
->cur_ino
||
5368 key
.type
< BTRFS_EXTENT_DATA_KEY
)
5370 if (key
.objectid
> sctx
->cur_ino
||
5371 key
.type
> BTRFS_EXTENT_DATA_KEY
||
5375 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5376 if (btrfs_file_extent_type(leaf
, fi
) ==
5377 BTRFS_FILE_EXTENT_INLINE
) {
5378 u64 size
= btrfs_file_extent_inline_len(leaf
, slot
, fi
);
5380 extent_end
= ALIGN(key
.offset
+ size
,
5381 root
->fs_info
->sectorsize
);
5383 extent_end
= key
.offset
+
5384 btrfs_file_extent_num_bytes(leaf
, fi
);
5386 if (extent_end
<= start
)
5388 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0) {
5389 search_start
= extent_end
;
5399 btrfs_free_path(path
);
5403 static int maybe_send_hole(struct send_ctx
*sctx
, struct btrfs_path
*path
,
5404 struct btrfs_key
*key
)
5406 struct btrfs_file_extent_item
*fi
;
5411 if (sctx
->cur_ino
!= key
->objectid
|| !need_send_hole(sctx
))
5414 if (sctx
->cur_inode_last_extent
== (u64
)-1) {
5415 ret
= get_last_extent(sctx
, key
->offset
- 1);
5420 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5421 struct btrfs_file_extent_item
);
5422 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5423 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5424 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
5425 path
->slots
[0], fi
);
5426 extent_end
= ALIGN(key
->offset
+ size
,
5427 sctx
->send_root
->fs_info
->sectorsize
);
5429 extent_end
= key
->offset
+
5430 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5433 if (path
->slots
[0] == 0 &&
5434 sctx
->cur_inode_last_extent
< key
->offset
) {
5436 * We might have skipped entire leafs that contained only
5437 * file extent items for our current inode. These leafs have
5438 * a generation number smaller (older) than the one in the
5439 * current leaf and the leaf our last extent came from, and
5440 * are located between these 2 leafs.
5442 ret
= get_last_extent(sctx
, key
->offset
- 1);
5447 if (sctx
->cur_inode_last_extent
< key
->offset
) {
5448 ret
= range_is_hole_in_parent(sctx
,
5449 sctx
->cur_inode_last_extent
,
5454 ret
= send_hole(sctx
, key
->offset
);
5458 sctx
->cur_inode_last_extent
= extent_end
;
5462 static int process_extent(struct send_ctx
*sctx
,
5463 struct btrfs_path
*path
,
5464 struct btrfs_key
*key
)
5466 struct clone_root
*found_clone
= NULL
;
5469 if (S_ISLNK(sctx
->cur_inode_mode
))
5472 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
5473 ret
= is_extent_unchanged(sctx
, path
, key
);
5481 struct btrfs_file_extent_item
*ei
;
5484 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5485 struct btrfs_file_extent_item
);
5486 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5487 if (type
== BTRFS_FILE_EXTENT_PREALLOC
||
5488 type
== BTRFS_FILE_EXTENT_REG
) {
5490 * The send spec does not have a prealloc command yet,
5491 * so just leave a hole for prealloc'ed extents until
5492 * we have enough commands queued up to justify rev'ing
5495 if (type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5500 /* Have a hole, just skip it. */
5501 if (btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
) == 0) {
5508 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
5509 sctx
->cur_inode_size
, &found_clone
);
5510 if (ret
!= -ENOENT
&& ret
< 0)
5513 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
5517 ret
= maybe_send_hole(sctx
, path
, key
);
5522 static int process_all_extents(struct send_ctx
*sctx
)
5525 struct btrfs_root
*root
;
5526 struct btrfs_path
*path
;
5527 struct btrfs_key key
;
5528 struct btrfs_key found_key
;
5529 struct extent_buffer
*eb
;
5532 root
= sctx
->send_root
;
5533 path
= alloc_path_for_send();
5537 key
.objectid
= sctx
->cmp_key
->objectid
;
5538 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5540 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5545 eb
= path
->nodes
[0];
5546 slot
= path
->slots
[0];
5548 if (slot
>= btrfs_header_nritems(eb
)) {
5549 ret
= btrfs_next_leaf(root
, path
);
5552 } else if (ret
> 0) {
5559 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5561 if (found_key
.objectid
!= key
.objectid
||
5562 found_key
.type
!= key
.type
) {
5567 ret
= process_extent(sctx
, path
, &found_key
);
5575 btrfs_free_path(path
);
5579 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
,
5581 int *refs_processed
)
5585 if (sctx
->cur_ino
== 0)
5587 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
5588 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
5590 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
5593 ret
= process_recorded_refs(sctx
, pending_move
);
5597 *refs_processed
= 1;
5602 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
5613 int pending_move
= 0;
5614 int refs_processed
= 0;
5616 ret
= process_recorded_refs_if_needed(sctx
, at_end
, &pending_move
,
5622 * We have processed the refs and thus need to advance send_progress.
5623 * Now, calls to get_cur_xxx will take the updated refs of the current
5624 * inode into account.
5626 * On the other hand, if our current inode is a directory and couldn't
5627 * be moved/renamed because its parent was renamed/moved too and it has
5628 * a higher inode number, we can only move/rename our current inode
5629 * after we moved/renamed its parent. Therefore in this case operate on
5630 * the old path (pre move/rename) of our current inode, and the
5631 * move/rename will be performed later.
5633 if (refs_processed
&& !pending_move
)
5634 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5636 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
5638 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
5641 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
5642 &left_mode
, &left_uid
, &left_gid
, NULL
);
5646 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
5648 if (!S_ISLNK(sctx
->cur_inode_mode
))
5651 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
5652 NULL
, NULL
, &right_mode
, &right_uid
,
5657 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
5659 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
5663 if (S_ISREG(sctx
->cur_inode_mode
)) {
5664 if (need_send_hole(sctx
)) {
5665 if (sctx
->cur_inode_last_extent
== (u64
)-1 ||
5666 sctx
->cur_inode_last_extent
<
5667 sctx
->cur_inode_size
) {
5668 ret
= get_last_extent(sctx
, (u64
)-1);
5672 if (sctx
->cur_inode_last_extent
<
5673 sctx
->cur_inode_size
) {
5674 ret
= send_hole(sctx
, sctx
->cur_inode_size
);
5679 ret
= send_truncate(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5680 sctx
->cur_inode_size
);
5686 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5687 left_uid
, left_gid
);
5692 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5699 * If other directory inodes depended on our current directory
5700 * inode's move/rename, now do their move/rename operations.
5702 if (!is_waiting_for_move(sctx
, sctx
->cur_ino
)) {
5703 ret
= apply_children_dir_moves(sctx
);
5707 * Need to send that every time, no matter if it actually
5708 * changed between the two trees as we have done changes to
5709 * the inode before. If our inode is a directory and it's
5710 * waiting to be moved/renamed, we will send its utimes when
5711 * it's moved/renamed, therefore we don't need to do it here.
5713 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5714 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
5723 static int changed_inode(struct send_ctx
*sctx
,
5724 enum btrfs_compare_tree_result result
)
5727 struct btrfs_key
*key
= sctx
->cmp_key
;
5728 struct btrfs_inode_item
*left_ii
= NULL
;
5729 struct btrfs_inode_item
*right_ii
= NULL
;
5733 sctx
->cur_ino
= key
->objectid
;
5734 sctx
->cur_inode_new_gen
= 0;
5735 sctx
->cur_inode_last_extent
= (u64
)-1;
5738 * Set send_progress to current inode. This will tell all get_cur_xxx
5739 * functions that the current inode's refs are not updated yet. Later,
5740 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5742 sctx
->send_progress
= sctx
->cur_ino
;
5744 if (result
== BTRFS_COMPARE_TREE_NEW
||
5745 result
== BTRFS_COMPARE_TREE_CHANGED
) {
5746 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
5747 sctx
->left_path
->slots
[0],
5748 struct btrfs_inode_item
);
5749 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
5752 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5753 sctx
->right_path
->slots
[0],
5754 struct btrfs_inode_item
);
5755 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5758 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5759 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5760 sctx
->right_path
->slots
[0],
5761 struct btrfs_inode_item
);
5763 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5767 * The cur_ino = root dir case is special here. We can't treat
5768 * the inode as deleted+reused because it would generate a
5769 * stream that tries to delete/mkdir the root dir.
5771 if (left_gen
!= right_gen
&&
5772 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5773 sctx
->cur_inode_new_gen
= 1;
5776 if (result
== BTRFS_COMPARE_TREE_NEW
) {
5777 sctx
->cur_inode_gen
= left_gen
;
5778 sctx
->cur_inode_new
= 1;
5779 sctx
->cur_inode_deleted
= 0;
5780 sctx
->cur_inode_size
= btrfs_inode_size(
5781 sctx
->left_path
->nodes
[0], left_ii
);
5782 sctx
->cur_inode_mode
= btrfs_inode_mode(
5783 sctx
->left_path
->nodes
[0], left_ii
);
5784 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5785 sctx
->left_path
->nodes
[0], left_ii
);
5786 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5787 ret
= send_create_inode_if_needed(sctx
);
5788 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
5789 sctx
->cur_inode_gen
= right_gen
;
5790 sctx
->cur_inode_new
= 0;
5791 sctx
->cur_inode_deleted
= 1;
5792 sctx
->cur_inode_size
= btrfs_inode_size(
5793 sctx
->right_path
->nodes
[0], right_ii
);
5794 sctx
->cur_inode_mode
= btrfs_inode_mode(
5795 sctx
->right_path
->nodes
[0], right_ii
);
5796 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5798 * We need to do some special handling in case the inode was
5799 * reported as changed with a changed generation number. This
5800 * means that the original inode was deleted and new inode
5801 * reused the same inum. So we have to treat the old inode as
5802 * deleted and the new one as new.
5804 if (sctx
->cur_inode_new_gen
) {
5806 * First, process the inode as if it was deleted.
5808 sctx
->cur_inode_gen
= right_gen
;
5809 sctx
->cur_inode_new
= 0;
5810 sctx
->cur_inode_deleted
= 1;
5811 sctx
->cur_inode_size
= btrfs_inode_size(
5812 sctx
->right_path
->nodes
[0], right_ii
);
5813 sctx
->cur_inode_mode
= btrfs_inode_mode(
5814 sctx
->right_path
->nodes
[0], right_ii
);
5815 ret
= process_all_refs(sctx
,
5816 BTRFS_COMPARE_TREE_DELETED
);
5821 * Now process the inode as if it was new.
5823 sctx
->cur_inode_gen
= left_gen
;
5824 sctx
->cur_inode_new
= 1;
5825 sctx
->cur_inode_deleted
= 0;
5826 sctx
->cur_inode_size
= btrfs_inode_size(
5827 sctx
->left_path
->nodes
[0], left_ii
);
5828 sctx
->cur_inode_mode
= btrfs_inode_mode(
5829 sctx
->left_path
->nodes
[0], left_ii
);
5830 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5831 sctx
->left_path
->nodes
[0], left_ii
);
5832 ret
= send_create_inode_if_needed(sctx
);
5836 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
5840 * Advance send_progress now as we did not get into
5841 * process_recorded_refs_if_needed in the new_gen case.
5843 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5846 * Now process all extents and xattrs of the inode as if
5847 * they were all new.
5849 ret
= process_all_extents(sctx
);
5852 ret
= process_all_new_xattrs(sctx
);
5856 sctx
->cur_inode_gen
= left_gen
;
5857 sctx
->cur_inode_new
= 0;
5858 sctx
->cur_inode_new_gen
= 0;
5859 sctx
->cur_inode_deleted
= 0;
5860 sctx
->cur_inode_size
= btrfs_inode_size(
5861 sctx
->left_path
->nodes
[0], left_ii
);
5862 sctx
->cur_inode_mode
= btrfs_inode_mode(
5863 sctx
->left_path
->nodes
[0], left_ii
);
5872 * We have to process new refs before deleted refs, but compare_trees gives us
5873 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5874 * first and later process them in process_recorded_refs.
5875 * For the cur_inode_new_gen case, we skip recording completely because
5876 * changed_inode did already initiate processing of refs. The reason for this is
5877 * that in this case, compare_tree actually compares the refs of 2 different
5878 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5879 * refs of the right tree as deleted and all refs of the left tree as new.
5881 static int changed_ref(struct send_ctx
*sctx
,
5882 enum btrfs_compare_tree_result result
)
5886 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
5887 inconsistent_snapshot_error(sctx
, result
, "reference");
5891 if (!sctx
->cur_inode_new_gen
&&
5892 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
5893 if (result
== BTRFS_COMPARE_TREE_NEW
)
5894 ret
= record_new_ref(sctx
);
5895 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
5896 ret
= record_deleted_ref(sctx
);
5897 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
5898 ret
= record_changed_ref(sctx
);
5905 * Process new/deleted/changed xattrs. We skip processing in the
5906 * cur_inode_new_gen case because changed_inode did already initiate processing
5907 * of xattrs. The reason is the same as in changed_ref
5909 static int changed_xattr(struct send_ctx
*sctx
,
5910 enum btrfs_compare_tree_result result
)
5914 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
5915 inconsistent_snapshot_error(sctx
, result
, "xattr");
5919 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
5920 if (result
== BTRFS_COMPARE_TREE_NEW
)
5921 ret
= process_new_xattr(sctx
);
5922 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
5923 ret
= process_deleted_xattr(sctx
);
5924 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
5925 ret
= process_changed_xattr(sctx
);
5932 * Process new/deleted/changed extents. We skip processing in the
5933 * cur_inode_new_gen case because changed_inode did already initiate processing
5934 * of extents. The reason is the same as in changed_ref
5936 static int changed_extent(struct send_ctx
*sctx
,
5937 enum btrfs_compare_tree_result result
)
5941 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
5943 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5944 struct extent_buffer
*leaf_l
;
5945 struct extent_buffer
*leaf_r
;
5946 struct btrfs_file_extent_item
*ei_l
;
5947 struct btrfs_file_extent_item
*ei_r
;
5949 leaf_l
= sctx
->left_path
->nodes
[0];
5950 leaf_r
= sctx
->right_path
->nodes
[0];
5951 ei_l
= btrfs_item_ptr(leaf_l
,
5952 sctx
->left_path
->slots
[0],
5953 struct btrfs_file_extent_item
);
5954 ei_r
= btrfs_item_ptr(leaf_r
,
5955 sctx
->right_path
->slots
[0],
5956 struct btrfs_file_extent_item
);
5959 * We may have found an extent item that has changed
5960 * only its disk_bytenr field and the corresponding
5961 * inode item was not updated. This case happens due to
5962 * very specific timings during relocation when a leaf
5963 * that contains file extent items is COWed while
5964 * relocation is ongoing and its in the stage where it
5965 * updates data pointers. So when this happens we can
5966 * safely ignore it since we know it's the same extent,
5967 * but just at different logical and physical locations
5968 * (when an extent is fully replaced with a new one, we
5969 * know the generation number must have changed too,
5970 * since snapshot creation implies committing the current
5971 * transaction, and the inode item must have been updated
5973 * This replacement of the disk_bytenr happens at
5974 * relocation.c:replace_file_extents() through
5975 * relocation.c:btrfs_reloc_cow_block().
5977 if (btrfs_file_extent_generation(leaf_l
, ei_l
) ==
5978 btrfs_file_extent_generation(leaf_r
, ei_r
) &&
5979 btrfs_file_extent_ram_bytes(leaf_l
, ei_l
) ==
5980 btrfs_file_extent_ram_bytes(leaf_r
, ei_r
) &&
5981 btrfs_file_extent_compression(leaf_l
, ei_l
) ==
5982 btrfs_file_extent_compression(leaf_r
, ei_r
) &&
5983 btrfs_file_extent_encryption(leaf_l
, ei_l
) ==
5984 btrfs_file_extent_encryption(leaf_r
, ei_r
) &&
5985 btrfs_file_extent_other_encoding(leaf_l
, ei_l
) ==
5986 btrfs_file_extent_other_encoding(leaf_r
, ei_r
) &&
5987 btrfs_file_extent_type(leaf_l
, ei_l
) ==
5988 btrfs_file_extent_type(leaf_r
, ei_r
) &&
5989 btrfs_file_extent_disk_bytenr(leaf_l
, ei_l
) !=
5990 btrfs_file_extent_disk_bytenr(leaf_r
, ei_r
) &&
5991 btrfs_file_extent_disk_num_bytes(leaf_l
, ei_l
) ==
5992 btrfs_file_extent_disk_num_bytes(leaf_r
, ei_r
) &&
5993 btrfs_file_extent_offset(leaf_l
, ei_l
) ==
5994 btrfs_file_extent_offset(leaf_r
, ei_r
) &&
5995 btrfs_file_extent_num_bytes(leaf_l
, ei_l
) ==
5996 btrfs_file_extent_num_bytes(leaf_r
, ei_r
))
6000 inconsistent_snapshot_error(sctx
, result
, "extent");
6004 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
6005 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
6006 ret
= process_extent(sctx
, sctx
->left_path
,
6013 static int dir_changed(struct send_ctx
*sctx
, u64 dir
)
6015 u64 orig_gen
, new_gen
;
6018 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &new_gen
, NULL
, NULL
,
6023 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &orig_gen
, NULL
,
6028 return (orig_gen
!= new_gen
) ? 1 : 0;
6031 static int compare_refs(struct send_ctx
*sctx
, struct btrfs_path
*path
,
6032 struct btrfs_key
*key
)
6034 struct btrfs_inode_extref
*extref
;
6035 struct extent_buffer
*leaf
;
6036 u64 dirid
= 0, last_dirid
= 0;
6043 /* Easy case, just check this one dirid */
6044 if (key
->type
== BTRFS_INODE_REF_KEY
) {
6045 dirid
= key
->offset
;
6047 ret
= dir_changed(sctx
, dirid
);
6051 leaf
= path
->nodes
[0];
6052 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
6053 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
6054 while (cur_offset
< item_size
) {
6055 extref
= (struct btrfs_inode_extref
*)(ptr
+
6057 dirid
= btrfs_inode_extref_parent(leaf
, extref
);
6058 ref_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
6059 cur_offset
+= ref_name_len
+ sizeof(*extref
);
6060 if (dirid
== last_dirid
)
6062 ret
= dir_changed(sctx
, dirid
);
6072 * Updates compare related fields in sctx and simply forwards to the actual
6073 * changed_xxx functions.
6075 static int changed_cb(struct btrfs_root
*left_root
,
6076 struct btrfs_root
*right_root
,
6077 struct btrfs_path
*left_path
,
6078 struct btrfs_path
*right_path
,
6079 struct btrfs_key
*key
,
6080 enum btrfs_compare_tree_result result
,
6084 struct send_ctx
*sctx
= ctx
;
6086 if (result
== BTRFS_COMPARE_TREE_SAME
) {
6087 if (key
->type
== BTRFS_INODE_REF_KEY
||
6088 key
->type
== BTRFS_INODE_EXTREF_KEY
) {
6089 ret
= compare_refs(sctx
, left_path
, key
);
6094 } else if (key
->type
== BTRFS_EXTENT_DATA_KEY
) {
6095 return maybe_send_hole(sctx
, left_path
, key
);
6099 result
= BTRFS_COMPARE_TREE_CHANGED
;
6103 sctx
->left_path
= left_path
;
6104 sctx
->right_path
= right_path
;
6105 sctx
->cmp_key
= key
;
6107 ret
= finish_inode_if_needed(sctx
, 0);
6111 /* Ignore non-FS objects */
6112 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
6113 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
6116 if (key
->type
== BTRFS_INODE_ITEM_KEY
)
6117 ret
= changed_inode(sctx
, result
);
6118 else if (key
->type
== BTRFS_INODE_REF_KEY
||
6119 key
->type
== BTRFS_INODE_EXTREF_KEY
)
6120 ret
= changed_ref(sctx
, result
);
6121 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
6122 ret
= changed_xattr(sctx
, result
);
6123 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
6124 ret
= changed_extent(sctx
, result
);
6130 static int full_send_tree(struct send_ctx
*sctx
)
6133 struct btrfs_root
*send_root
= sctx
->send_root
;
6134 struct btrfs_key key
;
6135 struct btrfs_key found_key
;
6136 struct btrfs_path
*path
;
6137 struct extent_buffer
*eb
;
6140 path
= alloc_path_for_send();
6144 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
6145 key
.type
= BTRFS_INODE_ITEM_KEY
;
6148 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
6155 eb
= path
->nodes
[0];
6156 slot
= path
->slots
[0];
6157 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6159 ret
= changed_cb(send_root
, NULL
, path
, NULL
,
6160 &found_key
, BTRFS_COMPARE_TREE_NEW
, sctx
);
6164 key
.objectid
= found_key
.objectid
;
6165 key
.type
= found_key
.type
;
6166 key
.offset
= found_key
.offset
+ 1;
6168 ret
= btrfs_next_item(send_root
, path
);
6178 ret
= finish_inode_if_needed(sctx
, 1);
6181 btrfs_free_path(path
);
6185 static int send_subvol(struct send_ctx
*sctx
)
6189 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_STREAM_HEADER
)) {
6190 ret
= send_header(sctx
);
6195 ret
= send_subvol_begin(sctx
);
6199 if (sctx
->parent_root
) {
6200 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
,
6204 ret
= finish_inode_if_needed(sctx
, 1);
6208 ret
= full_send_tree(sctx
);
6214 free_recorded_refs(sctx
);
6219 * If orphan cleanup did remove any orphans from a root, it means the tree
6220 * was modified and therefore the commit root is not the same as the current
6221 * root anymore. This is a problem, because send uses the commit root and
6222 * therefore can see inode items that don't exist in the current root anymore,
6223 * and for example make calls to btrfs_iget, which will do tree lookups based
6224 * on the current root and not on the commit root. Those lookups will fail,
6225 * returning a -ESTALE error, and making send fail with that error. So make
6226 * sure a send does not see any orphans we have just removed, and that it will
6227 * see the same inodes regardless of whether a transaction commit happened
6228 * before it started (meaning that the commit root will be the same as the
6229 * current root) or not.
6231 static int ensure_commit_roots_uptodate(struct send_ctx
*sctx
)
6234 struct btrfs_trans_handle
*trans
= NULL
;
6237 if (sctx
->parent_root
&&
6238 sctx
->parent_root
->node
!= sctx
->parent_root
->commit_root
)
6241 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
6242 if (sctx
->clone_roots
[i
].root
->node
!=
6243 sctx
->clone_roots
[i
].root
->commit_root
)
6247 return btrfs_end_transaction(trans
);
6252 /* Use any root, all fs roots will get their commit roots updated. */
6254 trans
= btrfs_join_transaction(sctx
->send_root
);
6256 return PTR_ERR(trans
);
6260 return btrfs_commit_transaction(trans
);
6263 static void btrfs_root_dec_send_in_progress(struct btrfs_root
* root
)
6265 spin_lock(&root
->root_item_lock
);
6266 root
->send_in_progress
--;
6268 * Not much left to do, we don't know why it's unbalanced and
6269 * can't blindly reset it to 0.
6271 if (root
->send_in_progress
< 0)
6272 btrfs_err(root
->fs_info
,
6273 "send_in_progres unbalanced %d root %llu",
6274 root
->send_in_progress
, root
->root_key
.objectid
);
6275 spin_unlock(&root
->root_item_lock
);
6278 long btrfs_ioctl_send(struct file
*mnt_file
, void __user
*arg_
)
6281 struct btrfs_root
*send_root
= BTRFS_I(file_inode(mnt_file
))->root
;
6282 struct btrfs_fs_info
*fs_info
= send_root
->fs_info
;
6283 struct btrfs_root
*clone_root
;
6284 struct btrfs_ioctl_send_args
*arg
= NULL
;
6285 struct btrfs_key key
;
6286 struct send_ctx
*sctx
= NULL
;
6288 u64
*clone_sources_tmp
= NULL
;
6289 int clone_sources_to_rollback
= 0;
6290 unsigned alloc_size
;
6291 int sort_clone_roots
= 0;
6294 if (!capable(CAP_SYS_ADMIN
))
6298 * The subvolume must remain read-only during send, protect against
6299 * making it RW. This also protects against deletion.
6301 spin_lock(&send_root
->root_item_lock
);
6302 send_root
->send_in_progress
++;
6303 spin_unlock(&send_root
->root_item_lock
);
6306 * This is done when we lookup the root, it should already be complete
6307 * by the time we get here.
6309 WARN_ON(send_root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
);
6312 * Userspace tools do the checks and warn the user if it's
6315 if (!btrfs_root_readonly(send_root
)) {
6320 arg
= memdup_user(arg_
, sizeof(*arg
));
6328 * Check that we don't overflow at later allocations, we request
6329 * clone_sources_count + 1 items, and compare to unsigned long inside
6332 if (arg
->clone_sources_count
>
6333 ULONG_MAX
/ sizeof(struct clone_root
) - 1) {
6338 if (!access_ok(VERIFY_READ
, arg
->clone_sources
,
6339 sizeof(*arg
->clone_sources
) *
6340 arg
->clone_sources_count
)) {
6345 if (arg
->flags
& ~BTRFS_SEND_FLAG_MASK
) {
6350 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_KERNEL
);
6356 INIT_LIST_HEAD(&sctx
->new_refs
);
6357 INIT_LIST_HEAD(&sctx
->deleted_refs
);
6358 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_KERNEL
);
6359 INIT_LIST_HEAD(&sctx
->name_cache_list
);
6361 sctx
->flags
= arg
->flags
;
6363 sctx
->send_filp
= fget(arg
->send_fd
);
6364 if (!sctx
->send_filp
) {
6369 sctx
->send_root
= send_root
;
6371 * Unlikely but possible, if the subvolume is marked for deletion but
6372 * is slow to remove the directory entry, send can still be started
6374 if (btrfs_root_dead(sctx
->send_root
)) {
6379 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
6381 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
6382 sctx
->send_buf
= kvmalloc(sctx
->send_max_size
, GFP_KERNEL
);
6383 if (!sctx
->send_buf
) {
6388 sctx
->read_buf
= kvmalloc(BTRFS_SEND_READ_SIZE
, GFP_KERNEL
);
6389 if (!sctx
->read_buf
) {
6394 sctx
->pending_dir_moves
= RB_ROOT
;
6395 sctx
->waiting_dir_moves
= RB_ROOT
;
6396 sctx
->orphan_dirs
= RB_ROOT
;
6398 alloc_size
= sizeof(struct clone_root
) * (arg
->clone_sources_count
+ 1);
6400 sctx
->clone_roots
= kzalloc(alloc_size
, GFP_KERNEL
| __GFP_NOWARN
);
6401 if (!sctx
->clone_roots
) {
6402 sctx
->clone_roots
= vzalloc(alloc_size
);
6403 if (!sctx
->clone_roots
) {
6409 alloc_size
= arg
->clone_sources_count
* sizeof(*arg
->clone_sources
);
6411 if (arg
->clone_sources_count
) {
6412 clone_sources_tmp
= kvmalloc(alloc_size
, GFP_KERNEL
);
6413 if (!clone_sources_tmp
) {
6418 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
6425 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
6426 key
.objectid
= clone_sources_tmp
[i
];
6427 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6428 key
.offset
= (u64
)-1;
6430 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
6432 clone_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
6433 if (IS_ERR(clone_root
)) {
6434 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6435 ret
= PTR_ERR(clone_root
);
6438 spin_lock(&clone_root
->root_item_lock
);
6439 if (!btrfs_root_readonly(clone_root
) ||
6440 btrfs_root_dead(clone_root
)) {
6441 spin_unlock(&clone_root
->root_item_lock
);
6442 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6446 clone_root
->send_in_progress
++;
6447 spin_unlock(&clone_root
->root_item_lock
);
6448 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6450 sctx
->clone_roots
[i
].root
= clone_root
;
6451 clone_sources_to_rollback
= i
+ 1;
6453 kvfree(clone_sources_tmp
);
6454 clone_sources_tmp
= NULL
;
6457 if (arg
->parent_root
) {
6458 key
.objectid
= arg
->parent_root
;
6459 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6460 key
.offset
= (u64
)-1;
6462 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
6464 sctx
->parent_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
6465 if (IS_ERR(sctx
->parent_root
)) {
6466 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6467 ret
= PTR_ERR(sctx
->parent_root
);
6471 spin_lock(&sctx
->parent_root
->root_item_lock
);
6472 sctx
->parent_root
->send_in_progress
++;
6473 if (!btrfs_root_readonly(sctx
->parent_root
) ||
6474 btrfs_root_dead(sctx
->parent_root
)) {
6475 spin_unlock(&sctx
->parent_root
->root_item_lock
);
6476 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6480 spin_unlock(&sctx
->parent_root
->root_item_lock
);
6482 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6486 * Clones from send_root are allowed, but only if the clone source
6487 * is behind the current send position. This is checked while searching
6488 * for possible clone sources.
6490 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
= sctx
->send_root
;
6492 /* We do a bsearch later */
6493 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
6494 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
6496 sort_clone_roots
= 1;
6498 ret
= ensure_commit_roots_uptodate(sctx
);
6502 current
->journal_info
= BTRFS_SEND_TRANS_STUB
;
6503 ret
= send_subvol(sctx
);
6504 current
->journal_info
= NULL
;
6508 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_END_CMD
)) {
6509 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
6512 ret
= send_cmd(sctx
);
6518 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
));
6519 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
)) {
6521 struct pending_dir_move
*pm
;
6523 n
= rb_first(&sctx
->pending_dir_moves
);
6524 pm
= rb_entry(n
, struct pending_dir_move
, node
);
6525 while (!list_empty(&pm
->list
)) {
6526 struct pending_dir_move
*pm2
;
6528 pm2
= list_first_entry(&pm
->list
,
6529 struct pending_dir_move
, list
);
6530 free_pending_move(sctx
, pm2
);
6532 free_pending_move(sctx
, pm
);
6535 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
));
6536 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
)) {
6538 struct waiting_dir_move
*dm
;
6540 n
= rb_first(&sctx
->waiting_dir_moves
);
6541 dm
= rb_entry(n
, struct waiting_dir_move
, node
);
6542 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
6546 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
));
6547 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
)) {
6549 struct orphan_dir_info
*odi
;
6551 n
= rb_first(&sctx
->orphan_dirs
);
6552 odi
= rb_entry(n
, struct orphan_dir_info
, node
);
6553 free_orphan_dir_info(sctx
, odi
);
6556 if (sort_clone_roots
) {
6557 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
6558 btrfs_root_dec_send_in_progress(
6559 sctx
->clone_roots
[i
].root
);
6561 for (i
= 0; sctx
&& i
< clone_sources_to_rollback
; i
++)
6562 btrfs_root_dec_send_in_progress(
6563 sctx
->clone_roots
[i
].root
);
6565 btrfs_root_dec_send_in_progress(send_root
);
6567 if (sctx
&& !IS_ERR_OR_NULL(sctx
->parent_root
))
6568 btrfs_root_dec_send_in_progress(sctx
->parent_root
);
6571 kvfree(clone_sources_tmp
);
6574 if (sctx
->send_filp
)
6575 fput(sctx
->send_filp
);
6577 kvfree(sctx
->clone_roots
);
6578 kvfree(sctx
->send_buf
);
6579 kvfree(sctx
->read_buf
);
6581 name_cache_free(sctx
);