xen/netback: free already allocated memory on failure in xen_netbk_get_requests
[linux/fpc-iii.git] / virt / kvm / kvm_main.c
blobec747dc48e584248a344a38a2bbbfa503b63e36e
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include "iodev.h"
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/uaccess.h>
56 #include <asm/pgtable.h>
58 #include "coalesced_mmio.h"
59 #include "async_pf.h"
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/kvm.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
68 * Ordering of locks:
70 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
73 DEFINE_RAW_SPINLOCK(kvm_lock);
74 LIST_HEAD(vm_list);
76 static cpumask_var_t cpus_hardware_enabled;
77 static int kvm_usage_count = 0;
78 static atomic_t hardware_enable_failed;
80 struct kmem_cache *kvm_vcpu_cache;
81 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
83 static __read_mostly struct preempt_ops kvm_preempt_ops;
85 struct dentry *kvm_debugfs_dir;
87 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
88 unsigned long arg);
89 #ifdef CONFIG_COMPAT
90 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
91 unsigned long arg);
92 #endif
93 static int hardware_enable_all(void);
94 static void hardware_disable_all(void);
96 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
98 bool kvm_rebooting;
99 EXPORT_SYMBOL_GPL(kvm_rebooting);
101 static bool largepages_enabled = true;
103 static struct page *hwpoison_page;
104 static pfn_t hwpoison_pfn;
106 struct page *fault_page;
107 pfn_t fault_pfn;
109 inline int kvm_is_mmio_pfn(pfn_t pfn)
111 if (pfn_valid(pfn)) {
112 int reserved;
113 struct page *tail = pfn_to_page(pfn);
114 struct page *head = compound_trans_head(tail);
115 reserved = PageReserved(head);
116 if (head != tail) {
118 * "head" is not a dangling pointer
119 * (compound_trans_head takes care of that)
120 * but the hugepage may have been splitted
121 * from under us (and we may not hold a
122 * reference count on the head page so it can
123 * be reused before we run PageReferenced), so
124 * we've to check PageTail before returning
125 * what we just read.
127 smp_rmb();
128 if (PageTail(tail))
129 return reserved;
131 return PageReserved(tail);
134 return true;
138 * Switches to specified vcpu, until a matching vcpu_put()
140 void vcpu_load(struct kvm_vcpu *vcpu)
142 int cpu;
144 mutex_lock(&vcpu->mutex);
145 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
146 /* The thread running this VCPU changed. */
147 struct pid *oldpid = vcpu->pid;
148 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
149 rcu_assign_pointer(vcpu->pid, newpid);
150 synchronize_rcu();
151 put_pid(oldpid);
153 cpu = get_cpu();
154 preempt_notifier_register(&vcpu->preempt_notifier);
155 kvm_arch_vcpu_load(vcpu, cpu);
156 put_cpu();
159 void vcpu_put(struct kvm_vcpu *vcpu)
161 preempt_disable();
162 kvm_arch_vcpu_put(vcpu);
163 preempt_notifier_unregister(&vcpu->preempt_notifier);
164 preempt_enable();
165 mutex_unlock(&vcpu->mutex);
168 static void ack_flush(void *_completed)
172 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
174 int i, cpu, me;
175 cpumask_var_t cpus;
176 bool called = true;
177 struct kvm_vcpu *vcpu;
179 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
181 me = get_cpu();
182 kvm_for_each_vcpu(i, vcpu, kvm) {
183 kvm_make_request(req, vcpu);
184 cpu = vcpu->cpu;
186 /* Set ->requests bit before we read ->mode */
187 smp_mb();
189 if (cpus != NULL && cpu != -1 && cpu != me &&
190 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
191 cpumask_set_cpu(cpu, cpus);
193 if (unlikely(cpus == NULL))
194 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
195 else if (!cpumask_empty(cpus))
196 smp_call_function_many(cpus, ack_flush, NULL, 1);
197 else
198 called = false;
199 put_cpu();
200 free_cpumask_var(cpus);
201 return called;
204 void kvm_flush_remote_tlbs(struct kvm *kvm)
206 int dirty_count = kvm->tlbs_dirty;
208 smp_mb();
209 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
210 ++kvm->stat.remote_tlb_flush;
211 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
214 void kvm_reload_remote_mmus(struct kvm *kvm)
216 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
219 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
221 struct page *page;
222 int r;
224 mutex_init(&vcpu->mutex);
225 vcpu->cpu = -1;
226 vcpu->kvm = kvm;
227 vcpu->vcpu_id = id;
228 vcpu->pid = NULL;
229 init_waitqueue_head(&vcpu->wq);
230 kvm_async_pf_vcpu_init(vcpu);
232 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
233 if (!page) {
234 r = -ENOMEM;
235 goto fail;
237 vcpu->run = page_address(page);
239 r = kvm_arch_vcpu_init(vcpu);
240 if (r < 0)
241 goto fail_free_run;
242 return 0;
244 fail_free_run:
245 free_page((unsigned long)vcpu->run);
246 fail:
247 return r;
249 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
251 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
253 put_pid(vcpu->pid);
254 kvm_arch_vcpu_uninit(vcpu);
255 free_page((unsigned long)vcpu->run);
257 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
259 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
260 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
262 return container_of(mn, struct kvm, mmu_notifier);
265 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
266 struct mm_struct *mm,
267 unsigned long address)
269 struct kvm *kvm = mmu_notifier_to_kvm(mn);
270 int need_tlb_flush, idx;
273 * When ->invalidate_page runs, the linux pte has been zapped
274 * already but the page is still allocated until
275 * ->invalidate_page returns. So if we increase the sequence
276 * here the kvm page fault will notice if the spte can't be
277 * established because the page is going to be freed. If
278 * instead the kvm page fault establishes the spte before
279 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * before returning.
282 * The sequence increase only need to be seen at spin_unlock
283 * time, and not at spin_lock time.
285 * Increasing the sequence after the spin_unlock would be
286 * unsafe because the kvm page fault could then establish the
287 * pte after kvm_unmap_hva returned, without noticing the page
288 * is going to be freed.
290 idx = srcu_read_lock(&kvm->srcu);
291 spin_lock(&kvm->mmu_lock);
293 kvm->mmu_notifier_seq++;
294 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
295 /* we've to flush the tlb before the pages can be freed */
296 if (need_tlb_flush)
297 kvm_flush_remote_tlbs(kvm);
299 spin_unlock(&kvm->mmu_lock);
300 srcu_read_unlock(&kvm->srcu, idx);
303 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
304 struct mm_struct *mm,
305 unsigned long address,
306 pte_t pte)
308 struct kvm *kvm = mmu_notifier_to_kvm(mn);
309 int idx;
311 idx = srcu_read_lock(&kvm->srcu);
312 spin_lock(&kvm->mmu_lock);
313 kvm->mmu_notifier_seq++;
314 kvm_set_spte_hva(kvm, address, pte);
315 spin_unlock(&kvm->mmu_lock);
316 srcu_read_unlock(&kvm->srcu, idx);
319 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
320 struct mm_struct *mm,
321 unsigned long start,
322 unsigned long end)
324 struct kvm *kvm = mmu_notifier_to_kvm(mn);
325 int need_tlb_flush = 0, idx;
327 idx = srcu_read_lock(&kvm->srcu);
328 spin_lock(&kvm->mmu_lock);
330 * The count increase must become visible at unlock time as no
331 * spte can be established without taking the mmu_lock and
332 * count is also read inside the mmu_lock critical section.
334 kvm->mmu_notifier_count++;
335 for (; start < end; start += PAGE_SIZE)
336 need_tlb_flush |= kvm_unmap_hva(kvm, start);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 /* we've to flush the tlb before the pages can be freed */
339 if (need_tlb_flush)
340 kvm_flush_remote_tlbs(kvm);
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
353 spin_lock(&kvm->mmu_lock);
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
359 kvm->mmu_notifier_seq++;
361 * The above sequence increase must be visible before the
362 * below count decrease but both values are read by the kvm
363 * page fault under mmu_lock spinlock so we don't need to add
364 * a smb_wmb() here in between the two.
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
369 BUG_ON(kvm->mmu_notifier_count < 0);
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long address)
376 struct kvm *kvm = mmu_notifier_to_kvm(mn);
377 int young, idx;
379 idx = srcu_read_lock(&kvm->srcu);
380 spin_lock(&kvm->mmu_lock);
382 young = kvm_age_hva(kvm, address);
383 if (young)
384 kvm_flush_remote_tlbs(kvm);
386 spin_unlock(&kvm->mmu_lock);
387 srcu_read_unlock(&kvm->srcu, idx);
389 return young;
392 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
393 struct mm_struct *mm,
394 unsigned long address)
396 struct kvm *kvm = mmu_notifier_to_kvm(mn);
397 int young, idx;
399 idx = srcu_read_lock(&kvm->srcu);
400 spin_lock(&kvm->mmu_lock);
401 young = kvm_test_age_hva(kvm, address);
402 spin_unlock(&kvm->mmu_lock);
403 srcu_read_unlock(&kvm->srcu, idx);
405 return young;
408 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
409 struct mm_struct *mm)
411 struct kvm *kvm = mmu_notifier_to_kvm(mn);
412 int idx;
414 idx = srcu_read_lock(&kvm->srcu);
415 kvm_arch_flush_shadow(kvm);
416 srcu_read_unlock(&kvm->srcu, idx);
419 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
420 .invalidate_page = kvm_mmu_notifier_invalidate_page,
421 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
422 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
423 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
424 .test_young = kvm_mmu_notifier_test_young,
425 .change_pte = kvm_mmu_notifier_change_pte,
426 .release = kvm_mmu_notifier_release,
429 static int kvm_init_mmu_notifier(struct kvm *kvm)
431 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
432 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
435 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
437 static int kvm_init_mmu_notifier(struct kvm *kvm)
439 return 0;
442 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
444 static struct kvm *kvm_create_vm(void)
446 int r, i;
447 struct kvm *kvm = kvm_arch_alloc_vm();
449 if (!kvm)
450 return ERR_PTR(-ENOMEM);
452 r = kvm_arch_init_vm(kvm);
453 if (r)
454 goto out_err_nodisable;
456 r = hardware_enable_all();
457 if (r)
458 goto out_err_nodisable;
460 #ifdef CONFIG_HAVE_KVM_IRQCHIP
461 INIT_HLIST_HEAD(&kvm->mask_notifier_list);
462 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
463 #endif
465 r = -ENOMEM;
466 kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
467 if (!kvm->memslots)
468 goto out_err_nosrcu;
469 if (init_srcu_struct(&kvm->srcu))
470 goto out_err_nosrcu;
471 for (i = 0; i < KVM_NR_BUSES; i++) {
472 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
473 GFP_KERNEL);
474 if (!kvm->buses[i])
475 goto out_err;
478 spin_lock_init(&kvm->mmu_lock);
479 kvm->mm = current->mm;
480 atomic_inc(&kvm->mm->mm_count);
481 kvm_eventfd_init(kvm);
482 mutex_init(&kvm->lock);
483 mutex_init(&kvm->irq_lock);
484 mutex_init(&kvm->slots_lock);
485 atomic_set(&kvm->users_count, 1);
487 r = kvm_init_mmu_notifier(kvm);
488 if (r)
489 goto out_err;
491 raw_spin_lock(&kvm_lock);
492 list_add(&kvm->vm_list, &vm_list);
493 raw_spin_unlock(&kvm_lock);
495 return kvm;
497 out_err:
498 cleanup_srcu_struct(&kvm->srcu);
499 out_err_nosrcu:
500 hardware_disable_all();
501 out_err_nodisable:
502 for (i = 0; i < KVM_NR_BUSES; i++)
503 kfree(kvm->buses[i]);
504 kfree(kvm->memslots);
505 kvm_arch_free_vm(kvm);
506 return ERR_PTR(r);
509 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
511 if (!memslot->dirty_bitmap)
512 return;
514 if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE)
515 vfree(memslot->dirty_bitmap_head);
516 else
517 kfree(memslot->dirty_bitmap_head);
519 memslot->dirty_bitmap = NULL;
520 memslot->dirty_bitmap_head = NULL;
524 * Free any memory in @free but not in @dont.
526 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
527 struct kvm_memory_slot *dont)
529 int i;
531 if (!dont || free->rmap != dont->rmap)
532 vfree(free->rmap);
534 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
535 kvm_destroy_dirty_bitmap(free);
538 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
539 if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
540 vfree(free->lpage_info[i]);
541 free->lpage_info[i] = NULL;
545 free->npages = 0;
546 free->rmap = NULL;
549 void kvm_free_physmem(struct kvm *kvm)
551 int i;
552 struct kvm_memslots *slots = kvm->memslots;
554 for (i = 0; i < slots->nmemslots; ++i)
555 kvm_free_physmem_slot(&slots->memslots[i], NULL);
557 kfree(kvm->memslots);
560 static void kvm_destroy_vm(struct kvm *kvm)
562 int i;
563 struct mm_struct *mm = kvm->mm;
565 kvm_arch_sync_events(kvm);
566 raw_spin_lock(&kvm_lock);
567 list_del(&kvm->vm_list);
568 raw_spin_unlock(&kvm_lock);
569 kvm_free_irq_routing(kvm);
570 for (i = 0; i < KVM_NR_BUSES; i++)
571 kvm_io_bus_destroy(kvm->buses[i]);
572 kvm_coalesced_mmio_free(kvm);
573 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
574 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
575 #else
576 kvm_arch_flush_shadow(kvm);
577 #endif
578 kvm_arch_destroy_vm(kvm);
579 kvm_free_physmem(kvm);
580 cleanup_srcu_struct(&kvm->srcu);
581 kvm_arch_free_vm(kvm);
582 hardware_disable_all();
583 mmdrop(mm);
586 void kvm_get_kvm(struct kvm *kvm)
588 atomic_inc(&kvm->users_count);
590 EXPORT_SYMBOL_GPL(kvm_get_kvm);
592 void kvm_put_kvm(struct kvm *kvm)
594 if (atomic_dec_and_test(&kvm->users_count))
595 kvm_destroy_vm(kvm);
597 EXPORT_SYMBOL_GPL(kvm_put_kvm);
600 static int kvm_vm_release(struct inode *inode, struct file *filp)
602 struct kvm *kvm = filp->private_data;
604 kvm_irqfd_release(kvm);
606 kvm_put_kvm(kvm);
607 return 0;
610 #ifndef CONFIG_S390
612 * Allocation size is twice as large as the actual dirty bitmap size.
613 * This makes it possible to do double buffering: see x86's
614 * kvm_vm_ioctl_get_dirty_log().
616 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
618 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
620 if (dirty_bytes > PAGE_SIZE)
621 memslot->dirty_bitmap = vzalloc(dirty_bytes);
622 else
623 memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL);
625 if (!memslot->dirty_bitmap)
626 return -ENOMEM;
628 memslot->dirty_bitmap_head = memslot->dirty_bitmap;
629 return 0;
631 #endif /* !CONFIG_S390 */
634 * Allocate some memory and give it an address in the guest physical address
635 * space.
637 * Discontiguous memory is allowed, mostly for framebuffers.
639 * Must be called holding mmap_sem for write.
641 int __kvm_set_memory_region(struct kvm *kvm,
642 struct kvm_userspace_memory_region *mem,
643 int user_alloc)
645 int r;
646 gfn_t base_gfn;
647 unsigned long npages;
648 unsigned long i;
649 struct kvm_memory_slot *memslot;
650 struct kvm_memory_slot old, new;
651 struct kvm_memslots *slots, *old_memslots;
653 r = -EINVAL;
654 /* General sanity checks */
655 if (mem->memory_size & (PAGE_SIZE - 1))
656 goto out;
657 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
658 goto out;
659 /* We can read the guest memory with __xxx_user() later on. */
660 if (user_alloc &&
661 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
662 !access_ok(VERIFY_WRITE,
663 (void __user *)(unsigned long)mem->userspace_addr,
664 mem->memory_size)))
665 goto out;
666 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
667 goto out;
668 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
669 goto out;
671 memslot = &kvm->memslots->memslots[mem->slot];
672 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
673 npages = mem->memory_size >> PAGE_SHIFT;
675 r = -EINVAL;
676 if (npages > KVM_MEM_MAX_NR_PAGES)
677 goto out;
679 if (!npages)
680 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
682 new = old = *memslot;
684 new.id = mem->slot;
685 new.base_gfn = base_gfn;
686 new.npages = npages;
687 new.flags = mem->flags;
689 /* Disallow changing a memory slot's size. */
690 r = -EINVAL;
691 if (npages && old.npages && npages != old.npages)
692 goto out_free;
694 /* Check for overlaps */
695 r = -EEXIST;
696 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
697 struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
699 if (s == memslot || !s->npages)
700 continue;
701 if (!((base_gfn + npages <= s->base_gfn) ||
702 (base_gfn >= s->base_gfn + s->npages)))
703 goto out_free;
706 /* Free page dirty bitmap if unneeded */
707 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
708 new.dirty_bitmap = NULL;
710 r = -ENOMEM;
712 /* Allocate if a slot is being created */
713 #ifndef CONFIG_S390
714 if (npages && !new.rmap) {
715 new.rmap = vzalloc(npages * sizeof(*new.rmap));
717 if (!new.rmap)
718 goto out_free;
720 new.user_alloc = user_alloc;
721 new.userspace_addr = mem->userspace_addr;
723 if (!npages)
724 goto skip_lpage;
726 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
727 unsigned long ugfn;
728 unsigned long j;
729 int lpages;
730 int level = i + 2;
732 /* Avoid unused variable warning if no large pages */
733 (void)level;
735 if (new.lpage_info[i])
736 continue;
738 lpages = 1 + ((base_gfn + npages - 1)
739 >> KVM_HPAGE_GFN_SHIFT(level));
740 lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
742 new.lpage_info[i] = vzalloc(lpages * sizeof(*new.lpage_info[i]));
744 if (!new.lpage_info[i])
745 goto out_free;
747 if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
748 new.lpage_info[i][0].write_count = 1;
749 if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
750 new.lpage_info[i][lpages - 1].write_count = 1;
751 ugfn = new.userspace_addr >> PAGE_SHIFT;
753 * If the gfn and userspace address are not aligned wrt each
754 * other, or if explicitly asked to, disable large page
755 * support for this slot
757 if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
758 !largepages_enabled)
759 for (j = 0; j < lpages; ++j)
760 new.lpage_info[i][j].write_count = 1;
763 skip_lpage:
765 /* Allocate page dirty bitmap if needed */
766 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
767 if (kvm_create_dirty_bitmap(&new) < 0)
768 goto out_free;
769 /* destroy any largepage mappings for dirty tracking */
771 #else /* not defined CONFIG_S390 */
772 new.user_alloc = user_alloc;
773 if (user_alloc)
774 new.userspace_addr = mem->userspace_addr;
775 #endif /* not defined CONFIG_S390 */
777 if (!npages) {
778 r = -ENOMEM;
779 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
780 if (!slots)
781 goto out_free;
782 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
783 if (mem->slot >= slots->nmemslots)
784 slots->nmemslots = mem->slot + 1;
785 slots->generation++;
786 slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
788 old_memslots = kvm->memslots;
789 rcu_assign_pointer(kvm->memslots, slots);
790 synchronize_srcu_expedited(&kvm->srcu);
791 /* From this point no new shadow pages pointing to a deleted
792 * memslot will be created.
794 * validation of sp->gfn happens in:
795 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
796 * - kvm_is_visible_gfn (mmu_check_roots)
798 kvm_arch_flush_shadow(kvm);
799 kfree(old_memslots);
802 r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
803 if (r)
804 goto out_free;
806 /* map/unmap the pages in iommu page table */
807 if (npages) {
808 r = kvm_iommu_map_pages(kvm, &new);
809 if (r)
810 goto out_free;
811 } else
812 kvm_iommu_unmap_pages(kvm, &old);
814 r = -ENOMEM;
815 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
816 if (!slots)
817 goto out_free;
818 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
819 if (mem->slot >= slots->nmemslots)
820 slots->nmemslots = mem->slot + 1;
821 slots->generation++;
823 /* actual memory is freed via old in kvm_free_physmem_slot below */
824 if (!npages) {
825 new.rmap = NULL;
826 new.dirty_bitmap = NULL;
827 for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
828 new.lpage_info[i] = NULL;
831 slots->memslots[mem->slot] = new;
832 old_memslots = kvm->memslots;
833 rcu_assign_pointer(kvm->memslots, slots);
834 synchronize_srcu_expedited(&kvm->srcu);
836 kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
839 * If the new memory slot is created, we need to clear all
840 * mmio sptes.
842 if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT)
843 kvm_arch_flush_shadow(kvm);
845 kvm_free_physmem_slot(&old, &new);
846 kfree(old_memslots);
848 return 0;
850 out_free:
851 kvm_free_physmem_slot(&new, &old);
852 out:
853 return r;
856 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
858 int kvm_set_memory_region(struct kvm *kvm,
859 struct kvm_userspace_memory_region *mem,
860 int user_alloc)
862 int r;
864 mutex_lock(&kvm->slots_lock);
865 r = __kvm_set_memory_region(kvm, mem, user_alloc);
866 mutex_unlock(&kvm->slots_lock);
867 return r;
869 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
871 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
872 struct
873 kvm_userspace_memory_region *mem,
874 int user_alloc)
876 if (mem->slot >= KVM_MEMORY_SLOTS)
877 return -EINVAL;
878 return kvm_set_memory_region(kvm, mem, user_alloc);
881 int kvm_get_dirty_log(struct kvm *kvm,
882 struct kvm_dirty_log *log, int *is_dirty)
884 struct kvm_memory_slot *memslot;
885 int r, i;
886 unsigned long n;
887 unsigned long any = 0;
889 r = -EINVAL;
890 if (log->slot >= KVM_MEMORY_SLOTS)
891 goto out;
893 memslot = &kvm->memslots->memslots[log->slot];
894 r = -ENOENT;
895 if (!memslot->dirty_bitmap)
896 goto out;
898 n = kvm_dirty_bitmap_bytes(memslot);
900 for (i = 0; !any && i < n/sizeof(long); ++i)
901 any = memslot->dirty_bitmap[i];
903 r = -EFAULT;
904 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
905 goto out;
907 if (any)
908 *is_dirty = 1;
910 r = 0;
911 out:
912 return r;
915 void kvm_disable_largepages(void)
917 largepages_enabled = false;
919 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
921 int is_error_page(struct page *page)
923 return page == bad_page || page == hwpoison_page || page == fault_page;
925 EXPORT_SYMBOL_GPL(is_error_page);
927 int is_error_pfn(pfn_t pfn)
929 return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
931 EXPORT_SYMBOL_GPL(is_error_pfn);
933 int is_hwpoison_pfn(pfn_t pfn)
935 return pfn == hwpoison_pfn;
937 EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
939 int is_fault_pfn(pfn_t pfn)
941 return pfn == fault_pfn;
943 EXPORT_SYMBOL_GPL(is_fault_pfn);
945 int is_noslot_pfn(pfn_t pfn)
947 return pfn == bad_pfn;
949 EXPORT_SYMBOL_GPL(is_noslot_pfn);
951 int is_invalid_pfn(pfn_t pfn)
953 return pfn == hwpoison_pfn || pfn == fault_pfn;
955 EXPORT_SYMBOL_GPL(is_invalid_pfn);
957 static inline unsigned long bad_hva(void)
959 return PAGE_OFFSET;
962 int kvm_is_error_hva(unsigned long addr)
964 return addr == bad_hva();
966 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
968 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
969 gfn_t gfn)
971 int i;
973 for (i = 0; i < slots->nmemslots; ++i) {
974 struct kvm_memory_slot *memslot = &slots->memslots[i];
976 if (gfn >= memslot->base_gfn
977 && gfn < memslot->base_gfn + memslot->npages)
978 return memslot;
980 return NULL;
983 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
985 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
987 EXPORT_SYMBOL_GPL(gfn_to_memslot);
989 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
991 int i;
992 struct kvm_memslots *slots = kvm_memslots(kvm);
994 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
995 struct kvm_memory_slot *memslot = &slots->memslots[i];
997 if (memslot->flags & KVM_MEMSLOT_INVALID)
998 continue;
1000 if (gfn >= memslot->base_gfn
1001 && gfn < memslot->base_gfn + memslot->npages)
1002 return 1;
1004 return 0;
1006 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1008 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1010 struct vm_area_struct *vma;
1011 unsigned long addr, size;
1013 size = PAGE_SIZE;
1015 addr = gfn_to_hva(kvm, gfn);
1016 if (kvm_is_error_hva(addr))
1017 return PAGE_SIZE;
1019 down_read(&current->mm->mmap_sem);
1020 vma = find_vma(current->mm, addr);
1021 if (!vma)
1022 goto out;
1024 size = vma_kernel_pagesize(vma);
1026 out:
1027 up_read(&current->mm->mmap_sem);
1029 return size;
1032 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1033 gfn_t *nr_pages)
1035 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1036 return bad_hva();
1038 if (nr_pages)
1039 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1041 return gfn_to_hva_memslot(slot, gfn);
1044 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1046 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1048 EXPORT_SYMBOL_GPL(gfn_to_hva);
1050 static pfn_t get_fault_pfn(void)
1052 get_page(fault_page);
1053 return fault_pfn;
1056 int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1057 unsigned long start, int write, struct page **page)
1059 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1061 if (write)
1062 flags |= FOLL_WRITE;
1064 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1067 static inline int check_user_page_hwpoison(unsigned long addr)
1069 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1071 rc = __get_user_pages(current, current->mm, addr, 1,
1072 flags, NULL, NULL, NULL);
1073 return rc == -EHWPOISON;
1076 static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
1077 bool *async, bool write_fault, bool *writable)
1079 struct page *page[1];
1080 int npages = 0;
1081 pfn_t pfn;
1083 /* we can do it either atomically or asynchronously, not both */
1084 BUG_ON(atomic && async);
1086 BUG_ON(!write_fault && !writable);
1088 if (writable)
1089 *writable = true;
1091 if (atomic || async)
1092 npages = __get_user_pages_fast(addr, 1, 1, page);
1094 if (unlikely(npages != 1) && !atomic) {
1095 might_sleep();
1097 if (writable)
1098 *writable = write_fault;
1100 if (async) {
1101 down_read(&current->mm->mmap_sem);
1102 npages = get_user_page_nowait(current, current->mm,
1103 addr, write_fault, page);
1104 up_read(&current->mm->mmap_sem);
1105 } else
1106 npages = get_user_pages_fast(addr, 1, write_fault,
1107 page);
1109 /* map read fault as writable if possible */
1110 if (unlikely(!write_fault) && npages == 1) {
1111 struct page *wpage[1];
1113 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1114 if (npages == 1) {
1115 *writable = true;
1116 put_page(page[0]);
1117 page[0] = wpage[0];
1119 npages = 1;
1123 if (unlikely(npages != 1)) {
1124 struct vm_area_struct *vma;
1126 if (atomic)
1127 return get_fault_pfn();
1129 down_read(&current->mm->mmap_sem);
1130 if (npages == -EHWPOISON ||
1131 (!async && check_user_page_hwpoison(addr))) {
1132 up_read(&current->mm->mmap_sem);
1133 get_page(hwpoison_page);
1134 return page_to_pfn(hwpoison_page);
1137 vma = find_vma_intersection(current->mm, addr, addr+1);
1139 if (vma == NULL)
1140 pfn = get_fault_pfn();
1141 else if ((vma->vm_flags & VM_PFNMAP)) {
1142 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1143 vma->vm_pgoff;
1144 BUG_ON(!kvm_is_mmio_pfn(pfn));
1145 } else {
1146 if (async && (vma->vm_flags & VM_WRITE))
1147 *async = true;
1148 pfn = get_fault_pfn();
1150 up_read(&current->mm->mmap_sem);
1151 } else
1152 pfn = page_to_pfn(page[0]);
1154 return pfn;
1157 pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
1159 return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
1161 EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
1163 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1164 bool write_fault, bool *writable)
1166 unsigned long addr;
1168 if (async)
1169 *async = false;
1171 addr = gfn_to_hva(kvm, gfn);
1172 if (kvm_is_error_hva(addr)) {
1173 get_page(bad_page);
1174 return page_to_pfn(bad_page);
1177 return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
1180 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1182 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1184 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1186 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1187 bool write_fault, bool *writable)
1189 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1191 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1193 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1195 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1197 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1199 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1200 bool *writable)
1202 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1204 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1206 pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
1207 struct kvm_memory_slot *slot, gfn_t gfn)
1209 unsigned long addr = gfn_to_hva_memslot(slot, gfn);
1210 return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
1213 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1214 int nr_pages)
1216 unsigned long addr;
1217 gfn_t entry;
1219 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1220 if (kvm_is_error_hva(addr))
1221 return -1;
1223 if (entry < nr_pages)
1224 return 0;
1226 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1228 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1230 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1232 pfn_t pfn;
1234 pfn = gfn_to_pfn(kvm, gfn);
1235 if (!kvm_is_mmio_pfn(pfn))
1236 return pfn_to_page(pfn);
1238 WARN_ON(kvm_is_mmio_pfn(pfn));
1240 get_page(bad_page);
1241 return bad_page;
1244 EXPORT_SYMBOL_GPL(gfn_to_page);
1246 void kvm_release_page_clean(struct page *page)
1248 kvm_release_pfn_clean(page_to_pfn(page));
1250 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1252 void kvm_release_pfn_clean(pfn_t pfn)
1254 if (!kvm_is_mmio_pfn(pfn))
1255 put_page(pfn_to_page(pfn));
1257 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1259 void kvm_release_page_dirty(struct page *page)
1261 kvm_release_pfn_dirty(page_to_pfn(page));
1263 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1265 void kvm_release_pfn_dirty(pfn_t pfn)
1267 kvm_set_pfn_dirty(pfn);
1268 kvm_release_pfn_clean(pfn);
1270 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1272 void kvm_set_page_dirty(struct page *page)
1274 kvm_set_pfn_dirty(page_to_pfn(page));
1276 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1278 void kvm_set_pfn_dirty(pfn_t pfn)
1280 if (!kvm_is_mmio_pfn(pfn)) {
1281 struct page *page = pfn_to_page(pfn);
1282 if (!PageReserved(page))
1283 SetPageDirty(page);
1286 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1288 void kvm_set_pfn_accessed(pfn_t pfn)
1290 if (!kvm_is_mmio_pfn(pfn))
1291 mark_page_accessed(pfn_to_page(pfn));
1293 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1295 void kvm_get_pfn(pfn_t pfn)
1297 if (!kvm_is_mmio_pfn(pfn))
1298 get_page(pfn_to_page(pfn));
1300 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1302 static int next_segment(unsigned long len, int offset)
1304 if (len > PAGE_SIZE - offset)
1305 return PAGE_SIZE - offset;
1306 else
1307 return len;
1310 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1311 int len)
1313 int r;
1314 unsigned long addr;
1316 addr = gfn_to_hva(kvm, gfn);
1317 if (kvm_is_error_hva(addr))
1318 return -EFAULT;
1319 r = __copy_from_user(data, (void __user *)addr + offset, len);
1320 if (r)
1321 return -EFAULT;
1322 return 0;
1324 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1326 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1328 gfn_t gfn = gpa >> PAGE_SHIFT;
1329 int seg;
1330 int offset = offset_in_page(gpa);
1331 int ret;
1333 while ((seg = next_segment(len, offset)) != 0) {
1334 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1335 if (ret < 0)
1336 return ret;
1337 offset = 0;
1338 len -= seg;
1339 data += seg;
1340 ++gfn;
1342 return 0;
1344 EXPORT_SYMBOL_GPL(kvm_read_guest);
1346 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1347 unsigned long len)
1349 int r;
1350 unsigned long addr;
1351 gfn_t gfn = gpa >> PAGE_SHIFT;
1352 int offset = offset_in_page(gpa);
1354 addr = gfn_to_hva(kvm, gfn);
1355 if (kvm_is_error_hva(addr))
1356 return -EFAULT;
1357 pagefault_disable();
1358 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1359 pagefault_enable();
1360 if (r)
1361 return -EFAULT;
1362 return 0;
1364 EXPORT_SYMBOL(kvm_read_guest_atomic);
1366 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1367 int offset, int len)
1369 int r;
1370 unsigned long addr;
1372 addr = gfn_to_hva(kvm, gfn);
1373 if (kvm_is_error_hva(addr))
1374 return -EFAULT;
1375 r = __copy_to_user((void __user *)addr + offset, data, len);
1376 if (r)
1377 return -EFAULT;
1378 mark_page_dirty(kvm, gfn);
1379 return 0;
1381 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1383 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1384 unsigned long len)
1386 gfn_t gfn = gpa >> PAGE_SHIFT;
1387 int seg;
1388 int offset = offset_in_page(gpa);
1389 int ret;
1391 while ((seg = next_segment(len, offset)) != 0) {
1392 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1393 if (ret < 0)
1394 return ret;
1395 offset = 0;
1396 len -= seg;
1397 data += seg;
1398 ++gfn;
1400 return 0;
1403 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1404 gpa_t gpa)
1406 struct kvm_memslots *slots = kvm_memslots(kvm);
1407 int offset = offset_in_page(gpa);
1408 gfn_t gfn = gpa >> PAGE_SHIFT;
1410 ghc->gpa = gpa;
1411 ghc->generation = slots->generation;
1412 ghc->memslot = __gfn_to_memslot(slots, gfn);
1413 ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
1414 if (!kvm_is_error_hva(ghc->hva))
1415 ghc->hva += offset;
1416 else
1417 return -EFAULT;
1419 return 0;
1421 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1423 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1424 void *data, unsigned long len)
1426 struct kvm_memslots *slots = kvm_memslots(kvm);
1427 int r;
1429 if (slots->generation != ghc->generation)
1430 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1432 if (kvm_is_error_hva(ghc->hva))
1433 return -EFAULT;
1435 r = __copy_to_user((void __user *)ghc->hva, data, len);
1436 if (r)
1437 return -EFAULT;
1438 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1440 return 0;
1442 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1444 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1445 void *data, unsigned long len)
1447 struct kvm_memslots *slots = kvm_memslots(kvm);
1448 int r;
1450 if (slots->generation != ghc->generation)
1451 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
1453 if (kvm_is_error_hva(ghc->hva))
1454 return -EFAULT;
1456 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1457 if (r)
1458 return -EFAULT;
1460 return 0;
1462 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1464 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1466 return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page,
1467 offset, len);
1469 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1471 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1473 gfn_t gfn = gpa >> PAGE_SHIFT;
1474 int seg;
1475 int offset = offset_in_page(gpa);
1476 int ret;
1478 while ((seg = next_segment(len, offset)) != 0) {
1479 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1480 if (ret < 0)
1481 return ret;
1482 offset = 0;
1483 len -= seg;
1484 ++gfn;
1486 return 0;
1488 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1490 void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
1491 gfn_t gfn)
1493 if (memslot && memslot->dirty_bitmap) {
1494 unsigned long rel_gfn = gfn - memslot->base_gfn;
1496 __set_bit_le(rel_gfn, memslot->dirty_bitmap);
1500 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1502 struct kvm_memory_slot *memslot;
1504 memslot = gfn_to_memslot(kvm, gfn);
1505 mark_page_dirty_in_slot(kvm, memslot, gfn);
1509 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1511 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1513 DEFINE_WAIT(wait);
1515 for (;;) {
1516 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1518 if (kvm_arch_vcpu_runnable(vcpu)) {
1519 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1520 break;
1522 if (kvm_cpu_has_pending_timer(vcpu))
1523 break;
1524 if (signal_pending(current))
1525 break;
1527 schedule();
1530 finish_wait(&vcpu->wq, &wait);
1533 void kvm_resched(struct kvm_vcpu *vcpu)
1535 if (!need_resched())
1536 return;
1537 cond_resched();
1539 EXPORT_SYMBOL_GPL(kvm_resched);
1541 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1543 struct kvm *kvm = me->kvm;
1544 struct kvm_vcpu *vcpu;
1545 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1546 int yielded = 0;
1547 int pass;
1548 int i;
1551 * We boost the priority of a VCPU that is runnable but not
1552 * currently running, because it got preempted by something
1553 * else and called schedule in __vcpu_run. Hopefully that
1554 * VCPU is holding the lock that we need and will release it.
1555 * We approximate round-robin by starting at the last boosted VCPU.
1557 for (pass = 0; pass < 2 && !yielded; pass++) {
1558 kvm_for_each_vcpu(i, vcpu, kvm) {
1559 struct task_struct *task = NULL;
1560 struct pid *pid;
1561 if (!pass && i < last_boosted_vcpu) {
1562 i = last_boosted_vcpu;
1563 continue;
1564 } else if (pass && i > last_boosted_vcpu)
1565 break;
1566 if (vcpu == me)
1567 continue;
1568 if (waitqueue_active(&vcpu->wq))
1569 continue;
1570 rcu_read_lock();
1571 pid = rcu_dereference(vcpu->pid);
1572 if (pid)
1573 task = get_pid_task(vcpu->pid, PIDTYPE_PID);
1574 rcu_read_unlock();
1575 if (!task)
1576 continue;
1577 if (task->flags & PF_VCPU) {
1578 put_task_struct(task);
1579 continue;
1581 if (yield_to(task, 1)) {
1582 put_task_struct(task);
1583 kvm->last_boosted_vcpu = i;
1584 yielded = 1;
1585 break;
1587 put_task_struct(task);
1591 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1593 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1595 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1596 struct page *page;
1598 if (vmf->pgoff == 0)
1599 page = virt_to_page(vcpu->run);
1600 #ifdef CONFIG_X86
1601 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1602 page = virt_to_page(vcpu->arch.pio_data);
1603 #endif
1604 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1605 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1606 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1607 #endif
1608 else
1609 return VM_FAULT_SIGBUS;
1610 get_page(page);
1611 vmf->page = page;
1612 return 0;
1615 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1616 .fault = kvm_vcpu_fault,
1619 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1621 vma->vm_ops = &kvm_vcpu_vm_ops;
1622 return 0;
1625 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1627 struct kvm_vcpu *vcpu = filp->private_data;
1629 kvm_put_kvm(vcpu->kvm);
1630 return 0;
1633 static struct file_operations kvm_vcpu_fops = {
1634 .release = kvm_vcpu_release,
1635 .unlocked_ioctl = kvm_vcpu_ioctl,
1636 #ifdef CONFIG_COMPAT
1637 .compat_ioctl = kvm_vcpu_compat_ioctl,
1638 #endif
1639 .mmap = kvm_vcpu_mmap,
1640 .llseek = noop_llseek,
1644 * Allocates an inode for the vcpu.
1646 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1648 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
1652 * Creates some virtual cpus. Good luck creating more than one.
1654 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
1656 int r;
1657 struct kvm_vcpu *vcpu, *v;
1659 vcpu = kvm_arch_vcpu_create(kvm, id);
1660 if (IS_ERR(vcpu))
1661 return PTR_ERR(vcpu);
1663 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1665 r = kvm_arch_vcpu_setup(vcpu);
1666 if (r)
1667 goto vcpu_destroy;
1669 mutex_lock(&kvm->lock);
1670 if (!kvm_vcpu_compatible(vcpu)) {
1671 r = -EINVAL;
1672 goto unlock_vcpu_destroy;
1674 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
1675 r = -EINVAL;
1676 goto unlock_vcpu_destroy;
1679 kvm_for_each_vcpu(r, v, kvm)
1680 if (v->vcpu_id == id) {
1681 r = -EEXIST;
1682 goto unlock_vcpu_destroy;
1685 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
1687 /* Now it's all set up, let userspace reach it */
1688 kvm_get_kvm(kvm);
1689 r = create_vcpu_fd(vcpu);
1690 if (r < 0) {
1691 kvm_put_kvm(kvm);
1692 goto unlock_vcpu_destroy;
1695 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
1696 smp_wmb();
1697 atomic_inc(&kvm->online_vcpus);
1699 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
1700 if (kvm->bsp_vcpu_id == id)
1701 kvm->bsp_vcpu = vcpu;
1702 #endif
1703 mutex_unlock(&kvm->lock);
1704 return r;
1706 unlock_vcpu_destroy:
1707 mutex_unlock(&kvm->lock);
1708 vcpu_destroy:
1709 kvm_arch_vcpu_destroy(vcpu);
1710 return r;
1713 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1715 if (sigset) {
1716 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1717 vcpu->sigset_active = 1;
1718 vcpu->sigset = *sigset;
1719 } else
1720 vcpu->sigset_active = 0;
1721 return 0;
1724 static long kvm_vcpu_ioctl(struct file *filp,
1725 unsigned int ioctl, unsigned long arg)
1727 struct kvm_vcpu *vcpu = filp->private_data;
1728 void __user *argp = (void __user *)arg;
1729 int r;
1730 struct kvm_fpu *fpu = NULL;
1731 struct kvm_sregs *kvm_sregs = NULL;
1733 if (vcpu->kvm->mm != current->mm)
1734 return -EIO;
1736 #if defined(CONFIG_S390) || defined(CONFIG_PPC)
1738 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
1739 * so vcpu_load() would break it.
1741 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
1742 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1743 #endif
1746 vcpu_load(vcpu);
1747 switch (ioctl) {
1748 case KVM_RUN:
1749 r = -EINVAL;
1750 if (arg)
1751 goto out;
1752 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1753 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
1754 break;
1755 case KVM_GET_REGS: {
1756 struct kvm_regs *kvm_regs;
1758 r = -ENOMEM;
1759 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1760 if (!kvm_regs)
1761 goto out;
1762 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1763 if (r)
1764 goto out_free1;
1765 r = -EFAULT;
1766 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1767 goto out_free1;
1768 r = 0;
1769 out_free1:
1770 kfree(kvm_regs);
1771 break;
1773 case KVM_SET_REGS: {
1774 struct kvm_regs *kvm_regs;
1776 r = -ENOMEM;
1777 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1778 if (!kvm_regs)
1779 goto out;
1780 r = -EFAULT;
1781 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1782 goto out_free2;
1783 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1784 if (r)
1785 goto out_free2;
1786 r = 0;
1787 out_free2:
1788 kfree(kvm_regs);
1789 break;
1791 case KVM_GET_SREGS: {
1792 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1793 r = -ENOMEM;
1794 if (!kvm_sregs)
1795 goto out;
1796 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1797 if (r)
1798 goto out;
1799 r = -EFAULT;
1800 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1801 goto out;
1802 r = 0;
1803 break;
1805 case KVM_SET_SREGS: {
1806 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1807 r = -ENOMEM;
1808 if (!kvm_sregs)
1809 goto out;
1810 r = -EFAULT;
1811 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1812 goto out;
1813 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1814 if (r)
1815 goto out;
1816 r = 0;
1817 break;
1819 case KVM_GET_MP_STATE: {
1820 struct kvm_mp_state mp_state;
1822 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1823 if (r)
1824 goto out;
1825 r = -EFAULT;
1826 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1827 goto out;
1828 r = 0;
1829 break;
1831 case KVM_SET_MP_STATE: {
1832 struct kvm_mp_state mp_state;
1834 r = -EFAULT;
1835 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1836 goto out;
1837 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1838 if (r)
1839 goto out;
1840 r = 0;
1841 break;
1843 case KVM_TRANSLATE: {
1844 struct kvm_translation tr;
1846 r = -EFAULT;
1847 if (copy_from_user(&tr, argp, sizeof tr))
1848 goto out;
1849 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1850 if (r)
1851 goto out;
1852 r = -EFAULT;
1853 if (copy_to_user(argp, &tr, sizeof tr))
1854 goto out;
1855 r = 0;
1856 break;
1858 case KVM_SET_GUEST_DEBUG: {
1859 struct kvm_guest_debug dbg;
1861 r = -EFAULT;
1862 if (copy_from_user(&dbg, argp, sizeof dbg))
1863 goto out;
1864 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
1865 if (r)
1866 goto out;
1867 r = 0;
1868 break;
1870 case KVM_SET_SIGNAL_MASK: {
1871 struct kvm_signal_mask __user *sigmask_arg = argp;
1872 struct kvm_signal_mask kvm_sigmask;
1873 sigset_t sigset, *p;
1875 p = NULL;
1876 if (argp) {
1877 r = -EFAULT;
1878 if (copy_from_user(&kvm_sigmask, argp,
1879 sizeof kvm_sigmask))
1880 goto out;
1881 r = -EINVAL;
1882 if (kvm_sigmask.len != sizeof sigset)
1883 goto out;
1884 r = -EFAULT;
1885 if (copy_from_user(&sigset, sigmask_arg->sigset,
1886 sizeof sigset))
1887 goto out;
1888 p = &sigset;
1890 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
1891 break;
1893 case KVM_GET_FPU: {
1894 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1895 r = -ENOMEM;
1896 if (!fpu)
1897 goto out;
1898 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1899 if (r)
1900 goto out;
1901 r = -EFAULT;
1902 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1903 goto out;
1904 r = 0;
1905 break;
1907 case KVM_SET_FPU: {
1908 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1909 r = -ENOMEM;
1910 if (!fpu)
1911 goto out;
1912 r = -EFAULT;
1913 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1914 goto out;
1915 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1916 if (r)
1917 goto out;
1918 r = 0;
1919 break;
1921 default:
1922 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1924 out:
1925 vcpu_put(vcpu);
1926 kfree(fpu);
1927 kfree(kvm_sregs);
1928 return r;
1931 #ifdef CONFIG_COMPAT
1932 static long kvm_vcpu_compat_ioctl(struct file *filp,
1933 unsigned int ioctl, unsigned long arg)
1935 struct kvm_vcpu *vcpu = filp->private_data;
1936 void __user *argp = compat_ptr(arg);
1937 int r;
1939 if (vcpu->kvm->mm != current->mm)
1940 return -EIO;
1942 switch (ioctl) {
1943 case KVM_SET_SIGNAL_MASK: {
1944 struct kvm_signal_mask __user *sigmask_arg = argp;
1945 struct kvm_signal_mask kvm_sigmask;
1946 compat_sigset_t csigset;
1947 sigset_t sigset;
1949 if (argp) {
1950 r = -EFAULT;
1951 if (copy_from_user(&kvm_sigmask, argp,
1952 sizeof kvm_sigmask))
1953 goto out;
1954 r = -EINVAL;
1955 if (kvm_sigmask.len != sizeof csigset)
1956 goto out;
1957 r = -EFAULT;
1958 if (copy_from_user(&csigset, sigmask_arg->sigset,
1959 sizeof csigset))
1960 goto out;
1962 sigset_from_compat(&sigset, &csigset);
1963 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1964 break;
1966 default:
1967 r = kvm_vcpu_ioctl(filp, ioctl, arg);
1970 out:
1971 return r;
1973 #endif
1975 static long kvm_vm_ioctl(struct file *filp,
1976 unsigned int ioctl, unsigned long arg)
1978 struct kvm *kvm = filp->private_data;
1979 void __user *argp = (void __user *)arg;
1980 int r;
1982 if (kvm->mm != current->mm)
1983 return -EIO;
1984 switch (ioctl) {
1985 case KVM_CREATE_VCPU:
1986 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1987 if (r < 0)
1988 goto out;
1989 break;
1990 case KVM_SET_USER_MEMORY_REGION: {
1991 struct kvm_userspace_memory_region kvm_userspace_mem;
1993 r = -EFAULT;
1994 if (copy_from_user(&kvm_userspace_mem, argp,
1995 sizeof kvm_userspace_mem))
1996 goto out;
1998 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1999 if (r)
2000 goto out;
2001 break;
2003 case KVM_GET_DIRTY_LOG: {
2004 struct kvm_dirty_log log;
2006 r = -EFAULT;
2007 if (copy_from_user(&log, argp, sizeof log))
2008 goto out;
2009 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2010 if (r)
2011 goto out;
2012 break;
2014 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2015 case KVM_REGISTER_COALESCED_MMIO: {
2016 struct kvm_coalesced_mmio_zone zone;
2017 r = -EFAULT;
2018 if (copy_from_user(&zone, argp, sizeof zone))
2019 goto out;
2020 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2021 if (r)
2022 goto out;
2023 r = 0;
2024 break;
2026 case KVM_UNREGISTER_COALESCED_MMIO: {
2027 struct kvm_coalesced_mmio_zone zone;
2028 r = -EFAULT;
2029 if (copy_from_user(&zone, argp, sizeof zone))
2030 goto out;
2031 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2032 if (r)
2033 goto out;
2034 r = 0;
2035 break;
2037 #endif
2038 case KVM_IRQFD: {
2039 struct kvm_irqfd data;
2041 r = -EFAULT;
2042 if (copy_from_user(&data, argp, sizeof data))
2043 goto out;
2044 r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
2045 break;
2047 case KVM_IOEVENTFD: {
2048 struct kvm_ioeventfd data;
2050 r = -EFAULT;
2051 if (copy_from_user(&data, argp, sizeof data))
2052 goto out;
2053 r = kvm_ioeventfd(kvm, &data);
2054 break;
2056 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2057 case KVM_SET_BOOT_CPU_ID:
2058 r = 0;
2059 mutex_lock(&kvm->lock);
2060 if (atomic_read(&kvm->online_vcpus) != 0)
2061 r = -EBUSY;
2062 else
2063 kvm->bsp_vcpu_id = arg;
2064 mutex_unlock(&kvm->lock);
2065 break;
2066 #endif
2067 default:
2068 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2069 if (r == -ENOTTY)
2070 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
2072 out:
2073 return r;
2076 #ifdef CONFIG_COMPAT
2077 struct compat_kvm_dirty_log {
2078 __u32 slot;
2079 __u32 padding1;
2080 union {
2081 compat_uptr_t dirty_bitmap; /* one bit per page */
2082 __u64 padding2;
2086 static long kvm_vm_compat_ioctl(struct file *filp,
2087 unsigned int ioctl, unsigned long arg)
2089 struct kvm *kvm = filp->private_data;
2090 int r;
2092 if (kvm->mm != current->mm)
2093 return -EIO;
2094 switch (ioctl) {
2095 case KVM_GET_DIRTY_LOG: {
2096 struct compat_kvm_dirty_log compat_log;
2097 struct kvm_dirty_log log;
2099 r = -EFAULT;
2100 if (copy_from_user(&compat_log, (void __user *)arg,
2101 sizeof(compat_log)))
2102 goto out;
2103 log.slot = compat_log.slot;
2104 log.padding1 = compat_log.padding1;
2105 log.padding2 = compat_log.padding2;
2106 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2108 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2109 if (r)
2110 goto out;
2111 break;
2113 default:
2114 r = kvm_vm_ioctl(filp, ioctl, arg);
2117 out:
2118 return r;
2120 #endif
2122 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2124 struct page *page[1];
2125 unsigned long addr;
2126 int npages;
2127 gfn_t gfn = vmf->pgoff;
2128 struct kvm *kvm = vma->vm_file->private_data;
2130 addr = gfn_to_hva(kvm, gfn);
2131 if (kvm_is_error_hva(addr))
2132 return VM_FAULT_SIGBUS;
2134 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
2135 NULL);
2136 if (unlikely(npages != 1))
2137 return VM_FAULT_SIGBUS;
2139 vmf->page = page[0];
2140 return 0;
2143 static const struct vm_operations_struct kvm_vm_vm_ops = {
2144 .fault = kvm_vm_fault,
2147 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2149 vma->vm_ops = &kvm_vm_vm_ops;
2150 return 0;
2153 static struct file_operations kvm_vm_fops = {
2154 .release = kvm_vm_release,
2155 .unlocked_ioctl = kvm_vm_ioctl,
2156 #ifdef CONFIG_COMPAT
2157 .compat_ioctl = kvm_vm_compat_ioctl,
2158 #endif
2159 .mmap = kvm_vm_mmap,
2160 .llseek = noop_llseek,
2163 static int kvm_dev_ioctl_create_vm(void)
2165 int r;
2166 struct kvm *kvm;
2168 kvm = kvm_create_vm();
2169 if (IS_ERR(kvm))
2170 return PTR_ERR(kvm);
2171 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2172 r = kvm_coalesced_mmio_init(kvm);
2173 if (r < 0) {
2174 kvm_put_kvm(kvm);
2175 return r;
2177 #endif
2178 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
2179 if (r < 0)
2180 kvm_put_kvm(kvm);
2182 return r;
2185 static long kvm_dev_ioctl_check_extension_generic(long arg)
2187 switch (arg) {
2188 case KVM_CAP_USER_MEMORY:
2189 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2190 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2191 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2192 case KVM_CAP_SET_BOOT_CPU_ID:
2193 #endif
2194 case KVM_CAP_INTERNAL_ERROR_DATA:
2195 return 1;
2196 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2197 case KVM_CAP_IRQ_ROUTING:
2198 return KVM_MAX_IRQ_ROUTES;
2199 #endif
2200 default:
2201 break;
2203 return kvm_dev_ioctl_check_extension(arg);
2206 static long kvm_dev_ioctl(struct file *filp,
2207 unsigned int ioctl, unsigned long arg)
2209 long r = -EINVAL;
2211 switch (ioctl) {
2212 case KVM_GET_API_VERSION:
2213 r = -EINVAL;
2214 if (arg)
2215 goto out;
2216 r = KVM_API_VERSION;
2217 break;
2218 case KVM_CREATE_VM:
2219 r = -EINVAL;
2220 if (arg)
2221 goto out;
2222 r = kvm_dev_ioctl_create_vm();
2223 break;
2224 case KVM_CHECK_EXTENSION:
2225 r = kvm_dev_ioctl_check_extension_generic(arg);
2226 break;
2227 case KVM_GET_VCPU_MMAP_SIZE:
2228 r = -EINVAL;
2229 if (arg)
2230 goto out;
2231 r = PAGE_SIZE; /* struct kvm_run */
2232 #ifdef CONFIG_X86
2233 r += PAGE_SIZE; /* pio data page */
2234 #endif
2235 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2236 r += PAGE_SIZE; /* coalesced mmio ring page */
2237 #endif
2238 break;
2239 case KVM_TRACE_ENABLE:
2240 case KVM_TRACE_PAUSE:
2241 case KVM_TRACE_DISABLE:
2242 r = -EOPNOTSUPP;
2243 break;
2244 default:
2245 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2247 out:
2248 return r;
2251 static struct file_operations kvm_chardev_ops = {
2252 .unlocked_ioctl = kvm_dev_ioctl,
2253 .compat_ioctl = kvm_dev_ioctl,
2254 .llseek = noop_llseek,
2257 static struct miscdevice kvm_dev = {
2258 KVM_MINOR,
2259 "kvm",
2260 &kvm_chardev_ops,
2263 static void hardware_enable_nolock(void *junk)
2265 int cpu = raw_smp_processor_id();
2266 int r;
2268 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2269 return;
2271 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2273 r = kvm_arch_hardware_enable(NULL);
2275 if (r) {
2276 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2277 atomic_inc(&hardware_enable_failed);
2278 printk(KERN_INFO "kvm: enabling virtualization on "
2279 "CPU%d failed\n", cpu);
2283 static void hardware_enable(void *junk)
2285 raw_spin_lock(&kvm_lock);
2286 hardware_enable_nolock(junk);
2287 raw_spin_unlock(&kvm_lock);
2290 static void hardware_disable_nolock(void *junk)
2292 int cpu = raw_smp_processor_id();
2294 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2295 return;
2296 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2297 kvm_arch_hardware_disable(NULL);
2300 static void hardware_disable(void *junk)
2302 raw_spin_lock(&kvm_lock);
2303 hardware_disable_nolock(junk);
2304 raw_spin_unlock(&kvm_lock);
2307 static void hardware_disable_all_nolock(void)
2309 BUG_ON(!kvm_usage_count);
2311 kvm_usage_count--;
2312 if (!kvm_usage_count)
2313 on_each_cpu(hardware_disable_nolock, NULL, 1);
2316 static void hardware_disable_all(void)
2318 raw_spin_lock(&kvm_lock);
2319 hardware_disable_all_nolock();
2320 raw_spin_unlock(&kvm_lock);
2323 static int hardware_enable_all(void)
2325 int r = 0;
2327 raw_spin_lock(&kvm_lock);
2329 kvm_usage_count++;
2330 if (kvm_usage_count == 1) {
2331 atomic_set(&hardware_enable_failed, 0);
2332 on_each_cpu(hardware_enable_nolock, NULL, 1);
2334 if (atomic_read(&hardware_enable_failed)) {
2335 hardware_disable_all_nolock();
2336 r = -EBUSY;
2340 raw_spin_unlock(&kvm_lock);
2342 return r;
2345 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2346 void *v)
2348 int cpu = (long)v;
2350 if (!kvm_usage_count)
2351 return NOTIFY_OK;
2353 val &= ~CPU_TASKS_FROZEN;
2354 switch (val) {
2355 case CPU_DYING:
2356 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2357 cpu);
2358 hardware_disable(NULL);
2359 break;
2360 case CPU_STARTING:
2361 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2362 cpu);
2363 hardware_enable(NULL);
2364 break;
2366 return NOTIFY_OK;
2370 asmlinkage void kvm_spurious_fault(void)
2372 /* Fault while not rebooting. We want the trace. */
2373 BUG();
2375 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
2377 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2378 void *v)
2381 * Some (well, at least mine) BIOSes hang on reboot if
2382 * in vmx root mode.
2384 * And Intel TXT required VMX off for all cpu when system shutdown.
2386 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2387 kvm_rebooting = true;
2388 on_each_cpu(hardware_disable_nolock, NULL, 1);
2389 return NOTIFY_OK;
2392 static struct notifier_block kvm_reboot_notifier = {
2393 .notifier_call = kvm_reboot,
2394 .priority = 0,
2397 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2399 int i;
2401 for (i = 0; i < bus->dev_count; i++) {
2402 struct kvm_io_device *pos = bus->range[i].dev;
2404 kvm_iodevice_destructor(pos);
2406 kfree(bus);
2409 int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2411 const struct kvm_io_range *r1 = p1;
2412 const struct kvm_io_range *r2 = p2;
2414 if (r1->addr < r2->addr)
2415 return -1;
2416 if (r1->addr + r1->len > r2->addr + r2->len)
2417 return 1;
2418 return 0;
2421 int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2422 gpa_t addr, int len)
2424 if (bus->dev_count == NR_IOBUS_DEVS)
2425 return -ENOSPC;
2427 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2428 .addr = addr,
2429 .len = len,
2430 .dev = dev,
2433 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2434 kvm_io_bus_sort_cmp, NULL);
2436 return 0;
2439 int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2440 gpa_t addr, int len)
2442 struct kvm_io_range *range, key;
2443 int off;
2445 key = (struct kvm_io_range) {
2446 .addr = addr,
2447 .len = len,
2450 range = bsearch(&key, bus->range, bus->dev_count,
2451 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2452 if (range == NULL)
2453 return -ENOENT;
2455 off = range - bus->range;
2457 while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0)
2458 off--;
2460 return off;
2463 /* kvm_io_bus_write - called under kvm->slots_lock */
2464 int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2465 int len, const void *val)
2467 int idx;
2468 struct kvm_io_bus *bus;
2469 struct kvm_io_range range;
2471 range = (struct kvm_io_range) {
2472 .addr = addr,
2473 .len = len,
2476 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2477 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2478 if (idx < 0)
2479 return -EOPNOTSUPP;
2481 while (idx < bus->dev_count &&
2482 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2483 if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val))
2484 return 0;
2485 idx++;
2488 return -EOPNOTSUPP;
2491 /* kvm_io_bus_read - called under kvm->slots_lock */
2492 int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2493 int len, void *val)
2495 int idx;
2496 struct kvm_io_bus *bus;
2497 struct kvm_io_range range;
2499 range = (struct kvm_io_range) {
2500 .addr = addr,
2501 .len = len,
2504 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
2505 idx = kvm_io_bus_get_first_dev(bus, addr, len);
2506 if (idx < 0)
2507 return -EOPNOTSUPP;
2509 while (idx < bus->dev_count &&
2510 kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) {
2511 if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val))
2512 return 0;
2513 idx++;
2516 return -EOPNOTSUPP;
2519 /* Caller must hold slots_lock. */
2520 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
2521 int len, struct kvm_io_device *dev)
2523 struct kvm_io_bus *new_bus, *bus;
2525 bus = kvm->buses[bus_idx];
2526 if (bus->dev_count > NR_IOBUS_DEVS-1)
2527 return -ENOSPC;
2529 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2530 if (!new_bus)
2531 return -ENOMEM;
2532 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2533 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
2534 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2535 synchronize_srcu_expedited(&kvm->srcu);
2536 kfree(bus);
2538 return 0;
2541 /* Caller must hold slots_lock. */
2542 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
2543 struct kvm_io_device *dev)
2545 int i, r;
2546 struct kvm_io_bus *new_bus, *bus;
2548 new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
2549 if (!new_bus)
2550 return -ENOMEM;
2552 bus = kvm->buses[bus_idx];
2553 memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
2555 r = -ENOENT;
2556 for (i = 0; i < new_bus->dev_count; i++)
2557 if (new_bus->range[i].dev == dev) {
2558 r = 0;
2559 new_bus->dev_count--;
2560 new_bus->range[i] = new_bus->range[new_bus->dev_count];
2561 sort(new_bus->range, new_bus->dev_count,
2562 sizeof(struct kvm_io_range),
2563 kvm_io_bus_sort_cmp, NULL);
2564 break;
2567 if (r) {
2568 kfree(new_bus);
2569 return r;
2572 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
2573 synchronize_srcu_expedited(&kvm->srcu);
2574 kfree(bus);
2575 return r;
2578 static struct notifier_block kvm_cpu_notifier = {
2579 .notifier_call = kvm_cpu_hotplug,
2582 static int vm_stat_get(void *_offset, u64 *val)
2584 unsigned offset = (long)_offset;
2585 struct kvm *kvm;
2587 *val = 0;
2588 raw_spin_lock(&kvm_lock);
2589 list_for_each_entry(kvm, &vm_list, vm_list)
2590 *val += *(u32 *)((void *)kvm + offset);
2591 raw_spin_unlock(&kvm_lock);
2592 return 0;
2595 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2597 static int vcpu_stat_get(void *_offset, u64 *val)
2599 unsigned offset = (long)_offset;
2600 struct kvm *kvm;
2601 struct kvm_vcpu *vcpu;
2602 int i;
2604 *val = 0;
2605 raw_spin_lock(&kvm_lock);
2606 list_for_each_entry(kvm, &vm_list, vm_list)
2607 kvm_for_each_vcpu(i, vcpu, kvm)
2608 *val += *(u32 *)((void *)vcpu + offset);
2610 raw_spin_unlock(&kvm_lock);
2611 return 0;
2614 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2616 static const struct file_operations *stat_fops[] = {
2617 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2618 [KVM_STAT_VM] = &vm_stat_fops,
2621 static void kvm_init_debug(void)
2623 struct kvm_stats_debugfs_item *p;
2625 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2626 for (p = debugfs_entries; p->name; ++p)
2627 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2628 (void *)(long)p->offset,
2629 stat_fops[p->kind]);
2632 static void kvm_exit_debug(void)
2634 struct kvm_stats_debugfs_item *p;
2636 for (p = debugfs_entries; p->name; ++p)
2637 debugfs_remove(p->dentry);
2638 debugfs_remove(kvm_debugfs_dir);
2641 static int kvm_suspend(void)
2643 if (kvm_usage_count)
2644 hardware_disable_nolock(NULL);
2645 return 0;
2648 static void kvm_resume(void)
2650 if (kvm_usage_count) {
2651 WARN_ON(raw_spin_is_locked(&kvm_lock));
2652 hardware_enable_nolock(NULL);
2656 static struct syscore_ops kvm_syscore_ops = {
2657 .suspend = kvm_suspend,
2658 .resume = kvm_resume,
2661 struct page *bad_page;
2662 pfn_t bad_pfn;
2664 static inline
2665 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2667 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2670 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2672 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2674 kvm_arch_vcpu_load(vcpu, cpu);
2677 static void kvm_sched_out(struct preempt_notifier *pn,
2678 struct task_struct *next)
2680 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2682 kvm_arch_vcpu_put(vcpu);
2685 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
2686 struct module *module)
2688 int r;
2689 int cpu;
2691 r = kvm_arch_init(opaque);
2692 if (r)
2693 goto out_fail;
2695 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2697 if (bad_page == NULL) {
2698 r = -ENOMEM;
2699 goto out;
2702 bad_pfn = page_to_pfn(bad_page);
2704 hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2706 if (hwpoison_page == NULL) {
2707 r = -ENOMEM;
2708 goto out_free_0;
2711 hwpoison_pfn = page_to_pfn(hwpoison_page);
2713 fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2715 if (fault_page == NULL) {
2716 r = -ENOMEM;
2717 goto out_free_0;
2720 fault_pfn = page_to_pfn(fault_page);
2722 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2723 r = -ENOMEM;
2724 goto out_free_0;
2727 r = kvm_arch_hardware_setup();
2728 if (r < 0)
2729 goto out_free_0a;
2731 for_each_online_cpu(cpu) {
2732 smp_call_function_single(cpu,
2733 kvm_arch_check_processor_compat,
2734 &r, 1);
2735 if (r < 0)
2736 goto out_free_1;
2739 r = register_cpu_notifier(&kvm_cpu_notifier);
2740 if (r)
2741 goto out_free_2;
2742 register_reboot_notifier(&kvm_reboot_notifier);
2744 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2745 if (!vcpu_align)
2746 vcpu_align = __alignof__(struct kvm_vcpu);
2747 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
2748 0, NULL);
2749 if (!kvm_vcpu_cache) {
2750 r = -ENOMEM;
2751 goto out_free_3;
2754 r = kvm_async_pf_init();
2755 if (r)
2756 goto out_free;
2758 kvm_chardev_ops.owner = module;
2759 kvm_vm_fops.owner = module;
2760 kvm_vcpu_fops.owner = module;
2762 r = misc_register(&kvm_dev);
2763 if (r) {
2764 printk(KERN_ERR "kvm: misc device register failed\n");
2765 goto out_unreg;
2768 register_syscore_ops(&kvm_syscore_ops);
2770 kvm_preempt_ops.sched_in = kvm_sched_in;
2771 kvm_preempt_ops.sched_out = kvm_sched_out;
2773 kvm_init_debug();
2775 return 0;
2777 out_unreg:
2778 kvm_async_pf_deinit();
2779 out_free:
2780 kmem_cache_destroy(kvm_vcpu_cache);
2781 out_free_3:
2782 unregister_reboot_notifier(&kvm_reboot_notifier);
2783 unregister_cpu_notifier(&kvm_cpu_notifier);
2784 out_free_2:
2785 out_free_1:
2786 kvm_arch_hardware_unsetup();
2787 out_free_0a:
2788 free_cpumask_var(cpus_hardware_enabled);
2789 out_free_0:
2790 if (fault_page)
2791 __free_page(fault_page);
2792 if (hwpoison_page)
2793 __free_page(hwpoison_page);
2794 __free_page(bad_page);
2795 out:
2796 kvm_arch_exit();
2797 out_fail:
2798 return r;
2800 EXPORT_SYMBOL_GPL(kvm_init);
2802 void kvm_exit(void)
2804 kvm_exit_debug();
2805 misc_deregister(&kvm_dev);
2806 kmem_cache_destroy(kvm_vcpu_cache);
2807 kvm_async_pf_deinit();
2808 unregister_syscore_ops(&kvm_syscore_ops);
2809 unregister_reboot_notifier(&kvm_reboot_notifier);
2810 unregister_cpu_notifier(&kvm_cpu_notifier);
2811 on_each_cpu(hardware_disable_nolock, NULL, 1);
2812 kvm_arch_hardware_unsetup();
2813 kvm_arch_exit();
2814 free_cpumask_var(cpus_hardware_enabled);
2815 __free_page(hwpoison_page);
2816 __free_page(bad_page);
2818 EXPORT_SYMBOL_GPL(kvm_exit);