2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
32 #include "xfs_log_priv.h"
33 #include "xfs_log_recover.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_extfree_item.h"
36 #include "xfs_trans_priv.h"
37 #include "xfs_alloc.h"
38 #include "xfs_ialloc.h"
39 #include "xfs_quota.h"
40 #include "xfs_cksum.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_bmap_btree.h"
44 #include "xfs_error.h"
46 #include "xfs_rmap_item.h"
47 #include "xfs_buf_item.h"
48 #include "xfs_refcount_item.h"
49 #include "xfs_bmap_item.h"
51 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
58 xlog_clear_stale_blocks(
63 xlog_recover_check_summary(
66 #define xlog_recover_check_summary(log)
69 xlog_do_recovery_pass(
70 struct xlog
*, xfs_daddr_t
, xfs_daddr_t
, int, xfs_daddr_t
*);
73 * This structure is used during recovery to record the buf log items which
74 * have been canceled and should not be replayed.
76 struct xfs_buf_cancel
{
80 struct list_head bc_list
;
84 * Sector aligned buffer routines for buffer create/read/write/access
88 * Verify the given count of basic blocks is valid number of blocks
89 * to specify for an operation involving the given XFS log buffer.
90 * Returns nonzero if the count is valid, 0 otherwise.
94 xlog_buf_bbcount_valid(
98 return bbcount
> 0 && bbcount
<= log
->l_logBBsize
;
102 * Allocate a buffer to hold log data. The buffer needs to be able
103 * to map to a range of nbblks basic blocks at any valid (basic
104 * block) offset within the log.
113 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
114 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
116 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
121 * We do log I/O in units of log sectors (a power-of-2
122 * multiple of the basic block size), so we round up the
123 * requested size to accommodate the basic blocks required
124 * for complete log sectors.
126 * In addition, the buffer may be used for a non-sector-
127 * aligned block offset, in which case an I/O of the
128 * requested size could extend beyond the end of the
129 * buffer. If the requested size is only 1 basic block it
130 * will never straddle a sector boundary, so this won't be
131 * an issue. Nor will this be a problem if the log I/O is
132 * done in basic blocks (sector size 1). But otherwise we
133 * extend the buffer by one extra log sector to ensure
134 * there's space to accommodate this possibility.
136 if (nbblks
> 1 && log
->l_sectBBsize
> 1)
137 nbblks
+= log
->l_sectBBsize
;
138 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
140 bp
= xfs_buf_get_uncached(log
->l_mp
->m_logdev_targp
, nbblks
, 0);
154 * Return the address of the start of the given block number's data
155 * in a log buffer. The buffer covers a log sector-aligned region.
164 xfs_daddr_t offset
= blk_no
& ((xfs_daddr_t
)log
->l_sectBBsize
- 1);
166 ASSERT(offset
+ nbblks
<= bp
->b_length
);
167 return bp
->b_addr
+ BBTOB(offset
);
172 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
183 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
184 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
186 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
187 return -EFSCORRUPTED
;
190 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
191 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
194 ASSERT(nbblks
<= bp
->b_length
);
196 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
197 bp
->b_flags
|= XBF_READ
;
198 bp
->b_io_length
= nbblks
;
201 error
= xfs_buf_submit_wait(bp
);
202 if (error
&& !XFS_FORCED_SHUTDOWN(log
->l_mp
))
203 xfs_buf_ioerror_alert(bp
, __func__
);
217 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
221 *offset
= xlog_align(log
, blk_no
, nbblks
, bp
);
226 * Read at an offset into the buffer. Returns with the buffer in it's original
227 * state regardless of the result of the read.
232 xfs_daddr_t blk_no
, /* block to read from */
233 int nbblks
, /* blocks to read */
237 char *orig_offset
= bp
->b_addr
;
238 int orig_len
= BBTOB(bp
->b_length
);
241 error
= xfs_buf_associate_memory(bp
, offset
, BBTOB(nbblks
));
245 error
= xlog_bread_noalign(log
, blk_no
, nbblks
, bp
);
247 /* must reset buffer pointer even on error */
248 error2
= xfs_buf_associate_memory(bp
, orig_offset
, orig_len
);
255 * Write out the buffer at the given block for the given number of blocks.
256 * The buffer is kept locked across the write and is returned locked.
257 * This can only be used for synchronous log writes.
268 if (!xlog_buf_bbcount_valid(log
, nbblks
)) {
269 xfs_warn(log
->l_mp
, "Invalid block length (0x%x) for buffer",
271 XFS_ERROR_REPORT(__func__
, XFS_ERRLEVEL_HIGH
, log
->l_mp
);
272 return -EFSCORRUPTED
;
275 blk_no
= round_down(blk_no
, log
->l_sectBBsize
);
276 nbblks
= round_up(nbblks
, log
->l_sectBBsize
);
279 ASSERT(nbblks
<= bp
->b_length
);
281 XFS_BUF_SET_ADDR(bp
, log
->l_logBBstart
+ blk_no
);
284 bp
->b_io_length
= nbblks
;
287 error
= xfs_bwrite(bp
);
289 xfs_buf_ioerror_alert(bp
, __func__
);
296 * dump debug superblock and log record information
299 xlog_header_check_dump(
301 xlog_rec_header_t
*head
)
303 xfs_debug(mp
, "%s: SB : uuid = %pU, fmt = %d",
304 __func__
, &mp
->m_sb
.sb_uuid
, XLOG_FMT
);
305 xfs_debug(mp
, " log : uuid = %pU, fmt = %d",
306 &head
->h_fs_uuid
, be32_to_cpu(head
->h_fmt
));
309 #define xlog_header_check_dump(mp, head)
313 * check log record header for recovery
316 xlog_header_check_recover(
318 xlog_rec_header_t
*head
)
320 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
323 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 * a dirty log created in IRIX.
327 if (unlikely(head
->h_fmt
!= cpu_to_be32(XLOG_FMT
))) {
329 "dirty log written in incompatible format - can't recover");
330 xlog_header_check_dump(mp
, head
);
331 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 XFS_ERRLEVEL_HIGH
, mp
);
333 return -EFSCORRUPTED
;
334 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
336 "dirty log entry has mismatched uuid - can't recover");
337 xlog_header_check_dump(mp
, head
);
338 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 XFS_ERRLEVEL_HIGH
, mp
);
340 return -EFSCORRUPTED
;
346 * read the head block of the log and check the header
349 xlog_header_check_mount(
351 xlog_rec_header_t
*head
)
353 ASSERT(head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
));
355 if (uuid_is_null(&head
->h_fs_uuid
)) {
357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 * h_fs_uuid is null, we assume this log was last mounted
359 * by IRIX and continue.
361 xfs_warn(mp
, "null uuid in log - IRIX style log");
362 } else if (unlikely(!uuid_equal(&mp
->m_sb
.sb_uuid
, &head
->h_fs_uuid
))) {
363 xfs_warn(mp
, "log has mismatched uuid - can't recover");
364 xlog_header_check_dump(mp
, head
);
365 XFS_ERROR_REPORT("xlog_header_check_mount",
366 XFS_ERRLEVEL_HIGH
, mp
);
367 return -EFSCORRUPTED
;
378 * We're not going to bother about retrying
379 * this during recovery. One strike!
381 if (!XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
382 xfs_buf_ioerror_alert(bp
, __func__
);
383 xfs_force_shutdown(bp
->b_target
->bt_mount
,
384 SHUTDOWN_META_IO_ERROR
);
389 * On v5 supers, a bli could be attached to update the metadata LSN.
393 xfs_buf_item_relse(bp
);
394 ASSERT(bp
->b_fspriv
== NULL
);
401 * This routine finds (to an approximation) the first block in the physical
402 * log which contains the given cycle. It uses a binary search algorithm.
403 * Note that the algorithm can not be perfect because the disk will not
404 * necessarily be perfect.
407 xlog_find_cycle_start(
410 xfs_daddr_t first_blk
,
411 xfs_daddr_t
*last_blk
,
421 mid_blk
= BLK_AVG(first_blk
, end_blk
);
422 while (mid_blk
!= first_blk
&& mid_blk
!= end_blk
) {
423 error
= xlog_bread(log
, mid_blk
, 1, bp
, &offset
);
426 mid_cycle
= xlog_get_cycle(offset
);
427 if (mid_cycle
== cycle
)
428 end_blk
= mid_blk
; /* last_half_cycle == mid_cycle */
430 first_blk
= mid_blk
; /* first_half_cycle == mid_cycle */
431 mid_blk
= BLK_AVG(first_blk
, end_blk
);
433 ASSERT((mid_blk
== first_blk
&& mid_blk
+1 == end_blk
) ||
434 (mid_blk
== end_blk
&& mid_blk
-1 == first_blk
));
442 * Check that a range of blocks does not contain stop_on_cycle_no.
443 * Fill in *new_blk with the block offset where such a block is
444 * found, or with -1 (an invalid block number) if there is no such
445 * block in the range. The scan needs to occur from front to back
446 * and the pointer into the region must be updated since a later
447 * routine will need to perform another test.
450 xlog_find_verify_cycle(
452 xfs_daddr_t start_blk
,
454 uint stop_on_cycle_no
,
455 xfs_daddr_t
*new_blk
)
465 * Greedily allocate a buffer big enough to handle the full
466 * range of basic blocks we'll be examining. If that fails,
467 * try a smaller size. We need to be able to read at least
468 * a log sector, or we're out of luck.
470 bufblks
= 1 << ffs(nbblks
);
471 while (bufblks
> log
->l_logBBsize
)
473 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
475 if (bufblks
< log
->l_sectBBsize
)
479 for (i
= start_blk
; i
< start_blk
+ nbblks
; i
+= bufblks
) {
482 bcount
= min(bufblks
, (start_blk
+ nbblks
- i
));
484 error
= xlog_bread(log
, i
, bcount
, bp
, &buf
);
488 for (j
= 0; j
< bcount
; j
++) {
489 cycle
= xlog_get_cycle(buf
);
490 if (cycle
== stop_on_cycle_no
) {
507 * Potentially backup over partial log record write.
509 * In the typical case, last_blk is the number of the block directly after
510 * a good log record. Therefore, we subtract one to get the block number
511 * of the last block in the given buffer. extra_bblks contains the number
512 * of blocks we would have read on a previous read. This happens when the
513 * last log record is split over the end of the physical log.
515 * extra_bblks is the number of blocks potentially verified on a previous
516 * call to this routine.
519 xlog_find_verify_log_record(
521 xfs_daddr_t start_blk
,
522 xfs_daddr_t
*last_blk
,
528 xlog_rec_header_t
*head
= NULL
;
531 int num_blks
= *last_blk
- start_blk
;
534 ASSERT(start_blk
!= 0 || *last_blk
!= start_blk
);
536 if (!(bp
= xlog_get_bp(log
, num_blks
))) {
537 if (!(bp
= xlog_get_bp(log
, 1)))
541 error
= xlog_bread(log
, start_blk
, num_blks
, bp
, &offset
);
544 offset
+= ((num_blks
- 1) << BBSHIFT
);
547 for (i
= (*last_blk
) - 1; i
>= 0; i
--) {
549 /* valid log record not found */
551 "Log inconsistent (didn't find previous header)");
558 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
563 head
= (xlog_rec_header_t
*)offset
;
565 if (head
->h_magicno
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
573 * We hit the beginning of the physical log & still no header. Return
574 * to caller. If caller can handle a return of -1, then this routine
575 * will be called again for the end of the physical log.
583 * We have the final block of the good log (the first block
584 * of the log record _before_ the head. So we check the uuid.
586 if ((error
= xlog_header_check_mount(log
->l_mp
, head
)))
590 * We may have found a log record header before we expected one.
591 * last_blk will be the 1st block # with a given cycle #. We may end
592 * up reading an entire log record. In this case, we don't want to
593 * reset last_blk. Only when last_blk points in the middle of a log
594 * record do we update last_blk.
596 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
597 uint h_size
= be32_to_cpu(head
->h_size
);
599 xhdrs
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
600 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
606 if (*last_blk
- i
+ extra_bblks
!=
607 BTOBB(be32_to_cpu(head
->h_len
)) + xhdrs
)
616 * Head is defined to be the point of the log where the next log write
617 * could go. This means that incomplete LR writes at the end are
618 * eliminated when calculating the head. We aren't guaranteed that previous
619 * LR have complete transactions. We only know that a cycle number of
620 * current cycle number -1 won't be present in the log if we start writing
621 * from our current block number.
623 * last_blk contains the block number of the first block with a given
626 * Return: zero if normal, non-zero if error.
631 xfs_daddr_t
*return_head_blk
)
635 xfs_daddr_t new_blk
, first_blk
, start_blk
, last_blk
, head_blk
;
637 uint first_half_cycle
, last_half_cycle
;
639 int error
, log_bbnum
= log
->l_logBBsize
;
641 /* Is the end of the log device zeroed? */
642 error
= xlog_find_zeroed(log
, &first_blk
);
644 xfs_warn(log
->l_mp
, "empty log check failed");
648 *return_head_blk
= first_blk
;
650 /* Is the whole lot zeroed? */
652 /* Linux XFS shouldn't generate totally zeroed logs -
653 * mkfs etc write a dummy unmount record to a fresh
654 * log so we can store the uuid in there
656 xfs_warn(log
->l_mp
, "totally zeroed log");
662 first_blk
= 0; /* get cycle # of 1st block */
663 bp
= xlog_get_bp(log
, 1);
667 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
671 first_half_cycle
= xlog_get_cycle(offset
);
673 last_blk
= head_blk
= log_bbnum
- 1; /* get cycle # of last block */
674 error
= xlog_bread(log
, last_blk
, 1, bp
, &offset
);
678 last_half_cycle
= xlog_get_cycle(offset
);
679 ASSERT(last_half_cycle
!= 0);
682 * If the 1st half cycle number is equal to the last half cycle number,
683 * then the entire log is stamped with the same cycle number. In this
684 * case, head_blk can't be set to zero (which makes sense). The below
685 * math doesn't work out properly with head_blk equal to zero. Instead,
686 * we set it to log_bbnum which is an invalid block number, but this
687 * value makes the math correct. If head_blk doesn't changed through
688 * all the tests below, *head_blk is set to zero at the very end rather
689 * than log_bbnum. In a sense, log_bbnum and zero are the same block
690 * in a circular file.
692 if (first_half_cycle
== last_half_cycle
) {
694 * In this case we believe that the entire log should have
695 * cycle number last_half_cycle. We need to scan backwards
696 * from the end verifying that there are no holes still
697 * containing last_half_cycle - 1. If we find such a hole,
698 * then the start of that hole will be the new head. The
699 * simple case looks like
700 * x | x ... | x - 1 | x
701 * Another case that fits this picture would be
702 * x | x + 1 | x ... | x
703 * In this case the head really is somewhere at the end of the
704 * log, as one of the latest writes at the beginning was
707 * x | x + 1 | x ... | x - 1 | x
708 * This is really the combination of the above two cases, and
709 * the head has to end up at the start of the x-1 hole at the
712 * In the 256k log case, we will read from the beginning to the
713 * end of the log and search for cycle numbers equal to x-1.
714 * We don't worry about the x+1 blocks that we encounter,
715 * because we know that they cannot be the head since the log
718 head_blk
= log_bbnum
;
719 stop_on_cycle
= last_half_cycle
- 1;
722 * In this case we want to find the first block with cycle
723 * number matching last_half_cycle. We expect the log to be
725 * x + 1 ... | x ... | x
726 * The first block with cycle number x (last_half_cycle) will
727 * be where the new head belongs. First we do a binary search
728 * for the first occurrence of last_half_cycle. The binary
729 * search may not be totally accurate, so then we scan back
730 * from there looking for occurrences of last_half_cycle before
731 * us. If that backwards scan wraps around the beginning of
732 * the log, then we look for occurrences of last_half_cycle - 1
733 * at the end of the log. The cases we're looking for look
735 * v binary search stopped here
736 * x + 1 ... | x | x + 1 | x ... | x
737 * ^ but we want to locate this spot
739 * <---------> less than scan distance
740 * x + 1 ... | x ... | x - 1 | x
741 * ^ we want to locate this spot
743 stop_on_cycle
= last_half_cycle
;
744 if ((error
= xlog_find_cycle_start(log
, bp
, first_blk
,
745 &head_blk
, last_half_cycle
)))
750 * Now validate the answer. Scan back some number of maximum possible
751 * blocks and make sure each one has the expected cycle number. The
752 * maximum is determined by the total possible amount of buffering
753 * in the in-core log. The following number can be made tighter if
754 * we actually look at the block size of the filesystem.
756 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
757 if (head_blk
>= num_scan_bblks
) {
759 * We are guaranteed that the entire check can be performed
762 start_blk
= head_blk
- num_scan_bblks
;
763 if ((error
= xlog_find_verify_cycle(log
,
764 start_blk
, num_scan_bblks
,
765 stop_on_cycle
, &new_blk
)))
769 } else { /* need to read 2 parts of log */
771 * We are going to scan backwards in the log in two parts.
772 * First we scan the physical end of the log. In this part
773 * of the log, we are looking for blocks with cycle number
774 * last_half_cycle - 1.
775 * If we find one, then we know that the log starts there, as
776 * we've found a hole that didn't get written in going around
777 * the end of the physical log. The simple case for this is
778 * x + 1 ... | x ... | x - 1 | x
779 * <---------> less than scan distance
780 * If all of the blocks at the end of the log have cycle number
781 * last_half_cycle, then we check the blocks at the start of
782 * the log looking for occurrences of last_half_cycle. If we
783 * find one, then our current estimate for the location of the
784 * first occurrence of last_half_cycle is wrong and we move
785 * back to the hole we've found. This case looks like
786 * x + 1 ... | x | x + 1 | x ...
787 * ^ binary search stopped here
788 * Another case we need to handle that only occurs in 256k
790 * x + 1 ... | x ... | x+1 | x ...
791 * ^ binary search stops here
792 * In a 256k log, the scan at the end of the log will see the
793 * x + 1 blocks. We need to skip past those since that is
794 * certainly not the head of the log. By searching for
795 * last_half_cycle-1 we accomplish that.
797 ASSERT(head_blk
<= INT_MAX
&&
798 (xfs_daddr_t
) num_scan_bblks
>= head_blk
);
799 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
800 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
801 num_scan_bblks
- (int)head_blk
,
802 (stop_on_cycle
- 1), &new_blk
)))
810 * Scan beginning of log now. The last part of the physical
811 * log is good. This scan needs to verify that it doesn't find
812 * the last_half_cycle.
815 ASSERT(head_blk
<= INT_MAX
);
816 if ((error
= xlog_find_verify_cycle(log
,
817 start_blk
, (int)head_blk
,
818 stop_on_cycle
, &new_blk
)))
826 * Now we need to make sure head_blk is not pointing to a block in
827 * the middle of a log record.
829 num_scan_bblks
= XLOG_REC_SHIFT(log
);
830 if (head_blk
>= num_scan_bblks
) {
831 start_blk
= head_blk
- num_scan_bblks
; /* don't read head_blk */
833 /* start ptr at last block ptr before head_blk */
834 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
841 ASSERT(head_blk
<= INT_MAX
);
842 error
= xlog_find_verify_log_record(log
, start_blk
, &head_blk
, 0);
846 /* We hit the beginning of the log during our search */
847 start_blk
= log_bbnum
- (num_scan_bblks
- head_blk
);
849 ASSERT(start_blk
<= INT_MAX
&&
850 (xfs_daddr_t
) log_bbnum
-start_blk
>= 0);
851 ASSERT(head_blk
<= INT_MAX
);
852 error
= xlog_find_verify_log_record(log
, start_blk
,
853 &new_blk
, (int)head_blk
);
858 if (new_blk
!= log_bbnum
)
865 if (head_blk
== log_bbnum
)
866 *return_head_blk
= 0;
868 *return_head_blk
= head_blk
;
870 * When returning here, we have a good block number. Bad block
871 * means that during a previous crash, we didn't have a clean break
872 * from cycle number N to cycle number N-1. In this case, we need
873 * to find the first block with cycle number N-1.
881 xfs_warn(log
->l_mp
, "failed to find log head");
886 * Seek backwards in the log for log record headers.
888 * Given a starting log block, walk backwards until we find the provided number
889 * of records or hit the provided tail block. The return value is the number of
890 * records encountered or a negative error code. The log block and buffer
891 * pointer of the last record seen are returned in rblk and rhead respectively.
894 xlog_rseek_logrec_hdr(
896 xfs_daddr_t head_blk
,
897 xfs_daddr_t tail_blk
,
901 struct xlog_rec_header
**rhead
,
913 * Walk backwards from the head block until we hit the tail or the first
916 end_blk
= head_blk
> tail_blk
? tail_blk
: 0;
917 for (i
= (int) head_blk
- 1; i
>= end_blk
; i
--) {
918 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
922 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
924 *rhead
= (struct xlog_rec_header
*) offset
;
925 if (++found
== count
)
931 * If we haven't hit the tail block or the log record header count,
932 * start looking again from the end of the physical log. Note that
933 * callers can pass head == tail if the tail is not yet known.
935 if (tail_blk
>= head_blk
&& found
!= count
) {
936 for (i
= log
->l_logBBsize
- 1; i
>= (int) tail_blk
; i
--) {
937 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
941 if (*(__be32
*)offset
==
942 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
945 *rhead
= (struct xlog_rec_header
*) offset
;
946 if (++found
== count
)
959 * Seek forward in the log for log record headers.
961 * Given head and tail blocks, walk forward from the tail block until we find
962 * the provided number of records or hit the head block. The return value is the
963 * number of records encountered or a negative error code. The log block and
964 * buffer pointer of the last record seen are returned in rblk and rhead
968 xlog_seek_logrec_hdr(
970 xfs_daddr_t head_blk
,
971 xfs_daddr_t tail_blk
,
975 struct xlog_rec_header
**rhead
,
987 * Walk forward from the tail block until we hit the head or the last
990 end_blk
= head_blk
> tail_blk
? head_blk
: log
->l_logBBsize
- 1;
991 for (i
= (int) tail_blk
; i
<= end_blk
; i
++) {
992 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
996 if (*(__be32
*) offset
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
998 *rhead
= (struct xlog_rec_header
*) offset
;
999 if (++found
== count
)
1005 * If we haven't hit the head block or the log record header count,
1006 * start looking again from the start of the physical log.
1008 if (tail_blk
> head_blk
&& found
!= count
) {
1009 for (i
= 0; i
< (int) head_blk
; i
++) {
1010 error
= xlog_bread(log
, i
, 1, bp
, &offset
);
1014 if (*(__be32
*)offset
==
1015 cpu_to_be32(XLOG_HEADER_MAGIC_NUM
)) {
1018 *rhead
= (struct xlog_rec_header
*) offset
;
1019 if (++found
== count
)
1032 * Check the log tail for torn writes. This is required when torn writes are
1033 * detected at the head and the head had to be walked back to a previous record.
1034 * The tail of the previous record must now be verified to ensure the torn
1035 * writes didn't corrupt the previous tail.
1037 * Return an error if CRC verification fails as recovery cannot proceed.
1042 xfs_daddr_t head_blk
,
1043 xfs_daddr_t tail_blk
)
1045 struct xlog_rec_header
*thead
;
1047 xfs_daddr_t first_bad
;
1051 xfs_daddr_t tmp_head
;
1053 bp
= xlog_get_bp(log
, 1);
1058 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1059 * a temporary head block that points after the last possible
1060 * concurrently written record of the tail.
1062 count
= xlog_seek_logrec_hdr(log
, head_blk
, tail_blk
,
1063 XLOG_MAX_ICLOGS
+ 1, bp
, &tmp_head
, &thead
,
1071 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1072 * into the actual log head. tmp_head points to the start of the record
1073 * so update it to the actual head block.
1075 if (count
< XLOG_MAX_ICLOGS
+ 1)
1076 tmp_head
= head_blk
;
1079 * We now have a tail and temporary head block that covers at least
1080 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1081 * records were completely written. Run a CRC verification pass from
1082 * tail to head and return the result.
1084 error
= xlog_do_recovery_pass(log
, tmp_head
, tail_blk
,
1085 XLOG_RECOVER_CRCPASS
, &first_bad
);
1093 * Detect and trim torn writes from the head of the log.
1095 * Storage without sector atomicity guarantees can result in torn writes in the
1096 * log in the event of a crash. Our only means to detect this scenario is via
1097 * CRC verification. While we can't always be certain that CRC verification
1098 * failure is due to a torn write vs. an unrelated corruption, we do know that
1099 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1100 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1101 * the log and treat failures in this range as torn writes as a matter of
1102 * policy. In the event of CRC failure, the head is walked back to the last good
1103 * record in the log and the tail is updated from that record and verified.
1108 xfs_daddr_t
*head_blk
, /* in/out: unverified head */
1109 xfs_daddr_t
*tail_blk
, /* out: tail block */
1111 xfs_daddr_t
*rhead_blk
, /* start blk of last record */
1112 struct xlog_rec_header
**rhead
, /* ptr to last record */
1113 bool *wrapped
) /* last rec. wraps phys. log */
1115 struct xlog_rec_header
*tmp_rhead
;
1116 struct xfs_buf
*tmp_bp
;
1117 xfs_daddr_t first_bad
;
1118 xfs_daddr_t tmp_rhead_blk
;
1124 * Check the head of the log for torn writes. Search backwards from the
1125 * head until we hit the tail or the maximum number of log record I/Os
1126 * that could have been in flight at one time. Use a temporary buffer so
1127 * we don't trash the rhead/bp pointers from the caller.
1129 tmp_bp
= xlog_get_bp(log
, 1);
1132 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *tail_blk
,
1133 XLOG_MAX_ICLOGS
, tmp_bp
, &tmp_rhead_blk
,
1134 &tmp_rhead
, &tmp_wrapped
);
1135 xlog_put_bp(tmp_bp
);
1140 * Now run a CRC verification pass over the records starting at the
1141 * block found above to the current head. If a CRC failure occurs, the
1142 * log block of the first bad record is saved in first_bad.
1144 error
= xlog_do_recovery_pass(log
, *head_blk
, tmp_rhead_blk
,
1145 XLOG_RECOVER_CRCPASS
, &first_bad
);
1146 if (error
== -EFSBADCRC
) {
1148 * We've hit a potential torn write. Reset the error and warn
1153 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1154 first_bad
, *head_blk
);
1157 * Get the header block and buffer pointer for the last good
1158 * record before the bad record.
1160 * Note that xlog_find_tail() clears the blocks at the new head
1161 * (i.e., the records with invalid CRC) if the cycle number
1162 * matches the the current cycle.
1164 found
= xlog_rseek_logrec_hdr(log
, first_bad
, *tail_blk
, 1, bp
,
1165 rhead_blk
, rhead
, wrapped
);
1168 if (found
== 0) /* XXX: right thing to do here? */
1172 * Reset the head block to the starting block of the first bad
1173 * log record and set the tail block based on the last good
1176 * Bail out if the updated head/tail match as this indicates
1177 * possible corruption outside of the acceptable
1178 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1180 *head_blk
= first_bad
;
1181 *tail_blk
= BLOCK_LSN(be64_to_cpu((*rhead
)->h_tail_lsn
));
1182 if (*head_blk
== *tail_blk
) {
1188 * Now verify the tail based on the updated head. This is
1189 * required because the torn writes trimmed from the head could
1190 * have been written over the tail of a previous record. Return
1191 * any errors since recovery cannot proceed if the tail is
1194 * XXX: This leaves a gap in truly robust protection from torn
1195 * writes in the log. If the head is behind the tail, the tail
1196 * pushes forward to create some space and then a crash occurs
1197 * causing the writes into the previous record's tail region to
1198 * tear, log recovery isn't able to recover.
1200 * How likely is this to occur? If possible, can we do something
1201 * more intelligent here? Is it safe to push the tail forward if
1202 * we can determine that the tail is within the range of the
1203 * torn write (e.g., the kernel can only overwrite the tail if
1204 * it has actually been pushed forward)? Alternatively, could we
1205 * somehow prevent this condition at runtime?
1207 error
= xlog_verify_tail(log
, *head_blk
, *tail_blk
);
1214 * Check whether the head of the log points to an unmount record. In other
1215 * words, determine whether the log is clean. If so, update the in-core state
1219 xlog_check_unmount_rec(
1221 xfs_daddr_t
*head_blk
,
1222 xfs_daddr_t
*tail_blk
,
1223 struct xlog_rec_header
*rhead
,
1224 xfs_daddr_t rhead_blk
,
1228 struct xlog_op_header
*op_head
;
1229 xfs_daddr_t umount_data_blk
;
1230 xfs_daddr_t after_umount_blk
;
1238 * Look for unmount record. If we find it, then we know there was a
1239 * clean unmount. Since 'i' could be the last block in the physical
1240 * log, we convert to a log block before comparing to the head_blk.
1242 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1243 * below. We won't want to clear the unmount record if there is one, so
1244 * we pass the lsn of the unmount record rather than the block after it.
1246 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1247 int h_size
= be32_to_cpu(rhead
->h_size
);
1248 int h_version
= be32_to_cpu(rhead
->h_version
);
1250 if ((h_version
& XLOG_VERSION_2
) &&
1251 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
1252 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
1253 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
1261 after_umount_blk
= rhead_blk
+ hblks
+ BTOBB(be32_to_cpu(rhead
->h_len
));
1262 after_umount_blk
= do_mod(after_umount_blk
, log
->l_logBBsize
);
1263 if (*head_blk
== after_umount_blk
&&
1264 be32_to_cpu(rhead
->h_num_logops
) == 1) {
1265 umount_data_blk
= rhead_blk
+ hblks
;
1266 umount_data_blk
= do_mod(umount_data_blk
, log
->l_logBBsize
);
1267 error
= xlog_bread(log
, umount_data_blk
, 1, bp
, &offset
);
1271 op_head
= (struct xlog_op_header
*)offset
;
1272 if (op_head
->oh_flags
& XLOG_UNMOUNT_TRANS
) {
1274 * Set tail and last sync so that newly written log
1275 * records will point recovery to after the current
1278 xlog_assign_atomic_lsn(&log
->l_tail_lsn
,
1279 log
->l_curr_cycle
, after_umount_blk
);
1280 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
,
1281 log
->l_curr_cycle
, after_umount_blk
);
1282 *tail_blk
= after_umount_blk
;
1294 xfs_daddr_t head_blk
,
1295 struct xlog_rec_header
*rhead
,
1296 xfs_daddr_t rhead_blk
,
1300 * Reset log values according to the state of the log when we
1301 * crashed. In the case where head_blk == 0, we bump curr_cycle
1302 * one because the next write starts a new cycle rather than
1303 * continuing the cycle of the last good log record. At this
1304 * point we have guaranteed that all partial log records have been
1305 * accounted for. Therefore, we know that the last good log record
1306 * written was complete and ended exactly on the end boundary
1307 * of the physical log.
1309 log
->l_prev_block
= rhead_blk
;
1310 log
->l_curr_block
= (int)head_blk
;
1311 log
->l_curr_cycle
= be32_to_cpu(rhead
->h_cycle
);
1313 log
->l_curr_cycle
++;
1314 atomic64_set(&log
->l_tail_lsn
, be64_to_cpu(rhead
->h_tail_lsn
));
1315 atomic64_set(&log
->l_last_sync_lsn
, be64_to_cpu(rhead
->h_lsn
));
1316 xlog_assign_grant_head(&log
->l_reserve_head
.grant
, log
->l_curr_cycle
,
1317 BBTOB(log
->l_curr_block
));
1318 xlog_assign_grant_head(&log
->l_write_head
.grant
, log
->l_curr_cycle
,
1319 BBTOB(log
->l_curr_block
));
1323 * Find the sync block number or the tail of the log.
1325 * This will be the block number of the last record to have its
1326 * associated buffers synced to disk. Every log record header has
1327 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1328 * to get a sync block number. The only concern is to figure out which
1329 * log record header to believe.
1331 * The following algorithm uses the log record header with the largest
1332 * lsn. The entire log record does not need to be valid. We only care
1333 * that the header is valid.
1335 * We could speed up search by using current head_blk buffer, but it is not
1341 xfs_daddr_t
*head_blk
,
1342 xfs_daddr_t
*tail_blk
)
1344 xlog_rec_header_t
*rhead
;
1345 char *offset
= NULL
;
1348 xfs_daddr_t rhead_blk
;
1350 bool wrapped
= false;
1354 * Find previous log record
1356 if ((error
= xlog_find_head(log
, head_blk
)))
1358 ASSERT(*head_blk
< INT_MAX
);
1360 bp
= xlog_get_bp(log
, 1);
1363 if (*head_blk
== 0) { /* special case */
1364 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1368 if (xlog_get_cycle(offset
) == 0) {
1370 /* leave all other log inited values alone */
1376 * Search backwards through the log looking for the log record header
1377 * block. This wraps all the way back around to the head so something is
1378 * seriously wrong if we can't find it.
1380 error
= xlog_rseek_logrec_hdr(log
, *head_blk
, *head_blk
, 1, bp
,
1381 &rhead_blk
, &rhead
, &wrapped
);
1385 xfs_warn(log
->l_mp
, "%s: couldn't find sync record", __func__
);
1388 *tail_blk
= BLOCK_LSN(be64_to_cpu(rhead
->h_tail_lsn
));
1391 * Set the log state based on the current head record.
1393 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
, wrapped
);
1394 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1397 * Look for an unmount record at the head of the log. This sets the log
1398 * state to determine whether recovery is necessary.
1400 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
, rhead
,
1401 rhead_blk
, bp
, &clean
);
1406 * Verify the log head if the log is not clean (e.g., we have anything
1407 * but an unmount record at the head). This uses CRC verification to
1408 * detect and trim torn writes. If discovered, CRC failures are
1409 * considered torn writes and the log head is trimmed accordingly.
1411 * Note that we can only run CRC verification when the log is dirty
1412 * because there's no guarantee that the log data behind an unmount
1413 * record is compatible with the current architecture.
1416 xfs_daddr_t orig_head
= *head_blk
;
1418 error
= xlog_verify_head(log
, head_blk
, tail_blk
, bp
,
1419 &rhead_blk
, &rhead
, &wrapped
);
1423 /* update in-core state again if the head changed */
1424 if (*head_blk
!= orig_head
) {
1425 xlog_set_state(log
, *head_blk
, rhead
, rhead_blk
,
1427 tail_lsn
= atomic64_read(&log
->l_tail_lsn
);
1428 error
= xlog_check_unmount_rec(log
, head_blk
, tail_blk
,
1429 rhead
, rhead_blk
, bp
,
1437 * Note that the unmount was clean. If the unmount was not clean, we
1438 * need to know this to rebuild the superblock counters from the perag
1439 * headers if we have a filesystem using non-persistent counters.
1442 log
->l_mp
->m_flags
|= XFS_MOUNT_WAS_CLEAN
;
1445 * Make sure that there are no blocks in front of the head
1446 * with the same cycle number as the head. This can happen
1447 * because we allow multiple outstanding log writes concurrently,
1448 * and the later writes might make it out before earlier ones.
1450 * We use the lsn from before modifying it so that we'll never
1451 * overwrite the unmount record after a clean unmount.
1453 * Do this only if we are going to recover the filesystem
1455 * NOTE: This used to say "if (!readonly)"
1456 * However on Linux, we can & do recover a read-only filesystem.
1457 * We only skip recovery if NORECOVERY is specified on mount,
1458 * in which case we would not be here.
1460 * But... if the -device- itself is readonly, just skip this.
1461 * We can't recover this device anyway, so it won't matter.
1463 if (!xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
))
1464 error
= xlog_clear_stale_blocks(log
, tail_lsn
);
1470 xfs_warn(log
->l_mp
, "failed to locate log tail");
1475 * Is the log zeroed at all?
1477 * The last binary search should be changed to perform an X block read
1478 * once X becomes small enough. You can then search linearly through
1479 * the X blocks. This will cut down on the number of reads we need to do.
1481 * If the log is partially zeroed, this routine will pass back the blkno
1482 * of the first block with cycle number 0. It won't have a complete LR
1486 * 0 => the log is completely written to
1487 * 1 => use *blk_no as the first block of the log
1488 * <0 => error has occurred
1493 xfs_daddr_t
*blk_no
)
1497 uint first_cycle
, last_cycle
;
1498 xfs_daddr_t new_blk
, last_blk
, start_blk
;
1499 xfs_daddr_t num_scan_bblks
;
1500 int error
, log_bbnum
= log
->l_logBBsize
;
1504 /* check totally zeroed log */
1505 bp
= xlog_get_bp(log
, 1);
1508 error
= xlog_bread(log
, 0, 1, bp
, &offset
);
1512 first_cycle
= xlog_get_cycle(offset
);
1513 if (first_cycle
== 0) { /* completely zeroed log */
1519 /* check partially zeroed log */
1520 error
= xlog_bread(log
, log_bbnum
-1, 1, bp
, &offset
);
1524 last_cycle
= xlog_get_cycle(offset
);
1525 if (last_cycle
!= 0) { /* log completely written to */
1528 } else if (first_cycle
!= 1) {
1530 * If the cycle of the last block is zero, the cycle of
1531 * the first block must be 1. If it's not, maybe we're
1532 * not looking at a log... Bail out.
1535 "Log inconsistent or not a log (last==0, first!=1)");
1540 /* we have a partially zeroed log */
1541 last_blk
= log_bbnum
-1;
1542 if ((error
= xlog_find_cycle_start(log
, bp
, 0, &last_blk
, 0)))
1546 * Validate the answer. Because there is no way to guarantee that
1547 * the entire log is made up of log records which are the same size,
1548 * we scan over the defined maximum blocks. At this point, the maximum
1549 * is not chosen to mean anything special. XXXmiken
1551 num_scan_bblks
= XLOG_TOTAL_REC_SHIFT(log
);
1552 ASSERT(num_scan_bblks
<= INT_MAX
);
1554 if (last_blk
< num_scan_bblks
)
1555 num_scan_bblks
= last_blk
;
1556 start_blk
= last_blk
- num_scan_bblks
;
1559 * We search for any instances of cycle number 0 that occur before
1560 * our current estimate of the head. What we're trying to detect is
1561 * 1 ... | 0 | 1 | 0...
1562 * ^ binary search ends here
1564 if ((error
= xlog_find_verify_cycle(log
, start_blk
,
1565 (int)num_scan_bblks
, 0, &new_blk
)))
1571 * Potentially backup over partial log record write. We don't need
1572 * to search the end of the log because we know it is zero.
1574 error
= xlog_find_verify_log_record(log
, start_blk
, &last_blk
, 0);
1589 * These are simple subroutines used by xlog_clear_stale_blocks() below
1590 * to initialize a buffer full of empty log record headers and write
1591 * them into the log.
1602 xlog_rec_header_t
*recp
= (xlog_rec_header_t
*)buf
;
1604 memset(buf
, 0, BBSIZE
);
1605 recp
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1606 recp
->h_cycle
= cpu_to_be32(cycle
);
1607 recp
->h_version
= cpu_to_be32(
1608 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1609 recp
->h_lsn
= cpu_to_be64(xlog_assign_lsn(cycle
, block
));
1610 recp
->h_tail_lsn
= cpu_to_be64(xlog_assign_lsn(tail_cycle
, tail_block
));
1611 recp
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1612 memcpy(&recp
->h_fs_uuid
, &log
->l_mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1616 xlog_write_log_records(
1627 int sectbb
= log
->l_sectBBsize
;
1628 int end_block
= start_block
+ blocks
;
1634 * Greedily allocate a buffer big enough to handle the full
1635 * range of basic blocks to be written. If that fails, try
1636 * a smaller size. We need to be able to write at least a
1637 * log sector, or we're out of luck.
1639 bufblks
= 1 << ffs(blocks
);
1640 while (bufblks
> log
->l_logBBsize
)
1642 while (!(bp
= xlog_get_bp(log
, bufblks
))) {
1644 if (bufblks
< sectbb
)
1648 /* We may need to do a read at the start to fill in part of
1649 * the buffer in the starting sector not covered by the first
1652 balign
= round_down(start_block
, sectbb
);
1653 if (balign
!= start_block
) {
1654 error
= xlog_bread_noalign(log
, start_block
, 1, bp
);
1658 j
= start_block
- balign
;
1661 for (i
= start_block
; i
< end_block
; i
+= bufblks
) {
1662 int bcount
, endcount
;
1664 bcount
= min(bufblks
, end_block
- start_block
);
1665 endcount
= bcount
- j
;
1667 /* We may need to do a read at the end to fill in part of
1668 * the buffer in the final sector not covered by the write.
1669 * If this is the same sector as the above read, skip it.
1671 ealign
= round_down(end_block
, sectbb
);
1672 if (j
== 0 && (start_block
+ endcount
> ealign
)) {
1673 offset
= bp
->b_addr
+ BBTOB(ealign
- start_block
);
1674 error
= xlog_bread_offset(log
, ealign
, sectbb
,
1681 offset
= xlog_align(log
, start_block
, endcount
, bp
);
1682 for (; j
< endcount
; j
++) {
1683 xlog_add_record(log
, offset
, cycle
, i
+j
,
1684 tail_cycle
, tail_block
);
1687 error
= xlog_bwrite(log
, start_block
, endcount
, bp
);
1690 start_block
+= endcount
;
1700 * This routine is called to blow away any incomplete log writes out
1701 * in front of the log head. We do this so that we won't become confused
1702 * if we come up, write only a little bit more, and then crash again.
1703 * If we leave the partial log records out there, this situation could
1704 * cause us to think those partial writes are valid blocks since they
1705 * have the current cycle number. We get rid of them by overwriting them
1706 * with empty log records with the old cycle number rather than the
1709 * The tail lsn is passed in rather than taken from
1710 * the log so that we will not write over the unmount record after a
1711 * clean unmount in a 512 block log. Doing so would leave the log without
1712 * any valid log records in it until a new one was written. If we crashed
1713 * during that time we would not be able to recover.
1716 xlog_clear_stale_blocks(
1720 int tail_cycle
, head_cycle
;
1721 int tail_block
, head_block
;
1722 int tail_distance
, max_distance
;
1726 tail_cycle
= CYCLE_LSN(tail_lsn
);
1727 tail_block
= BLOCK_LSN(tail_lsn
);
1728 head_cycle
= log
->l_curr_cycle
;
1729 head_block
= log
->l_curr_block
;
1732 * Figure out the distance between the new head of the log
1733 * and the tail. We want to write over any blocks beyond the
1734 * head that we may have written just before the crash, but
1735 * we don't want to overwrite the tail of the log.
1737 if (head_cycle
== tail_cycle
) {
1739 * The tail is behind the head in the physical log,
1740 * so the distance from the head to the tail is the
1741 * distance from the head to the end of the log plus
1742 * the distance from the beginning of the log to the
1745 if (unlikely(head_block
< tail_block
|| head_block
>= log
->l_logBBsize
)) {
1746 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1747 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1748 return -EFSCORRUPTED
;
1750 tail_distance
= tail_block
+ (log
->l_logBBsize
- head_block
);
1753 * The head is behind the tail in the physical log,
1754 * so the distance from the head to the tail is just
1755 * the tail block minus the head block.
1757 if (unlikely(head_block
>= tail_block
|| head_cycle
!= (tail_cycle
+ 1))){
1758 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1759 XFS_ERRLEVEL_LOW
, log
->l_mp
);
1760 return -EFSCORRUPTED
;
1762 tail_distance
= tail_block
- head_block
;
1766 * If the head is right up against the tail, we can't clear
1769 if (tail_distance
<= 0) {
1770 ASSERT(tail_distance
== 0);
1774 max_distance
= XLOG_TOTAL_REC_SHIFT(log
);
1776 * Take the smaller of the maximum amount of outstanding I/O
1777 * we could have and the distance to the tail to clear out.
1778 * We take the smaller so that we don't overwrite the tail and
1779 * we don't waste all day writing from the head to the tail
1782 max_distance
= MIN(max_distance
, tail_distance
);
1784 if ((head_block
+ max_distance
) <= log
->l_logBBsize
) {
1786 * We can stomp all the blocks we need to without
1787 * wrapping around the end of the log. Just do it
1788 * in a single write. Use the cycle number of the
1789 * current cycle minus one so that the log will look like:
1792 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1793 head_block
, max_distance
, tail_cycle
,
1799 * We need to wrap around the end of the physical log in
1800 * order to clear all the blocks. Do it in two separate
1801 * I/Os. The first write should be from the head to the
1802 * end of the physical log, and it should use the current
1803 * cycle number minus one just like above.
1805 distance
= log
->l_logBBsize
- head_block
;
1806 error
= xlog_write_log_records(log
, (head_cycle
- 1),
1807 head_block
, distance
, tail_cycle
,
1814 * Now write the blocks at the start of the physical log.
1815 * This writes the remainder of the blocks we want to clear.
1816 * It uses the current cycle number since we're now on the
1817 * same cycle as the head so that we get:
1818 * n ... n ... | n - 1 ...
1819 * ^^^^^ blocks we're writing
1821 distance
= max_distance
- (log
->l_logBBsize
- head_block
);
1822 error
= xlog_write_log_records(log
, head_cycle
, 0, distance
,
1823 tail_cycle
, tail_block
);
1831 /******************************************************************************
1833 * Log recover routines
1835 ******************************************************************************
1839 * Sort the log items in the transaction.
1841 * The ordering constraints are defined by the inode allocation and unlink
1842 * behaviour. The rules are:
1844 * 1. Every item is only logged once in a given transaction. Hence it
1845 * represents the last logged state of the item. Hence ordering is
1846 * dependent on the order in which operations need to be performed so
1847 * required initial conditions are always met.
1849 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1850 * there's nothing to replay from them so we can simply cull them
1851 * from the transaction. However, we can't do that until after we've
1852 * replayed all the other items because they may be dependent on the
1853 * cancelled buffer and replaying the cancelled buffer can remove it
1854 * form the cancelled buffer table. Hence they have tobe done last.
1856 * 3. Inode allocation buffers must be replayed before inode items that
1857 * read the buffer and replay changes into it. For filesystems using the
1858 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1859 * treated the same as inode allocation buffers as they create and
1860 * initialise the buffers directly.
1862 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1863 * This ensures that inodes are completely flushed to the inode buffer
1864 * in a "free" state before we remove the unlinked inode list pointer.
1866 * Hence the ordering needs to be inode allocation buffers first, inode items
1867 * second, inode unlink buffers third and cancelled buffers last.
1869 * But there's a problem with that - we can't tell an inode allocation buffer
1870 * apart from a regular buffer, so we can't separate them. We can, however,
1871 * tell an inode unlink buffer from the others, and so we can separate them out
1872 * from all the other buffers and move them to last.
1874 * Hence, 4 lists, in order from head to tail:
1875 * - buffer_list for all buffers except cancelled/inode unlink buffers
1876 * - item_list for all non-buffer items
1877 * - inode_buffer_list for inode unlink buffers
1878 * - cancel_list for the cancelled buffers
1880 * Note that we add objects to the tail of the lists so that first-to-last
1881 * ordering is preserved within the lists. Adding objects to the head of the
1882 * list means when we traverse from the head we walk them in last-to-first
1883 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1884 * but for all other items there may be specific ordering that we need to
1888 xlog_recover_reorder_trans(
1890 struct xlog_recover
*trans
,
1893 xlog_recover_item_t
*item
, *n
;
1895 LIST_HEAD(sort_list
);
1896 LIST_HEAD(cancel_list
);
1897 LIST_HEAD(buffer_list
);
1898 LIST_HEAD(inode_buffer_list
);
1899 LIST_HEAD(inode_list
);
1901 list_splice_init(&trans
->r_itemq
, &sort_list
);
1902 list_for_each_entry_safe(item
, n
, &sort_list
, ri_list
) {
1903 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1905 switch (ITEM_TYPE(item
)) {
1906 case XFS_LI_ICREATE
:
1907 list_move_tail(&item
->ri_list
, &buffer_list
);
1910 if (buf_f
->blf_flags
& XFS_BLF_CANCEL
) {
1911 trace_xfs_log_recover_item_reorder_head(log
,
1913 list_move(&item
->ri_list
, &cancel_list
);
1916 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
1917 list_move(&item
->ri_list
, &inode_buffer_list
);
1920 list_move_tail(&item
->ri_list
, &buffer_list
);
1924 case XFS_LI_QUOTAOFF
:
1933 trace_xfs_log_recover_item_reorder_tail(log
,
1935 list_move_tail(&item
->ri_list
, &inode_list
);
1939 "%s: unrecognized type of log operation",
1943 * return the remaining items back to the transaction
1944 * item list so they can be freed in caller.
1946 if (!list_empty(&sort_list
))
1947 list_splice_init(&sort_list
, &trans
->r_itemq
);
1953 ASSERT(list_empty(&sort_list
));
1954 if (!list_empty(&buffer_list
))
1955 list_splice(&buffer_list
, &trans
->r_itemq
);
1956 if (!list_empty(&inode_list
))
1957 list_splice_tail(&inode_list
, &trans
->r_itemq
);
1958 if (!list_empty(&inode_buffer_list
))
1959 list_splice_tail(&inode_buffer_list
, &trans
->r_itemq
);
1960 if (!list_empty(&cancel_list
))
1961 list_splice_tail(&cancel_list
, &trans
->r_itemq
);
1966 * Build up the table of buf cancel records so that we don't replay
1967 * cancelled data in the second pass. For buffer records that are
1968 * not cancel records, there is nothing to do here so we just return.
1970 * If we get a cancel record which is already in the table, this indicates
1971 * that the buffer was cancelled multiple times. In order to ensure
1972 * that during pass 2 we keep the record in the table until we reach its
1973 * last occurrence in the log, we keep a reference count in the cancel
1974 * record in the table to tell us how many times we expect to see this
1975 * record during the second pass.
1978 xlog_recover_buffer_pass1(
1980 struct xlog_recover_item
*item
)
1982 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
1983 struct list_head
*bucket
;
1984 struct xfs_buf_cancel
*bcp
;
1987 * If this isn't a cancel buffer item, then just return.
1989 if (!(buf_f
->blf_flags
& XFS_BLF_CANCEL
)) {
1990 trace_xfs_log_recover_buf_not_cancel(log
, buf_f
);
1995 * Insert an xfs_buf_cancel record into the hash table of them.
1996 * If there is already an identical record, bump its reference count.
1998 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, buf_f
->blf_blkno
);
1999 list_for_each_entry(bcp
, bucket
, bc_list
) {
2000 if (bcp
->bc_blkno
== buf_f
->blf_blkno
&&
2001 bcp
->bc_len
== buf_f
->blf_len
) {
2003 trace_xfs_log_recover_buf_cancel_ref_inc(log
, buf_f
);
2008 bcp
= kmem_alloc(sizeof(struct xfs_buf_cancel
), KM_SLEEP
);
2009 bcp
->bc_blkno
= buf_f
->blf_blkno
;
2010 bcp
->bc_len
= buf_f
->blf_len
;
2011 bcp
->bc_refcount
= 1;
2012 list_add_tail(&bcp
->bc_list
, bucket
);
2014 trace_xfs_log_recover_buf_cancel_add(log
, buf_f
);
2019 * Check to see whether the buffer being recovered has a corresponding
2020 * entry in the buffer cancel record table. If it is, return the cancel
2021 * buffer structure to the caller.
2023 STATIC
struct xfs_buf_cancel
*
2024 xlog_peek_buffer_cancelled(
2028 unsigned short flags
)
2030 struct list_head
*bucket
;
2031 struct xfs_buf_cancel
*bcp
;
2033 if (!log
->l_buf_cancel_table
) {
2034 /* empty table means no cancelled buffers in the log */
2035 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2039 bucket
= XLOG_BUF_CANCEL_BUCKET(log
, blkno
);
2040 list_for_each_entry(bcp
, bucket
, bc_list
) {
2041 if (bcp
->bc_blkno
== blkno
&& bcp
->bc_len
== len
)
2046 * We didn't find a corresponding entry in the table, so return 0 so
2047 * that the buffer is NOT cancelled.
2049 ASSERT(!(flags
& XFS_BLF_CANCEL
));
2054 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2055 * otherwise return 0. If the buffer is actually a buffer cancel item
2056 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2057 * table and remove it from the table if this is the last reference.
2059 * We remove the cancel record from the table when we encounter its last
2060 * occurrence in the log so that if the same buffer is re-used again after its
2061 * last cancellation we actually replay the changes made at that point.
2064 xlog_check_buffer_cancelled(
2068 unsigned short flags
)
2070 struct xfs_buf_cancel
*bcp
;
2072 bcp
= xlog_peek_buffer_cancelled(log
, blkno
, len
, flags
);
2077 * We've go a match, so return 1 so that the recovery of this buffer
2078 * is cancelled. If this buffer is actually a buffer cancel log
2079 * item, then decrement the refcount on the one in the table and
2080 * remove it if this is the last reference.
2082 if (flags
& XFS_BLF_CANCEL
) {
2083 if (--bcp
->bc_refcount
== 0) {
2084 list_del(&bcp
->bc_list
);
2092 * Perform recovery for a buffer full of inodes. In these buffers, the only
2093 * data which should be recovered is that which corresponds to the
2094 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2095 * data for the inodes is always logged through the inodes themselves rather
2096 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2098 * The only time when buffers full of inodes are fully recovered is when the
2099 * buffer is full of newly allocated inodes. In this case the buffer will
2100 * not be marked as an inode buffer and so will be sent to
2101 * xlog_recover_do_reg_buffer() below during recovery.
2104 xlog_recover_do_inode_buffer(
2105 struct xfs_mount
*mp
,
2106 xlog_recover_item_t
*item
,
2108 xfs_buf_log_format_t
*buf_f
)
2114 int reg_buf_offset
= 0;
2115 int reg_buf_bytes
= 0;
2116 int next_unlinked_offset
;
2118 xfs_agino_t
*logged_nextp
;
2119 xfs_agino_t
*buffer_nextp
;
2121 trace_xfs_log_recover_buf_inode_buf(mp
->m_log
, buf_f
);
2124 * Post recovery validation only works properly on CRC enabled
2127 if (xfs_sb_version_hascrc(&mp
->m_sb
))
2128 bp
->b_ops
= &xfs_inode_buf_ops
;
2130 inodes_per_buf
= BBTOB(bp
->b_io_length
) >> mp
->m_sb
.sb_inodelog
;
2131 for (i
= 0; i
< inodes_per_buf
; i
++) {
2132 next_unlinked_offset
= (i
* mp
->m_sb
.sb_inodesize
) +
2133 offsetof(xfs_dinode_t
, di_next_unlinked
);
2135 while (next_unlinked_offset
>=
2136 (reg_buf_offset
+ reg_buf_bytes
)) {
2138 * The next di_next_unlinked field is beyond
2139 * the current logged region. Find the next
2140 * logged region that contains or is beyond
2141 * the current di_next_unlinked field.
2144 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2145 buf_f
->blf_map_size
, bit
);
2148 * If there are no more logged regions in the
2149 * buffer, then we're done.
2154 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2155 buf_f
->blf_map_size
, bit
);
2157 reg_buf_offset
= bit
<< XFS_BLF_SHIFT
;
2158 reg_buf_bytes
= nbits
<< XFS_BLF_SHIFT
;
2163 * If the current logged region starts after the current
2164 * di_next_unlinked field, then move on to the next
2165 * di_next_unlinked field.
2167 if (next_unlinked_offset
< reg_buf_offset
)
2170 ASSERT(item
->ri_buf
[item_index
].i_addr
!= NULL
);
2171 ASSERT((item
->ri_buf
[item_index
].i_len
% XFS_BLF_CHUNK
) == 0);
2172 ASSERT((reg_buf_offset
+ reg_buf_bytes
) <=
2173 BBTOB(bp
->b_io_length
));
2176 * The current logged region contains a copy of the
2177 * current di_next_unlinked field. Extract its value
2178 * and copy it to the buffer copy.
2180 logged_nextp
= item
->ri_buf
[item_index
].i_addr
+
2181 next_unlinked_offset
- reg_buf_offset
;
2182 if (unlikely(*logged_nextp
== 0)) {
2184 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2185 "Trying to replay bad (0) inode di_next_unlinked field.",
2187 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2188 XFS_ERRLEVEL_LOW
, mp
);
2189 return -EFSCORRUPTED
;
2192 buffer_nextp
= xfs_buf_offset(bp
, next_unlinked_offset
);
2193 *buffer_nextp
= *logged_nextp
;
2196 * If necessary, recalculate the CRC in the on-disk inode. We
2197 * have to leave the inode in a consistent state for whoever
2200 xfs_dinode_calc_crc(mp
,
2201 xfs_buf_offset(bp
, i
* mp
->m_sb
.sb_inodesize
));
2209 * V5 filesystems know the age of the buffer on disk being recovered. We can
2210 * have newer objects on disk than we are replaying, and so for these cases we
2211 * don't want to replay the current change as that will make the buffer contents
2212 * temporarily invalid on disk.
2214 * The magic number might not match the buffer type we are going to recover
2215 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2216 * extract the LSN of the existing object in the buffer based on it's current
2217 * magic number. If we don't recognise the magic number in the buffer, then
2218 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2219 * so can recover the buffer.
2221 * Note: we cannot rely solely on magic number matches to determine that the
2222 * buffer has a valid LSN - we also need to verify that it belongs to this
2223 * filesystem, so we need to extract the object's LSN and compare it to that
2224 * which we read from the superblock. If the UUIDs don't match, then we've got a
2225 * stale metadata block from an old filesystem instance that we need to recover
2229 xlog_recover_get_buf_lsn(
2230 struct xfs_mount
*mp
,
2236 void *blk
= bp
->b_addr
;
2240 /* v4 filesystems always recover immediately */
2241 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2242 goto recover_immediately
;
2244 magic32
= be32_to_cpu(*(__be32
*)blk
);
2246 case XFS_ABTB_CRC_MAGIC
:
2247 case XFS_ABTC_CRC_MAGIC
:
2248 case XFS_ABTB_MAGIC
:
2249 case XFS_ABTC_MAGIC
:
2250 case XFS_RMAP_CRC_MAGIC
:
2251 case XFS_REFC_CRC_MAGIC
:
2252 case XFS_IBT_CRC_MAGIC
:
2253 case XFS_IBT_MAGIC
: {
2254 struct xfs_btree_block
*btb
= blk
;
2256 lsn
= be64_to_cpu(btb
->bb_u
.s
.bb_lsn
);
2257 uuid
= &btb
->bb_u
.s
.bb_uuid
;
2260 case XFS_BMAP_CRC_MAGIC
:
2261 case XFS_BMAP_MAGIC
: {
2262 struct xfs_btree_block
*btb
= blk
;
2264 lsn
= be64_to_cpu(btb
->bb_u
.l
.bb_lsn
);
2265 uuid
= &btb
->bb_u
.l
.bb_uuid
;
2269 lsn
= be64_to_cpu(((struct xfs_agf
*)blk
)->agf_lsn
);
2270 uuid
= &((struct xfs_agf
*)blk
)->agf_uuid
;
2272 case XFS_AGFL_MAGIC
:
2273 lsn
= be64_to_cpu(((struct xfs_agfl
*)blk
)->agfl_lsn
);
2274 uuid
= &((struct xfs_agfl
*)blk
)->agfl_uuid
;
2277 lsn
= be64_to_cpu(((struct xfs_agi
*)blk
)->agi_lsn
);
2278 uuid
= &((struct xfs_agi
*)blk
)->agi_uuid
;
2280 case XFS_SYMLINK_MAGIC
:
2281 lsn
= be64_to_cpu(((struct xfs_dsymlink_hdr
*)blk
)->sl_lsn
);
2282 uuid
= &((struct xfs_dsymlink_hdr
*)blk
)->sl_uuid
;
2284 case XFS_DIR3_BLOCK_MAGIC
:
2285 case XFS_DIR3_DATA_MAGIC
:
2286 case XFS_DIR3_FREE_MAGIC
:
2287 lsn
= be64_to_cpu(((struct xfs_dir3_blk_hdr
*)blk
)->lsn
);
2288 uuid
= &((struct xfs_dir3_blk_hdr
*)blk
)->uuid
;
2290 case XFS_ATTR3_RMT_MAGIC
:
2292 * Remote attr blocks are written synchronously, rather than
2293 * being logged. That means they do not contain a valid LSN
2294 * (i.e. transactionally ordered) in them, and hence any time we
2295 * see a buffer to replay over the top of a remote attribute
2296 * block we should simply do so.
2298 goto recover_immediately
;
2301 * superblock uuids are magic. We may or may not have a
2302 * sb_meta_uuid on disk, but it will be set in the in-core
2303 * superblock. We set the uuid pointer for verification
2304 * according to the superblock feature mask to ensure we check
2305 * the relevant UUID in the superblock.
2307 lsn
= be64_to_cpu(((struct xfs_dsb
*)blk
)->sb_lsn
);
2308 if (xfs_sb_version_hasmetauuid(&mp
->m_sb
))
2309 uuid
= &((struct xfs_dsb
*)blk
)->sb_meta_uuid
;
2311 uuid
= &((struct xfs_dsb
*)blk
)->sb_uuid
;
2317 if (lsn
!= (xfs_lsn_t
)-1) {
2318 if (!uuid_equal(&mp
->m_sb
.sb_meta_uuid
, uuid
))
2319 goto recover_immediately
;
2323 magicda
= be16_to_cpu(((struct xfs_da_blkinfo
*)blk
)->magic
);
2325 case XFS_DIR3_LEAF1_MAGIC
:
2326 case XFS_DIR3_LEAFN_MAGIC
:
2327 case XFS_DA3_NODE_MAGIC
:
2328 lsn
= be64_to_cpu(((struct xfs_da3_blkinfo
*)blk
)->lsn
);
2329 uuid
= &((struct xfs_da3_blkinfo
*)blk
)->uuid
;
2335 if (lsn
!= (xfs_lsn_t
)-1) {
2336 if (!uuid_equal(&mp
->m_sb
.sb_uuid
, uuid
))
2337 goto recover_immediately
;
2342 * We do individual object checks on dquot and inode buffers as they
2343 * have their own individual LSN records. Also, we could have a stale
2344 * buffer here, so we have to at least recognise these buffer types.
2346 * A notd complexity here is inode unlinked list processing - it logs
2347 * the inode directly in the buffer, but we don't know which inodes have
2348 * been modified, and there is no global buffer LSN. Hence we need to
2349 * recover all inode buffer types immediately. This problem will be
2350 * fixed by logical logging of the unlinked list modifications.
2352 magic16
= be16_to_cpu(*(__be16
*)blk
);
2354 case XFS_DQUOT_MAGIC
:
2355 case XFS_DINODE_MAGIC
:
2356 goto recover_immediately
;
2361 /* unknown buffer contents, recover immediately */
2363 recover_immediately
:
2364 return (xfs_lsn_t
)-1;
2369 * Validate the recovered buffer is of the correct type and attach the
2370 * appropriate buffer operations to them for writeback. Magic numbers are in a
2372 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2373 * the first 32 bits of the buffer (most blocks),
2374 * inside a struct xfs_da_blkinfo at the start of the buffer.
2377 xlog_recover_validate_buf_type(
2378 struct xfs_mount
*mp
,
2380 xfs_buf_log_format_t
*buf_f
,
2381 xfs_lsn_t current_lsn
)
2383 struct xfs_da_blkinfo
*info
= bp
->b_addr
;
2387 char *warnmsg
= NULL
;
2390 * We can only do post recovery validation on items on CRC enabled
2391 * fielsystems as we need to know when the buffer was written to be able
2392 * to determine if we should have replayed the item. If we replay old
2393 * metadata over a newer buffer, then it will enter a temporarily
2394 * inconsistent state resulting in verification failures. Hence for now
2395 * just avoid the verification stage for non-crc filesystems
2397 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2400 magic32
= be32_to_cpu(*(__be32
*)bp
->b_addr
);
2401 magic16
= be16_to_cpu(*(__be16
*)bp
->b_addr
);
2402 magicda
= be16_to_cpu(info
->magic
);
2403 switch (xfs_blft_from_flags(buf_f
)) {
2404 case XFS_BLFT_BTREE_BUF
:
2406 case XFS_ABTB_CRC_MAGIC
:
2407 case XFS_ABTC_CRC_MAGIC
:
2408 case XFS_ABTB_MAGIC
:
2409 case XFS_ABTC_MAGIC
:
2410 bp
->b_ops
= &xfs_allocbt_buf_ops
;
2412 case XFS_IBT_CRC_MAGIC
:
2413 case XFS_FIBT_CRC_MAGIC
:
2415 case XFS_FIBT_MAGIC
:
2416 bp
->b_ops
= &xfs_inobt_buf_ops
;
2418 case XFS_BMAP_CRC_MAGIC
:
2419 case XFS_BMAP_MAGIC
:
2420 bp
->b_ops
= &xfs_bmbt_buf_ops
;
2422 case XFS_RMAP_CRC_MAGIC
:
2423 bp
->b_ops
= &xfs_rmapbt_buf_ops
;
2425 case XFS_REFC_CRC_MAGIC
:
2426 bp
->b_ops
= &xfs_refcountbt_buf_ops
;
2429 warnmsg
= "Bad btree block magic!";
2433 case XFS_BLFT_AGF_BUF
:
2434 if (magic32
!= XFS_AGF_MAGIC
) {
2435 warnmsg
= "Bad AGF block magic!";
2438 bp
->b_ops
= &xfs_agf_buf_ops
;
2440 case XFS_BLFT_AGFL_BUF
:
2441 if (magic32
!= XFS_AGFL_MAGIC
) {
2442 warnmsg
= "Bad AGFL block magic!";
2445 bp
->b_ops
= &xfs_agfl_buf_ops
;
2447 case XFS_BLFT_AGI_BUF
:
2448 if (magic32
!= XFS_AGI_MAGIC
) {
2449 warnmsg
= "Bad AGI block magic!";
2452 bp
->b_ops
= &xfs_agi_buf_ops
;
2454 case XFS_BLFT_UDQUOT_BUF
:
2455 case XFS_BLFT_PDQUOT_BUF
:
2456 case XFS_BLFT_GDQUOT_BUF
:
2457 #ifdef CONFIG_XFS_QUOTA
2458 if (magic16
!= XFS_DQUOT_MAGIC
) {
2459 warnmsg
= "Bad DQUOT block magic!";
2462 bp
->b_ops
= &xfs_dquot_buf_ops
;
2465 "Trying to recover dquots without QUOTA support built in!");
2469 case XFS_BLFT_DINO_BUF
:
2470 if (magic16
!= XFS_DINODE_MAGIC
) {
2471 warnmsg
= "Bad INODE block magic!";
2474 bp
->b_ops
= &xfs_inode_buf_ops
;
2476 case XFS_BLFT_SYMLINK_BUF
:
2477 if (magic32
!= XFS_SYMLINK_MAGIC
) {
2478 warnmsg
= "Bad symlink block magic!";
2481 bp
->b_ops
= &xfs_symlink_buf_ops
;
2483 case XFS_BLFT_DIR_BLOCK_BUF
:
2484 if (magic32
!= XFS_DIR2_BLOCK_MAGIC
&&
2485 magic32
!= XFS_DIR3_BLOCK_MAGIC
) {
2486 warnmsg
= "Bad dir block magic!";
2489 bp
->b_ops
= &xfs_dir3_block_buf_ops
;
2491 case XFS_BLFT_DIR_DATA_BUF
:
2492 if (magic32
!= XFS_DIR2_DATA_MAGIC
&&
2493 magic32
!= XFS_DIR3_DATA_MAGIC
) {
2494 warnmsg
= "Bad dir data magic!";
2497 bp
->b_ops
= &xfs_dir3_data_buf_ops
;
2499 case XFS_BLFT_DIR_FREE_BUF
:
2500 if (magic32
!= XFS_DIR2_FREE_MAGIC
&&
2501 magic32
!= XFS_DIR3_FREE_MAGIC
) {
2502 warnmsg
= "Bad dir3 free magic!";
2505 bp
->b_ops
= &xfs_dir3_free_buf_ops
;
2507 case XFS_BLFT_DIR_LEAF1_BUF
:
2508 if (magicda
!= XFS_DIR2_LEAF1_MAGIC
&&
2509 magicda
!= XFS_DIR3_LEAF1_MAGIC
) {
2510 warnmsg
= "Bad dir leaf1 magic!";
2513 bp
->b_ops
= &xfs_dir3_leaf1_buf_ops
;
2515 case XFS_BLFT_DIR_LEAFN_BUF
:
2516 if (magicda
!= XFS_DIR2_LEAFN_MAGIC
&&
2517 magicda
!= XFS_DIR3_LEAFN_MAGIC
) {
2518 warnmsg
= "Bad dir leafn magic!";
2521 bp
->b_ops
= &xfs_dir3_leafn_buf_ops
;
2523 case XFS_BLFT_DA_NODE_BUF
:
2524 if (magicda
!= XFS_DA_NODE_MAGIC
&&
2525 magicda
!= XFS_DA3_NODE_MAGIC
) {
2526 warnmsg
= "Bad da node magic!";
2529 bp
->b_ops
= &xfs_da3_node_buf_ops
;
2531 case XFS_BLFT_ATTR_LEAF_BUF
:
2532 if (magicda
!= XFS_ATTR_LEAF_MAGIC
&&
2533 magicda
!= XFS_ATTR3_LEAF_MAGIC
) {
2534 warnmsg
= "Bad attr leaf magic!";
2537 bp
->b_ops
= &xfs_attr3_leaf_buf_ops
;
2539 case XFS_BLFT_ATTR_RMT_BUF
:
2540 if (magic32
!= XFS_ATTR3_RMT_MAGIC
) {
2541 warnmsg
= "Bad attr remote magic!";
2544 bp
->b_ops
= &xfs_attr3_rmt_buf_ops
;
2546 case XFS_BLFT_SB_BUF
:
2547 if (magic32
!= XFS_SB_MAGIC
) {
2548 warnmsg
= "Bad SB block magic!";
2551 bp
->b_ops
= &xfs_sb_buf_ops
;
2553 #ifdef CONFIG_XFS_RT
2554 case XFS_BLFT_RTBITMAP_BUF
:
2555 case XFS_BLFT_RTSUMMARY_BUF
:
2556 /* no magic numbers for verification of RT buffers */
2557 bp
->b_ops
= &xfs_rtbuf_ops
;
2559 #endif /* CONFIG_XFS_RT */
2561 xfs_warn(mp
, "Unknown buffer type %d!",
2562 xfs_blft_from_flags(buf_f
));
2567 * Nothing else to do in the case of a NULL current LSN as this means
2568 * the buffer is more recent than the change in the log and will be
2571 if (current_lsn
== NULLCOMMITLSN
)
2575 xfs_warn(mp
, warnmsg
);
2580 * We must update the metadata LSN of the buffer as it is written out to
2581 * ensure that older transactions never replay over this one and corrupt
2582 * the buffer. This can occur if log recovery is interrupted at some
2583 * point after the current transaction completes, at which point a
2584 * subsequent mount starts recovery from the beginning.
2586 * Write verifiers update the metadata LSN from log items attached to
2587 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2588 * the verifier. We'll clean it up in our ->iodone() callback.
2591 struct xfs_buf_log_item
*bip
;
2593 ASSERT(!bp
->b_iodone
|| bp
->b_iodone
== xlog_recover_iodone
);
2594 bp
->b_iodone
= xlog_recover_iodone
;
2595 xfs_buf_item_init(bp
, mp
);
2597 bip
->bli_item
.li_lsn
= current_lsn
;
2602 * Perform a 'normal' buffer recovery. Each logged region of the
2603 * buffer should be copied over the corresponding region in the
2604 * given buffer. The bitmap in the buf log format structure indicates
2605 * where to place the logged data.
2608 xlog_recover_do_reg_buffer(
2609 struct xfs_mount
*mp
,
2610 xlog_recover_item_t
*item
,
2612 xfs_buf_log_format_t
*buf_f
,
2613 xfs_lsn_t current_lsn
)
2620 trace_xfs_log_recover_buf_reg_buf(mp
->m_log
, buf_f
);
2623 i
= 1; /* 0 is the buf format structure */
2625 bit
= xfs_next_bit(buf_f
->blf_data_map
,
2626 buf_f
->blf_map_size
, bit
);
2629 nbits
= xfs_contig_bits(buf_f
->blf_data_map
,
2630 buf_f
->blf_map_size
, bit
);
2632 ASSERT(item
->ri_buf
[i
].i_addr
!= NULL
);
2633 ASSERT(item
->ri_buf
[i
].i_len
% XFS_BLF_CHUNK
== 0);
2634 ASSERT(BBTOB(bp
->b_io_length
) >=
2635 ((uint
)bit
<< XFS_BLF_SHIFT
) + (nbits
<< XFS_BLF_SHIFT
));
2638 * The dirty regions logged in the buffer, even though
2639 * contiguous, may span multiple chunks. This is because the
2640 * dirty region may span a physical page boundary in a buffer
2641 * and hence be split into two separate vectors for writing into
2642 * the log. Hence we need to trim nbits back to the length of
2643 * the current region being copied out of the log.
2645 if (item
->ri_buf
[i
].i_len
< (nbits
<< XFS_BLF_SHIFT
))
2646 nbits
= item
->ri_buf
[i
].i_len
>> XFS_BLF_SHIFT
;
2649 * Do a sanity check if this is a dquot buffer. Just checking
2650 * the first dquot in the buffer should do. XXXThis is
2651 * probably a good thing to do for other buf types also.
2654 if (buf_f
->blf_flags
&
2655 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2656 if (item
->ri_buf
[i
].i_addr
== NULL
) {
2658 "XFS: NULL dquot in %s.", __func__
);
2661 if (item
->ri_buf
[i
].i_len
< sizeof(xfs_disk_dquot_t
)) {
2663 "XFS: dquot too small (%d) in %s.",
2664 item
->ri_buf
[i
].i_len
, __func__
);
2667 error
= xfs_dqcheck(mp
, item
->ri_buf
[i
].i_addr
,
2668 -1, 0, XFS_QMOPT_DOWARN
,
2669 "dquot_buf_recover");
2674 memcpy(xfs_buf_offset(bp
,
2675 (uint
)bit
<< XFS_BLF_SHIFT
), /* dest */
2676 item
->ri_buf
[i
].i_addr
, /* source */
2677 nbits
<<XFS_BLF_SHIFT
); /* length */
2683 /* Shouldn't be any more regions */
2684 ASSERT(i
== item
->ri_total
);
2686 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, current_lsn
);
2690 * Perform a dquot buffer recovery.
2691 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2692 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2693 * Else, treat it as a regular buffer and do recovery.
2695 * Return false if the buffer was tossed and true if we recovered the buffer to
2696 * indicate to the caller if the buffer needs writing.
2699 xlog_recover_do_dquot_buffer(
2700 struct xfs_mount
*mp
,
2702 struct xlog_recover_item
*item
,
2704 struct xfs_buf_log_format
*buf_f
)
2708 trace_xfs_log_recover_buf_dquot_buf(log
, buf_f
);
2711 * Filesystems are required to send in quota flags at mount time.
2717 if (buf_f
->blf_flags
& XFS_BLF_UDQUOT_BUF
)
2718 type
|= XFS_DQ_USER
;
2719 if (buf_f
->blf_flags
& XFS_BLF_PDQUOT_BUF
)
2720 type
|= XFS_DQ_PROJ
;
2721 if (buf_f
->blf_flags
& XFS_BLF_GDQUOT_BUF
)
2722 type
|= XFS_DQ_GROUP
;
2724 * This type of quotas was turned off, so ignore this buffer
2726 if (log
->l_quotaoffs_flag
& type
)
2729 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, NULLCOMMITLSN
);
2734 * This routine replays a modification made to a buffer at runtime.
2735 * There are actually two types of buffer, regular and inode, which
2736 * are handled differently. Inode buffers are handled differently
2737 * in that we only recover a specific set of data from them, namely
2738 * the inode di_next_unlinked fields. This is because all other inode
2739 * data is actually logged via inode records and any data we replay
2740 * here which overlaps that may be stale.
2742 * When meta-data buffers are freed at run time we log a buffer item
2743 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2744 * of the buffer in the log should not be replayed at recovery time.
2745 * This is so that if the blocks covered by the buffer are reused for
2746 * file data before we crash we don't end up replaying old, freed
2747 * meta-data into a user's file.
2749 * To handle the cancellation of buffer log items, we make two passes
2750 * over the log during recovery. During the first we build a table of
2751 * those buffers which have been cancelled, and during the second we
2752 * only replay those buffers which do not have corresponding cancel
2753 * records in the table. See xlog_recover_buffer_pass[1,2] above
2754 * for more details on the implementation of the table of cancel records.
2757 xlog_recover_buffer_pass2(
2759 struct list_head
*buffer_list
,
2760 struct xlog_recover_item
*item
,
2761 xfs_lsn_t current_lsn
)
2763 xfs_buf_log_format_t
*buf_f
= item
->ri_buf
[0].i_addr
;
2764 xfs_mount_t
*mp
= log
->l_mp
;
2771 * In this pass we only want to recover all the buffers which have
2772 * not been cancelled and are not cancellation buffers themselves.
2774 if (xlog_check_buffer_cancelled(log
, buf_f
->blf_blkno
,
2775 buf_f
->blf_len
, buf_f
->blf_flags
)) {
2776 trace_xfs_log_recover_buf_cancel(log
, buf_f
);
2780 trace_xfs_log_recover_buf_recover(log
, buf_f
);
2783 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
)
2784 buf_flags
|= XBF_UNMAPPED
;
2786 bp
= xfs_buf_read(mp
->m_ddev_targp
, buf_f
->blf_blkno
, buf_f
->blf_len
,
2790 error
= bp
->b_error
;
2792 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#1)");
2797 * Recover the buffer only if we get an LSN from it and it's less than
2798 * the lsn of the transaction we are replaying.
2800 * Note that we have to be extremely careful of readahead here.
2801 * Readahead does not attach verfiers to the buffers so if we don't
2802 * actually do any replay after readahead because of the LSN we found
2803 * in the buffer if more recent than that current transaction then we
2804 * need to attach the verifier directly. Failure to do so can lead to
2805 * future recovery actions (e.g. EFI and unlinked list recovery) can
2806 * operate on the buffers and they won't get the verifier attached. This
2807 * can lead to blocks on disk having the correct content but a stale
2810 * It is safe to assume these clean buffers are currently up to date.
2811 * If the buffer is dirtied by a later transaction being replayed, then
2812 * the verifier will be reset to match whatever recover turns that
2815 lsn
= xlog_recover_get_buf_lsn(mp
, bp
);
2816 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
2817 trace_xfs_log_recover_buf_skip(log
, buf_f
);
2818 xlog_recover_validate_buf_type(mp
, bp
, buf_f
, NULLCOMMITLSN
);
2822 if (buf_f
->blf_flags
& XFS_BLF_INODE_BUF
) {
2823 error
= xlog_recover_do_inode_buffer(mp
, item
, bp
, buf_f
);
2826 } else if (buf_f
->blf_flags
&
2827 (XFS_BLF_UDQUOT_BUF
|XFS_BLF_PDQUOT_BUF
|XFS_BLF_GDQUOT_BUF
)) {
2830 dirty
= xlog_recover_do_dquot_buffer(mp
, log
, item
, bp
, buf_f
);
2834 xlog_recover_do_reg_buffer(mp
, item
, bp
, buf_f
, current_lsn
);
2838 * Perform delayed write on the buffer. Asynchronous writes will be
2839 * slower when taking into account all the buffers to be flushed.
2841 * Also make sure that only inode buffers with good sizes stay in
2842 * the buffer cache. The kernel moves inodes in buffers of 1 block
2843 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2844 * buffers in the log can be a different size if the log was generated
2845 * by an older kernel using unclustered inode buffers or a newer kernel
2846 * running with a different inode cluster size. Regardless, if the
2847 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2848 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2849 * the buffer out of the buffer cache so that the buffer won't
2850 * overlap with future reads of those inodes.
2852 if (XFS_DINODE_MAGIC
==
2853 be16_to_cpu(*((__be16
*)xfs_buf_offset(bp
, 0))) &&
2854 (BBTOB(bp
->b_io_length
) != MAX(log
->l_mp
->m_sb
.sb_blocksize
,
2855 (__uint32_t
)log
->l_mp
->m_inode_cluster_size
))) {
2857 error
= xfs_bwrite(bp
);
2859 ASSERT(bp
->b_target
->bt_mount
== mp
);
2860 bp
->b_iodone
= xlog_recover_iodone
;
2861 xfs_buf_delwri_queue(bp
, buffer_list
);
2870 * Inode fork owner changes
2872 * If we have been told that we have to reparent the inode fork, it's because an
2873 * extent swap operation on a CRC enabled filesystem has been done and we are
2874 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2877 * The complexity here is that we don't have an inode context to work with, so
2878 * after we've replayed the inode we need to instantiate one. This is where the
2881 * We are in the middle of log recovery, so we can't run transactions. That
2882 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2883 * that will result in the corresponding iput() running the inode through
2884 * xfs_inactive(). If we've just replayed an inode core that changes the link
2885 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2886 * transactions (bad!).
2888 * So, to avoid this, we instantiate an inode directly from the inode core we've
2889 * just recovered. We have the buffer still locked, and all we really need to
2890 * instantiate is the inode core and the forks being modified. We can do this
2891 * manually, then run the inode btree owner change, and then tear down the
2892 * xfs_inode without having to run any transactions at all.
2894 * Also, because we don't have a transaction context available here but need to
2895 * gather all the buffers we modify for writeback so we pass the buffer_list
2896 * instead for the operation to use.
2900 xfs_recover_inode_owner_change(
2901 struct xfs_mount
*mp
,
2902 struct xfs_dinode
*dip
,
2903 struct xfs_inode_log_format
*in_f
,
2904 struct list_head
*buffer_list
)
2906 struct xfs_inode
*ip
;
2909 ASSERT(in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
));
2911 ip
= xfs_inode_alloc(mp
, in_f
->ilf_ino
);
2915 /* instantiate the inode */
2916 xfs_inode_from_disk(ip
, dip
);
2917 ASSERT(ip
->i_d
.di_version
>= 3);
2919 error
= xfs_iformat_fork(ip
, dip
);
2924 if (in_f
->ilf_fields
& XFS_ILOG_DOWNER
) {
2925 ASSERT(in_f
->ilf_fields
& XFS_ILOG_DBROOT
);
2926 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_DATA_FORK
,
2927 ip
->i_ino
, buffer_list
);
2932 if (in_f
->ilf_fields
& XFS_ILOG_AOWNER
) {
2933 ASSERT(in_f
->ilf_fields
& XFS_ILOG_ABROOT
);
2934 error
= xfs_bmbt_change_owner(NULL
, ip
, XFS_ATTR_FORK
,
2935 ip
->i_ino
, buffer_list
);
2946 xlog_recover_inode_pass2(
2948 struct list_head
*buffer_list
,
2949 struct xlog_recover_item
*item
,
2950 xfs_lsn_t current_lsn
)
2952 xfs_inode_log_format_t
*in_f
;
2953 xfs_mount_t
*mp
= log
->l_mp
;
2962 struct xfs_log_dinode
*ldip
;
2966 if (item
->ri_buf
[0].i_len
== sizeof(xfs_inode_log_format_t
)) {
2967 in_f
= item
->ri_buf
[0].i_addr
;
2969 in_f
= kmem_alloc(sizeof(xfs_inode_log_format_t
), KM_SLEEP
);
2971 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], in_f
);
2977 * Inode buffers can be freed, look out for it,
2978 * and do not replay the inode.
2980 if (xlog_check_buffer_cancelled(log
, in_f
->ilf_blkno
,
2981 in_f
->ilf_len
, 0)) {
2983 trace_xfs_log_recover_inode_cancel(log
, in_f
);
2986 trace_xfs_log_recover_inode_recover(log
, in_f
);
2988 bp
= xfs_buf_read(mp
->m_ddev_targp
, in_f
->ilf_blkno
, in_f
->ilf_len
, 0,
2989 &xfs_inode_buf_ops
);
2994 error
= bp
->b_error
;
2996 xfs_buf_ioerror_alert(bp
, "xlog_recover_do..(read#2)");
2999 ASSERT(in_f
->ilf_fields
& XFS_ILOG_CORE
);
3000 dip
= xfs_buf_offset(bp
, in_f
->ilf_boffset
);
3003 * Make sure the place we're flushing out to really looks
3006 if (unlikely(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
))) {
3008 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
3009 __func__
, dip
, bp
, in_f
->ilf_ino
);
3010 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3011 XFS_ERRLEVEL_LOW
, mp
);
3012 error
= -EFSCORRUPTED
;
3015 ldip
= item
->ri_buf
[1].i_addr
;
3016 if (unlikely(ldip
->di_magic
!= XFS_DINODE_MAGIC
)) {
3018 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3019 __func__
, item
, in_f
->ilf_ino
);
3020 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3021 XFS_ERRLEVEL_LOW
, mp
);
3022 error
= -EFSCORRUPTED
;
3027 * If the inode has an LSN in it, recover the inode only if it's less
3028 * than the lsn of the transaction we are replaying. Note: we still
3029 * need to replay an owner change even though the inode is more recent
3030 * than the transaction as there is no guarantee that all the btree
3031 * blocks are more recent than this transaction, too.
3033 if (dip
->di_version
>= 3) {
3034 xfs_lsn_t lsn
= be64_to_cpu(dip
->di_lsn
);
3036 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
3037 trace_xfs_log_recover_inode_skip(log
, in_f
);
3039 goto out_owner_change
;
3044 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3045 * are transactional and if ordering is necessary we can determine that
3046 * more accurately by the LSN field in the V3 inode core. Don't trust
3047 * the inode versions we might be changing them here - use the
3048 * superblock flag to determine whether we need to look at di_flushiter
3049 * to skip replay when the on disk inode is newer than the log one
3051 if (!xfs_sb_version_hascrc(&mp
->m_sb
) &&
3052 ldip
->di_flushiter
< be16_to_cpu(dip
->di_flushiter
)) {
3054 * Deal with the wrap case, DI_MAX_FLUSH is less
3055 * than smaller numbers
3057 if (be16_to_cpu(dip
->di_flushiter
) == DI_MAX_FLUSH
&&
3058 ldip
->di_flushiter
< (DI_MAX_FLUSH
>> 1)) {
3061 trace_xfs_log_recover_inode_skip(log
, in_f
);
3067 /* Take the opportunity to reset the flush iteration count */
3068 ldip
->di_flushiter
= 0;
3070 if (unlikely(S_ISREG(ldip
->di_mode
))) {
3071 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3072 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
)) {
3073 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3074 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3076 "%s: Bad regular inode log record, rec ptr 0x%p, "
3077 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3078 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3079 error
= -EFSCORRUPTED
;
3082 } else if (unlikely(S_ISDIR(ldip
->di_mode
))) {
3083 if ((ldip
->di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3084 (ldip
->di_format
!= XFS_DINODE_FMT_BTREE
) &&
3085 (ldip
->di_format
!= XFS_DINODE_FMT_LOCAL
)) {
3086 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3087 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3089 "%s: Bad dir inode log record, rec ptr 0x%p, "
3090 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3091 __func__
, item
, dip
, bp
, in_f
->ilf_ino
);
3092 error
= -EFSCORRUPTED
;
3096 if (unlikely(ldip
->di_nextents
+ ldip
->di_anextents
> ldip
->di_nblocks
)){
3097 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3098 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3100 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3101 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3102 __func__
, item
, dip
, bp
, in_f
->ilf_ino
,
3103 ldip
->di_nextents
+ ldip
->di_anextents
,
3105 error
= -EFSCORRUPTED
;
3108 if (unlikely(ldip
->di_forkoff
> mp
->m_sb
.sb_inodesize
)) {
3109 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3110 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3112 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3113 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__
,
3114 item
, dip
, bp
, in_f
->ilf_ino
, ldip
->di_forkoff
);
3115 error
= -EFSCORRUPTED
;
3118 isize
= xfs_log_dinode_size(ldip
->di_version
);
3119 if (unlikely(item
->ri_buf
[1].i_len
> isize
)) {
3120 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3121 XFS_ERRLEVEL_LOW
, mp
, ldip
);
3123 "%s: Bad inode log record length %d, rec ptr 0x%p",
3124 __func__
, item
->ri_buf
[1].i_len
, item
);
3125 error
= -EFSCORRUPTED
;
3129 /* recover the log dinode inode into the on disk inode */
3130 xfs_log_dinode_to_disk(ldip
, dip
);
3132 /* the rest is in on-disk format */
3133 if (item
->ri_buf
[1].i_len
> isize
) {
3134 memcpy((char *)dip
+ isize
,
3135 item
->ri_buf
[1].i_addr
+ isize
,
3136 item
->ri_buf
[1].i_len
- isize
);
3139 fields
= in_f
->ilf_fields
;
3140 switch (fields
& (XFS_ILOG_DEV
| XFS_ILOG_UUID
)) {
3142 xfs_dinode_put_rdev(dip
, in_f
->ilf_u
.ilfu_rdev
);
3145 memcpy(XFS_DFORK_DPTR(dip
),
3146 &in_f
->ilf_u
.ilfu_uuid
,
3151 if (in_f
->ilf_size
== 2)
3152 goto out_owner_change
;
3153 len
= item
->ri_buf
[2].i_len
;
3154 src
= item
->ri_buf
[2].i_addr
;
3155 ASSERT(in_f
->ilf_size
<= 4);
3156 ASSERT((in_f
->ilf_size
== 3) || (fields
& XFS_ILOG_AFORK
));
3157 ASSERT(!(fields
& XFS_ILOG_DFORK
) ||
3158 (len
== in_f
->ilf_dsize
));
3160 switch (fields
& XFS_ILOG_DFORK
) {
3161 case XFS_ILOG_DDATA
:
3163 memcpy(XFS_DFORK_DPTR(dip
), src
, len
);
3166 case XFS_ILOG_DBROOT
:
3167 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
, len
,
3168 (xfs_bmdr_block_t
*)XFS_DFORK_DPTR(dip
),
3169 XFS_DFORK_DSIZE(dip
, mp
));
3174 * There are no data fork flags set.
3176 ASSERT((fields
& XFS_ILOG_DFORK
) == 0);
3181 * If we logged any attribute data, recover it. There may or
3182 * may not have been any other non-core data logged in this
3185 if (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3186 if (in_f
->ilf_fields
& XFS_ILOG_DFORK
) {
3191 len
= item
->ri_buf
[attr_index
].i_len
;
3192 src
= item
->ri_buf
[attr_index
].i_addr
;
3193 ASSERT(len
== in_f
->ilf_asize
);
3195 switch (in_f
->ilf_fields
& XFS_ILOG_AFORK
) {
3196 case XFS_ILOG_ADATA
:
3198 dest
= XFS_DFORK_APTR(dip
);
3199 ASSERT(len
<= XFS_DFORK_ASIZE(dip
, mp
));
3200 memcpy(dest
, src
, len
);
3203 case XFS_ILOG_ABROOT
:
3204 dest
= XFS_DFORK_APTR(dip
);
3205 xfs_bmbt_to_bmdr(mp
, (struct xfs_btree_block
*)src
,
3206 len
, (xfs_bmdr_block_t
*)dest
,
3207 XFS_DFORK_ASIZE(dip
, mp
));
3211 xfs_warn(log
->l_mp
, "%s: Invalid flag", __func__
);
3219 if (in_f
->ilf_fields
& (XFS_ILOG_DOWNER
|XFS_ILOG_AOWNER
))
3220 error
= xfs_recover_inode_owner_change(mp
, dip
, in_f
,
3222 /* re-generate the checksum. */
3223 xfs_dinode_calc_crc(log
->l_mp
, dip
);
3225 ASSERT(bp
->b_target
->bt_mount
== mp
);
3226 bp
->b_iodone
= xlog_recover_iodone
;
3227 xfs_buf_delwri_queue(bp
, buffer_list
);
3238 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3239 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3243 xlog_recover_quotaoff_pass1(
3245 struct xlog_recover_item
*item
)
3247 xfs_qoff_logformat_t
*qoff_f
= item
->ri_buf
[0].i_addr
;
3251 * The logitem format's flag tells us if this was user quotaoff,
3252 * group/project quotaoff or both.
3254 if (qoff_f
->qf_flags
& XFS_UQUOTA_ACCT
)
3255 log
->l_quotaoffs_flag
|= XFS_DQ_USER
;
3256 if (qoff_f
->qf_flags
& XFS_PQUOTA_ACCT
)
3257 log
->l_quotaoffs_flag
|= XFS_DQ_PROJ
;
3258 if (qoff_f
->qf_flags
& XFS_GQUOTA_ACCT
)
3259 log
->l_quotaoffs_flag
|= XFS_DQ_GROUP
;
3265 * Recover a dquot record
3268 xlog_recover_dquot_pass2(
3270 struct list_head
*buffer_list
,
3271 struct xlog_recover_item
*item
,
3272 xfs_lsn_t current_lsn
)
3274 xfs_mount_t
*mp
= log
->l_mp
;
3276 struct xfs_disk_dquot
*ddq
, *recddq
;
3278 xfs_dq_logformat_t
*dq_f
;
3283 * Filesystems are required to send in quota flags at mount time.
3285 if (mp
->m_qflags
== 0)
3288 recddq
= item
->ri_buf
[1].i_addr
;
3289 if (recddq
== NULL
) {
3290 xfs_alert(log
->l_mp
, "NULL dquot in %s.", __func__
);
3293 if (item
->ri_buf
[1].i_len
< sizeof(xfs_disk_dquot_t
)) {
3294 xfs_alert(log
->l_mp
, "dquot too small (%d) in %s.",
3295 item
->ri_buf
[1].i_len
, __func__
);
3300 * This type of quotas was turned off, so ignore this record.
3302 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
3304 if (log
->l_quotaoffs_flag
& type
)
3308 * At this point we know that quota was _not_ turned off.
3309 * Since the mount flags are not indicating to us otherwise, this
3310 * must mean that quota is on, and the dquot needs to be replayed.
3311 * Remember that we may not have fully recovered the superblock yet,
3312 * so we can't do the usual trick of looking at the SB quota bits.
3314 * The other possibility, of course, is that the quota subsystem was
3315 * removed since the last mount - ENOSYS.
3317 dq_f
= item
->ri_buf
[0].i_addr
;
3319 error
= xfs_dqcheck(mp
, recddq
, dq_f
->qlf_id
, 0, XFS_QMOPT_DOWARN
,
3320 "xlog_recover_dquot_pass2 (log copy)");
3323 ASSERT(dq_f
->qlf_len
== 1);
3326 * At this point we are assuming that the dquots have been allocated
3327 * and hence the buffer has valid dquots stamped in it. It should,
3328 * therefore, pass verifier validation. If the dquot is bad, then the
3329 * we'll return an error here, so we don't need to specifically check
3330 * the dquot in the buffer after the verifier has run.
3332 error
= xfs_trans_read_buf(mp
, NULL
, mp
->m_ddev_targp
, dq_f
->qlf_blkno
,
3333 XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
), 0, &bp
,
3334 &xfs_dquot_buf_ops
);
3339 ddq
= xfs_buf_offset(bp
, dq_f
->qlf_boffset
);
3342 * If the dquot has an LSN in it, recover the dquot only if it's less
3343 * than the lsn of the transaction we are replaying.
3345 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3346 struct xfs_dqblk
*dqb
= (struct xfs_dqblk
*)ddq
;
3347 xfs_lsn_t lsn
= be64_to_cpu(dqb
->dd_lsn
);
3349 if (lsn
&& lsn
!= -1 && XFS_LSN_CMP(lsn
, current_lsn
) >= 0) {
3354 memcpy(ddq
, recddq
, item
->ri_buf
[1].i_len
);
3355 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
3356 xfs_update_cksum((char *)ddq
, sizeof(struct xfs_dqblk
),
3360 ASSERT(dq_f
->qlf_size
== 2);
3361 ASSERT(bp
->b_target
->bt_mount
== mp
);
3362 bp
->b_iodone
= xlog_recover_iodone
;
3363 xfs_buf_delwri_queue(bp
, buffer_list
);
3371 * This routine is called to create an in-core extent free intent
3372 * item from the efi format structure which was logged on disk.
3373 * It allocates an in-core efi, copies the extents from the format
3374 * structure into it, and adds the efi to the AIL with the given
3378 xlog_recover_efi_pass2(
3380 struct xlog_recover_item
*item
,
3384 struct xfs_mount
*mp
= log
->l_mp
;
3385 struct xfs_efi_log_item
*efip
;
3386 struct xfs_efi_log_format
*efi_formatp
;
3388 efi_formatp
= item
->ri_buf
[0].i_addr
;
3390 efip
= xfs_efi_init(mp
, efi_formatp
->efi_nextents
);
3391 error
= xfs_efi_copy_format(&item
->ri_buf
[0], &efip
->efi_format
);
3393 xfs_efi_item_free(efip
);
3396 atomic_set(&efip
->efi_next_extent
, efi_formatp
->efi_nextents
);
3398 spin_lock(&log
->l_ailp
->xa_lock
);
3400 * The EFI has two references. One for the EFD and one for EFI to ensure
3401 * it makes it into the AIL. Insert the EFI into the AIL directly and
3402 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3405 xfs_trans_ail_update(log
->l_ailp
, &efip
->efi_item
, lsn
);
3406 xfs_efi_release(efip
);
3412 * This routine is called when an EFD format structure is found in a committed
3413 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3414 * was still in the log. To do this it searches the AIL for the EFI with an id
3415 * equal to that in the EFD format structure. If we find it we drop the EFD
3416 * reference, which removes the EFI from the AIL and frees it.
3419 xlog_recover_efd_pass2(
3421 struct xlog_recover_item
*item
)
3423 xfs_efd_log_format_t
*efd_formatp
;
3424 xfs_efi_log_item_t
*efip
= NULL
;
3425 xfs_log_item_t
*lip
;
3427 struct xfs_ail_cursor cur
;
3428 struct xfs_ail
*ailp
= log
->l_ailp
;
3430 efd_formatp
= item
->ri_buf
[0].i_addr
;
3431 ASSERT((item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_32_t
) +
3432 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_32_t
)))) ||
3433 (item
->ri_buf
[0].i_len
== (sizeof(xfs_efd_log_format_64_t
) +
3434 ((efd_formatp
->efd_nextents
- 1) * sizeof(xfs_extent_64_t
)))));
3435 efi_id
= efd_formatp
->efd_efi_id
;
3438 * Search for the EFI with the id in the EFD format structure in the
3441 spin_lock(&ailp
->xa_lock
);
3442 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3443 while (lip
!= NULL
) {
3444 if (lip
->li_type
== XFS_LI_EFI
) {
3445 efip
= (xfs_efi_log_item_t
*)lip
;
3446 if (efip
->efi_format
.efi_id
== efi_id
) {
3448 * Drop the EFD reference to the EFI. This
3449 * removes the EFI from the AIL and frees it.
3451 spin_unlock(&ailp
->xa_lock
);
3452 xfs_efi_release(efip
);
3453 spin_lock(&ailp
->xa_lock
);
3457 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3460 xfs_trans_ail_cursor_done(&cur
);
3461 spin_unlock(&ailp
->xa_lock
);
3467 * This routine is called to create an in-core extent rmap update
3468 * item from the rui format structure which was logged on disk.
3469 * It allocates an in-core rui, copies the extents from the format
3470 * structure into it, and adds the rui to the AIL with the given
3474 xlog_recover_rui_pass2(
3476 struct xlog_recover_item
*item
,
3480 struct xfs_mount
*mp
= log
->l_mp
;
3481 struct xfs_rui_log_item
*ruip
;
3482 struct xfs_rui_log_format
*rui_formatp
;
3484 rui_formatp
= item
->ri_buf
[0].i_addr
;
3486 ruip
= xfs_rui_init(mp
, rui_formatp
->rui_nextents
);
3487 error
= xfs_rui_copy_format(&item
->ri_buf
[0], &ruip
->rui_format
);
3489 xfs_rui_item_free(ruip
);
3492 atomic_set(&ruip
->rui_next_extent
, rui_formatp
->rui_nextents
);
3494 spin_lock(&log
->l_ailp
->xa_lock
);
3496 * The RUI has two references. One for the RUD and one for RUI to ensure
3497 * it makes it into the AIL. Insert the RUI into the AIL directly and
3498 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3501 xfs_trans_ail_update(log
->l_ailp
, &ruip
->rui_item
, lsn
);
3502 xfs_rui_release(ruip
);
3508 * This routine is called when an RUD format structure is found in a committed
3509 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3510 * was still in the log. To do this it searches the AIL for the RUI with an id
3511 * equal to that in the RUD format structure. If we find it we drop the RUD
3512 * reference, which removes the RUI from the AIL and frees it.
3515 xlog_recover_rud_pass2(
3517 struct xlog_recover_item
*item
)
3519 struct xfs_rud_log_format
*rud_formatp
;
3520 struct xfs_rui_log_item
*ruip
= NULL
;
3521 struct xfs_log_item
*lip
;
3523 struct xfs_ail_cursor cur
;
3524 struct xfs_ail
*ailp
= log
->l_ailp
;
3526 rud_formatp
= item
->ri_buf
[0].i_addr
;
3527 ASSERT(item
->ri_buf
[0].i_len
== sizeof(struct xfs_rud_log_format
));
3528 rui_id
= rud_formatp
->rud_rui_id
;
3531 * Search for the RUI with the id in the RUD format structure in the
3534 spin_lock(&ailp
->xa_lock
);
3535 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3536 while (lip
!= NULL
) {
3537 if (lip
->li_type
== XFS_LI_RUI
) {
3538 ruip
= (struct xfs_rui_log_item
*)lip
;
3539 if (ruip
->rui_format
.rui_id
== rui_id
) {
3541 * Drop the RUD reference to the RUI. This
3542 * removes the RUI from the AIL and frees it.
3544 spin_unlock(&ailp
->xa_lock
);
3545 xfs_rui_release(ruip
);
3546 spin_lock(&ailp
->xa_lock
);
3550 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3553 xfs_trans_ail_cursor_done(&cur
);
3554 spin_unlock(&ailp
->xa_lock
);
3560 * Copy an CUI format buffer from the given buf, and into the destination
3561 * CUI format structure. The CUI/CUD items were designed not to need any
3562 * special alignment handling.
3565 xfs_cui_copy_format(
3566 struct xfs_log_iovec
*buf
,
3567 struct xfs_cui_log_format
*dst_cui_fmt
)
3569 struct xfs_cui_log_format
*src_cui_fmt
;
3572 src_cui_fmt
= buf
->i_addr
;
3573 len
= xfs_cui_log_format_sizeof(src_cui_fmt
->cui_nextents
);
3575 if (buf
->i_len
== len
) {
3576 memcpy(dst_cui_fmt
, src_cui_fmt
, len
);
3579 return -EFSCORRUPTED
;
3583 * This routine is called to create an in-core extent refcount update
3584 * item from the cui format structure which was logged on disk.
3585 * It allocates an in-core cui, copies the extents from the format
3586 * structure into it, and adds the cui to the AIL with the given
3590 xlog_recover_cui_pass2(
3592 struct xlog_recover_item
*item
,
3596 struct xfs_mount
*mp
= log
->l_mp
;
3597 struct xfs_cui_log_item
*cuip
;
3598 struct xfs_cui_log_format
*cui_formatp
;
3600 cui_formatp
= item
->ri_buf
[0].i_addr
;
3602 cuip
= xfs_cui_init(mp
, cui_formatp
->cui_nextents
);
3603 error
= xfs_cui_copy_format(&item
->ri_buf
[0], &cuip
->cui_format
);
3605 xfs_cui_item_free(cuip
);
3608 atomic_set(&cuip
->cui_next_extent
, cui_formatp
->cui_nextents
);
3610 spin_lock(&log
->l_ailp
->xa_lock
);
3612 * The CUI has two references. One for the CUD and one for CUI to ensure
3613 * it makes it into the AIL. Insert the CUI into the AIL directly and
3614 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3617 xfs_trans_ail_update(log
->l_ailp
, &cuip
->cui_item
, lsn
);
3618 xfs_cui_release(cuip
);
3624 * This routine is called when an CUD format structure is found in a committed
3625 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3626 * was still in the log. To do this it searches the AIL for the CUI with an id
3627 * equal to that in the CUD format structure. If we find it we drop the CUD
3628 * reference, which removes the CUI from the AIL and frees it.
3631 xlog_recover_cud_pass2(
3633 struct xlog_recover_item
*item
)
3635 struct xfs_cud_log_format
*cud_formatp
;
3636 struct xfs_cui_log_item
*cuip
= NULL
;
3637 struct xfs_log_item
*lip
;
3639 struct xfs_ail_cursor cur
;
3640 struct xfs_ail
*ailp
= log
->l_ailp
;
3642 cud_formatp
= item
->ri_buf
[0].i_addr
;
3643 if (item
->ri_buf
[0].i_len
!= sizeof(struct xfs_cud_log_format
))
3644 return -EFSCORRUPTED
;
3645 cui_id
= cud_formatp
->cud_cui_id
;
3648 * Search for the CUI with the id in the CUD format structure in the
3651 spin_lock(&ailp
->xa_lock
);
3652 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3653 while (lip
!= NULL
) {
3654 if (lip
->li_type
== XFS_LI_CUI
) {
3655 cuip
= (struct xfs_cui_log_item
*)lip
;
3656 if (cuip
->cui_format
.cui_id
== cui_id
) {
3658 * Drop the CUD reference to the CUI. This
3659 * removes the CUI from the AIL and frees it.
3661 spin_unlock(&ailp
->xa_lock
);
3662 xfs_cui_release(cuip
);
3663 spin_lock(&ailp
->xa_lock
);
3667 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3670 xfs_trans_ail_cursor_done(&cur
);
3671 spin_unlock(&ailp
->xa_lock
);
3677 * Copy an BUI format buffer from the given buf, and into the destination
3678 * BUI format structure. The BUI/BUD items were designed not to need any
3679 * special alignment handling.
3682 xfs_bui_copy_format(
3683 struct xfs_log_iovec
*buf
,
3684 struct xfs_bui_log_format
*dst_bui_fmt
)
3686 struct xfs_bui_log_format
*src_bui_fmt
;
3689 src_bui_fmt
= buf
->i_addr
;
3690 len
= xfs_bui_log_format_sizeof(src_bui_fmt
->bui_nextents
);
3692 if (buf
->i_len
== len
) {
3693 memcpy(dst_bui_fmt
, src_bui_fmt
, len
);
3696 return -EFSCORRUPTED
;
3700 * This routine is called to create an in-core extent bmap update
3701 * item from the bui format structure which was logged on disk.
3702 * It allocates an in-core bui, copies the extents from the format
3703 * structure into it, and adds the bui to the AIL with the given
3707 xlog_recover_bui_pass2(
3709 struct xlog_recover_item
*item
,
3713 struct xfs_mount
*mp
= log
->l_mp
;
3714 struct xfs_bui_log_item
*buip
;
3715 struct xfs_bui_log_format
*bui_formatp
;
3717 bui_formatp
= item
->ri_buf
[0].i_addr
;
3719 if (bui_formatp
->bui_nextents
!= XFS_BUI_MAX_FAST_EXTENTS
)
3720 return -EFSCORRUPTED
;
3721 buip
= xfs_bui_init(mp
);
3722 error
= xfs_bui_copy_format(&item
->ri_buf
[0], &buip
->bui_format
);
3724 xfs_bui_item_free(buip
);
3727 atomic_set(&buip
->bui_next_extent
, bui_formatp
->bui_nextents
);
3729 spin_lock(&log
->l_ailp
->xa_lock
);
3731 * The RUI has two references. One for the RUD and one for RUI to ensure
3732 * it makes it into the AIL. Insert the RUI into the AIL directly and
3733 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3736 xfs_trans_ail_update(log
->l_ailp
, &buip
->bui_item
, lsn
);
3737 xfs_bui_release(buip
);
3743 * This routine is called when an BUD format structure is found in a committed
3744 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3745 * was still in the log. To do this it searches the AIL for the BUI with an id
3746 * equal to that in the BUD format structure. If we find it we drop the BUD
3747 * reference, which removes the BUI from the AIL and frees it.
3750 xlog_recover_bud_pass2(
3752 struct xlog_recover_item
*item
)
3754 struct xfs_bud_log_format
*bud_formatp
;
3755 struct xfs_bui_log_item
*buip
= NULL
;
3756 struct xfs_log_item
*lip
;
3758 struct xfs_ail_cursor cur
;
3759 struct xfs_ail
*ailp
= log
->l_ailp
;
3761 bud_formatp
= item
->ri_buf
[0].i_addr
;
3762 if (item
->ri_buf
[0].i_len
!= sizeof(struct xfs_bud_log_format
))
3763 return -EFSCORRUPTED
;
3764 bui_id
= bud_formatp
->bud_bui_id
;
3767 * Search for the BUI with the id in the BUD format structure in the
3770 spin_lock(&ailp
->xa_lock
);
3771 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
3772 while (lip
!= NULL
) {
3773 if (lip
->li_type
== XFS_LI_BUI
) {
3774 buip
= (struct xfs_bui_log_item
*)lip
;
3775 if (buip
->bui_format
.bui_id
== bui_id
) {
3777 * Drop the BUD reference to the BUI. This
3778 * removes the BUI from the AIL and frees it.
3780 spin_unlock(&ailp
->xa_lock
);
3781 xfs_bui_release(buip
);
3782 spin_lock(&ailp
->xa_lock
);
3786 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
3789 xfs_trans_ail_cursor_done(&cur
);
3790 spin_unlock(&ailp
->xa_lock
);
3796 * This routine is called when an inode create format structure is found in a
3797 * committed transaction in the log. It's purpose is to initialise the inodes
3798 * being allocated on disk. This requires us to get inode cluster buffers that
3799 * match the range to be initialised, stamped with inode templates and written
3800 * by delayed write so that subsequent modifications will hit the cached buffer
3801 * and only need writing out at the end of recovery.
3804 xlog_recover_do_icreate_pass2(
3806 struct list_head
*buffer_list
,
3807 xlog_recover_item_t
*item
)
3809 struct xfs_mount
*mp
= log
->l_mp
;
3810 struct xfs_icreate_log
*icl
;
3811 xfs_agnumber_t agno
;
3812 xfs_agblock_t agbno
;
3815 xfs_agblock_t length
;
3816 int blks_per_cluster
;
3822 icl
= (struct xfs_icreate_log
*)item
->ri_buf
[0].i_addr
;
3823 if (icl
->icl_type
!= XFS_LI_ICREATE
) {
3824 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad type");
3828 if (icl
->icl_size
!= 1) {
3829 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad icl size");
3833 agno
= be32_to_cpu(icl
->icl_ag
);
3834 if (agno
>= mp
->m_sb
.sb_agcount
) {
3835 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agno");
3838 agbno
= be32_to_cpu(icl
->icl_agbno
);
3839 if (!agbno
|| agbno
== NULLAGBLOCK
|| agbno
>= mp
->m_sb
.sb_agblocks
) {
3840 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad agbno");
3843 isize
= be32_to_cpu(icl
->icl_isize
);
3844 if (isize
!= mp
->m_sb
.sb_inodesize
) {
3845 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad isize");
3848 count
= be32_to_cpu(icl
->icl_count
);
3850 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad count");
3853 length
= be32_to_cpu(icl
->icl_length
);
3854 if (!length
|| length
>= mp
->m_sb
.sb_agblocks
) {
3855 xfs_warn(log
->l_mp
, "xlog_recover_do_icreate_trans: bad length");
3860 * The inode chunk is either full or sparse and we only support
3861 * m_ialloc_min_blks sized sparse allocations at this time.
3863 if (length
!= mp
->m_ialloc_blks
&&
3864 length
!= mp
->m_ialloc_min_blks
) {
3866 "%s: unsupported chunk length", __FUNCTION__
);
3870 /* verify inode count is consistent with extent length */
3871 if ((count
>> mp
->m_sb
.sb_inopblog
) != length
) {
3873 "%s: inconsistent inode count and chunk length",
3879 * The icreate transaction can cover multiple cluster buffers and these
3880 * buffers could have been freed and reused. Check the individual
3881 * buffers for cancellation so we don't overwrite anything written after
3884 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
3885 bb_per_cluster
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
3886 nbufs
= length
/ blks_per_cluster
;
3887 for (i
= 0, cancel_count
= 0; i
< nbufs
; i
++) {
3890 daddr
= XFS_AGB_TO_DADDR(mp
, agno
,
3891 agbno
+ i
* blks_per_cluster
);
3892 if (xlog_check_buffer_cancelled(log
, daddr
, bb_per_cluster
, 0))
3897 * We currently only use icreate for a single allocation at a time. This
3898 * means we should expect either all or none of the buffers to be
3899 * cancelled. Be conservative and skip replay if at least one buffer is
3900 * cancelled, but warn the user that something is awry if the buffers
3901 * are not consistent.
3903 * XXX: This must be refined to only skip cancelled clusters once we use
3904 * icreate for multiple chunk allocations.
3906 ASSERT(!cancel_count
|| cancel_count
== nbufs
);
3908 if (cancel_count
!= nbufs
)
3910 "WARNING: partial inode chunk cancellation, skipped icreate.");
3911 trace_xfs_log_recover_icreate_cancel(log
, icl
);
3915 trace_xfs_log_recover_icreate_recover(log
, icl
);
3916 return xfs_ialloc_inode_init(mp
, NULL
, buffer_list
, count
, agno
, agbno
,
3917 length
, be32_to_cpu(icl
->icl_gen
));
3921 xlog_recover_buffer_ra_pass2(
3923 struct xlog_recover_item
*item
)
3925 struct xfs_buf_log_format
*buf_f
= item
->ri_buf
[0].i_addr
;
3926 struct xfs_mount
*mp
= log
->l_mp
;
3928 if (xlog_peek_buffer_cancelled(log
, buf_f
->blf_blkno
,
3929 buf_f
->blf_len
, buf_f
->blf_flags
)) {
3933 xfs_buf_readahead(mp
->m_ddev_targp
, buf_f
->blf_blkno
,
3934 buf_f
->blf_len
, NULL
);
3938 xlog_recover_inode_ra_pass2(
3940 struct xlog_recover_item
*item
)
3942 struct xfs_inode_log_format ilf_buf
;
3943 struct xfs_inode_log_format
*ilfp
;
3944 struct xfs_mount
*mp
= log
->l_mp
;
3947 if (item
->ri_buf
[0].i_len
== sizeof(struct xfs_inode_log_format
)) {
3948 ilfp
= item
->ri_buf
[0].i_addr
;
3951 memset(ilfp
, 0, sizeof(*ilfp
));
3952 error
= xfs_inode_item_format_convert(&item
->ri_buf
[0], ilfp
);
3957 if (xlog_peek_buffer_cancelled(log
, ilfp
->ilf_blkno
, ilfp
->ilf_len
, 0))
3960 xfs_buf_readahead(mp
->m_ddev_targp
, ilfp
->ilf_blkno
,
3961 ilfp
->ilf_len
, &xfs_inode_buf_ra_ops
);
3965 xlog_recover_dquot_ra_pass2(
3967 struct xlog_recover_item
*item
)
3969 struct xfs_mount
*mp
= log
->l_mp
;
3970 struct xfs_disk_dquot
*recddq
;
3971 struct xfs_dq_logformat
*dq_f
;
3976 if (mp
->m_qflags
== 0)
3979 recddq
= item
->ri_buf
[1].i_addr
;
3982 if (item
->ri_buf
[1].i_len
< sizeof(struct xfs_disk_dquot
))
3985 type
= recddq
->d_flags
& (XFS_DQ_USER
| XFS_DQ_PROJ
| XFS_DQ_GROUP
);
3987 if (log
->l_quotaoffs_flag
& type
)
3990 dq_f
= item
->ri_buf
[0].i_addr
;
3992 ASSERT(dq_f
->qlf_len
== 1);
3994 len
= XFS_FSB_TO_BB(mp
, dq_f
->qlf_len
);
3995 if (xlog_peek_buffer_cancelled(log
, dq_f
->qlf_blkno
, len
, 0))
3998 xfs_buf_readahead(mp
->m_ddev_targp
, dq_f
->qlf_blkno
, len
,
3999 &xfs_dquot_buf_ra_ops
);
4003 xlog_recover_ra_pass2(
4005 struct xlog_recover_item
*item
)
4007 switch (ITEM_TYPE(item
)) {
4009 xlog_recover_buffer_ra_pass2(log
, item
);
4012 xlog_recover_inode_ra_pass2(log
, item
);
4015 xlog_recover_dquot_ra_pass2(log
, item
);
4019 case XFS_LI_QUOTAOFF
:
4032 xlog_recover_commit_pass1(
4034 struct xlog_recover
*trans
,
4035 struct xlog_recover_item
*item
)
4037 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS1
);
4039 switch (ITEM_TYPE(item
)) {
4041 return xlog_recover_buffer_pass1(log
, item
);
4042 case XFS_LI_QUOTAOFF
:
4043 return xlog_recover_quotaoff_pass1(log
, item
);
4048 case XFS_LI_ICREATE
:
4055 /* nothing to do in pass 1 */
4058 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
4059 __func__
, ITEM_TYPE(item
));
4066 xlog_recover_commit_pass2(
4068 struct xlog_recover
*trans
,
4069 struct list_head
*buffer_list
,
4070 struct xlog_recover_item
*item
)
4072 trace_xfs_log_recover_item_recover(log
, trans
, item
, XLOG_RECOVER_PASS2
);
4074 switch (ITEM_TYPE(item
)) {
4076 return xlog_recover_buffer_pass2(log
, buffer_list
, item
,
4079 return xlog_recover_inode_pass2(log
, buffer_list
, item
,
4082 return xlog_recover_efi_pass2(log
, item
, trans
->r_lsn
);
4084 return xlog_recover_efd_pass2(log
, item
);
4086 return xlog_recover_rui_pass2(log
, item
, trans
->r_lsn
);
4088 return xlog_recover_rud_pass2(log
, item
);
4090 return xlog_recover_cui_pass2(log
, item
, trans
->r_lsn
);
4092 return xlog_recover_cud_pass2(log
, item
);
4094 return xlog_recover_bui_pass2(log
, item
, trans
->r_lsn
);
4096 return xlog_recover_bud_pass2(log
, item
);
4098 return xlog_recover_dquot_pass2(log
, buffer_list
, item
,
4100 case XFS_LI_ICREATE
:
4101 return xlog_recover_do_icreate_pass2(log
, buffer_list
, item
);
4102 case XFS_LI_QUOTAOFF
:
4103 /* nothing to do in pass2 */
4106 xfs_warn(log
->l_mp
, "%s: invalid item type (%d)",
4107 __func__
, ITEM_TYPE(item
));
4114 xlog_recover_items_pass2(
4116 struct xlog_recover
*trans
,
4117 struct list_head
*buffer_list
,
4118 struct list_head
*item_list
)
4120 struct xlog_recover_item
*item
;
4123 list_for_each_entry(item
, item_list
, ri_list
) {
4124 error
= xlog_recover_commit_pass2(log
, trans
,
4134 * Perform the transaction.
4136 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4137 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4140 xlog_recover_commit_trans(
4142 struct xlog_recover
*trans
,
4144 struct list_head
*buffer_list
)
4147 int items_queued
= 0;
4148 struct xlog_recover_item
*item
;
4149 struct xlog_recover_item
*next
;
4150 LIST_HEAD (ra_list
);
4151 LIST_HEAD (done_list
);
4153 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4155 hlist_del(&trans
->r_list
);
4157 error
= xlog_recover_reorder_trans(log
, trans
, pass
);
4161 list_for_each_entry_safe(item
, next
, &trans
->r_itemq
, ri_list
) {
4163 case XLOG_RECOVER_PASS1
:
4164 error
= xlog_recover_commit_pass1(log
, trans
, item
);
4166 case XLOG_RECOVER_PASS2
:
4167 xlog_recover_ra_pass2(log
, item
);
4168 list_move_tail(&item
->ri_list
, &ra_list
);
4170 if (items_queued
>= XLOG_RECOVER_COMMIT_QUEUE_MAX
) {
4171 error
= xlog_recover_items_pass2(log
, trans
,
4172 buffer_list
, &ra_list
);
4173 list_splice_tail_init(&ra_list
, &done_list
);
4187 if (!list_empty(&ra_list
)) {
4189 error
= xlog_recover_items_pass2(log
, trans
,
4190 buffer_list
, &ra_list
);
4191 list_splice_tail_init(&ra_list
, &done_list
);
4194 if (!list_empty(&done_list
))
4195 list_splice_init(&done_list
, &trans
->r_itemq
);
4201 xlog_recover_add_item(
4202 struct list_head
*head
)
4204 xlog_recover_item_t
*item
;
4206 item
= kmem_zalloc(sizeof(xlog_recover_item_t
), KM_SLEEP
);
4207 INIT_LIST_HEAD(&item
->ri_list
);
4208 list_add_tail(&item
->ri_list
, head
);
4212 xlog_recover_add_to_cont_trans(
4214 struct xlog_recover
*trans
,
4218 xlog_recover_item_t
*item
;
4219 char *ptr
, *old_ptr
;
4223 * If the transaction is empty, the header was split across this and the
4224 * previous record. Copy the rest of the header.
4226 if (list_empty(&trans
->r_itemq
)) {
4227 ASSERT(len
<= sizeof(struct xfs_trans_header
));
4228 if (len
> sizeof(struct xfs_trans_header
)) {
4229 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
4233 xlog_recover_add_item(&trans
->r_itemq
);
4234 ptr
= (char *)&trans
->r_theader
+
4235 sizeof(struct xfs_trans_header
) - len
;
4236 memcpy(ptr
, dp
, len
);
4240 /* take the tail entry */
4241 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
4243 old_ptr
= item
->ri_buf
[item
->ri_cnt
-1].i_addr
;
4244 old_len
= item
->ri_buf
[item
->ri_cnt
-1].i_len
;
4246 ptr
= kmem_realloc(old_ptr
, len
+ old_len
, KM_SLEEP
);
4247 memcpy(&ptr
[old_len
], dp
, len
);
4248 item
->ri_buf
[item
->ri_cnt
-1].i_len
+= len
;
4249 item
->ri_buf
[item
->ri_cnt
-1].i_addr
= ptr
;
4250 trace_xfs_log_recover_item_add_cont(log
, trans
, item
, 0);
4255 * The next region to add is the start of a new region. It could be
4256 * a whole region or it could be the first part of a new region. Because
4257 * of this, the assumption here is that the type and size fields of all
4258 * format structures fit into the first 32 bits of the structure.
4260 * This works because all regions must be 32 bit aligned. Therefore, we
4261 * either have both fields or we have neither field. In the case we have
4262 * neither field, the data part of the region is zero length. We only have
4263 * a log_op_header and can throw away the header since a new one will appear
4264 * later. If we have at least 4 bytes, then we can determine how many regions
4265 * will appear in the current log item.
4268 xlog_recover_add_to_trans(
4270 struct xlog_recover
*trans
,
4274 xfs_inode_log_format_t
*in_f
; /* any will do */
4275 xlog_recover_item_t
*item
;
4280 if (list_empty(&trans
->r_itemq
)) {
4281 /* we need to catch log corruptions here */
4282 if (*(uint
*)dp
!= XFS_TRANS_HEADER_MAGIC
) {
4283 xfs_warn(log
->l_mp
, "%s: bad header magic number",
4289 if (len
> sizeof(struct xfs_trans_header
)) {
4290 xfs_warn(log
->l_mp
, "%s: bad header length", __func__
);
4296 * The transaction header can be arbitrarily split across op
4297 * records. If we don't have the whole thing here, copy what we
4298 * do have and handle the rest in the next record.
4300 if (len
== sizeof(struct xfs_trans_header
))
4301 xlog_recover_add_item(&trans
->r_itemq
);
4302 memcpy(&trans
->r_theader
, dp
, len
);
4306 ptr
= kmem_alloc(len
, KM_SLEEP
);
4307 memcpy(ptr
, dp
, len
);
4308 in_f
= (xfs_inode_log_format_t
*)ptr
;
4310 /* take the tail entry */
4311 item
= list_entry(trans
->r_itemq
.prev
, xlog_recover_item_t
, ri_list
);
4312 if (item
->ri_total
!= 0 &&
4313 item
->ri_total
== item
->ri_cnt
) {
4314 /* tail item is in use, get a new one */
4315 xlog_recover_add_item(&trans
->r_itemq
);
4316 item
= list_entry(trans
->r_itemq
.prev
,
4317 xlog_recover_item_t
, ri_list
);
4320 if (item
->ri_total
== 0) { /* first region to be added */
4321 if (in_f
->ilf_size
== 0 ||
4322 in_f
->ilf_size
> XLOG_MAX_REGIONS_IN_ITEM
) {
4324 "bad number of regions (%d) in inode log format",
4331 item
->ri_total
= in_f
->ilf_size
;
4333 kmem_zalloc(item
->ri_total
* sizeof(xfs_log_iovec_t
),
4336 ASSERT(item
->ri_total
> item
->ri_cnt
);
4337 /* Description region is ri_buf[0] */
4338 item
->ri_buf
[item
->ri_cnt
].i_addr
= ptr
;
4339 item
->ri_buf
[item
->ri_cnt
].i_len
= len
;
4341 trace_xfs_log_recover_item_add(log
, trans
, item
, 0);
4346 * Free up any resources allocated by the transaction
4348 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4351 xlog_recover_free_trans(
4352 struct xlog_recover
*trans
)
4354 xlog_recover_item_t
*item
, *n
;
4357 list_for_each_entry_safe(item
, n
, &trans
->r_itemq
, ri_list
) {
4358 /* Free the regions in the item. */
4359 list_del(&item
->ri_list
);
4360 for (i
= 0; i
< item
->ri_cnt
; i
++)
4361 kmem_free(item
->ri_buf
[i
].i_addr
);
4362 /* Free the item itself */
4363 kmem_free(item
->ri_buf
);
4366 /* Free the transaction recover structure */
4371 * On error or completion, trans is freed.
4374 xlog_recovery_process_trans(
4376 struct xlog_recover
*trans
,
4381 struct list_head
*buffer_list
)
4384 bool freeit
= false;
4386 /* mask off ophdr transaction container flags */
4387 flags
&= ~XLOG_END_TRANS
;
4388 if (flags
& XLOG_WAS_CONT_TRANS
)
4389 flags
&= ~XLOG_CONTINUE_TRANS
;
4392 * Callees must not free the trans structure. We'll decide if we need to
4393 * free it or not based on the operation being done and it's result.
4396 /* expected flag values */
4398 case XLOG_CONTINUE_TRANS
:
4399 error
= xlog_recover_add_to_trans(log
, trans
, dp
, len
);
4401 case XLOG_WAS_CONT_TRANS
:
4402 error
= xlog_recover_add_to_cont_trans(log
, trans
, dp
, len
);
4404 case XLOG_COMMIT_TRANS
:
4405 error
= xlog_recover_commit_trans(log
, trans
, pass
,
4407 /* success or fail, we are now done with this transaction. */
4411 /* unexpected flag values */
4412 case XLOG_UNMOUNT_TRANS
:
4413 /* just skip trans */
4414 xfs_warn(log
->l_mp
, "%s: Unmount LR", __func__
);
4417 case XLOG_START_TRANS
:
4419 xfs_warn(log
->l_mp
, "%s: bad flag 0x%x", __func__
, flags
);
4424 if (error
|| freeit
)
4425 xlog_recover_free_trans(trans
);
4430 * Lookup the transaction recovery structure associated with the ID in the
4431 * current ophdr. If the transaction doesn't exist and the start flag is set in
4432 * the ophdr, then allocate a new transaction for future ID matches to find.
4433 * Either way, return what we found during the lookup - an existing transaction
4436 STATIC
struct xlog_recover
*
4437 xlog_recover_ophdr_to_trans(
4438 struct hlist_head rhash
[],
4439 struct xlog_rec_header
*rhead
,
4440 struct xlog_op_header
*ohead
)
4442 struct xlog_recover
*trans
;
4444 struct hlist_head
*rhp
;
4446 tid
= be32_to_cpu(ohead
->oh_tid
);
4447 rhp
= &rhash
[XLOG_RHASH(tid
)];
4448 hlist_for_each_entry(trans
, rhp
, r_list
) {
4449 if (trans
->r_log_tid
== tid
)
4454 * skip over non-start transaction headers - we could be
4455 * processing slack space before the next transaction starts
4457 if (!(ohead
->oh_flags
& XLOG_START_TRANS
))
4460 ASSERT(be32_to_cpu(ohead
->oh_len
) == 0);
4463 * This is a new transaction so allocate a new recovery container to
4464 * hold the recovery ops that will follow.
4466 trans
= kmem_zalloc(sizeof(struct xlog_recover
), KM_SLEEP
);
4467 trans
->r_log_tid
= tid
;
4468 trans
->r_lsn
= be64_to_cpu(rhead
->h_lsn
);
4469 INIT_LIST_HEAD(&trans
->r_itemq
);
4470 INIT_HLIST_NODE(&trans
->r_list
);
4471 hlist_add_head(&trans
->r_list
, rhp
);
4474 * Nothing more to do for this ophdr. Items to be added to this new
4475 * transaction will be in subsequent ophdr containers.
4481 xlog_recover_process_ophdr(
4483 struct hlist_head rhash
[],
4484 struct xlog_rec_header
*rhead
,
4485 struct xlog_op_header
*ohead
,
4489 struct list_head
*buffer_list
)
4491 struct xlog_recover
*trans
;
4495 /* Do we understand who wrote this op? */
4496 if (ohead
->oh_clientid
!= XFS_TRANSACTION
&&
4497 ohead
->oh_clientid
!= XFS_LOG
) {
4498 xfs_warn(log
->l_mp
, "%s: bad clientid 0x%x",
4499 __func__
, ohead
->oh_clientid
);
4505 * Check the ophdr contains all the data it is supposed to contain.
4507 len
= be32_to_cpu(ohead
->oh_len
);
4508 if (dp
+ len
> end
) {
4509 xfs_warn(log
->l_mp
, "%s: bad length 0x%x", __func__
, len
);
4514 trans
= xlog_recover_ophdr_to_trans(rhash
, rhead
, ohead
);
4516 /* nothing to do, so skip over this ophdr */
4521 * The recovered buffer queue is drained only once we know that all
4522 * recovery items for the current LSN have been processed. This is
4525 * - Buffer write submission updates the metadata LSN of the buffer.
4526 * - Log recovery skips items with a metadata LSN >= the current LSN of
4527 * the recovery item.
4528 * - Separate recovery items against the same metadata buffer can share
4529 * a current LSN. I.e., consider that the LSN of a recovery item is
4530 * defined as the starting LSN of the first record in which its
4531 * transaction appears, that a record can hold multiple transactions,
4532 * and/or that a transaction can span multiple records.
4534 * In other words, we are allowed to submit a buffer from log recovery
4535 * once per current LSN. Otherwise, we may incorrectly skip recovery
4536 * items and cause corruption.
4538 * We don't know up front whether buffers are updated multiple times per
4539 * LSN. Therefore, track the current LSN of each commit log record as it
4540 * is processed and drain the queue when it changes. Use commit records
4541 * because they are ordered correctly by the logging code.
4543 if (log
->l_recovery_lsn
!= trans
->r_lsn
&&
4544 ohead
->oh_flags
& XLOG_COMMIT_TRANS
) {
4545 error
= xfs_buf_delwri_submit(buffer_list
);
4548 log
->l_recovery_lsn
= trans
->r_lsn
;
4551 return xlog_recovery_process_trans(log
, trans
, dp
, len
,
4552 ohead
->oh_flags
, pass
, buffer_list
);
4556 * There are two valid states of the r_state field. 0 indicates that the
4557 * transaction structure is in a normal state. We have either seen the
4558 * start of the transaction or the last operation we added was not a partial
4559 * operation. If the last operation we added to the transaction was a
4560 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4562 * NOTE: skip LRs with 0 data length.
4565 xlog_recover_process_data(
4567 struct hlist_head rhash
[],
4568 struct xlog_rec_header
*rhead
,
4571 struct list_head
*buffer_list
)
4573 struct xlog_op_header
*ohead
;
4578 end
= dp
+ be32_to_cpu(rhead
->h_len
);
4579 num_logops
= be32_to_cpu(rhead
->h_num_logops
);
4581 /* check the log format matches our own - else we can't recover */
4582 if (xlog_header_check_recover(log
->l_mp
, rhead
))
4585 trace_xfs_log_recover_record(log
, rhead
, pass
);
4586 while ((dp
< end
) && num_logops
) {
4588 ohead
= (struct xlog_op_header
*)dp
;
4589 dp
+= sizeof(*ohead
);
4592 /* errors will abort recovery */
4593 error
= xlog_recover_process_ophdr(log
, rhash
, rhead
, ohead
,
4594 dp
, end
, pass
, buffer_list
);
4598 dp
+= be32_to_cpu(ohead
->oh_len
);
4604 /* Recover the EFI if necessary. */
4606 xlog_recover_process_efi(
4607 struct xfs_mount
*mp
,
4608 struct xfs_ail
*ailp
,
4609 struct xfs_log_item
*lip
)
4611 struct xfs_efi_log_item
*efip
;
4615 * Skip EFIs that we've already processed.
4617 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4618 if (test_bit(XFS_EFI_RECOVERED
, &efip
->efi_flags
))
4621 spin_unlock(&ailp
->xa_lock
);
4622 error
= xfs_efi_recover(mp
, efip
);
4623 spin_lock(&ailp
->xa_lock
);
4628 /* Release the EFI since we're cancelling everything. */
4630 xlog_recover_cancel_efi(
4631 struct xfs_mount
*mp
,
4632 struct xfs_ail
*ailp
,
4633 struct xfs_log_item
*lip
)
4635 struct xfs_efi_log_item
*efip
;
4637 efip
= container_of(lip
, struct xfs_efi_log_item
, efi_item
);
4639 spin_unlock(&ailp
->xa_lock
);
4640 xfs_efi_release(efip
);
4641 spin_lock(&ailp
->xa_lock
);
4644 /* Recover the RUI if necessary. */
4646 xlog_recover_process_rui(
4647 struct xfs_mount
*mp
,
4648 struct xfs_ail
*ailp
,
4649 struct xfs_log_item
*lip
)
4651 struct xfs_rui_log_item
*ruip
;
4655 * Skip RUIs that we've already processed.
4657 ruip
= container_of(lip
, struct xfs_rui_log_item
, rui_item
);
4658 if (test_bit(XFS_RUI_RECOVERED
, &ruip
->rui_flags
))
4661 spin_unlock(&ailp
->xa_lock
);
4662 error
= xfs_rui_recover(mp
, ruip
);
4663 spin_lock(&ailp
->xa_lock
);
4668 /* Release the RUI since we're cancelling everything. */
4670 xlog_recover_cancel_rui(
4671 struct xfs_mount
*mp
,
4672 struct xfs_ail
*ailp
,
4673 struct xfs_log_item
*lip
)
4675 struct xfs_rui_log_item
*ruip
;
4677 ruip
= container_of(lip
, struct xfs_rui_log_item
, rui_item
);
4679 spin_unlock(&ailp
->xa_lock
);
4680 xfs_rui_release(ruip
);
4681 spin_lock(&ailp
->xa_lock
);
4684 /* Recover the CUI if necessary. */
4686 xlog_recover_process_cui(
4687 struct xfs_mount
*mp
,
4688 struct xfs_ail
*ailp
,
4689 struct xfs_log_item
*lip
)
4691 struct xfs_cui_log_item
*cuip
;
4695 * Skip CUIs that we've already processed.
4697 cuip
= container_of(lip
, struct xfs_cui_log_item
, cui_item
);
4698 if (test_bit(XFS_CUI_RECOVERED
, &cuip
->cui_flags
))
4701 spin_unlock(&ailp
->xa_lock
);
4702 error
= xfs_cui_recover(mp
, cuip
);
4703 spin_lock(&ailp
->xa_lock
);
4708 /* Release the CUI since we're cancelling everything. */
4710 xlog_recover_cancel_cui(
4711 struct xfs_mount
*mp
,
4712 struct xfs_ail
*ailp
,
4713 struct xfs_log_item
*lip
)
4715 struct xfs_cui_log_item
*cuip
;
4717 cuip
= container_of(lip
, struct xfs_cui_log_item
, cui_item
);
4719 spin_unlock(&ailp
->xa_lock
);
4720 xfs_cui_release(cuip
);
4721 spin_lock(&ailp
->xa_lock
);
4724 /* Recover the BUI if necessary. */
4726 xlog_recover_process_bui(
4727 struct xfs_mount
*mp
,
4728 struct xfs_ail
*ailp
,
4729 struct xfs_log_item
*lip
)
4731 struct xfs_bui_log_item
*buip
;
4735 * Skip BUIs that we've already processed.
4737 buip
= container_of(lip
, struct xfs_bui_log_item
, bui_item
);
4738 if (test_bit(XFS_BUI_RECOVERED
, &buip
->bui_flags
))
4741 spin_unlock(&ailp
->xa_lock
);
4742 error
= xfs_bui_recover(mp
, buip
);
4743 spin_lock(&ailp
->xa_lock
);
4748 /* Release the BUI since we're cancelling everything. */
4750 xlog_recover_cancel_bui(
4751 struct xfs_mount
*mp
,
4752 struct xfs_ail
*ailp
,
4753 struct xfs_log_item
*lip
)
4755 struct xfs_bui_log_item
*buip
;
4757 buip
= container_of(lip
, struct xfs_bui_log_item
, bui_item
);
4759 spin_unlock(&ailp
->xa_lock
);
4760 xfs_bui_release(buip
);
4761 spin_lock(&ailp
->xa_lock
);
4764 /* Is this log item a deferred action intent? */
4765 static inline bool xlog_item_is_intent(struct xfs_log_item
*lip
)
4767 switch (lip
->li_type
) {
4779 * When this is called, all of the log intent items which did not have
4780 * corresponding log done items should be in the AIL. What we do now
4781 * is update the data structures associated with each one.
4783 * Since we process the log intent items in normal transactions, they
4784 * will be removed at some point after the commit. This prevents us
4785 * from just walking down the list processing each one. We'll use a
4786 * flag in the intent item to skip those that we've already processed
4787 * and use the AIL iteration mechanism's generation count to try to
4788 * speed this up at least a bit.
4790 * When we start, we know that the intents are the only things in the
4791 * AIL. As we process them, however, other items are added to the
4795 xlog_recover_process_intents(
4798 struct xfs_log_item
*lip
;
4800 struct xfs_ail_cursor cur
;
4801 struct xfs_ail
*ailp
;
4805 spin_lock(&ailp
->xa_lock
);
4806 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4807 last_lsn
= xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
);
4808 while (lip
!= NULL
) {
4810 * We're done when we see something other than an intent.
4811 * There should be no intents left in the AIL now.
4813 if (!xlog_item_is_intent(lip
)) {
4815 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4816 ASSERT(!xlog_item_is_intent(lip
));
4822 * We should never see a redo item with a LSN higher than
4823 * the last transaction we found in the log at the start
4826 ASSERT(XFS_LSN_CMP(last_lsn
, lip
->li_lsn
) >= 0);
4828 switch (lip
->li_type
) {
4830 error
= xlog_recover_process_efi(log
->l_mp
, ailp
, lip
);
4833 error
= xlog_recover_process_rui(log
->l_mp
, ailp
, lip
);
4836 error
= xlog_recover_process_cui(log
->l_mp
, ailp
, lip
);
4839 error
= xlog_recover_process_bui(log
->l_mp
, ailp
, lip
);
4844 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
4847 xfs_trans_ail_cursor_done(&cur
);
4848 spin_unlock(&ailp
->xa_lock
);
4853 * A cancel occurs when the mount has failed and we're bailing out.
4854 * Release all pending log intent items so they don't pin the AIL.
4857 xlog_recover_cancel_intents(
4860 struct xfs_log_item
*lip
;
4862 struct xfs_ail_cursor cur
;
4863 struct xfs_ail
*ailp
;
4866 spin_lock(&ailp
->xa_lock
);
4867 lip
= xfs_trans_ail_cursor_first(ailp
, &cur
, 0);
4868 while (lip
!= NULL
) {
4870 * We're done when we see something other than an intent.
4871 * There should be no intents left in the AIL now.
4873 if (!xlog_item_is_intent(lip
)) {
4875 for (; lip
; lip
= xfs_trans_ail_cursor_next(ailp
, &cur
))
4876 ASSERT(!xlog_item_is_intent(lip
));
4881 switch (lip
->li_type
) {
4883 xlog_recover_cancel_efi(log
->l_mp
, ailp
, lip
);
4886 xlog_recover_cancel_rui(log
->l_mp
, ailp
, lip
);
4889 xlog_recover_cancel_cui(log
->l_mp
, ailp
, lip
);
4892 xlog_recover_cancel_bui(log
->l_mp
, ailp
, lip
);
4896 lip
= xfs_trans_ail_cursor_next(ailp
, &cur
);
4899 xfs_trans_ail_cursor_done(&cur
);
4900 spin_unlock(&ailp
->xa_lock
);
4905 * This routine performs a transaction to null out a bad inode pointer
4906 * in an agi unlinked inode hash bucket.
4909 xlog_recover_clear_agi_bucket(
4911 xfs_agnumber_t agno
,
4920 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_clearagi
, 0, 0, 0, &tp
);
4924 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
4928 agi
= XFS_BUF_TO_AGI(agibp
);
4929 agi
->agi_unlinked
[bucket
] = cpu_to_be32(NULLAGINO
);
4930 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
4931 (sizeof(xfs_agino_t
) * bucket
);
4932 xfs_trans_log_buf(tp
, agibp
, offset
,
4933 (offset
+ sizeof(xfs_agino_t
) - 1));
4935 error
= xfs_trans_commit(tp
);
4941 xfs_trans_cancel(tp
);
4943 xfs_warn(mp
, "%s: failed to clear agi %d. Continuing.", __func__
, agno
);
4948 xlog_recover_process_one_iunlink(
4949 struct xfs_mount
*mp
,
4950 xfs_agnumber_t agno
,
4954 struct xfs_buf
*ibp
;
4955 struct xfs_dinode
*dip
;
4956 struct xfs_inode
*ip
;
4960 ino
= XFS_AGINO_TO_INO(mp
, agno
, agino
);
4961 error
= xfs_iget(mp
, NULL
, ino
, 0, 0, &ip
);
4966 * Get the on disk inode to find the next inode in the bucket.
4968 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &ibp
, 0, 0);
4972 xfs_iflags_clear(ip
, XFS_IRECOVERY
);
4973 ASSERT(VFS_I(ip
)->i_nlink
== 0);
4974 ASSERT(VFS_I(ip
)->i_mode
!= 0);
4976 /* setup for the next pass */
4977 agino
= be32_to_cpu(dip
->di_next_unlinked
);
4981 * Prevent any DMAPI event from being sent when the reference on
4982 * the inode is dropped.
4984 ip
->i_d
.di_dmevmask
= 0;
4993 * We can't read in the inode this bucket points to, or this inode
4994 * is messed up. Just ditch this bucket of inodes. We will lose
4995 * some inodes and space, but at least we won't hang.
4997 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4998 * clear the inode pointer in the bucket.
5000 xlog_recover_clear_agi_bucket(mp
, agno
, bucket
);
5005 * xlog_iunlink_recover
5007 * This is called during recovery to process any inodes which
5008 * we unlinked but not freed when the system crashed. These
5009 * inodes will be on the lists in the AGI blocks. What we do
5010 * here is scan all the AGIs and fully truncate and free any
5011 * inodes found on the lists. Each inode is removed from the
5012 * lists when it has been fully truncated and is freed. The
5013 * freeing of the inode and its removal from the list must be
5017 xlog_recover_process_iunlinks(
5021 xfs_agnumber_t agno
;
5032 * Prevent any DMAPI event from being sent while in this function.
5034 mp_dmevmask
= mp
->m_dmevmask
;
5037 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
5039 * Find the agi for this ag.
5041 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
5044 * AGI is b0rked. Don't process it.
5046 * We should probably mark the filesystem as corrupt
5047 * after we've recovered all the ag's we can....
5052 * Unlock the buffer so that it can be acquired in the normal
5053 * course of the transaction to truncate and free each inode.
5054 * Because we are not racing with anyone else here for the AGI
5055 * buffer, we don't even need to hold it locked to read the
5056 * initial unlinked bucket entries out of the buffer. We keep
5057 * buffer reference though, so that it stays pinned in memory
5058 * while we need the buffer.
5060 agi
= XFS_BUF_TO_AGI(agibp
);
5061 xfs_buf_unlock(agibp
);
5063 for (bucket
= 0; bucket
< XFS_AGI_UNLINKED_BUCKETS
; bucket
++) {
5064 agino
= be32_to_cpu(agi
->agi_unlinked
[bucket
]);
5065 while (agino
!= NULLAGINO
) {
5066 agino
= xlog_recover_process_one_iunlink(mp
,
5067 agno
, agino
, bucket
);
5070 xfs_buf_rele(agibp
);
5073 mp
->m_dmevmask
= mp_dmevmask
;
5078 struct xlog_rec_header
*rhead
,
5084 for (i
= 0; i
< BTOBB(be32_to_cpu(rhead
->h_len
)) &&
5085 i
< (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
); i
++) {
5086 *(__be32
*)dp
= *(__be32
*)&rhead
->h_cycle_data
[i
];
5090 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
5091 xlog_in_core_2_t
*xhdr
= (xlog_in_core_2_t
*)rhead
;
5092 for ( ; i
< BTOBB(be32_to_cpu(rhead
->h_len
)); i
++) {
5093 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
5094 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
5095 *(__be32
*)dp
= xhdr
[j
].hic_xheader
.xh_cycle_data
[k
];
5104 * CRC check, unpack and process a log record.
5107 xlog_recover_process(
5109 struct hlist_head rhash
[],
5110 struct xlog_rec_header
*rhead
,
5113 struct list_head
*buffer_list
)
5116 __le32 old_crc
= rhead
->h_crc
;
5120 crc
= xlog_cksum(log
, rhead
, dp
, be32_to_cpu(rhead
->h_len
));
5123 * Nothing else to do if this is a CRC verification pass. Just return
5124 * if this a record with a non-zero crc. Unfortunately, mkfs always
5125 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5126 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5127 * know precisely what failed.
5129 if (pass
== XLOG_RECOVER_CRCPASS
) {
5130 if (old_crc
&& crc
!= old_crc
)
5136 * We're in the normal recovery path. Issue a warning if and only if the
5137 * CRC in the header is non-zero. This is an advisory warning and the
5138 * zero CRC check prevents warnings from being emitted when upgrading
5139 * the kernel from one that does not add CRCs by default.
5141 if (crc
!= old_crc
) {
5142 if (old_crc
|| xfs_sb_version_hascrc(&log
->l_mp
->m_sb
)) {
5143 xfs_alert(log
->l_mp
,
5144 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5145 le32_to_cpu(old_crc
),
5147 xfs_hex_dump(dp
, 32);
5151 * If the filesystem is CRC enabled, this mismatch becomes a
5152 * fatal log corruption failure.
5154 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
))
5155 return -EFSCORRUPTED
;
5158 error
= xlog_unpack_data(rhead
, dp
, log
);
5162 return xlog_recover_process_data(log
, rhash
, rhead
, dp
, pass
,
5167 xlog_valid_rec_header(
5169 struct xlog_rec_header
*rhead
,
5174 if (unlikely(rhead
->h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))) {
5175 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5176 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5177 return -EFSCORRUPTED
;
5180 (!rhead
->h_version
||
5181 (be32_to_cpu(rhead
->h_version
) & (~XLOG_VERSION_OKBITS
))))) {
5182 xfs_warn(log
->l_mp
, "%s: unrecognised log version (%d).",
5183 __func__
, be32_to_cpu(rhead
->h_version
));
5187 /* LR body must have data or it wouldn't have been written */
5188 hlen
= be32_to_cpu(rhead
->h_len
);
5189 if (unlikely( hlen
<= 0 || hlen
> INT_MAX
)) {
5190 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5191 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5192 return -EFSCORRUPTED
;
5194 if (unlikely( blkno
> log
->l_logBBsize
|| blkno
> INT_MAX
)) {
5195 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5196 XFS_ERRLEVEL_LOW
, log
->l_mp
);
5197 return -EFSCORRUPTED
;
5203 * Read the log from tail to head and process the log records found.
5204 * Handle the two cases where the tail and head are in the same cycle
5205 * and where the active portion of the log wraps around the end of
5206 * the physical log separately. The pass parameter is passed through
5207 * to the routines called to process the data and is not looked at
5211 xlog_do_recovery_pass(
5213 xfs_daddr_t head_blk
,
5214 xfs_daddr_t tail_blk
,
5216 xfs_daddr_t
*first_bad
) /* out: first bad log rec */
5218 xlog_rec_header_t
*rhead
;
5220 xfs_daddr_t rhead_blk
;
5222 xfs_buf_t
*hbp
, *dbp
;
5223 int error
= 0, h_size
, h_len
;
5225 int bblks
, split_bblks
;
5226 int hblks
, split_hblks
, wrapped_hblks
;
5227 struct hlist_head rhash
[XLOG_RHASH_SIZE
];
5228 LIST_HEAD (buffer_list
);
5230 ASSERT(head_blk
!= tail_blk
);
5234 * Read the header of the tail block and get the iclog buffer size from
5235 * h_size. Use this to tell how many sectors make up the log header.
5237 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
5239 * When using variable length iclogs, read first sector of
5240 * iclog header and extract the header size from it. Get a
5241 * new hbp that is the correct size.
5243 hbp
= xlog_get_bp(log
, 1);
5247 error
= xlog_bread(log
, tail_blk
, 1, hbp
, &offset
);
5251 rhead
= (xlog_rec_header_t
*)offset
;
5252 error
= xlog_valid_rec_header(log
, rhead
, tail_blk
);
5257 * xfsprogs has a bug where record length is based on lsunit but
5258 * h_size (iclog size) is hardcoded to 32k. Now that we
5259 * unconditionally CRC verify the unmount record, this means the
5260 * log buffer can be too small for the record and cause an
5263 * Detect this condition here. Use lsunit for the buffer size as
5264 * long as this looks like the mkfs case. Otherwise, return an
5265 * error to avoid a buffer overrun.
5267 h_size
= be32_to_cpu(rhead
->h_size
);
5268 h_len
= be32_to_cpu(rhead
->h_len
);
5269 if (h_len
> h_size
) {
5270 if (h_len
<= log
->l_mp
->m_logbsize
&&
5271 be32_to_cpu(rhead
->h_num_logops
) == 1) {
5273 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5274 h_size
, log
->l_mp
->m_logbsize
);
5275 h_size
= log
->l_mp
->m_logbsize
;
5277 return -EFSCORRUPTED
;
5280 if ((be32_to_cpu(rhead
->h_version
) & XLOG_VERSION_2
) &&
5281 (h_size
> XLOG_HEADER_CYCLE_SIZE
)) {
5282 hblks
= h_size
/ XLOG_HEADER_CYCLE_SIZE
;
5283 if (h_size
% XLOG_HEADER_CYCLE_SIZE
)
5286 hbp
= xlog_get_bp(log
, hblks
);
5291 ASSERT(log
->l_sectBBsize
== 1);
5293 hbp
= xlog_get_bp(log
, 1);
5294 h_size
= XLOG_BIG_RECORD_BSIZE
;
5299 dbp
= xlog_get_bp(log
, BTOBB(h_size
));
5305 memset(rhash
, 0, sizeof(rhash
));
5306 blk_no
= rhead_blk
= tail_blk
;
5307 if (tail_blk
> head_blk
) {
5309 * Perform recovery around the end of the physical log.
5310 * When the head is not on the same cycle number as the tail,
5311 * we can't do a sequential recovery.
5313 while (blk_no
< log
->l_logBBsize
) {
5315 * Check for header wrapping around physical end-of-log
5317 offset
= hbp
->b_addr
;
5320 if (blk_no
+ hblks
<= log
->l_logBBsize
) {
5321 /* Read header in one read */
5322 error
= xlog_bread(log
, blk_no
, hblks
, hbp
,
5327 /* This LR is split across physical log end */
5328 if (blk_no
!= log
->l_logBBsize
) {
5329 /* some data before physical log end */
5330 ASSERT(blk_no
<= INT_MAX
);
5331 split_hblks
= log
->l_logBBsize
- (int)blk_no
;
5332 ASSERT(split_hblks
> 0);
5333 error
= xlog_bread(log
, blk_no
,
5341 * Note: this black magic still works with
5342 * large sector sizes (non-512) only because:
5343 * - we increased the buffer size originally
5344 * by 1 sector giving us enough extra space
5345 * for the second read;
5346 * - the log start is guaranteed to be sector
5348 * - we read the log end (LR header start)
5349 * _first_, then the log start (LR header end)
5350 * - order is important.
5352 wrapped_hblks
= hblks
- split_hblks
;
5353 error
= xlog_bread_offset(log
, 0,
5355 offset
+ BBTOB(split_hblks
));
5359 rhead
= (xlog_rec_header_t
*)offset
;
5360 error
= xlog_valid_rec_header(log
, rhead
,
5361 split_hblks
? blk_no
: 0);
5365 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
5368 /* Read in data for log record */
5369 if (blk_no
+ bblks
<= log
->l_logBBsize
) {
5370 error
= xlog_bread(log
, blk_no
, bblks
, dbp
,
5375 /* This log record is split across the
5376 * physical end of log */
5377 offset
= dbp
->b_addr
;
5379 if (blk_no
!= log
->l_logBBsize
) {
5380 /* some data is before the physical
5382 ASSERT(!wrapped_hblks
);
5383 ASSERT(blk_no
<= INT_MAX
);
5385 log
->l_logBBsize
- (int)blk_no
;
5386 ASSERT(split_bblks
> 0);
5387 error
= xlog_bread(log
, blk_no
,
5395 * Note: this black magic still works with
5396 * large sector sizes (non-512) only because:
5397 * - we increased the buffer size originally
5398 * by 1 sector giving us enough extra space
5399 * for the second read;
5400 * - the log start is guaranteed to be sector
5402 * - we read the log end (LR header start)
5403 * _first_, then the log start (LR header end)
5404 * - order is important.
5406 error
= xlog_bread_offset(log
, 0,
5407 bblks
- split_bblks
, dbp
,
5408 offset
+ BBTOB(split_bblks
));
5413 error
= xlog_recover_process(log
, rhash
, rhead
, offset
,
5414 pass
, &buffer_list
);
5422 ASSERT(blk_no
>= log
->l_logBBsize
);
5423 blk_no
-= log
->l_logBBsize
;
5427 /* read first part of physical log */
5428 while (blk_no
< head_blk
) {
5429 error
= xlog_bread(log
, blk_no
, hblks
, hbp
, &offset
);
5433 rhead
= (xlog_rec_header_t
*)offset
;
5434 error
= xlog_valid_rec_header(log
, rhead
, blk_no
);
5438 /* blocks in data section */
5439 bblks
= (int)BTOBB(be32_to_cpu(rhead
->h_len
));
5440 error
= xlog_bread(log
, blk_no
+hblks
, bblks
, dbp
,
5445 error
= xlog_recover_process(log
, rhash
, rhead
, offset
, pass
,
5450 blk_no
+= bblks
+ hblks
;
5460 * Submit buffers that have been added from the last record processed,
5461 * regardless of error status.
5463 if (!list_empty(&buffer_list
))
5464 error2
= xfs_buf_delwri_submit(&buffer_list
);
5466 if (error
&& first_bad
)
5467 *first_bad
= rhead_blk
;
5469 return error
? error
: error2
;
5473 * Do the recovery of the log. We actually do this in two phases.
5474 * The two passes are necessary in order to implement the function
5475 * of cancelling a record written into the log. The first pass
5476 * determines those things which have been cancelled, and the
5477 * second pass replays log items normally except for those which
5478 * have been cancelled. The handling of the replay and cancellations
5479 * takes place in the log item type specific routines.
5481 * The table of items which have cancel records in the log is allocated
5482 * and freed at this level, since only here do we know when all of
5483 * the log recovery has been completed.
5486 xlog_do_log_recovery(
5488 xfs_daddr_t head_blk
,
5489 xfs_daddr_t tail_blk
)
5493 ASSERT(head_blk
!= tail_blk
);
5496 * First do a pass to find all of the cancelled buf log items.
5497 * Store them in the buf_cancel_table for use in the second pass.
5499 log
->l_buf_cancel_table
= kmem_zalloc(XLOG_BC_TABLE_SIZE
*
5500 sizeof(struct list_head
),
5502 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
5503 INIT_LIST_HEAD(&log
->l_buf_cancel_table
[i
]);
5505 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
5506 XLOG_RECOVER_PASS1
, NULL
);
5508 kmem_free(log
->l_buf_cancel_table
);
5509 log
->l_buf_cancel_table
= NULL
;
5513 * Then do a second pass to actually recover the items in the log.
5514 * When it is complete free the table of buf cancel items.
5516 error
= xlog_do_recovery_pass(log
, head_blk
, tail_blk
,
5517 XLOG_RECOVER_PASS2
, NULL
);
5522 for (i
= 0; i
< XLOG_BC_TABLE_SIZE
; i
++)
5523 ASSERT(list_empty(&log
->l_buf_cancel_table
[i
]));
5527 kmem_free(log
->l_buf_cancel_table
);
5528 log
->l_buf_cancel_table
= NULL
;
5534 * Do the actual recovery
5539 xfs_daddr_t head_blk
,
5540 xfs_daddr_t tail_blk
)
5542 struct xfs_mount
*mp
= log
->l_mp
;
5548 * First replay the images in the log.
5550 error
= xlog_do_log_recovery(log
, head_blk
, tail_blk
);
5555 * If IO errors happened during recovery, bail out.
5557 if (XFS_FORCED_SHUTDOWN(mp
)) {
5562 * We now update the tail_lsn since much of the recovery has completed
5563 * and there may be space available to use. If there were no extent
5564 * or iunlinks, we can free up the entire log and set the tail_lsn to
5565 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5566 * lsn of the last known good LR on disk. If there are extent frees
5567 * or iunlinks they will have some entries in the AIL; so we look at
5568 * the AIL to determine how to set the tail_lsn.
5570 xlog_assign_tail_lsn(mp
);
5573 * Now that we've finished replaying all buffer and inode
5574 * updates, re-read in the superblock and reverify it.
5576 bp
= xfs_getsb(mp
, 0);
5577 bp
->b_flags
&= ~(XBF_DONE
| XBF_ASYNC
);
5578 ASSERT(!(bp
->b_flags
& XBF_WRITE
));
5579 bp
->b_flags
|= XBF_READ
;
5580 bp
->b_ops
= &xfs_sb_buf_ops
;
5582 error
= xfs_buf_submit_wait(bp
);
5584 if (!XFS_FORCED_SHUTDOWN(mp
)) {
5585 xfs_buf_ioerror_alert(bp
, __func__
);
5592 /* Convert superblock from on-disk format */
5594 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
5597 /* re-initialise in-core superblock and geometry structures */
5598 xfs_reinit_percpu_counters(mp
);
5599 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
5601 xfs_warn(mp
, "Failed post-recovery per-ag init: %d", error
);
5604 mp
->m_alloc_set_aside
= xfs_alloc_set_aside(mp
);
5606 xlog_recover_check_summary(log
);
5608 /* Normal transactions can now occur */
5609 log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
5614 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5616 * Return error or zero.
5622 xfs_daddr_t head_blk
, tail_blk
;
5625 /* find the tail of the log */
5626 error
= xlog_find_tail(log
, &head_blk
, &tail_blk
);
5631 * The superblock was read before the log was available and thus the LSN
5632 * could not be verified. Check the superblock LSN against the current
5633 * LSN now that it's known.
5635 if (xfs_sb_version_hascrc(&log
->l_mp
->m_sb
) &&
5636 !xfs_log_check_lsn(log
->l_mp
, log
->l_mp
->m_sb
.sb_lsn
))
5639 if (tail_blk
!= head_blk
) {
5640 /* There used to be a comment here:
5642 * disallow recovery on read-only mounts. note -- mount
5643 * checks for ENOSPC and turns it into an intelligent
5645 * ...but this is no longer true. Now, unless you specify
5646 * NORECOVERY (in which case this function would never be
5647 * called), we just go ahead and recover. We do this all
5648 * under the vfs layer, so we can get away with it unless
5649 * the device itself is read-only, in which case we fail.
5651 if ((error
= xfs_dev_is_read_only(log
->l_mp
, "recovery"))) {
5656 * Version 5 superblock log feature mask validation. We know the
5657 * log is dirty so check if there are any unknown log features
5658 * in what we need to recover. If there are unknown features
5659 * (e.g. unsupported transactions, then simply reject the
5660 * attempt at recovery before touching anything.
5662 if (XFS_SB_VERSION_NUM(&log
->l_mp
->m_sb
) == XFS_SB_VERSION_5
&&
5663 xfs_sb_has_incompat_log_feature(&log
->l_mp
->m_sb
,
5664 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
)) {
5666 "Superblock has unknown incompatible log features (0x%x) enabled.",
5667 (log
->l_mp
->m_sb
.sb_features_log_incompat
&
5668 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN
));
5670 "The log can not be fully and/or safely recovered by this kernel.");
5672 "Please recover the log on a kernel that supports the unknown features.");
5677 * Delay log recovery if the debug hook is set. This is debug
5678 * instrumention to coordinate simulation of I/O failures with
5681 if (xfs_globals
.log_recovery_delay
) {
5682 xfs_notice(log
->l_mp
,
5683 "Delaying log recovery for %d seconds.",
5684 xfs_globals
.log_recovery_delay
);
5685 msleep(xfs_globals
.log_recovery_delay
* 1000);
5688 xfs_notice(log
->l_mp
, "Starting recovery (logdev: %s)",
5689 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5692 error
= xlog_do_recover(log
, head_blk
, tail_blk
);
5693 log
->l_flags
|= XLOG_RECOVERY_NEEDED
;
5699 * In the first part of recovery we replay inodes and buffers and build
5700 * up the list of extent free items which need to be processed. Here
5701 * we process the extent free items and clean up the on disk unlinked
5702 * inode lists. This is separated from the first part of recovery so
5703 * that the root and real-time bitmap inodes can be read in from disk in
5704 * between the two stages. This is necessary so that we can free space
5705 * in the real-time portion of the file system.
5708 xlog_recover_finish(
5712 * Now we're ready to do the transactions needed for the
5713 * rest of recovery. Start with completing all the extent
5714 * free intent records and then process the unlinked inode
5715 * lists. At this point, we essentially run in normal mode
5716 * except that we're still performing recovery actions
5717 * rather than accepting new requests.
5719 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
) {
5721 error
= xlog_recover_process_intents(log
);
5723 xfs_alert(log
->l_mp
, "Failed to recover intents");
5728 * Sync the log to get all the intents out of the AIL.
5729 * This isn't absolutely necessary, but it helps in
5730 * case the unlink transactions would have problems
5731 * pushing the intents out of the way.
5733 xfs_log_force(log
->l_mp
, XFS_LOG_SYNC
);
5735 xlog_recover_process_iunlinks(log
);
5737 xlog_recover_check_summary(log
);
5739 xfs_notice(log
->l_mp
, "Ending recovery (logdev: %s)",
5740 log
->l_mp
->m_logname
? log
->l_mp
->m_logname
5742 log
->l_flags
&= ~XLOG_RECOVERY_NEEDED
;
5744 xfs_info(log
->l_mp
, "Ending clean mount");
5750 xlog_recover_cancel(
5755 if (log
->l_flags
& XLOG_RECOVERY_NEEDED
)
5756 error
= xlog_recover_cancel_intents(log
);
5763 * Read all of the agf and agi counters and check that they
5764 * are consistent with the superblock counters.
5767 xlog_recover_check_summary(
5774 xfs_agnumber_t agno
;
5775 __uint64_t freeblks
;
5785 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
5786 error
= xfs_read_agf(mp
, NULL
, agno
, 0, &agfbp
);
5788 xfs_alert(mp
, "%s agf read failed agno %d error %d",
5789 __func__
, agno
, error
);
5791 agfp
= XFS_BUF_TO_AGF(agfbp
);
5792 freeblks
+= be32_to_cpu(agfp
->agf_freeblks
) +
5793 be32_to_cpu(agfp
->agf_flcount
);
5794 xfs_buf_relse(agfbp
);
5797 error
= xfs_read_agi(mp
, NULL
, agno
, &agibp
);
5799 xfs_alert(mp
, "%s agi read failed agno %d error %d",
5800 __func__
, agno
, error
);
5802 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agibp
);
5804 itotal
+= be32_to_cpu(agi
->agi_count
);
5805 ifree
+= be32_to_cpu(agi
->agi_freecount
);
5806 xfs_buf_relse(agibp
);