2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_RAW_SPINLOCK(kvm_lock
);
76 static cpumask_var_t cpus_hardware_enabled
;
77 static int kvm_usage_count
= 0;
78 static atomic_t hardware_enable_failed
;
80 struct kmem_cache
*kvm_vcpu_cache
;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
83 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
85 struct dentry
*kvm_debugfs_dir
;
87 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
90 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
96 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
99 EXPORT_SYMBOL_GPL(kvm_rebooting
);
101 static bool largepages_enabled
= true;
103 static struct page
*hwpoison_page
;
104 static pfn_t hwpoison_pfn
;
106 struct page
*fault_page
;
109 inline int kvm_is_mmio_pfn(pfn_t pfn
)
111 if (pfn_valid(pfn
)) {
113 struct page
*tail
= pfn_to_page(pfn
);
114 struct page
*head
= compound_trans_head(tail
);
115 reserved
= PageReserved(head
);
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
131 return PageReserved(tail
);
138 * Switches to specified vcpu, until a matching vcpu_put()
140 void vcpu_load(struct kvm_vcpu
*vcpu
)
144 mutex_lock(&vcpu
->mutex
);
145 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
146 /* The thread running this VCPU changed. */
147 struct pid
*oldpid
= vcpu
->pid
;
148 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
149 rcu_assign_pointer(vcpu
->pid
, newpid
);
154 preempt_notifier_register(&vcpu
->preempt_notifier
);
155 kvm_arch_vcpu_load(vcpu
, cpu
);
159 void vcpu_put(struct kvm_vcpu
*vcpu
)
162 kvm_arch_vcpu_put(vcpu
);
163 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
165 mutex_unlock(&vcpu
->mutex
);
168 static void ack_flush(void *_completed
)
172 static bool make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
177 struct kvm_vcpu
*vcpu
;
179 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
182 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
183 kvm_make_request(req
, vcpu
);
186 /* Set ->requests bit before we read ->mode */
189 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
190 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
191 cpumask_set_cpu(cpu
, cpus
);
193 if (unlikely(cpus
== NULL
))
194 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
195 else if (!cpumask_empty(cpus
))
196 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
200 free_cpumask_var(cpus
);
204 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
206 int dirty_count
= kvm
->tlbs_dirty
;
209 if (make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
210 ++kvm
->stat
.remote_tlb_flush
;
211 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
214 void kvm_reload_remote_mmus(struct kvm
*kvm
)
216 make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
219 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
224 mutex_init(&vcpu
->mutex
);
229 init_waitqueue_head(&vcpu
->wq
);
230 kvm_async_pf_vcpu_init(vcpu
);
232 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
237 vcpu
->run
= page_address(page
);
239 r
= kvm_arch_vcpu_init(vcpu
);
245 free_page((unsigned long)vcpu
->run
);
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
251 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
254 kvm_arch_vcpu_uninit(vcpu
);
255 free_page((unsigned long)vcpu
->run
);
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
262 return container_of(mn
, struct kvm
, mmu_notifier
);
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
266 struct mm_struct
*mm
,
267 unsigned long address
)
269 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
270 int need_tlb_flush
, idx
;
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
290 idx
= srcu_read_lock(&kvm
->srcu
);
291 spin_lock(&kvm
->mmu_lock
);
293 kvm
->mmu_notifier_seq
++;
294 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
295 /* we've to flush the tlb before the pages can be freed */
297 kvm_flush_remote_tlbs(kvm
);
299 spin_unlock(&kvm
->mmu_lock
);
300 srcu_read_unlock(&kvm
->srcu
, idx
);
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
304 struct mm_struct
*mm
,
305 unsigned long address
,
308 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
311 idx
= srcu_read_lock(&kvm
->srcu
);
312 spin_lock(&kvm
->mmu_lock
);
313 kvm
->mmu_notifier_seq
++;
314 kvm_set_spte_hva(kvm
, address
, pte
);
315 spin_unlock(&kvm
->mmu_lock
);
316 srcu_read_unlock(&kvm
->srcu
, idx
);
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
320 struct mm_struct
*mm
,
324 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
325 int need_tlb_flush
= 0, idx
;
327 idx
= srcu_read_lock(&kvm
->srcu
);
328 spin_lock(&kvm
->mmu_lock
);
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
334 kvm
->mmu_notifier_count
++;
335 for (; start
< end
; start
+= PAGE_SIZE
)
336 need_tlb_flush
|= kvm_unmap_hva(kvm
, start
);
337 need_tlb_flush
|= kvm
->tlbs_dirty
;
338 /* we've to flush the tlb before the pages can be freed */
340 kvm_flush_remote_tlbs(kvm
);
342 spin_unlock(&kvm
->mmu_lock
);
343 srcu_read_unlock(&kvm
->srcu
, idx
);
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
347 struct mm_struct
*mm
,
351 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
353 spin_lock(&kvm
->mmu_lock
);
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
359 kvm
->mmu_notifier_seq
++;
361 * The above sequence increase must be visible before the
362 * below count decrease but both values are read by the kvm
363 * page fault under mmu_lock spinlock so we don't need to add
364 * a smb_wmb() here in between the two.
366 kvm
->mmu_notifier_count
--;
367 spin_unlock(&kvm
->mmu_lock
);
369 BUG_ON(kvm
->mmu_notifier_count
< 0);
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
373 struct mm_struct
*mm
,
374 unsigned long address
)
376 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
379 idx
= srcu_read_lock(&kvm
->srcu
);
380 spin_lock(&kvm
->mmu_lock
);
382 young
= kvm_age_hva(kvm
, address
);
384 kvm_flush_remote_tlbs(kvm
);
386 spin_unlock(&kvm
->mmu_lock
);
387 srcu_read_unlock(&kvm
->srcu
, idx
);
392 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
393 struct mm_struct
*mm
,
394 unsigned long address
)
396 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
399 idx
= srcu_read_lock(&kvm
->srcu
);
400 spin_lock(&kvm
->mmu_lock
);
401 young
= kvm_test_age_hva(kvm
, address
);
402 spin_unlock(&kvm
->mmu_lock
);
403 srcu_read_unlock(&kvm
->srcu
, idx
);
408 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
409 struct mm_struct
*mm
)
411 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
414 idx
= srcu_read_lock(&kvm
->srcu
);
415 kvm_arch_flush_shadow(kvm
);
416 srcu_read_unlock(&kvm
->srcu
, idx
);
419 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
420 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
421 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
422 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
423 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
424 .test_young
= kvm_mmu_notifier_test_young
,
425 .change_pte
= kvm_mmu_notifier_change_pte
,
426 .release
= kvm_mmu_notifier_release
,
429 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
431 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
432 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
435 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
437 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
442 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
444 static struct kvm
*kvm_create_vm(void)
447 struct kvm
*kvm
= kvm_arch_alloc_vm();
450 return ERR_PTR(-ENOMEM
);
452 r
= kvm_arch_init_vm(kvm
);
454 goto out_err_nodisable
;
456 r
= hardware_enable_all();
458 goto out_err_nodisable
;
460 #ifdef CONFIG_HAVE_KVM_IRQCHIP
461 INIT_HLIST_HEAD(&kvm
->mask_notifier_list
);
462 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
466 kvm
->memslots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
469 if (init_srcu_struct(&kvm
->srcu
))
471 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
472 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
478 spin_lock_init(&kvm
->mmu_lock
);
479 kvm
->mm
= current
->mm
;
480 atomic_inc(&kvm
->mm
->mm_count
);
481 kvm_eventfd_init(kvm
);
482 mutex_init(&kvm
->lock
);
483 mutex_init(&kvm
->irq_lock
);
484 mutex_init(&kvm
->slots_lock
);
485 atomic_set(&kvm
->users_count
, 1);
487 r
= kvm_init_mmu_notifier(kvm
);
491 raw_spin_lock(&kvm_lock
);
492 list_add(&kvm
->vm_list
, &vm_list
);
493 raw_spin_unlock(&kvm_lock
);
498 cleanup_srcu_struct(&kvm
->srcu
);
500 hardware_disable_all();
502 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
503 kfree(kvm
->buses
[i
]);
504 kfree(kvm
->memslots
);
505 kvm_arch_free_vm(kvm
);
509 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
511 if (!memslot
->dirty_bitmap
)
514 if (2 * kvm_dirty_bitmap_bytes(memslot
) > PAGE_SIZE
)
515 vfree(memslot
->dirty_bitmap_head
);
517 kfree(memslot
->dirty_bitmap_head
);
519 memslot
->dirty_bitmap
= NULL
;
520 memslot
->dirty_bitmap_head
= NULL
;
524 * Free any memory in @free but not in @dont.
526 static void kvm_free_physmem_slot(struct kvm_memory_slot
*free
,
527 struct kvm_memory_slot
*dont
)
531 if (!dont
|| free
->rmap
!= dont
->rmap
)
534 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
535 kvm_destroy_dirty_bitmap(free
);
538 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
) {
539 if (!dont
|| free
->lpage_info
[i
] != dont
->lpage_info
[i
]) {
540 vfree(free
->lpage_info
[i
]);
541 free
->lpage_info
[i
] = NULL
;
549 void kvm_free_physmem(struct kvm
*kvm
)
552 struct kvm_memslots
*slots
= kvm
->memslots
;
554 for (i
= 0; i
< slots
->nmemslots
; ++i
)
555 kvm_free_physmem_slot(&slots
->memslots
[i
], NULL
);
557 kfree(kvm
->memslots
);
560 static void kvm_destroy_vm(struct kvm
*kvm
)
563 struct mm_struct
*mm
= kvm
->mm
;
565 kvm_arch_sync_events(kvm
);
566 raw_spin_lock(&kvm_lock
);
567 list_del(&kvm
->vm_list
);
568 raw_spin_unlock(&kvm_lock
);
569 kvm_free_irq_routing(kvm
);
570 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
571 kvm_io_bus_destroy(kvm
->buses
[i
]);
572 kvm_coalesced_mmio_free(kvm
);
573 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
574 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
576 kvm_arch_flush_shadow(kvm
);
578 kvm_arch_destroy_vm(kvm
);
579 kvm_free_physmem(kvm
);
580 cleanup_srcu_struct(&kvm
->srcu
);
581 kvm_arch_free_vm(kvm
);
582 hardware_disable_all();
586 void kvm_get_kvm(struct kvm
*kvm
)
588 atomic_inc(&kvm
->users_count
);
590 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
592 void kvm_put_kvm(struct kvm
*kvm
)
594 if (atomic_dec_and_test(&kvm
->users_count
))
597 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
600 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
602 struct kvm
*kvm
= filp
->private_data
;
604 kvm_irqfd_release(kvm
);
612 * Allocation size is twice as large as the actual dirty bitmap size.
613 * This makes it possible to do double buffering: see x86's
614 * kvm_vm_ioctl_get_dirty_log().
616 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
618 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
620 if (dirty_bytes
> PAGE_SIZE
)
621 memslot
->dirty_bitmap
= vzalloc(dirty_bytes
);
623 memslot
->dirty_bitmap
= kzalloc(dirty_bytes
, GFP_KERNEL
);
625 if (!memslot
->dirty_bitmap
)
628 memslot
->dirty_bitmap_head
= memslot
->dirty_bitmap
;
631 #endif /* !CONFIG_S390 */
634 * Allocate some memory and give it an address in the guest physical address
637 * Discontiguous memory is allowed, mostly for framebuffers.
639 * Must be called holding mmap_sem for write.
641 int __kvm_set_memory_region(struct kvm
*kvm
,
642 struct kvm_userspace_memory_region
*mem
,
647 unsigned long npages
;
649 struct kvm_memory_slot
*memslot
;
650 struct kvm_memory_slot old
, new;
651 struct kvm_memslots
*slots
, *old_memslots
;
654 /* General sanity checks */
655 if (mem
->memory_size
& (PAGE_SIZE
- 1))
657 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
659 /* We can read the guest memory with __xxx_user() later on. */
661 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
662 !access_ok(VERIFY_WRITE
,
663 (void __user
*)(unsigned long)mem
->userspace_addr
,
666 if (mem
->slot
>= KVM_MEMORY_SLOTS
+ KVM_PRIVATE_MEM_SLOTS
)
668 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
671 memslot
= &kvm
->memslots
->memslots
[mem
->slot
];
672 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
673 npages
= mem
->memory_size
>> PAGE_SHIFT
;
676 if (npages
> KVM_MEM_MAX_NR_PAGES
)
680 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
682 new = old
= *memslot
;
685 new.base_gfn
= base_gfn
;
687 new.flags
= mem
->flags
;
689 /* Disallow changing a memory slot's size. */
691 if (npages
&& old
.npages
&& npages
!= old
.npages
)
694 /* Check for overlaps */
696 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
697 struct kvm_memory_slot
*s
= &kvm
->memslots
->memslots
[i
];
699 if (s
== memslot
|| !s
->npages
)
701 if (!((base_gfn
+ npages
<= s
->base_gfn
) ||
702 (base_gfn
>= s
->base_gfn
+ s
->npages
)))
706 /* Free page dirty bitmap if unneeded */
707 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
708 new.dirty_bitmap
= NULL
;
712 /* Allocate if a slot is being created */
714 if (npages
&& !new.rmap
) {
715 new.rmap
= vzalloc(npages
* sizeof(*new.rmap
));
720 new.user_alloc
= user_alloc
;
721 new.userspace_addr
= mem
->userspace_addr
;
726 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
) {
732 /* Avoid unused variable warning if no large pages */
735 if (new.lpage_info
[i
])
738 lpages
= 1 + ((base_gfn
+ npages
- 1)
739 >> KVM_HPAGE_GFN_SHIFT(level
));
740 lpages
-= base_gfn
>> KVM_HPAGE_GFN_SHIFT(level
);
742 new.lpage_info
[i
] = vzalloc(lpages
* sizeof(*new.lpage_info
[i
]));
744 if (!new.lpage_info
[i
])
747 if (base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
748 new.lpage_info
[i
][0].write_count
= 1;
749 if ((base_gfn
+npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
750 new.lpage_info
[i
][lpages
- 1].write_count
= 1;
751 ugfn
= new.userspace_addr
>> PAGE_SHIFT
;
753 * If the gfn and userspace address are not aligned wrt each
754 * other, or if explicitly asked to, disable large page
755 * support for this slot
757 if ((base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
759 for (j
= 0; j
< lpages
; ++j
)
760 new.lpage_info
[i
][j
].write_count
= 1;
765 /* Allocate page dirty bitmap if needed */
766 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
767 if (kvm_create_dirty_bitmap(&new) < 0)
769 /* destroy any largepage mappings for dirty tracking */
771 #else /* not defined CONFIG_S390 */
772 new.user_alloc
= user_alloc
;
774 new.userspace_addr
= mem
->userspace_addr
;
775 #endif /* not defined CONFIG_S390 */
779 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
782 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
783 if (mem
->slot
>= slots
->nmemslots
)
784 slots
->nmemslots
= mem
->slot
+ 1;
786 slots
->memslots
[mem
->slot
].flags
|= KVM_MEMSLOT_INVALID
;
788 old_memslots
= kvm
->memslots
;
789 rcu_assign_pointer(kvm
->memslots
, slots
);
790 synchronize_srcu_expedited(&kvm
->srcu
);
791 /* From this point no new shadow pages pointing to a deleted
792 * memslot will be created.
794 * validation of sp->gfn happens in:
795 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
796 * - kvm_is_visible_gfn (mmu_check_roots)
798 kvm_arch_flush_shadow(kvm
);
802 r
= kvm_arch_prepare_memory_region(kvm
, &new, old
, mem
, user_alloc
);
806 /* map/unmap the pages in iommu page table */
808 r
= kvm_iommu_map_pages(kvm
, &new);
812 kvm_iommu_unmap_pages(kvm
, &old
);
815 slots
= kzalloc(sizeof(struct kvm_memslots
), GFP_KERNEL
);
818 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
819 if (mem
->slot
>= slots
->nmemslots
)
820 slots
->nmemslots
= mem
->slot
+ 1;
823 /* actual memory is freed via old in kvm_free_physmem_slot below */
826 new.dirty_bitmap
= NULL
;
827 for (i
= 0; i
< KVM_NR_PAGE_SIZES
- 1; ++i
)
828 new.lpage_info
[i
] = NULL
;
831 slots
->memslots
[mem
->slot
] = new;
832 old_memslots
= kvm
->memslots
;
833 rcu_assign_pointer(kvm
->memslots
, slots
);
834 synchronize_srcu_expedited(&kvm
->srcu
);
836 kvm_arch_commit_memory_region(kvm
, mem
, old
, user_alloc
);
839 * If the new memory slot is created, we need to clear all
842 if (npages
&& old
.base_gfn
!= mem
->guest_phys_addr
>> PAGE_SHIFT
)
843 kvm_arch_flush_shadow(kvm
);
845 kvm_free_physmem_slot(&old
, &new);
851 kvm_free_physmem_slot(&new, &old
);
856 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
858 int kvm_set_memory_region(struct kvm
*kvm
,
859 struct kvm_userspace_memory_region
*mem
,
864 mutex_lock(&kvm
->slots_lock
);
865 r
= __kvm_set_memory_region(kvm
, mem
, user_alloc
);
866 mutex_unlock(&kvm
->slots_lock
);
869 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
871 int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
873 kvm_userspace_memory_region
*mem
,
876 if (mem
->slot
>= KVM_MEMORY_SLOTS
)
878 return kvm_set_memory_region(kvm
, mem
, user_alloc
);
881 int kvm_get_dirty_log(struct kvm
*kvm
,
882 struct kvm_dirty_log
*log
, int *is_dirty
)
884 struct kvm_memory_slot
*memslot
;
887 unsigned long any
= 0;
890 if (log
->slot
>= KVM_MEMORY_SLOTS
)
893 memslot
= &kvm
->memslots
->memslots
[log
->slot
];
895 if (!memslot
->dirty_bitmap
)
898 n
= kvm_dirty_bitmap_bytes(memslot
);
900 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
901 any
= memslot
->dirty_bitmap
[i
];
904 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
915 void kvm_disable_largepages(void)
917 largepages_enabled
= false;
919 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
921 int is_error_page(struct page
*page
)
923 return page
== bad_page
|| page
== hwpoison_page
|| page
== fault_page
;
925 EXPORT_SYMBOL_GPL(is_error_page
);
927 int is_error_pfn(pfn_t pfn
)
929 return pfn
== bad_pfn
|| pfn
== hwpoison_pfn
|| pfn
== fault_pfn
;
931 EXPORT_SYMBOL_GPL(is_error_pfn
);
933 int is_hwpoison_pfn(pfn_t pfn
)
935 return pfn
== hwpoison_pfn
;
937 EXPORT_SYMBOL_GPL(is_hwpoison_pfn
);
939 int is_fault_pfn(pfn_t pfn
)
941 return pfn
== fault_pfn
;
943 EXPORT_SYMBOL_GPL(is_fault_pfn
);
945 int is_noslot_pfn(pfn_t pfn
)
947 return pfn
== bad_pfn
;
949 EXPORT_SYMBOL_GPL(is_noslot_pfn
);
951 int is_invalid_pfn(pfn_t pfn
)
953 return pfn
== hwpoison_pfn
|| pfn
== fault_pfn
;
955 EXPORT_SYMBOL_GPL(is_invalid_pfn
);
957 static inline unsigned long bad_hva(void)
962 int kvm_is_error_hva(unsigned long addr
)
964 return addr
== bad_hva();
966 EXPORT_SYMBOL_GPL(kvm_is_error_hva
);
968 static struct kvm_memory_slot
*__gfn_to_memslot(struct kvm_memslots
*slots
,
973 for (i
= 0; i
< slots
->nmemslots
; ++i
) {
974 struct kvm_memory_slot
*memslot
= &slots
->memslots
[i
];
976 if (gfn
>= memslot
->base_gfn
977 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
983 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
985 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
987 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
989 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
992 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
994 for (i
= 0; i
< KVM_MEMORY_SLOTS
; ++i
) {
995 struct kvm_memory_slot
*memslot
= &slots
->memslots
[i
];
997 if (memslot
->flags
& KVM_MEMSLOT_INVALID
)
1000 if (gfn
>= memslot
->base_gfn
1001 && gfn
< memslot
->base_gfn
+ memslot
->npages
)
1006 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1008 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1010 struct vm_area_struct
*vma
;
1011 unsigned long addr
, size
;
1015 addr
= gfn_to_hva(kvm
, gfn
);
1016 if (kvm_is_error_hva(addr
))
1019 down_read(¤t
->mm
->mmap_sem
);
1020 vma
= find_vma(current
->mm
, addr
);
1024 size
= vma_kernel_pagesize(vma
);
1027 up_read(¤t
->mm
->mmap_sem
);
1032 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1035 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1039 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1041 return gfn_to_hva_memslot(slot
, gfn
);
1044 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1046 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1048 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1050 static pfn_t
get_fault_pfn(void)
1052 get_page(fault_page
);
1056 int get_user_page_nowait(struct task_struct
*tsk
, struct mm_struct
*mm
,
1057 unsigned long start
, int write
, struct page
**page
)
1059 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1062 flags
|= FOLL_WRITE
;
1064 return __get_user_pages(tsk
, mm
, start
, 1, flags
, page
, NULL
, NULL
);
1067 static inline int check_user_page_hwpoison(unsigned long addr
)
1069 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1071 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1072 flags
, NULL
, NULL
, NULL
);
1073 return rc
== -EHWPOISON
;
1076 static pfn_t
hva_to_pfn(struct kvm
*kvm
, unsigned long addr
, bool atomic
,
1077 bool *async
, bool write_fault
, bool *writable
)
1079 struct page
*page
[1];
1083 /* we can do it either atomically or asynchronously, not both */
1084 BUG_ON(atomic
&& async
);
1086 BUG_ON(!write_fault
&& !writable
);
1091 if (atomic
|| async
)
1092 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1094 if (unlikely(npages
!= 1) && !atomic
) {
1098 *writable
= write_fault
;
1101 down_read(¤t
->mm
->mmap_sem
);
1102 npages
= get_user_page_nowait(current
, current
->mm
,
1103 addr
, write_fault
, page
);
1104 up_read(¤t
->mm
->mmap_sem
);
1106 npages
= get_user_pages_fast(addr
, 1, write_fault
,
1109 /* map read fault as writable if possible */
1110 if (unlikely(!write_fault
) && npages
== 1) {
1111 struct page
*wpage
[1];
1113 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1123 if (unlikely(npages
!= 1)) {
1124 struct vm_area_struct
*vma
;
1127 return get_fault_pfn();
1129 down_read(¤t
->mm
->mmap_sem
);
1130 if (npages
== -EHWPOISON
||
1131 (!async
&& check_user_page_hwpoison(addr
))) {
1132 up_read(¤t
->mm
->mmap_sem
);
1133 get_page(hwpoison_page
);
1134 return page_to_pfn(hwpoison_page
);
1137 vma
= find_vma_intersection(current
->mm
, addr
, addr
+1);
1140 pfn
= get_fault_pfn();
1141 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1142 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1144 BUG_ON(!kvm_is_mmio_pfn(pfn
));
1146 if (async
&& (vma
->vm_flags
& VM_WRITE
))
1148 pfn
= get_fault_pfn();
1150 up_read(¤t
->mm
->mmap_sem
);
1152 pfn
= page_to_pfn(page
[0]);
1157 pfn_t
hva_to_pfn_atomic(struct kvm
*kvm
, unsigned long addr
)
1159 return hva_to_pfn(kvm
, addr
, true, NULL
, true, NULL
);
1161 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic
);
1163 static pfn_t
__gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
, bool atomic
, bool *async
,
1164 bool write_fault
, bool *writable
)
1171 addr
= gfn_to_hva(kvm
, gfn
);
1172 if (kvm_is_error_hva(addr
)) {
1174 return page_to_pfn(bad_page
);
1177 return hva_to_pfn(kvm
, addr
, atomic
, async
, write_fault
, writable
);
1180 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1182 return __gfn_to_pfn(kvm
, gfn
, true, NULL
, true, NULL
);
1184 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1186 pfn_t
gfn_to_pfn_async(struct kvm
*kvm
, gfn_t gfn
, bool *async
,
1187 bool write_fault
, bool *writable
)
1189 return __gfn_to_pfn(kvm
, gfn
, false, async
, write_fault
, writable
);
1191 EXPORT_SYMBOL_GPL(gfn_to_pfn_async
);
1193 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1195 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, true, NULL
);
1197 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1199 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1202 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, write_fault
, writable
);
1204 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1206 pfn_t
gfn_to_pfn_memslot(struct kvm
*kvm
,
1207 struct kvm_memory_slot
*slot
, gfn_t gfn
)
1209 unsigned long addr
= gfn_to_hva_memslot(slot
, gfn
);
1210 return hva_to_pfn(kvm
, addr
, false, NULL
, true, NULL
);
1213 int gfn_to_page_many_atomic(struct kvm
*kvm
, gfn_t gfn
, struct page
**pages
,
1219 addr
= gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, &entry
);
1220 if (kvm_is_error_hva(addr
))
1223 if (entry
< nr_pages
)
1226 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1228 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1230 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1234 pfn
= gfn_to_pfn(kvm
, gfn
);
1235 if (!kvm_is_mmio_pfn(pfn
))
1236 return pfn_to_page(pfn
);
1238 WARN_ON(kvm_is_mmio_pfn(pfn
));
1244 EXPORT_SYMBOL_GPL(gfn_to_page
);
1246 void kvm_release_page_clean(struct page
*page
)
1248 kvm_release_pfn_clean(page_to_pfn(page
));
1250 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1252 void kvm_release_pfn_clean(pfn_t pfn
)
1254 if (!kvm_is_mmio_pfn(pfn
))
1255 put_page(pfn_to_page(pfn
));
1257 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1259 void kvm_release_page_dirty(struct page
*page
)
1261 kvm_release_pfn_dirty(page_to_pfn(page
));
1263 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1265 void kvm_release_pfn_dirty(pfn_t pfn
)
1267 kvm_set_pfn_dirty(pfn
);
1268 kvm_release_pfn_clean(pfn
);
1270 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty
);
1272 void kvm_set_page_dirty(struct page
*page
)
1274 kvm_set_pfn_dirty(page_to_pfn(page
));
1276 EXPORT_SYMBOL_GPL(kvm_set_page_dirty
);
1278 void kvm_set_pfn_dirty(pfn_t pfn
)
1280 if (!kvm_is_mmio_pfn(pfn
)) {
1281 struct page
*page
= pfn_to_page(pfn
);
1282 if (!PageReserved(page
))
1286 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1288 void kvm_set_pfn_accessed(pfn_t pfn
)
1290 if (!kvm_is_mmio_pfn(pfn
))
1291 mark_page_accessed(pfn_to_page(pfn
));
1293 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1295 void kvm_get_pfn(pfn_t pfn
)
1297 if (!kvm_is_mmio_pfn(pfn
))
1298 get_page(pfn_to_page(pfn
));
1300 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1302 static int next_segment(unsigned long len
, int offset
)
1304 if (len
> PAGE_SIZE
- offset
)
1305 return PAGE_SIZE
- offset
;
1310 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1316 addr
= gfn_to_hva(kvm
, gfn
);
1317 if (kvm_is_error_hva(addr
))
1319 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1324 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1326 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1328 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1330 int offset
= offset_in_page(gpa
);
1333 while ((seg
= next_segment(len
, offset
)) != 0) {
1334 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1344 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1346 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1351 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1352 int offset
= offset_in_page(gpa
);
1354 addr
= gfn_to_hva(kvm
, gfn
);
1355 if (kvm_is_error_hva(addr
))
1357 pagefault_disable();
1358 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1364 EXPORT_SYMBOL(kvm_read_guest_atomic
);
1366 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1367 int offset
, int len
)
1372 addr
= gfn_to_hva(kvm
, gfn
);
1373 if (kvm_is_error_hva(addr
))
1375 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1378 mark_page_dirty(kvm
, gfn
);
1381 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1383 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1386 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1388 int offset
= offset_in_page(gpa
);
1391 while ((seg
= next_segment(len
, offset
)) != 0) {
1392 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1403 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1406 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1407 int offset
= offset_in_page(gpa
);
1408 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1411 ghc
->generation
= slots
->generation
;
1412 ghc
->memslot
= __gfn_to_memslot(slots
, gfn
);
1413 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, gfn
, NULL
);
1414 if (!kvm_is_error_hva(ghc
->hva
))
1421 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1423 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1424 void *data
, unsigned long len
)
1426 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1429 if (slots
->generation
!= ghc
->generation
)
1430 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
);
1432 if (kvm_is_error_hva(ghc
->hva
))
1435 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1438 mark_page_dirty_in_slot(kvm
, ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1442 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1444 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1445 void *data
, unsigned long len
)
1447 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1450 if (slots
->generation
!= ghc
->generation
)
1451 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
);
1453 if (kvm_is_error_hva(ghc
->hva
))
1456 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1462 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1464 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1466 return kvm_write_guest_page(kvm
, gfn
, (const void *) empty_zero_page
,
1469 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1471 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1473 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1475 int offset
= offset_in_page(gpa
);
1478 while ((seg
= next_segment(len
, offset
)) != 0) {
1479 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1488 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1490 void mark_page_dirty_in_slot(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
1493 if (memslot
&& memslot
->dirty_bitmap
) {
1494 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1496 __set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1500 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1502 struct kvm_memory_slot
*memslot
;
1504 memslot
= gfn_to_memslot(kvm
, gfn
);
1505 mark_page_dirty_in_slot(kvm
, memslot
, gfn
);
1509 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1511 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1516 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
1518 if (kvm_arch_vcpu_runnable(vcpu
)) {
1519 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1522 if (kvm_cpu_has_pending_timer(vcpu
))
1524 if (signal_pending(current
))
1530 finish_wait(&vcpu
->wq
, &wait
);
1533 void kvm_resched(struct kvm_vcpu
*vcpu
)
1535 if (!need_resched())
1539 EXPORT_SYMBOL_GPL(kvm_resched
);
1541 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
1543 struct kvm
*kvm
= me
->kvm
;
1544 struct kvm_vcpu
*vcpu
;
1545 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
1551 * We boost the priority of a VCPU that is runnable but not
1552 * currently running, because it got preempted by something
1553 * else and called schedule in __vcpu_run. Hopefully that
1554 * VCPU is holding the lock that we need and will release it.
1555 * We approximate round-robin by starting at the last boosted VCPU.
1557 for (pass
= 0; pass
< 2 && !yielded
; pass
++) {
1558 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1559 struct task_struct
*task
= NULL
;
1561 if (!pass
&& i
< last_boosted_vcpu
) {
1562 i
= last_boosted_vcpu
;
1564 } else if (pass
&& i
> last_boosted_vcpu
)
1568 if (waitqueue_active(&vcpu
->wq
))
1571 pid
= rcu_dereference(vcpu
->pid
);
1573 task
= get_pid_task(vcpu
->pid
, PIDTYPE_PID
);
1577 if (task
->flags
& PF_VCPU
) {
1578 put_task_struct(task
);
1581 if (yield_to(task
, 1)) {
1582 put_task_struct(task
);
1583 kvm
->last_boosted_vcpu
= i
;
1587 put_task_struct(task
);
1591 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
1593 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1595 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
1598 if (vmf
->pgoff
== 0)
1599 page
= virt_to_page(vcpu
->run
);
1601 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
1602 page
= virt_to_page(vcpu
->arch
.pio_data
);
1604 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1605 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
1606 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
1609 return VM_FAULT_SIGBUS
;
1615 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
1616 .fault
= kvm_vcpu_fault
,
1619 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1621 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
1625 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
1627 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1629 kvm_put_kvm(vcpu
->kvm
);
1633 static struct file_operations kvm_vcpu_fops
= {
1634 .release
= kvm_vcpu_release
,
1635 .unlocked_ioctl
= kvm_vcpu_ioctl
,
1636 #ifdef CONFIG_COMPAT
1637 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
1639 .mmap
= kvm_vcpu_mmap
,
1640 .llseek
= noop_llseek
,
1644 * Allocates an inode for the vcpu.
1646 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
1648 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
);
1652 * Creates some virtual cpus. Good luck creating more than one.
1654 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
1657 struct kvm_vcpu
*vcpu
, *v
;
1659 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
1661 return PTR_ERR(vcpu
);
1663 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
1665 r
= kvm_arch_vcpu_setup(vcpu
);
1669 mutex_lock(&kvm
->lock
);
1670 if (!kvm_vcpu_compatible(vcpu
)) {
1672 goto unlock_vcpu_destroy
;
1674 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
1676 goto unlock_vcpu_destroy
;
1679 kvm_for_each_vcpu(r
, v
, kvm
)
1680 if (v
->vcpu_id
== id
) {
1682 goto unlock_vcpu_destroy
;
1685 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
1687 /* Now it's all set up, let userspace reach it */
1689 r
= create_vcpu_fd(vcpu
);
1692 goto unlock_vcpu_destroy
;
1695 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
1697 atomic_inc(&kvm
->online_vcpus
);
1699 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1700 if (kvm
->bsp_vcpu_id
== id
)
1701 kvm
->bsp_vcpu
= vcpu
;
1703 mutex_unlock(&kvm
->lock
);
1706 unlock_vcpu_destroy
:
1707 mutex_unlock(&kvm
->lock
);
1709 kvm_arch_vcpu_destroy(vcpu
);
1713 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
1716 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
1717 vcpu
->sigset_active
= 1;
1718 vcpu
->sigset
= *sigset
;
1720 vcpu
->sigset_active
= 0;
1724 static long kvm_vcpu_ioctl(struct file
*filp
,
1725 unsigned int ioctl
, unsigned long arg
)
1727 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1728 void __user
*argp
= (void __user
*)arg
;
1730 struct kvm_fpu
*fpu
= NULL
;
1731 struct kvm_sregs
*kvm_sregs
= NULL
;
1733 if (vcpu
->kvm
->mm
!= current
->mm
)
1736 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1738 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1739 * so vcpu_load() would break it.
1741 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_INTERRUPT
)
1742 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1752 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
1753 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
1755 case KVM_GET_REGS
: {
1756 struct kvm_regs
*kvm_regs
;
1759 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
1762 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
1766 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
1773 case KVM_SET_REGS
: {
1774 struct kvm_regs
*kvm_regs
;
1777 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
1781 if (copy_from_user(kvm_regs
, argp
, sizeof(struct kvm_regs
)))
1783 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
1791 case KVM_GET_SREGS
: {
1792 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
1796 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
1800 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
1805 case KVM_SET_SREGS
: {
1806 kvm_sregs
= kmalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
1811 if (copy_from_user(kvm_sregs
, argp
, sizeof(struct kvm_sregs
)))
1813 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
1819 case KVM_GET_MP_STATE
: {
1820 struct kvm_mp_state mp_state
;
1822 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
1826 if (copy_to_user(argp
, &mp_state
, sizeof mp_state
))
1831 case KVM_SET_MP_STATE
: {
1832 struct kvm_mp_state mp_state
;
1835 if (copy_from_user(&mp_state
, argp
, sizeof mp_state
))
1837 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
1843 case KVM_TRANSLATE
: {
1844 struct kvm_translation tr
;
1847 if (copy_from_user(&tr
, argp
, sizeof tr
))
1849 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
1853 if (copy_to_user(argp
, &tr
, sizeof tr
))
1858 case KVM_SET_GUEST_DEBUG
: {
1859 struct kvm_guest_debug dbg
;
1862 if (copy_from_user(&dbg
, argp
, sizeof dbg
))
1864 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
1870 case KVM_SET_SIGNAL_MASK
: {
1871 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
1872 struct kvm_signal_mask kvm_sigmask
;
1873 sigset_t sigset
, *p
;
1878 if (copy_from_user(&kvm_sigmask
, argp
,
1879 sizeof kvm_sigmask
))
1882 if (kvm_sigmask
.len
!= sizeof sigset
)
1885 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
1890 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
1894 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
1898 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
1902 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
1908 fpu
= kmalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
1913 if (copy_from_user(fpu
, argp
, sizeof(struct kvm_fpu
)))
1915 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
1922 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
1931 #ifdef CONFIG_COMPAT
1932 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
1933 unsigned int ioctl
, unsigned long arg
)
1935 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1936 void __user
*argp
= compat_ptr(arg
);
1939 if (vcpu
->kvm
->mm
!= current
->mm
)
1943 case KVM_SET_SIGNAL_MASK
: {
1944 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
1945 struct kvm_signal_mask kvm_sigmask
;
1946 compat_sigset_t csigset
;
1951 if (copy_from_user(&kvm_sigmask
, argp
,
1952 sizeof kvm_sigmask
))
1955 if (kvm_sigmask
.len
!= sizeof csigset
)
1958 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
1962 sigset_from_compat(&sigset
, &csigset
);
1963 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
1967 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
1975 static long kvm_vm_ioctl(struct file
*filp
,
1976 unsigned int ioctl
, unsigned long arg
)
1978 struct kvm
*kvm
= filp
->private_data
;
1979 void __user
*argp
= (void __user
*)arg
;
1982 if (kvm
->mm
!= current
->mm
)
1985 case KVM_CREATE_VCPU
:
1986 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
1990 case KVM_SET_USER_MEMORY_REGION
: {
1991 struct kvm_userspace_memory_region kvm_userspace_mem
;
1994 if (copy_from_user(&kvm_userspace_mem
, argp
,
1995 sizeof kvm_userspace_mem
))
1998 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
, 1);
2003 case KVM_GET_DIRTY_LOG
: {
2004 struct kvm_dirty_log log
;
2007 if (copy_from_user(&log
, argp
, sizeof log
))
2009 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2014 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2015 case KVM_REGISTER_COALESCED_MMIO
: {
2016 struct kvm_coalesced_mmio_zone zone
;
2018 if (copy_from_user(&zone
, argp
, sizeof zone
))
2020 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2026 case KVM_UNREGISTER_COALESCED_MMIO
: {
2027 struct kvm_coalesced_mmio_zone zone
;
2029 if (copy_from_user(&zone
, argp
, sizeof zone
))
2031 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2039 struct kvm_irqfd data
;
2042 if (copy_from_user(&data
, argp
, sizeof data
))
2044 r
= kvm_irqfd(kvm
, data
.fd
, data
.gsi
, data
.flags
);
2047 case KVM_IOEVENTFD
: {
2048 struct kvm_ioeventfd data
;
2051 if (copy_from_user(&data
, argp
, sizeof data
))
2053 r
= kvm_ioeventfd(kvm
, &data
);
2056 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2057 case KVM_SET_BOOT_CPU_ID
:
2059 mutex_lock(&kvm
->lock
);
2060 if (atomic_read(&kvm
->online_vcpus
) != 0)
2063 kvm
->bsp_vcpu_id
= arg
;
2064 mutex_unlock(&kvm
->lock
);
2068 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2070 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
2076 #ifdef CONFIG_COMPAT
2077 struct compat_kvm_dirty_log
{
2081 compat_uptr_t dirty_bitmap
; /* one bit per page */
2086 static long kvm_vm_compat_ioctl(struct file
*filp
,
2087 unsigned int ioctl
, unsigned long arg
)
2089 struct kvm
*kvm
= filp
->private_data
;
2092 if (kvm
->mm
!= current
->mm
)
2095 case KVM_GET_DIRTY_LOG
: {
2096 struct compat_kvm_dirty_log compat_log
;
2097 struct kvm_dirty_log log
;
2100 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2101 sizeof(compat_log
)))
2103 log
.slot
= compat_log
.slot
;
2104 log
.padding1
= compat_log
.padding1
;
2105 log
.padding2
= compat_log
.padding2
;
2106 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2108 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2114 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2122 static int kvm_vm_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2124 struct page
*page
[1];
2127 gfn_t gfn
= vmf
->pgoff
;
2128 struct kvm
*kvm
= vma
->vm_file
->private_data
;
2130 addr
= gfn_to_hva(kvm
, gfn
);
2131 if (kvm_is_error_hva(addr
))
2132 return VM_FAULT_SIGBUS
;
2134 npages
= get_user_pages(current
, current
->mm
, addr
, 1, 1, 0, page
,
2136 if (unlikely(npages
!= 1))
2137 return VM_FAULT_SIGBUS
;
2139 vmf
->page
= page
[0];
2143 static const struct vm_operations_struct kvm_vm_vm_ops
= {
2144 .fault
= kvm_vm_fault
,
2147 static int kvm_vm_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2149 vma
->vm_ops
= &kvm_vm_vm_ops
;
2153 static struct file_operations kvm_vm_fops
= {
2154 .release
= kvm_vm_release
,
2155 .unlocked_ioctl
= kvm_vm_ioctl
,
2156 #ifdef CONFIG_COMPAT
2157 .compat_ioctl
= kvm_vm_compat_ioctl
,
2159 .mmap
= kvm_vm_mmap
,
2160 .llseek
= noop_llseek
,
2163 static int kvm_dev_ioctl_create_vm(void)
2168 kvm
= kvm_create_vm();
2170 return PTR_ERR(kvm
);
2171 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2172 r
= kvm_coalesced_mmio_init(kvm
);
2178 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
);
2185 static long kvm_dev_ioctl_check_extension_generic(long arg
)
2188 case KVM_CAP_USER_MEMORY
:
2189 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2190 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2191 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2192 case KVM_CAP_SET_BOOT_CPU_ID
:
2194 case KVM_CAP_INTERNAL_ERROR_DATA
:
2196 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2197 case KVM_CAP_IRQ_ROUTING
:
2198 return KVM_MAX_IRQ_ROUTES
;
2203 return kvm_dev_ioctl_check_extension(arg
);
2206 static long kvm_dev_ioctl(struct file
*filp
,
2207 unsigned int ioctl
, unsigned long arg
)
2212 case KVM_GET_API_VERSION
:
2216 r
= KVM_API_VERSION
;
2222 r
= kvm_dev_ioctl_create_vm();
2224 case KVM_CHECK_EXTENSION
:
2225 r
= kvm_dev_ioctl_check_extension_generic(arg
);
2227 case KVM_GET_VCPU_MMAP_SIZE
:
2231 r
= PAGE_SIZE
; /* struct kvm_run */
2233 r
+= PAGE_SIZE
; /* pio data page */
2235 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2236 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
2239 case KVM_TRACE_ENABLE
:
2240 case KVM_TRACE_PAUSE
:
2241 case KVM_TRACE_DISABLE
:
2245 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
2251 static struct file_operations kvm_chardev_ops
= {
2252 .unlocked_ioctl
= kvm_dev_ioctl
,
2253 .compat_ioctl
= kvm_dev_ioctl
,
2254 .llseek
= noop_llseek
,
2257 static struct miscdevice kvm_dev
= {
2263 static void hardware_enable_nolock(void *junk
)
2265 int cpu
= raw_smp_processor_id();
2268 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2271 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
2273 r
= kvm_arch_hardware_enable(NULL
);
2276 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2277 atomic_inc(&hardware_enable_failed
);
2278 printk(KERN_INFO
"kvm: enabling virtualization on "
2279 "CPU%d failed\n", cpu
);
2283 static void hardware_enable(void *junk
)
2285 raw_spin_lock(&kvm_lock
);
2286 hardware_enable_nolock(junk
);
2287 raw_spin_unlock(&kvm_lock
);
2290 static void hardware_disable_nolock(void *junk
)
2292 int cpu
= raw_smp_processor_id();
2294 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2296 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2297 kvm_arch_hardware_disable(NULL
);
2300 static void hardware_disable(void *junk
)
2302 raw_spin_lock(&kvm_lock
);
2303 hardware_disable_nolock(junk
);
2304 raw_spin_unlock(&kvm_lock
);
2307 static void hardware_disable_all_nolock(void)
2309 BUG_ON(!kvm_usage_count
);
2312 if (!kvm_usage_count
)
2313 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2316 static void hardware_disable_all(void)
2318 raw_spin_lock(&kvm_lock
);
2319 hardware_disable_all_nolock();
2320 raw_spin_unlock(&kvm_lock
);
2323 static int hardware_enable_all(void)
2327 raw_spin_lock(&kvm_lock
);
2330 if (kvm_usage_count
== 1) {
2331 atomic_set(&hardware_enable_failed
, 0);
2332 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
2334 if (atomic_read(&hardware_enable_failed
)) {
2335 hardware_disable_all_nolock();
2340 raw_spin_unlock(&kvm_lock
);
2345 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2350 if (!kvm_usage_count
)
2353 val
&= ~CPU_TASKS_FROZEN
;
2356 printk(KERN_INFO
"kvm: disabling virtualization on CPU%d\n",
2358 hardware_disable(NULL
);
2361 printk(KERN_INFO
"kvm: enabling virtualization on CPU%d\n",
2363 hardware_enable(NULL
);
2370 asmlinkage
void kvm_spurious_fault(void)
2372 /* Fault while not rebooting. We want the trace. */
2375 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
2377 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2381 * Some (well, at least mine) BIOSes hang on reboot if
2384 * And Intel TXT required VMX off for all cpu when system shutdown.
2386 printk(KERN_INFO
"kvm: exiting hardware virtualization\n");
2387 kvm_rebooting
= true;
2388 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2392 static struct notifier_block kvm_reboot_notifier
= {
2393 .notifier_call
= kvm_reboot
,
2397 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
2401 for (i
= 0; i
< bus
->dev_count
; i
++) {
2402 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
2404 kvm_iodevice_destructor(pos
);
2409 int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
2411 const struct kvm_io_range
*r1
= p1
;
2412 const struct kvm_io_range
*r2
= p2
;
2414 if (r1
->addr
< r2
->addr
)
2416 if (r1
->addr
+ r1
->len
> r2
->addr
+ r2
->len
)
2421 int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
2422 gpa_t addr
, int len
)
2424 if (bus
->dev_count
== NR_IOBUS_DEVS
)
2427 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
2433 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
2434 kvm_io_bus_sort_cmp
, NULL
);
2439 int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
2440 gpa_t addr
, int len
)
2442 struct kvm_io_range
*range
, key
;
2445 key
= (struct kvm_io_range
) {
2450 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
2451 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
2455 off
= range
- bus
->range
;
2457 while (off
> 0 && kvm_io_bus_sort_cmp(&key
, &bus
->range
[off
-1]) == 0)
2463 /* kvm_io_bus_write - called under kvm->slots_lock */
2464 int kvm_io_bus_write(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2465 int len
, const void *val
)
2468 struct kvm_io_bus
*bus
;
2469 struct kvm_io_range range
;
2471 range
= (struct kvm_io_range
) {
2476 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2477 idx
= kvm_io_bus_get_first_dev(bus
, addr
, len
);
2481 while (idx
< bus
->dev_count
&&
2482 kvm_io_bus_sort_cmp(&range
, &bus
->range
[idx
]) == 0) {
2483 if (!kvm_iodevice_write(bus
->range
[idx
].dev
, addr
, len
, val
))
2491 /* kvm_io_bus_read - called under kvm->slots_lock */
2492 int kvm_io_bus_read(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2496 struct kvm_io_bus
*bus
;
2497 struct kvm_io_range range
;
2499 range
= (struct kvm_io_range
) {
2504 bus
= srcu_dereference(kvm
->buses
[bus_idx
], &kvm
->srcu
);
2505 idx
= kvm_io_bus_get_first_dev(bus
, addr
, len
);
2509 while (idx
< bus
->dev_count
&&
2510 kvm_io_bus_sort_cmp(&range
, &bus
->range
[idx
]) == 0) {
2511 if (!kvm_iodevice_read(bus
->range
[idx
].dev
, addr
, len
, val
))
2519 /* Caller must hold slots_lock. */
2520 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
2521 int len
, struct kvm_io_device
*dev
)
2523 struct kvm_io_bus
*new_bus
, *bus
;
2525 bus
= kvm
->buses
[bus_idx
];
2526 if (bus
->dev_count
> NR_IOBUS_DEVS
-1)
2529 new_bus
= kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL
);
2532 memcpy(new_bus
, bus
, sizeof(struct kvm_io_bus
));
2533 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
2534 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2535 synchronize_srcu_expedited(&kvm
->srcu
);
2541 /* Caller must hold slots_lock. */
2542 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
2543 struct kvm_io_device
*dev
)
2546 struct kvm_io_bus
*new_bus
, *bus
;
2548 new_bus
= kzalloc(sizeof(struct kvm_io_bus
), GFP_KERNEL
);
2552 bus
= kvm
->buses
[bus_idx
];
2553 memcpy(new_bus
, bus
, sizeof(struct kvm_io_bus
));
2556 for (i
= 0; i
< new_bus
->dev_count
; i
++)
2557 if (new_bus
->range
[i
].dev
== dev
) {
2559 new_bus
->dev_count
--;
2560 new_bus
->range
[i
] = new_bus
->range
[new_bus
->dev_count
];
2561 sort(new_bus
->range
, new_bus
->dev_count
,
2562 sizeof(struct kvm_io_range
),
2563 kvm_io_bus_sort_cmp
, NULL
);
2572 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
2573 synchronize_srcu_expedited(&kvm
->srcu
);
2578 static struct notifier_block kvm_cpu_notifier
= {
2579 .notifier_call
= kvm_cpu_hotplug
,
2582 static int vm_stat_get(void *_offset
, u64
*val
)
2584 unsigned offset
= (long)_offset
;
2588 raw_spin_lock(&kvm_lock
);
2589 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2590 *val
+= *(u32
*)((void *)kvm
+ offset
);
2591 raw_spin_unlock(&kvm_lock
);
2595 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
2597 static int vcpu_stat_get(void *_offset
, u64
*val
)
2599 unsigned offset
= (long)_offset
;
2601 struct kvm_vcpu
*vcpu
;
2605 raw_spin_lock(&kvm_lock
);
2606 list_for_each_entry(kvm
, &vm_list
, vm_list
)
2607 kvm_for_each_vcpu(i
, vcpu
, kvm
)
2608 *val
+= *(u32
*)((void *)vcpu
+ offset
);
2610 raw_spin_unlock(&kvm_lock
);
2614 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
2616 static const struct file_operations
*stat_fops
[] = {
2617 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
2618 [KVM_STAT_VM
] = &vm_stat_fops
,
2621 static void kvm_init_debug(void)
2623 struct kvm_stats_debugfs_item
*p
;
2625 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
2626 for (p
= debugfs_entries
; p
->name
; ++p
)
2627 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
2628 (void *)(long)p
->offset
,
2629 stat_fops
[p
->kind
]);
2632 static void kvm_exit_debug(void)
2634 struct kvm_stats_debugfs_item
*p
;
2636 for (p
= debugfs_entries
; p
->name
; ++p
)
2637 debugfs_remove(p
->dentry
);
2638 debugfs_remove(kvm_debugfs_dir
);
2641 static int kvm_suspend(void)
2643 if (kvm_usage_count
)
2644 hardware_disable_nolock(NULL
);
2648 static void kvm_resume(void)
2650 if (kvm_usage_count
) {
2651 WARN_ON(raw_spin_is_locked(&kvm_lock
));
2652 hardware_enable_nolock(NULL
);
2656 static struct syscore_ops kvm_syscore_ops
= {
2657 .suspend
= kvm_suspend
,
2658 .resume
= kvm_resume
,
2661 struct page
*bad_page
;
2665 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
2667 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
2670 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
2672 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2674 kvm_arch_vcpu_load(vcpu
, cpu
);
2677 static void kvm_sched_out(struct preempt_notifier
*pn
,
2678 struct task_struct
*next
)
2680 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
2682 kvm_arch_vcpu_put(vcpu
);
2685 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
2686 struct module
*module
)
2691 r
= kvm_arch_init(opaque
);
2695 bad_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2697 if (bad_page
== NULL
) {
2702 bad_pfn
= page_to_pfn(bad_page
);
2704 hwpoison_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2706 if (hwpoison_page
== NULL
) {
2711 hwpoison_pfn
= page_to_pfn(hwpoison_page
);
2713 fault_page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
2715 if (fault_page
== NULL
) {
2720 fault_pfn
= page_to_pfn(fault_page
);
2722 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
2727 r
= kvm_arch_hardware_setup();
2731 for_each_online_cpu(cpu
) {
2732 smp_call_function_single(cpu
,
2733 kvm_arch_check_processor_compat
,
2739 r
= register_cpu_notifier(&kvm_cpu_notifier
);
2742 register_reboot_notifier(&kvm_reboot_notifier
);
2744 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2746 vcpu_align
= __alignof__(struct kvm_vcpu
);
2747 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
2749 if (!kvm_vcpu_cache
) {
2754 r
= kvm_async_pf_init();
2758 kvm_chardev_ops
.owner
= module
;
2759 kvm_vm_fops
.owner
= module
;
2760 kvm_vcpu_fops
.owner
= module
;
2762 r
= misc_register(&kvm_dev
);
2764 printk(KERN_ERR
"kvm: misc device register failed\n");
2768 register_syscore_ops(&kvm_syscore_ops
);
2770 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
2771 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
2778 kvm_async_pf_deinit();
2780 kmem_cache_destroy(kvm_vcpu_cache
);
2782 unregister_reboot_notifier(&kvm_reboot_notifier
);
2783 unregister_cpu_notifier(&kvm_cpu_notifier
);
2786 kvm_arch_hardware_unsetup();
2788 free_cpumask_var(cpus_hardware_enabled
);
2791 __free_page(fault_page
);
2793 __free_page(hwpoison_page
);
2794 __free_page(bad_page
);
2800 EXPORT_SYMBOL_GPL(kvm_init
);
2805 misc_deregister(&kvm_dev
);
2806 kmem_cache_destroy(kvm_vcpu_cache
);
2807 kvm_async_pf_deinit();
2808 unregister_syscore_ops(&kvm_syscore_ops
);
2809 unregister_reboot_notifier(&kvm_reboot_notifier
);
2810 unregister_cpu_notifier(&kvm_cpu_notifier
);
2811 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2812 kvm_arch_hardware_unsetup();
2814 free_cpumask_var(cpus_hardware_enabled
);
2815 __free_page(hwpoison_page
);
2816 __free_page(bad_page
);
2818 EXPORT_SYMBOL_GPL(kvm_exit
);