2 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
5 * Copyright (C) 2017 Facebook
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public
9 * License v2 as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <https://www.gnu.org/licenses/>.
20 #include <linux/kernel.h>
21 #include <linux/blkdev.h>
22 #include <linux/blk-mq.h>
23 #include <linux/elevator.h>
24 #include <linux/module.h>
25 #include <linux/sbitmap.h>
29 #include "blk-mq-debugfs.h"
30 #include "blk-mq-sched.h"
31 #include "blk-mq-tag.h"
34 /* Scheduling domains. */
38 KYBER_OTHER
, /* Async writes, discard, etc. */
43 KYBER_MIN_DEPTH
= 256,
46 * In order to prevent starvation of synchronous requests by a flood of
47 * asynchronous requests, we reserve 25% of requests for synchronous
50 KYBER_ASYNC_PERCENT
= 75,
54 * Initial device-wide depths for each scheduling domain.
56 * Even for fast devices with lots of tags like NVMe, you can saturate
57 * the device with only a fraction of the maximum possible queue depth.
58 * So, we cap these to a reasonable value.
60 static const unsigned int kyber_depth
[] = {
62 [KYBER_SYNC_WRITE
] = 128,
67 * Scheduling domain batch sizes. We favor reads.
69 static const unsigned int kyber_batch_size
[] = {
71 [KYBER_SYNC_WRITE
] = 8,
75 struct kyber_queue_data
{
76 struct request_queue
*q
;
78 struct blk_stat_callback
*cb
;
81 * The device is divided into multiple scheduling domains based on the
82 * request type. Each domain has a fixed number of in-flight requests of
83 * that type device-wide, limited by these tokens.
85 struct sbitmap_queue domain_tokens
[KYBER_NUM_DOMAINS
];
88 * Async request percentage, converted to per-word depth for
89 * sbitmap_get_shallow().
91 unsigned int async_depth
;
93 /* Target latencies in nanoseconds. */
94 u64 read_lat_nsec
, write_lat_nsec
;
97 struct kyber_hctx_data
{
99 struct list_head rqs
[KYBER_NUM_DOMAINS
];
100 unsigned int cur_domain
;
101 unsigned int batching
;
102 wait_queue_entry_t domain_wait
[KYBER_NUM_DOMAINS
];
103 struct sbq_wait_state
*domain_ws
[KYBER_NUM_DOMAINS
];
104 atomic_t wait_index
[KYBER_NUM_DOMAINS
];
107 static int kyber_domain_wake(wait_queue_entry_t
*wait
, unsigned mode
, int flags
,
110 static int rq_sched_domain(const struct request
*rq
)
112 unsigned int op
= rq
->cmd_flags
;
114 if ((op
& REQ_OP_MASK
) == REQ_OP_READ
)
116 else if ((op
& REQ_OP_MASK
) == REQ_OP_WRITE
&& op_is_sync(op
))
117 return KYBER_SYNC_WRITE
;
130 #define IS_GOOD(status) ((status) > 0)
131 #define IS_BAD(status) ((status) < 0)
133 static int kyber_lat_status(struct blk_stat_callback
*cb
,
134 unsigned int sched_domain
, u64 target
)
138 if (!cb
->stat
[sched_domain
].nr_samples
)
141 latency
= cb
->stat
[sched_domain
].mean
;
142 if (latency
>= 2 * target
)
144 else if (latency
> target
)
146 else if (latency
<= target
/ 2)
148 else /* (latency <= target) */
153 * Adjust the read or synchronous write depth given the status of reads and
154 * writes. The goal is that the latencies of the two domains are fair (i.e., if
155 * one is good, then the other is good).
157 static void kyber_adjust_rw_depth(struct kyber_queue_data
*kqd
,
158 unsigned int sched_domain
, int this_status
,
161 unsigned int orig_depth
, depth
;
164 * If this domain had no samples, or reads and writes are both good or
165 * both bad, don't adjust the depth.
167 if (this_status
== NONE
||
168 (IS_GOOD(this_status
) && IS_GOOD(other_status
)) ||
169 (IS_BAD(this_status
) && IS_BAD(other_status
)))
172 orig_depth
= depth
= kqd
->domain_tokens
[sched_domain
].sb
.depth
;
174 if (other_status
== NONE
) {
177 switch (this_status
) {
179 if (other_status
== AWFUL
)
180 depth
-= max(depth
/ 4, 1U);
182 depth
-= max(depth
/ 8, 1U);
185 if (other_status
== AWFUL
)
188 depth
-= max(depth
/ 4, 1U);
194 if (other_status
== GREAT
)
202 depth
= clamp(depth
, 1U, kyber_depth
[sched_domain
]);
203 if (depth
!= orig_depth
)
204 sbitmap_queue_resize(&kqd
->domain_tokens
[sched_domain
], depth
);
208 * Adjust the depth of other requests given the status of reads and synchronous
209 * writes. As long as either domain is doing fine, we don't throttle, but if
210 * both domains are doing badly, we throttle heavily.
212 static void kyber_adjust_other_depth(struct kyber_queue_data
*kqd
,
213 int read_status
, int write_status
,
216 unsigned int orig_depth
, depth
;
219 orig_depth
= depth
= kqd
->domain_tokens
[KYBER_OTHER
].sb
.depth
;
221 if (read_status
== NONE
&& write_status
== NONE
) {
223 } else if (have_samples
) {
224 if (read_status
== NONE
)
225 status
= write_status
;
226 else if (write_status
== NONE
)
227 status
= read_status
;
229 status
= max(read_status
, write_status
);
238 depth
-= max(depth
/ 4, 1U);
246 depth
= clamp(depth
, 1U, kyber_depth
[KYBER_OTHER
]);
247 if (depth
!= orig_depth
)
248 sbitmap_queue_resize(&kqd
->domain_tokens
[KYBER_OTHER
], depth
);
252 * Apply heuristics for limiting queue depths based on gathered latency
255 static void kyber_stat_timer_fn(struct blk_stat_callback
*cb
)
257 struct kyber_queue_data
*kqd
= cb
->data
;
258 int read_status
, write_status
;
260 read_status
= kyber_lat_status(cb
, KYBER_READ
, kqd
->read_lat_nsec
);
261 write_status
= kyber_lat_status(cb
, KYBER_SYNC_WRITE
, kqd
->write_lat_nsec
);
263 kyber_adjust_rw_depth(kqd
, KYBER_READ
, read_status
, write_status
);
264 kyber_adjust_rw_depth(kqd
, KYBER_SYNC_WRITE
, write_status
, read_status
);
265 kyber_adjust_other_depth(kqd
, read_status
, write_status
,
266 cb
->stat
[KYBER_OTHER
].nr_samples
!= 0);
269 * Continue monitoring latencies if we aren't hitting the targets or
270 * we're still throttling other requests.
272 if (!blk_stat_is_active(kqd
->cb
) &&
273 ((IS_BAD(read_status
) || IS_BAD(write_status
) ||
274 kqd
->domain_tokens
[KYBER_OTHER
].sb
.depth
< kyber_depth
[KYBER_OTHER
])))
275 blk_stat_activate_msecs(kqd
->cb
, 100);
278 static unsigned int kyber_sched_tags_shift(struct kyber_queue_data
*kqd
)
281 * All of the hardware queues have the same depth, so we can just grab
282 * the shift of the first one.
284 return kqd
->q
->queue_hw_ctx
[0]->sched_tags
->bitmap_tags
.sb
.shift
;
287 static struct kyber_queue_data
*kyber_queue_data_alloc(struct request_queue
*q
)
289 struct kyber_queue_data
*kqd
;
290 unsigned int max_tokens
;
295 kqd
= kmalloc_node(sizeof(*kqd
), GFP_KERNEL
, q
->node
);
300 kqd
->cb
= blk_stat_alloc_callback(kyber_stat_timer_fn
, rq_sched_domain
,
301 KYBER_NUM_DOMAINS
, kqd
);
306 * The maximum number of tokens for any scheduling domain is at least
307 * the queue depth of a single hardware queue. If the hardware doesn't
308 * have many tags, still provide a reasonable number.
310 max_tokens
= max_t(unsigned int, q
->tag_set
->queue_depth
,
312 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
313 WARN_ON(!kyber_depth
[i
]);
314 WARN_ON(!kyber_batch_size
[i
]);
315 ret
= sbitmap_queue_init_node(&kqd
->domain_tokens
[i
],
316 max_tokens
, -1, false, GFP_KERNEL
,
320 sbitmap_queue_free(&kqd
->domain_tokens
[i
]);
323 sbitmap_queue_resize(&kqd
->domain_tokens
[i
], kyber_depth
[i
]);
326 shift
= kyber_sched_tags_shift(kqd
);
327 kqd
->async_depth
= (1U << shift
) * KYBER_ASYNC_PERCENT
/ 100U;
329 kqd
->read_lat_nsec
= 2000000ULL;
330 kqd
->write_lat_nsec
= 10000000ULL;
335 blk_stat_free_callback(kqd
->cb
);
342 static int kyber_init_sched(struct request_queue
*q
, struct elevator_type
*e
)
344 struct kyber_queue_data
*kqd
;
345 struct elevator_queue
*eq
;
347 eq
= elevator_alloc(q
, e
);
351 kqd
= kyber_queue_data_alloc(q
);
353 kobject_put(&eq
->kobj
);
357 eq
->elevator_data
= kqd
;
360 blk_stat_add_callback(q
, kqd
->cb
);
365 static void kyber_exit_sched(struct elevator_queue
*e
)
367 struct kyber_queue_data
*kqd
= e
->elevator_data
;
368 struct request_queue
*q
= kqd
->q
;
371 blk_stat_remove_callback(q
, kqd
->cb
);
373 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++)
374 sbitmap_queue_free(&kqd
->domain_tokens
[i
]);
375 blk_stat_free_callback(kqd
->cb
);
379 static int kyber_init_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
381 struct kyber_hctx_data
*khd
;
384 khd
= kmalloc_node(sizeof(*khd
), GFP_KERNEL
, hctx
->numa_node
);
388 spin_lock_init(&khd
->lock
);
390 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
391 INIT_LIST_HEAD(&khd
->rqs
[i
]);
392 init_waitqueue_func_entry(&khd
->domain_wait
[i
],
394 khd
->domain_wait
[i
].private = hctx
;
395 INIT_LIST_HEAD(&khd
->domain_wait
[i
].entry
);
396 atomic_set(&khd
->wait_index
[i
], 0);
402 hctx
->sched_data
= khd
;
407 static void kyber_exit_hctx(struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
409 kfree(hctx
->sched_data
);
412 static int rq_get_domain_token(struct request
*rq
)
414 return (long)rq
->elv
.priv
[0];
417 static void rq_set_domain_token(struct request
*rq
, int token
)
419 rq
->elv
.priv
[0] = (void *)(long)token
;
422 static void rq_clear_domain_token(struct kyber_queue_data
*kqd
,
425 unsigned int sched_domain
;
428 nr
= rq_get_domain_token(rq
);
430 sched_domain
= rq_sched_domain(rq
);
431 sbitmap_queue_clear(&kqd
->domain_tokens
[sched_domain
], nr
,
436 static void kyber_limit_depth(unsigned int op
, struct blk_mq_alloc_data
*data
)
439 * We use the scheduler tags as per-hardware queue queueing tokens.
440 * Async requests can be limited at this stage.
442 if (!op_is_sync(op
)) {
443 struct kyber_queue_data
*kqd
= data
->q
->elevator
->elevator_data
;
445 data
->shallow_depth
= kqd
->async_depth
;
449 static void kyber_prepare_request(struct request
*rq
, struct bio
*bio
)
451 rq_set_domain_token(rq
, -1);
454 static void kyber_finish_request(struct request
*rq
)
456 struct kyber_queue_data
*kqd
= rq
->q
->elevator
->elevator_data
;
458 rq_clear_domain_token(kqd
, rq
);
461 static void kyber_completed_request(struct request
*rq
)
463 struct request_queue
*q
= rq
->q
;
464 struct kyber_queue_data
*kqd
= q
->elevator
->elevator_data
;
465 unsigned int sched_domain
;
466 u64 now
, latency
, target
;
469 * Check if this request met our latency goal. If not, quickly gather
470 * some statistics and start throttling.
472 sched_domain
= rq_sched_domain(rq
);
473 switch (sched_domain
) {
475 target
= kqd
->read_lat_nsec
;
477 case KYBER_SYNC_WRITE
:
478 target
= kqd
->write_lat_nsec
;
484 /* If we are already monitoring latencies, don't check again. */
485 if (blk_stat_is_active(kqd
->cb
))
488 now
= __blk_stat_time(ktime_to_ns(ktime_get()));
489 if (now
< blk_stat_time(&rq
->issue_stat
))
492 latency
= now
- blk_stat_time(&rq
->issue_stat
);
494 if (latency
> target
)
495 blk_stat_activate_msecs(kqd
->cb
, 10);
498 static void kyber_flush_busy_ctxs(struct kyber_hctx_data
*khd
,
499 struct blk_mq_hw_ctx
*hctx
)
502 struct request
*rq
, *next
;
504 blk_mq_flush_busy_ctxs(hctx
, &rq_list
);
505 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
506 unsigned int sched_domain
;
508 sched_domain
= rq_sched_domain(rq
);
509 list_move_tail(&rq
->queuelist
, &khd
->rqs
[sched_domain
]);
513 static int kyber_domain_wake(wait_queue_entry_t
*wait
, unsigned mode
, int flags
,
516 struct blk_mq_hw_ctx
*hctx
= READ_ONCE(wait
->private);
518 list_del_init(&wait
->entry
);
519 blk_mq_run_hw_queue(hctx
, true);
523 static int kyber_get_domain_token(struct kyber_queue_data
*kqd
,
524 struct kyber_hctx_data
*khd
,
525 struct blk_mq_hw_ctx
*hctx
)
527 unsigned int sched_domain
= khd
->cur_domain
;
528 struct sbitmap_queue
*domain_tokens
= &kqd
->domain_tokens
[sched_domain
];
529 wait_queue_entry_t
*wait
= &khd
->domain_wait
[sched_domain
];
530 struct sbq_wait_state
*ws
;
533 nr
= __sbitmap_queue_get(domain_tokens
);
536 * If we failed to get a domain token, make sure the hardware queue is
537 * run when one becomes available. Note that this is serialized on
538 * khd->lock, but we still need to be careful about the waker.
540 if (nr
< 0 && list_empty_careful(&wait
->entry
)) {
541 ws
= sbq_wait_ptr(domain_tokens
,
542 &khd
->wait_index
[sched_domain
]);
543 khd
->domain_ws
[sched_domain
] = ws
;
544 add_wait_queue(&ws
->wait
, wait
);
547 * Try again in case a token was freed before we got on the wait
550 nr
= __sbitmap_queue_get(domain_tokens
);
554 * If we got a token while we were on the wait queue, remove ourselves
555 * from the wait queue to ensure that all wake ups make forward
556 * progress. It's possible that the waker already deleted the entry
557 * between the !list_empty_careful() check and us grabbing the lock, but
558 * list_del_init() is okay with that.
560 if (nr
>= 0 && !list_empty_careful(&wait
->entry
)) {
561 ws
= khd
->domain_ws
[sched_domain
];
562 spin_lock_irq(&ws
->wait
.lock
);
563 list_del_init(&wait
->entry
);
564 spin_unlock_irq(&ws
->wait
.lock
);
570 static struct request
*
571 kyber_dispatch_cur_domain(struct kyber_queue_data
*kqd
,
572 struct kyber_hctx_data
*khd
,
573 struct blk_mq_hw_ctx
*hctx
,
576 struct list_head
*rqs
;
580 rqs
= &khd
->rqs
[khd
->cur_domain
];
581 rq
= list_first_entry_or_null(rqs
, struct request
, queuelist
);
584 * If there wasn't already a pending request and we haven't flushed the
585 * software queues yet, flush the software queues and check again.
587 if (!rq
&& !*flushed
) {
588 kyber_flush_busy_ctxs(khd
, hctx
);
590 rq
= list_first_entry_or_null(rqs
, struct request
, queuelist
);
594 nr
= kyber_get_domain_token(kqd
, khd
, hctx
);
597 rq_set_domain_token(rq
, nr
);
598 list_del_init(&rq
->queuelist
);
603 /* There were either no pending requests or no tokens. */
607 static struct request
*kyber_dispatch_request(struct blk_mq_hw_ctx
*hctx
)
609 struct kyber_queue_data
*kqd
= hctx
->queue
->elevator
->elevator_data
;
610 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
611 bool flushed
= false;
615 spin_lock(&khd
->lock
);
618 * First, if we are still entitled to batch, try to dispatch a request
621 if (khd
->batching
< kyber_batch_size
[khd
->cur_domain
]) {
622 rq
= kyber_dispatch_cur_domain(kqd
, khd
, hctx
, &flushed
);
629 * 1. We were no longer entitled to a batch.
630 * 2. The domain we were batching didn't have any requests.
631 * 3. The domain we were batching was out of tokens.
633 * Start another batch. Note that this wraps back around to the original
634 * domain if no other domains have requests or tokens.
637 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
638 if (khd
->cur_domain
== KYBER_NUM_DOMAINS
- 1)
643 rq
= kyber_dispatch_cur_domain(kqd
, khd
, hctx
, &flushed
);
650 spin_unlock(&khd
->lock
);
654 static bool kyber_has_work(struct blk_mq_hw_ctx
*hctx
)
656 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
659 for (i
= 0; i
< KYBER_NUM_DOMAINS
; i
++) {
660 if (!list_empty_careful(&khd
->rqs
[i
]))
663 return sbitmap_any_bit_set(&hctx
->ctx_map
);
666 #define KYBER_LAT_SHOW_STORE(op) \
667 static ssize_t kyber_##op##_lat_show(struct elevator_queue *e, \
670 struct kyber_queue_data *kqd = e->elevator_data; \
672 return sprintf(page, "%llu\n", kqd->op##_lat_nsec); \
675 static ssize_t kyber_##op##_lat_store(struct elevator_queue *e, \
676 const char *page, size_t count) \
678 struct kyber_queue_data *kqd = e->elevator_data; \
679 unsigned long long nsec; \
682 ret = kstrtoull(page, 10, &nsec); \
686 kqd->op##_lat_nsec = nsec; \
690 KYBER_LAT_SHOW_STORE(read
);
691 KYBER_LAT_SHOW_STORE(write
);
692 #undef KYBER_LAT_SHOW_STORE
694 #define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
695 static struct elv_fs_entry kyber_sched_attrs
[] = {
696 KYBER_LAT_ATTR(read
),
697 KYBER_LAT_ATTR(write
),
700 #undef KYBER_LAT_ATTR
702 #ifdef CONFIG_BLK_DEBUG_FS
703 #define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name) \
704 static int kyber_##name##_tokens_show(void *data, struct seq_file *m) \
706 struct request_queue *q = data; \
707 struct kyber_queue_data *kqd = q->elevator->elevator_data; \
709 sbitmap_queue_show(&kqd->domain_tokens[domain], m); \
713 static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos) \
714 __acquires(&khd->lock) \
716 struct blk_mq_hw_ctx *hctx = m->private; \
717 struct kyber_hctx_data *khd = hctx->sched_data; \
719 spin_lock(&khd->lock); \
720 return seq_list_start(&khd->rqs[domain], *pos); \
723 static void *kyber_##name##_rqs_next(struct seq_file *m, void *v, \
726 struct blk_mq_hw_ctx *hctx = m->private; \
727 struct kyber_hctx_data *khd = hctx->sched_data; \
729 return seq_list_next(v, &khd->rqs[domain], pos); \
732 static void kyber_##name##_rqs_stop(struct seq_file *m, void *v) \
733 __releases(&khd->lock) \
735 struct blk_mq_hw_ctx *hctx = m->private; \
736 struct kyber_hctx_data *khd = hctx->sched_data; \
738 spin_unlock(&khd->lock); \
741 static const struct seq_operations kyber_##name##_rqs_seq_ops = { \
742 .start = kyber_##name##_rqs_start, \
743 .next = kyber_##name##_rqs_next, \
744 .stop = kyber_##name##_rqs_stop, \
745 .show = blk_mq_debugfs_rq_show, \
748 static int kyber_##name##_waiting_show(void *data, struct seq_file *m) \
750 struct blk_mq_hw_ctx *hctx = data; \
751 struct kyber_hctx_data *khd = hctx->sched_data; \
752 wait_queue_entry_t *wait = &khd->domain_wait[domain]; \
754 seq_printf(m, "%d\n", !list_empty_careful(&wait->entry)); \
757 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ
, read
)
758 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE
, sync_write
)
759 KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER
, other
)
760 #undef KYBER_DEBUGFS_DOMAIN_ATTRS
762 static int kyber_async_depth_show(void *data
, struct seq_file
*m
)
764 struct request_queue
*q
= data
;
765 struct kyber_queue_data
*kqd
= q
->elevator
->elevator_data
;
767 seq_printf(m
, "%u\n", kqd
->async_depth
);
771 static int kyber_cur_domain_show(void *data
, struct seq_file
*m
)
773 struct blk_mq_hw_ctx
*hctx
= data
;
774 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
776 switch (khd
->cur_domain
) {
778 seq_puts(m
, "READ\n");
780 case KYBER_SYNC_WRITE
:
781 seq_puts(m
, "SYNC_WRITE\n");
784 seq_puts(m
, "OTHER\n");
787 seq_printf(m
, "%u\n", khd
->cur_domain
);
793 static int kyber_batching_show(void *data
, struct seq_file
*m
)
795 struct blk_mq_hw_ctx
*hctx
= data
;
796 struct kyber_hctx_data
*khd
= hctx
->sched_data
;
798 seq_printf(m
, "%u\n", khd
->batching
);
802 #define KYBER_QUEUE_DOMAIN_ATTRS(name) \
803 {#name "_tokens", 0400, kyber_##name##_tokens_show}
804 static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs
[] = {
805 KYBER_QUEUE_DOMAIN_ATTRS(read
),
806 KYBER_QUEUE_DOMAIN_ATTRS(sync_write
),
807 KYBER_QUEUE_DOMAIN_ATTRS(other
),
808 {"async_depth", 0400, kyber_async_depth_show
},
811 #undef KYBER_QUEUE_DOMAIN_ATTRS
813 #define KYBER_HCTX_DOMAIN_ATTRS(name) \
814 {#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops}, \
815 {#name "_waiting", 0400, kyber_##name##_waiting_show}
816 static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs
[] = {
817 KYBER_HCTX_DOMAIN_ATTRS(read
),
818 KYBER_HCTX_DOMAIN_ATTRS(sync_write
),
819 KYBER_HCTX_DOMAIN_ATTRS(other
),
820 {"cur_domain", 0400, kyber_cur_domain_show
},
821 {"batching", 0400, kyber_batching_show
},
824 #undef KYBER_HCTX_DOMAIN_ATTRS
827 static struct elevator_type kyber_sched
= {
829 .init_sched
= kyber_init_sched
,
830 .exit_sched
= kyber_exit_sched
,
831 .init_hctx
= kyber_init_hctx
,
832 .exit_hctx
= kyber_exit_hctx
,
833 .limit_depth
= kyber_limit_depth
,
834 .prepare_request
= kyber_prepare_request
,
835 .finish_request
= kyber_finish_request
,
836 .requeue_request
= kyber_finish_request
,
837 .completed_request
= kyber_completed_request
,
838 .dispatch_request
= kyber_dispatch_request
,
839 .has_work
= kyber_has_work
,
842 #ifdef CONFIG_BLK_DEBUG_FS
843 .queue_debugfs_attrs
= kyber_queue_debugfs_attrs
,
844 .hctx_debugfs_attrs
= kyber_hctx_debugfs_attrs
,
846 .elevator_attrs
= kyber_sched_attrs
,
847 .elevator_name
= "kyber",
848 .elevator_owner
= THIS_MODULE
,
851 static int __init
kyber_init(void)
853 return elv_register(&kyber_sched
);
856 static void __exit
kyber_exit(void)
858 elv_unregister(&kyber_sched
);
861 module_init(kyber_init
);
862 module_exit(kyber_exit
);
864 MODULE_AUTHOR("Omar Sandoval");
865 MODULE_LICENSE("GPL");
866 MODULE_DESCRIPTION("Kyber I/O scheduler");