mmap: introduce sane default mmap limits
[linux/fpc-iii.git] / block / blk-core.c
blob23daf40be3716dc2508e9139bce46b9d7f6495da
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
40 #include "blk.h"
41 #include "blk-mq.h"
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
49 DEFINE_IDA(blk_queue_ida);
52 * For the allocated request tables
54 struct kmem_cache *request_cachep;
57 * For queue allocation
59 struct kmem_cache *blk_requestq_cachep;
62 * Controlling structure to kblockd
64 static struct workqueue_struct *kblockd_workqueue;
66 static void blk_clear_congested(struct request_list *rl, int sync)
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
80 static void blk_set_congested(struct request_list *rl, int sync)
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
91 void blk_queue_congestion_threshold(struct request_queue *q)
93 int nr;
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
116 struct request_queue *q = bdev_get_queue(bdev);
118 return &q->backing_dev_info;
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
122 void blk_rq_init(struct request_queue *q, struct request *rq)
124 memset(rq, 0, sizeof(*rq));
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
140 EXPORT_SYMBOL(blk_rq_init);
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
145 if (error)
146 bio->bi_error = error;
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
151 bio_advance(bio, nbytes);
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
158 void blk_dump_rq_flags(struct request *rq, char *msg)
160 int bit;
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
179 EXPORT_SYMBOL(blk_dump_rq_flags);
181 static void blk_delay_work(struct work_struct *work)
183 struct request_queue *q;
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
207 EXPORT_SYMBOL(blk_delay_queue);
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
218 void blk_start_queue_async(struct request_queue *q)
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
223 EXPORT_SYMBOL(blk_start_queue_async);
226 * blk_start_queue - restart a previously stopped queue
227 * @q: The &struct request_queue in question
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
234 void blk_start_queue(struct request_queue *q)
236 WARN_ON(!in_interrupt() && !irqs_disabled());
238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 __blk_run_queue(q);
241 EXPORT_SYMBOL(blk_start_queue);
244 * blk_stop_queue - stop a queue
245 * @q: The &struct request_queue in question
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
257 void blk_stop_queue(struct request_queue *q)
259 cancel_delayed_work(&q->delay_work);
260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
262 EXPORT_SYMBOL(blk_stop_queue);
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
273 * that the callbacks might use. The caller must already have made sure
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
277 * This function does not cancel any asynchronous activity arising
278 * out of elevator or throttling code. That would require elevator_exit()
279 * and blkcg_exit_queue() to be called with queue lock initialized.
282 void blk_sync_queue(struct request_queue *q)
284 del_timer_sync(&q->timeout);
285 cancel_work_sync(&q->timeout_work);
287 if (q->mq_ops) {
288 struct blk_mq_hw_ctx *hctx;
289 int i;
291 queue_for_each_hw_ctx(q, hctx, i) {
292 cancel_work_sync(&hctx->run_work);
293 cancel_delayed_work_sync(&hctx->delay_work);
295 } else {
296 cancel_delayed_work_sync(&q->delay_work);
299 EXPORT_SYMBOL(blk_sync_queue);
302 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
303 * @q: The queue to run
305 * Description:
306 * Invoke request handling on a queue if there are any pending requests.
307 * May be used to restart request handling after a request has completed.
308 * This variant runs the queue whether or not the queue has been
309 * stopped. Must be called with the queue lock held and interrupts
310 * disabled. See also @blk_run_queue.
312 inline void __blk_run_queue_uncond(struct request_queue *q)
314 if (unlikely(blk_queue_dead(q)))
315 return;
318 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
319 * the queue lock internally. As a result multiple threads may be
320 * running such a request function concurrently. Keep track of the
321 * number of active request_fn invocations such that blk_drain_queue()
322 * can wait until all these request_fn calls have finished.
324 q->request_fn_active++;
325 q->request_fn(q);
326 q->request_fn_active--;
328 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
331 * __blk_run_queue - run a single device queue
332 * @q: The queue to run
334 * Description:
335 * See @blk_run_queue. This variant must be called with the queue lock
336 * held and interrupts disabled.
338 void __blk_run_queue(struct request_queue *q)
340 if (unlikely(blk_queue_stopped(q)))
341 return;
343 __blk_run_queue_uncond(q);
345 EXPORT_SYMBOL(__blk_run_queue);
348 * blk_run_queue_async - run a single device queue in workqueue context
349 * @q: The queue to run
351 * Description:
352 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
353 * of us. The caller must hold the queue lock.
355 void blk_run_queue_async(struct request_queue *q)
357 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
358 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
360 EXPORT_SYMBOL(blk_run_queue_async);
363 * blk_run_queue - run a single device queue
364 * @q: The queue to run
366 * Description:
367 * Invoke request handling on this queue, if it has pending work to do.
368 * May be used to restart queueing when a request has completed.
370 void blk_run_queue(struct request_queue *q)
372 unsigned long flags;
374 spin_lock_irqsave(q->queue_lock, flags);
375 __blk_run_queue(q);
376 spin_unlock_irqrestore(q->queue_lock, flags);
378 EXPORT_SYMBOL(blk_run_queue);
380 void blk_put_queue(struct request_queue *q)
382 kobject_put(&q->kobj);
384 EXPORT_SYMBOL(blk_put_queue);
387 * __blk_drain_queue - drain requests from request_queue
388 * @q: queue to drain
389 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
391 * Drain requests from @q. If @drain_all is set, all requests are drained.
392 * If not, only ELVPRIV requests are drained. The caller is responsible
393 * for ensuring that no new requests which need to be drained are queued.
395 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
396 __releases(q->queue_lock)
397 __acquires(q->queue_lock)
399 int i;
401 lockdep_assert_held(q->queue_lock);
403 while (true) {
404 bool drain = false;
407 * The caller might be trying to drain @q before its
408 * elevator is initialized.
410 if (q->elevator)
411 elv_drain_elevator(q);
413 blkcg_drain_queue(q);
416 * This function might be called on a queue which failed
417 * driver init after queue creation or is not yet fully
418 * active yet. Some drivers (e.g. fd and loop) get unhappy
419 * in such cases. Kick queue iff dispatch queue has
420 * something on it and @q has request_fn set.
422 if (!list_empty(&q->queue_head) && q->request_fn)
423 __blk_run_queue(q);
425 drain |= q->nr_rqs_elvpriv;
426 drain |= q->request_fn_active;
429 * Unfortunately, requests are queued at and tracked from
430 * multiple places and there's no single counter which can
431 * be drained. Check all the queues and counters.
433 if (drain_all) {
434 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
435 drain |= !list_empty(&q->queue_head);
436 for (i = 0; i < 2; i++) {
437 drain |= q->nr_rqs[i];
438 drain |= q->in_flight[i];
439 if (fq)
440 drain |= !list_empty(&fq->flush_queue[i]);
444 if (!drain)
445 break;
447 spin_unlock_irq(q->queue_lock);
449 msleep(10);
451 spin_lock_irq(q->queue_lock);
455 * With queue marked dead, any woken up waiter will fail the
456 * allocation path, so the wakeup chaining is lost and we're
457 * left with hung waiters. We need to wake up those waiters.
459 if (q->request_fn) {
460 struct request_list *rl;
462 blk_queue_for_each_rl(rl, q)
463 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
464 wake_up_all(&rl->wait[i]);
469 * blk_queue_bypass_start - enter queue bypass mode
470 * @q: queue of interest
472 * In bypass mode, only the dispatch FIFO queue of @q is used. This
473 * function makes @q enter bypass mode and drains all requests which were
474 * throttled or issued before. On return, it's guaranteed that no request
475 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
476 * inside queue or RCU read lock.
478 void blk_queue_bypass_start(struct request_queue *q)
480 spin_lock_irq(q->queue_lock);
481 q->bypass_depth++;
482 queue_flag_set(QUEUE_FLAG_BYPASS, q);
483 spin_unlock_irq(q->queue_lock);
486 * Queues start drained. Skip actual draining till init is
487 * complete. This avoids lenghty delays during queue init which
488 * can happen many times during boot.
490 if (blk_queue_init_done(q)) {
491 spin_lock_irq(q->queue_lock);
492 __blk_drain_queue(q, false);
493 spin_unlock_irq(q->queue_lock);
495 /* ensure blk_queue_bypass() is %true inside RCU read lock */
496 synchronize_rcu();
499 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
502 * blk_queue_bypass_end - leave queue bypass mode
503 * @q: queue of interest
505 * Leave bypass mode and restore the normal queueing behavior.
507 void blk_queue_bypass_end(struct request_queue *q)
509 spin_lock_irq(q->queue_lock);
510 if (!--q->bypass_depth)
511 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
512 WARN_ON_ONCE(q->bypass_depth < 0);
513 spin_unlock_irq(q->queue_lock);
515 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
517 void blk_set_queue_dying(struct request_queue *q)
519 spin_lock_irq(q->queue_lock);
520 queue_flag_set(QUEUE_FLAG_DYING, q);
521 spin_unlock_irq(q->queue_lock);
523 if (q->mq_ops)
524 blk_mq_wake_waiters(q);
525 else {
526 struct request_list *rl;
528 blk_queue_for_each_rl(rl, q) {
529 if (rl->rq_pool) {
530 wake_up_all(&rl->wait[BLK_RW_SYNC]);
531 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
536 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
539 * blk_cleanup_queue - shutdown a request queue
540 * @q: request queue to shutdown
542 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
543 * put it. All future requests will be failed immediately with -ENODEV.
545 void blk_cleanup_queue(struct request_queue *q)
547 spinlock_t *lock = q->queue_lock;
549 /* mark @q DYING, no new request or merges will be allowed afterwards */
550 mutex_lock(&q->sysfs_lock);
551 blk_set_queue_dying(q);
552 spin_lock_irq(lock);
555 * A dying queue is permanently in bypass mode till released. Note
556 * that, unlike blk_queue_bypass_start(), we aren't performing
557 * synchronize_rcu() after entering bypass mode to avoid the delay
558 * as some drivers create and destroy a lot of queues while
559 * probing. This is still safe because blk_release_queue() will be
560 * called only after the queue refcnt drops to zero and nothing,
561 * RCU or not, would be traversing the queue by then.
563 q->bypass_depth++;
564 queue_flag_set(QUEUE_FLAG_BYPASS, q);
566 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
567 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
568 queue_flag_set(QUEUE_FLAG_DYING, q);
569 spin_unlock_irq(lock);
570 mutex_unlock(&q->sysfs_lock);
573 * Drain all requests queued before DYING marking. Set DEAD flag to
574 * prevent that q->request_fn() gets invoked after draining finished.
576 blk_freeze_queue(q);
577 spin_lock_irq(lock);
578 if (!q->mq_ops)
579 __blk_drain_queue(q, true);
580 queue_flag_set(QUEUE_FLAG_DEAD, q);
581 spin_unlock_irq(lock);
583 /* for synchronous bio-based driver finish in-flight integrity i/o */
584 blk_flush_integrity();
586 /* @q won't process any more request, flush async actions */
587 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
588 blk_sync_queue(q);
590 if (q->mq_ops)
591 blk_mq_free_queue(q);
592 percpu_ref_exit(&q->q_usage_counter);
594 spin_lock_irq(lock);
595 if (q->queue_lock != &q->__queue_lock)
596 q->queue_lock = &q->__queue_lock;
597 spin_unlock_irq(lock);
599 bdi_unregister(&q->backing_dev_info);
601 /* @q is and will stay empty, shutdown and put */
602 blk_put_queue(q);
604 EXPORT_SYMBOL(blk_cleanup_queue);
606 /* Allocate memory local to the request queue */
607 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
609 int nid = (int)(long)data;
610 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
613 static void free_request_struct(void *element, void *unused)
615 kmem_cache_free(request_cachep, element);
618 int blk_init_rl(struct request_list *rl, struct request_queue *q,
619 gfp_t gfp_mask)
621 if (unlikely(rl->rq_pool))
622 return 0;
624 rl->q = q;
625 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
626 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
627 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
628 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
630 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
631 free_request_struct,
632 (void *)(long)q->node, gfp_mask,
633 q->node);
634 if (!rl->rq_pool)
635 return -ENOMEM;
637 return 0;
640 void blk_exit_rl(struct request_list *rl)
642 if (rl->rq_pool)
643 mempool_destroy(rl->rq_pool);
646 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
648 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
650 EXPORT_SYMBOL(blk_alloc_queue);
652 int blk_queue_enter(struct request_queue *q, bool nowait)
654 while (true) {
655 int ret;
657 if (percpu_ref_tryget_live(&q->q_usage_counter))
658 return 0;
660 if (nowait)
661 return -EBUSY;
663 ret = wait_event_interruptible(q->mq_freeze_wq,
664 !atomic_read(&q->mq_freeze_depth) ||
665 blk_queue_dying(q));
666 if (blk_queue_dying(q))
667 return -ENODEV;
668 if (ret)
669 return ret;
673 void blk_queue_exit(struct request_queue *q)
675 percpu_ref_put(&q->q_usage_counter);
678 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
680 struct request_queue *q =
681 container_of(ref, struct request_queue, q_usage_counter);
683 wake_up_all(&q->mq_freeze_wq);
686 static void blk_rq_timed_out_timer(unsigned long data)
688 struct request_queue *q = (struct request_queue *)data;
690 kblockd_schedule_work(&q->timeout_work);
693 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
695 struct request_queue *q;
696 int err;
698 q = kmem_cache_alloc_node(blk_requestq_cachep,
699 gfp_mask | __GFP_ZERO, node_id);
700 if (!q)
701 return NULL;
703 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
704 if (q->id < 0)
705 goto fail_q;
707 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
708 if (!q->bio_split)
709 goto fail_id;
711 q->backing_dev_info.ra_pages =
712 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
713 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
714 q->backing_dev_info.name = "block";
715 q->node = node_id;
717 err = bdi_init(&q->backing_dev_info);
718 if (err)
719 goto fail_split;
721 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
722 laptop_mode_timer_fn, (unsigned long) q);
723 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
724 INIT_WORK(&q->timeout_work, NULL);
725 INIT_LIST_HEAD(&q->queue_head);
726 INIT_LIST_HEAD(&q->timeout_list);
727 INIT_LIST_HEAD(&q->icq_list);
728 #ifdef CONFIG_BLK_CGROUP
729 INIT_LIST_HEAD(&q->blkg_list);
730 #endif
731 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
733 kobject_init(&q->kobj, &blk_queue_ktype);
735 mutex_init(&q->sysfs_lock);
736 spin_lock_init(&q->__queue_lock);
739 * By default initialize queue_lock to internal lock and driver can
740 * override it later if need be.
742 q->queue_lock = &q->__queue_lock;
745 * A queue starts its life with bypass turned on to avoid
746 * unnecessary bypass on/off overhead and nasty surprises during
747 * init. The initial bypass will be finished when the queue is
748 * registered by blk_register_queue().
750 q->bypass_depth = 1;
751 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
753 init_waitqueue_head(&q->mq_freeze_wq);
756 * Init percpu_ref in atomic mode so that it's faster to shutdown.
757 * See blk_register_queue() for details.
759 if (percpu_ref_init(&q->q_usage_counter,
760 blk_queue_usage_counter_release,
761 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
762 goto fail_bdi;
764 if (blkcg_init_queue(q))
765 goto fail_ref;
767 return q;
769 fail_ref:
770 percpu_ref_exit(&q->q_usage_counter);
771 fail_bdi:
772 bdi_destroy(&q->backing_dev_info);
773 fail_split:
774 bioset_free(q->bio_split);
775 fail_id:
776 ida_simple_remove(&blk_queue_ida, q->id);
777 fail_q:
778 kmem_cache_free(blk_requestq_cachep, q);
779 return NULL;
781 EXPORT_SYMBOL(blk_alloc_queue_node);
784 * blk_init_queue - prepare a request queue for use with a block device
785 * @rfn: The function to be called to process requests that have been
786 * placed on the queue.
787 * @lock: Request queue spin lock
789 * Description:
790 * If a block device wishes to use the standard request handling procedures,
791 * which sorts requests and coalesces adjacent requests, then it must
792 * call blk_init_queue(). The function @rfn will be called when there
793 * are requests on the queue that need to be processed. If the device
794 * supports plugging, then @rfn may not be called immediately when requests
795 * are available on the queue, but may be called at some time later instead.
796 * Plugged queues are generally unplugged when a buffer belonging to one
797 * of the requests on the queue is needed, or due to memory pressure.
799 * @rfn is not required, or even expected, to remove all requests off the
800 * queue, but only as many as it can handle at a time. If it does leave
801 * requests on the queue, it is responsible for arranging that the requests
802 * get dealt with eventually.
804 * The queue spin lock must be held while manipulating the requests on the
805 * request queue; this lock will be taken also from interrupt context, so irq
806 * disabling is needed for it.
808 * Function returns a pointer to the initialized request queue, or %NULL if
809 * it didn't succeed.
811 * Note:
812 * blk_init_queue() must be paired with a blk_cleanup_queue() call
813 * when the block device is deactivated (such as at module unload).
816 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
818 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
820 EXPORT_SYMBOL(blk_init_queue);
822 struct request_queue *
823 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
825 struct request_queue *uninit_q, *q;
827 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
828 if (!uninit_q)
829 return NULL;
831 q = blk_init_allocated_queue(uninit_q, rfn, lock);
832 if (!q)
833 blk_cleanup_queue(uninit_q);
835 return q;
837 EXPORT_SYMBOL(blk_init_queue_node);
839 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
841 struct request_queue *
842 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
843 spinlock_t *lock)
845 if (!q)
846 return NULL;
848 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
849 if (!q->fq)
850 return NULL;
852 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
853 goto fail;
855 INIT_WORK(&q->timeout_work, blk_timeout_work);
856 q->request_fn = rfn;
857 q->prep_rq_fn = NULL;
858 q->unprep_rq_fn = NULL;
859 q->queue_flags |= QUEUE_FLAG_DEFAULT;
861 /* Override internal queue lock with supplied lock pointer */
862 if (lock)
863 q->queue_lock = lock;
866 * This also sets hw/phys segments, boundary and size
868 blk_queue_make_request(q, blk_queue_bio);
870 q->sg_reserved_size = INT_MAX;
872 /* Protect q->elevator from elevator_change */
873 mutex_lock(&q->sysfs_lock);
875 /* init elevator */
876 if (elevator_init(q, NULL)) {
877 mutex_unlock(&q->sysfs_lock);
878 goto fail;
881 mutex_unlock(&q->sysfs_lock);
883 return q;
885 fail:
886 blk_free_flush_queue(q->fq);
887 return NULL;
889 EXPORT_SYMBOL(blk_init_allocated_queue);
891 bool blk_get_queue(struct request_queue *q)
893 if (likely(!blk_queue_dying(q))) {
894 __blk_get_queue(q);
895 return true;
898 return false;
900 EXPORT_SYMBOL(blk_get_queue);
902 static inline void blk_free_request(struct request_list *rl, struct request *rq)
904 if (rq->cmd_flags & REQ_ELVPRIV) {
905 elv_put_request(rl->q, rq);
906 if (rq->elv.icq)
907 put_io_context(rq->elv.icq->ioc);
910 mempool_free(rq, rl->rq_pool);
914 * ioc_batching returns true if the ioc is a valid batching request and
915 * should be given priority access to a request.
917 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
919 if (!ioc)
920 return 0;
923 * Make sure the process is able to allocate at least 1 request
924 * even if the batch times out, otherwise we could theoretically
925 * lose wakeups.
927 return ioc->nr_batch_requests == q->nr_batching ||
928 (ioc->nr_batch_requests > 0
929 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
933 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
934 * will cause the process to be a "batcher" on all queues in the system. This
935 * is the behaviour we want though - once it gets a wakeup it should be given
936 * a nice run.
938 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
940 if (!ioc || ioc_batching(q, ioc))
941 return;
943 ioc->nr_batch_requests = q->nr_batching;
944 ioc->last_waited = jiffies;
947 static void __freed_request(struct request_list *rl, int sync)
949 struct request_queue *q = rl->q;
951 if (rl->count[sync] < queue_congestion_off_threshold(q))
952 blk_clear_congested(rl, sync);
954 if (rl->count[sync] + 1 <= q->nr_requests) {
955 if (waitqueue_active(&rl->wait[sync]))
956 wake_up(&rl->wait[sync]);
958 blk_clear_rl_full(rl, sync);
963 * A request has just been released. Account for it, update the full and
964 * congestion status, wake up any waiters. Called under q->queue_lock.
966 static void freed_request(struct request_list *rl, int op, unsigned int flags)
968 struct request_queue *q = rl->q;
969 int sync = rw_is_sync(op, flags);
971 q->nr_rqs[sync]--;
972 rl->count[sync]--;
973 if (flags & REQ_ELVPRIV)
974 q->nr_rqs_elvpriv--;
976 __freed_request(rl, sync);
978 if (unlikely(rl->starved[sync ^ 1]))
979 __freed_request(rl, sync ^ 1);
982 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
984 struct request_list *rl;
985 int on_thresh, off_thresh;
987 spin_lock_irq(q->queue_lock);
988 q->nr_requests = nr;
989 blk_queue_congestion_threshold(q);
990 on_thresh = queue_congestion_on_threshold(q);
991 off_thresh = queue_congestion_off_threshold(q);
993 blk_queue_for_each_rl(rl, q) {
994 if (rl->count[BLK_RW_SYNC] >= on_thresh)
995 blk_set_congested(rl, BLK_RW_SYNC);
996 else if (rl->count[BLK_RW_SYNC] < off_thresh)
997 blk_clear_congested(rl, BLK_RW_SYNC);
999 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1000 blk_set_congested(rl, BLK_RW_ASYNC);
1001 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1002 blk_clear_congested(rl, BLK_RW_ASYNC);
1004 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1005 blk_set_rl_full(rl, BLK_RW_SYNC);
1006 } else {
1007 blk_clear_rl_full(rl, BLK_RW_SYNC);
1008 wake_up(&rl->wait[BLK_RW_SYNC]);
1011 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1012 blk_set_rl_full(rl, BLK_RW_ASYNC);
1013 } else {
1014 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1015 wake_up(&rl->wait[BLK_RW_ASYNC]);
1019 spin_unlock_irq(q->queue_lock);
1020 return 0;
1024 * Determine if elevator data should be initialized when allocating the
1025 * request associated with @bio.
1027 static bool blk_rq_should_init_elevator(struct bio *bio)
1029 if (!bio)
1030 return true;
1033 * Flush requests do not use the elevator so skip initialization.
1034 * This allows a request to share the flush and elevator data.
1036 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1037 return false;
1039 return true;
1043 * rq_ioc - determine io_context for request allocation
1044 * @bio: request being allocated is for this bio (can be %NULL)
1046 * Determine io_context to use for request allocation for @bio. May return
1047 * %NULL if %current->io_context doesn't exist.
1049 static struct io_context *rq_ioc(struct bio *bio)
1051 #ifdef CONFIG_BLK_CGROUP
1052 if (bio && bio->bi_ioc)
1053 return bio->bi_ioc;
1054 #endif
1055 return current->io_context;
1059 * __get_request - get a free request
1060 * @rl: request list to allocate from
1061 * @op: REQ_OP_READ/REQ_OP_WRITE
1062 * @op_flags: rq_flag_bits
1063 * @bio: bio to allocate request for (can be %NULL)
1064 * @gfp_mask: allocation mask
1066 * Get a free request from @q. This function may fail under memory
1067 * pressure or if @q is dead.
1069 * Must be called with @q->queue_lock held and,
1070 * Returns ERR_PTR on failure, with @q->queue_lock held.
1071 * Returns request pointer on success, with @q->queue_lock *not held*.
1073 static struct request *__get_request(struct request_list *rl, int op,
1074 int op_flags, struct bio *bio,
1075 gfp_t gfp_mask)
1077 struct request_queue *q = rl->q;
1078 struct request *rq;
1079 struct elevator_type *et = q->elevator->type;
1080 struct io_context *ioc = rq_ioc(bio);
1081 struct io_cq *icq = NULL;
1082 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1083 int may_queue;
1085 if (unlikely(blk_queue_dying(q)))
1086 return ERR_PTR(-ENODEV);
1088 may_queue = elv_may_queue(q, op, op_flags);
1089 if (may_queue == ELV_MQUEUE_NO)
1090 goto rq_starved;
1092 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1093 if (rl->count[is_sync]+1 >= q->nr_requests) {
1095 * The queue will fill after this allocation, so set
1096 * it as full, and mark this process as "batching".
1097 * This process will be allowed to complete a batch of
1098 * requests, others will be blocked.
1100 if (!blk_rl_full(rl, is_sync)) {
1101 ioc_set_batching(q, ioc);
1102 blk_set_rl_full(rl, is_sync);
1103 } else {
1104 if (may_queue != ELV_MQUEUE_MUST
1105 && !ioc_batching(q, ioc)) {
1107 * The queue is full and the allocating
1108 * process is not a "batcher", and not
1109 * exempted by the IO scheduler
1111 return ERR_PTR(-ENOMEM);
1115 blk_set_congested(rl, is_sync);
1119 * Only allow batching queuers to allocate up to 50% over the defined
1120 * limit of requests, otherwise we could have thousands of requests
1121 * allocated with any setting of ->nr_requests
1123 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1124 return ERR_PTR(-ENOMEM);
1126 q->nr_rqs[is_sync]++;
1127 rl->count[is_sync]++;
1128 rl->starved[is_sync] = 0;
1131 * Decide whether the new request will be managed by elevator. If
1132 * so, mark @op_flags and increment elvpriv. Non-zero elvpriv will
1133 * prevent the current elevator from being destroyed until the new
1134 * request is freed. This guarantees icq's won't be destroyed and
1135 * makes creating new ones safe.
1137 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1138 * it will be created after releasing queue_lock.
1140 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1141 op_flags |= REQ_ELVPRIV;
1142 q->nr_rqs_elvpriv++;
1143 if (et->icq_cache && ioc)
1144 icq = ioc_lookup_icq(ioc, q);
1147 if (blk_queue_io_stat(q))
1148 op_flags |= REQ_IO_STAT;
1149 spin_unlock_irq(q->queue_lock);
1151 /* allocate and init request */
1152 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1153 if (!rq)
1154 goto fail_alloc;
1156 blk_rq_init(q, rq);
1157 blk_rq_set_rl(rq, rl);
1158 req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED);
1160 /* init elvpriv */
1161 if (op_flags & REQ_ELVPRIV) {
1162 if (unlikely(et->icq_cache && !icq)) {
1163 if (ioc)
1164 icq = ioc_create_icq(ioc, q, gfp_mask);
1165 if (!icq)
1166 goto fail_elvpriv;
1169 rq->elv.icq = icq;
1170 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1171 goto fail_elvpriv;
1173 /* @rq->elv.icq holds io_context until @rq is freed */
1174 if (icq)
1175 get_io_context(icq->ioc);
1177 out:
1179 * ioc may be NULL here, and ioc_batching will be false. That's
1180 * OK, if the queue is under the request limit then requests need
1181 * not count toward the nr_batch_requests limit. There will always
1182 * be some limit enforced by BLK_BATCH_TIME.
1184 if (ioc_batching(q, ioc))
1185 ioc->nr_batch_requests--;
1187 trace_block_getrq(q, bio, op);
1188 return rq;
1190 fail_elvpriv:
1192 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1193 * and may fail indefinitely under memory pressure and thus
1194 * shouldn't stall IO. Treat this request as !elvpriv. This will
1195 * disturb iosched and blkcg but weird is bettern than dead.
1197 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1198 __func__, dev_name(q->backing_dev_info.dev));
1200 rq->cmd_flags &= ~REQ_ELVPRIV;
1201 rq->elv.icq = NULL;
1203 spin_lock_irq(q->queue_lock);
1204 q->nr_rqs_elvpriv--;
1205 spin_unlock_irq(q->queue_lock);
1206 goto out;
1208 fail_alloc:
1210 * Allocation failed presumably due to memory. Undo anything we
1211 * might have messed up.
1213 * Allocating task should really be put onto the front of the wait
1214 * queue, but this is pretty rare.
1216 spin_lock_irq(q->queue_lock);
1217 freed_request(rl, op, op_flags);
1220 * in the very unlikely event that allocation failed and no
1221 * requests for this direction was pending, mark us starved so that
1222 * freeing of a request in the other direction will notice
1223 * us. another possible fix would be to split the rq mempool into
1224 * READ and WRITE
1226 rq_starved:
1227 if (unlikely(rl->count[is_sync] == 0))
1228 rl->starved[is_sync] = 1;
1229 return ERR_PTR(-ENOMEM);
1233 * get_request - get a free request
1234 * @q: request_queue to allocate request from
1235 * @op: REQ_OP_READ/REQ_OP_WRITE
1236 * @op_flags: rq_flag_bits
1237 * @bio: bio to allocate request for (can be %NULL)
1238 * @gfp_mask: allocation mask
1240 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1241 * this function keeps retrying under memory pressure and fails iff @q is dead.
1243 * Must be called with @q->queue_lock held and,
1244 * Returns ERR_PTR on failure, with @q->queue_lock held.
1245 * Returns request pointer on success, with @q->queue_lock *not held*.
1247 static struct request *get_request(struct request_queue *q, int op,
1248 int op_flags, struct bio *bio,
1249 gfp_t gfp_mask)
1251 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1252 DEFINE_WAIT(wait);
1253 struct request_list *rl;
1254 struct request *rq;
1256 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1257 retry:
1258 rq = __get_request(rl, op, op_flags, bio, gfp_mask);
1259 if (!IS_ERR(rq))
1260 return rq;
1262 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1263 blk_put_rl(rl);
1264 return rq;
1267 /* wait on @rl and retry */
1268 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1269 TASK_UNINTERRUPTIBLE);
1271 trace_block_sleeprq(q, bio, op);
1273 spin_unlock_irq(q->queue_lock);
1274 io_schedule();
1277 * After sleeping, we become a "batching" process and will be able
1278 * to allocate at least one request, and up to a big batch of them
1279 * for a small period time. See ioc_batching, ioc_set_batching
1281 ioc_set_batching(q, current->io_context);
1283 spin_lock_irq(q->queue_lock);
1284 finish_wait(&rl->wait[is_sync], &wait);
1286 goto retry;
1289 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1290 gfp_t gfp_mask)
1292 struct request *rq;
1294 BUG_ON(rw != READ && rw != WRITE);
1296 /* create ioc upfront */
1297 create_io_context(gfp_mask, q->node);
1299 spin_lock_irq(q->queue_lock);
1300 rq = get_request(q, rw, 0, NULL, gfp_mask);
1301 if (IS_ERR(rq)) {
1302 spin_unlock_irq(q->queue_lock);
1303 return rq;
1306 /* q->queue_lock is unlocked at this point */
1307 rq->__data_len = 0;
1308 rq->__sector = (sector_t) -1;
1309 rq->bio = rq->biotail = NULL;
1310 return rq;
1313 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1315 if (q->mq_ops)
1316 return blk_mq_alloc_request(q, rw,
1317 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1318 0 : BLK_MQ_REQ_NOWAIT);
1319 else
1320 return blk_old_get_request(q, rw, gfp_mask);
1322 EXPORT_SYMBOL(blk_get_request);
1325 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1326 * @rq: request to be initialized
1329 void blk_rq_set_block_pc(struct request *rq)
1331 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1332 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1334 EXPORT_SYMBOL(blk_rq_set_block_pc);
1337 * blk_requeue_request - put a request back on queue
1338 * @q: request queue where request should be inserted
1339 * @rq: request to be inserted
1341 * Description:
1342 * Drivers often keep queueing requests until the hardware cannot accept
1343 * more, when that condition happens we need to put the request back
1344 * on the queue. Must be called with queue lock held.
1346 void blk_requeue_request(struct request_queue *q, struct request *rq)
1348 blk_delete_timer(rq);
1349 blk_clear_rq_complete(rq);
1350 trace_block_rq_requeue(q, rq);
1352 if (rq->cmd_flags & REQ_QUEUED)
1353 blk_queue_end_tag(q, rq);
1355 BUG_ON(blk_queued_rq(rq));
1357 elv_requeue_request(q, rq);
1359 EXPORT_SYMBOL(blk_requeue_request);
1361 static void add_acct_request(struct request_queue *q, struct request *rq,
1362 int where)
1364 blk_account_io_start(rq, true);
1365 __elv_add_request(q, rq, where);
1368 static void part_round_stats_single(int cpu, struct hd_struct *part,
1369 unsigned long now)
1371 int inflight;
1373 if (now == part->stamp)
1374 return;
1376 inflight = part_in_flight(part);
1377 if (inflight) {
1378 __part_stat_add(cpu, part, time_in_queue,
1379 inflight * (now - part->stamp));
1380 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1382 part->stamp = now;
1386 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1387 * @cpu: cpu number for stats access
1388 * @part: target partition
1390 * The average IO queue length and utilisation statistics are maintained
1391 * by observing the current state of the queue length and the amount of
1392 * time it has been in this state for.
1394 * Normally, that accounting is done on IO completion, but that can result
1395 * in more than a second's worth of IO being accounted for within any one
1396 * second, leading to >100% utilisation. To deal with that, we call this
1397 * function to do a round-off before returning the results when reading
1398 * /proc/diskstats. This accounts immediately for all queue usage up to
1399 * the current jiffies and restarts the counters again.
1401 void part_round_stats(int cpu, struct hd_struct *part)
1403 unsigned long now = jiffies;
1405 if (part->partno)
1406 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1407 part_round_stats_single(cpu, part, now);
1409 EXPORT_SYMBOL_GPL(part_round_stats);
1411 #ifdef CONFIG_PM
1412 static void blk_pm_put_request(struct request *rq)
1414 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1415 pm_runtime_mark_last_busy(rq->q->dev);
1417 #else
1418 static inline void blk_pm_put_request(struct request *rq) {}
1419 #endif
1422 * queue lock must be held
1424 void __blk_put_request(struct request_queue *q, struct request *req)
1426 if (unlikely(!q))
1427 return;
1429 if (q->mq_ops) {
1430 blk_mq_free_request(req);
1431 return;
1434 blk_pm_put_request(req);
1436 elv_completed_request(q, req);
1438 /* this is a bio leak */
1439 WARN_ON(req->bio != NULL);
1442 * Request may not have originated from ll_rw_blk. if not,
1443 * it didn't come out of our reserved rq pools
1445 if (req->cmd_flags & REQ_ALLOCED) {
1446 unsigned int flags = req->cmd_flags;
1447 int op = req_op(req);
1448 struct request_list *rl = blk_rq_rl(req);
1450 BUG_ON(!list_empty(&req->queuelist));
1451 BUG_ON(ELV_ON_HASH(req));
1453 blk_free_request(rl, req);
1454 freed_request(rl, op, flags);
1455 blk_put_rl(rl);
1458 EXPORT_SYMBOL_GPL(__blk_put_request);
1460 void blk_put_request(struct request *req)
1462 struct request_queue *q = req->q;
1464 if (q->mq_ops)
1465 blk_mq_free_request(req);
1466 else {
1467 unsigned long flags;
1469 spin_lock_irqsave(q->queue_lock, flags);
1470 __blk_put_request(q, req);
1471 spin_unlock_irqrestore(q->queue_lock, flags);
1474 EXPORT_SYMBOL(blk_put_request);
1477 * blk_add_request_payload - add a payload to a request
1478 * @rq: request to update
1479 * @page: page backing the payload
1480 * @offset: offset in page
1481 * @len: length of the payload.
1483 * This allows to later add a payload to an already submitted request by
1484 * a block driver. The driver needs to take care of freeing the payload
1485 * itself.
1487 * Note that this is a quite horrible hack and nothing but handling of
1488 * discard requests should ever use it.
1490 void blk_add_request_payload(struct request *rq, struct page *page,
1491 int offset, unsigned int len)
1493 struct bio *bio = rq->bio;
1495 bio->bi_io_vec->bv_page = page;
1496 bio->bi_io_vec->bv_offset = offset;
1497 bio->bi_io_vec->bv_len = len;
1499 bio->bi_iter.bi_size = len;
1500 bio->bi_vcnt = 1;
1501 bio->bi_phys_segments = 1;
1503 rq->__data_len = rq->resid_len = len;
1504 rq->nr_phys_segments = 1;
1506 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1508 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1509 struct bio *bio)
1511 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1513 if (!ll_back_merge_fn(q, req, bio))
1514 return false;
1516 trace_block_bio_backmerge(q, req, bio);
1518 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1519 blk_rq_set_mixed_merge(req);
1521 req->biotail->bi_next = bio;
1522 req->biotail = bio;
1523 req->__data_len += bio->bi_iter.bi_size;
1524 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1526 blk_account_io_start(req, false);
1527 return true;
1530 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1531 struct bio *bio)
1533 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1535 if (!ll_front_merge_fn(q, req, bio))
1536 return false;
1538 trace_block_bio_frontmerge(q, req, bio);
1540 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1541 blk_rq_set_mixed_merge(req);
1543 bio->bi_next = req->bio;
1544 req->bio = bio;
1546 req->__sector = bio->bi_iter.bi_sector;
1547 req->__data_len += bio->bi_iter.bi_size;
1548 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1550 blk_account_io_start(req, false);
1551 return true;
1555 * blk_attempt_plug_merge - try to merge with %current's plugged list
1556 * @q: request_queue new bio is being queued at
1557 * @bio: new bio being queued
1558 * @request_count: out parameter for number of traversed plugged requests
1559 * @same_queue_rq: pointer to &struct request that gets filled in when
1560 * another request associated with @q is found on the plug list
1561 * (optional, may be %NULL)
1563 * Determine whether @bio being queued on @q can be merged with a request
1564 * on %current's plugged list. Returns %true if merge was successful,
1565 * otherwise %false.
1567 * Plugging coalesces IOs from the same issuer for the same purpose without
1568 * going through @q->queue_lock. As such it's more of an issuing mechanism
1569 * than scheduling, and the request, while may have elvpriv data, is not
1570 * added on the elevator at this point. In addition, we don't have
1571 * reliable access to the elevator outside queue lock. Only check basic
1572 * merging parameters without querying the elevator.
1574 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1576 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1577 unsigned int *request_count,
1578 struct request **same_queue_rq)
1580 struct blk_plug *plug;
1581 struct request *rq;
1582 bool ret = false;
1583 struct list_head *plug_list;
1585 plug = current->plug;
1586 if (!plug)
1587 goto out;
1588 *request_count = 0;
1590 if (q->mq_ops)
1591 plug_list = &plug->mq_list;
1592 else
1593 plug_list = &plug->list;
1595 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1596 int el_ret;
1598 if (rq->q == q) {
1599 (*request_count)++;
1601 * Only blk-mq multiple hardware queues case checks the
1602 * rq in the same queue, there should be only one such
1603 * rq in a queue
1605 if (same_queue_rq)
1606 *same_queue_rq = rq;
1609 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1610 continue;
1612 el_ret = blk_try_merge(rq, bio);
1613 if (el_ret == ELEVATOR_BACK_MERGE) {
1614 ret = bio_attempt_back_merge(q, rq, bio);
1615 if (ret)
1616 break;
1617 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1618 ret = bio_attempt_front_merge(q, rq, bio);
1619 if (ret)
1620 break;
1623 out:
1624 return ret;
1627 unsigned int blk_plug_queued_count(struct request_queue *q)
1629 struct blk_plug *plug;
1630 struct request *rq;
1631 struct list_head *plug_list;
1632 unsigned int ret = 0;
1634 plug = current->plug;
1635 if (!plug)
1636 goto out;
1638 if (q->mq_ops)
1639 plug_list = &plug->mq_list;
1640 else
1641 plug_list = &plug->list;
1643 list_for_each_entry(rq, plug_list, queuelist) {
1644 if (rq->q == q)
1645 ret++;
1647 out:
1648 return ret;
1651 void init_request_from_bio(struct request *req, struct bio *bio)
1653 req->cmd_type = REQ_TYPE_FS;
1655 req->cmd_flags |= bio->bi_opf & REQ_COMMON_MASK;
1656 if (bio->bi_opf & REQ_RAHEAD)
1657 req->cmd_flags |= REQ_FAILFAST_MASK;
1659 req->errors = 0;
1660 req->__sector = bio->bi_iter.bi_sector;
1661 req->ioprio = bio_prio(bio);
1662 blk_rq_bio_prep(req->q, req, bio);
1665 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1667 const bool sync = !!(bio->bi_opf & REQ_SYNC);
1668 struct blk_plug *plug;
1669 int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT;
1670 struct request *req;
1671 unsigned int request_count = 0;
1674 * low level driver can indicate that it wants pages above a
1675 * certain limit bounced to low memory (ie for highmem, or even
1676 * ISA dma in theory)
1678 blk_queue_bounce(q, &bio);
1680 blk_queue_split(q, &bio, q->bio_split);
1682 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1683 bio->bi_error = -EIO;
1684 bio_endio(bio);
1685 return BLK_QC_T_NONE;
1688 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1689 spin_lock_irq(q->queue_lock);
1690 where = ELEVATOR_INSERT_FLUSH;
1691 goto get_rq;
1695 * Check if we can merge with the plugged list before grabbing
1696 * any locks.
1698 if (!blk_queue_nomerges(q)) {
1699 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1700 return BLK_QC_T_NONE;
1701 } else
1702 request_count = blk_plug_queued_count(q);
1704 spin_lock_irq(q->queue_lock);
1706 el_ret = elv_merge(q, &req, bio);
1707 if (el_ret == ELEVATOR_BACK_MERGE) {
1708 if (bio_attempt_back_merge(q, req, bio)) {
1709 elv_bio_merged(q, req, bio);
1710 if (!attempt_back_merge(q, req))
1711 elv_merged_request(q, req, el_ret);
1712 goto out_unlock;
1714 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1715 if (bio_attempt_front_merge(q, req, bio)) {
1716 elv_bio_merged(q, req, bio);
1717 if (!attempt_front_merge(q, req))
1718 elv_merged_request(q, req, el_ret);
1719 goto out_unlock;
1723 get_rq:
1725 * This sync check and mask will be re-done in init_request_from_bio(),
1726 * but we need to set it earlier to expose the sync flag to the
1727 * rq allocator and io schedulers.
1729 if (sync)
1730 rw_flags |= REQ_SYNC;
1733 * Add in META/PRIO flags, if set, before we get to the IO scheduler
1735 rw_flags |= (bio->bi_opf & (REQ_META | REQ_PRIO));
1738 * Grab a free request. This is might sleep but can not fail.
1739 * Returns with the queue unlocked.
1741 req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO);
1742 if (IS_ERR(req)) {
1743 bio->bi_error = PTR_ERR(req);
1744 bio_endio(bio);
1745 goto out_unlock;
1749 * After dropping the lock and possibly sleeping here, our request
1750 * may now be mergeable after it had proven unmergeable (above).
1751 * We don't worry about that case for efficiency. It won't happen
1752 * often, and the elevators are able to handle it.
1754 init_request_from_bio(req, bio);
1756 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1757 req->cpu = raw_smp_processor_id();
1759 plug = current->plug;
1760 if (plug) {
1762 * If this is the first request added after a plug, fire
1763 * of a plug trace.
1765 if (!request_count)
1766 trace_block_plug(q);
1767 else {
1768 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1769 blk_flush_plug_list(plug, false);
1770 trace_block_plug(q);
1773 list_add_tail(&req->queuelist, &plug->list);
1774 blk_account_io_start(req, true);
1775 } else {
1776 spin_lock_irq(q->queue_lock);
1777 add_acct_request(q, req, where);
1778 __blk_run_queue(q);
1779 out_unlock:
1780 spin_unlock_irq(q->queue_lock);
1783 return BLK_QC_T_NONE;
1787 * If bio->bi_dev is a partition, remap the location
1789 static inline void blk_partition_remap(struct bio *bio)
1791 struct block_device *bdev = bio->bi_bdev;
1793 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1794 struct hd_struct *p = bdev->bd_part;
1796 bio->bi_iter.bi_sector += p->start_sect;
1797 bio->bi_bdev = bdev->bd_contains;
1799 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1800 bdev->bd_dev,
1801 bio->bi_iter.bi_sector - p->start_sect);
1805 static void handle_bad_sector(struct bio *bio)
1807 char b[BDEVNAME_SIZE];
1809 printk(KERN_INFO "attempt to access beyond end of device\n");
1810 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1811 bdevname(bio->bi_bdev, b),
1812 bio->bi_opf,
1813 (unsigned long long)bio_end_sector(bio),
1814 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1817 #ifdef CONFIG_FAIL_MAKE_REQUEST
1819 static DECLARE_FAULT_ATTR(fail_make_request);
1821 static int __init setup_fail_make_request(char *str)
1823 return setup_fault_attr(&fail_make_request, str);
1825 __setup("fail_make_request=", setup_fail_make_request);
1827 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1829 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1832 static int __init fail_make_request_debugfs(void)
1834 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1835 NULL, &fail_make_request);
1837 return PTR_ERR_OR_ZERO(dir);
1840 late_initcall(fail_make_request_debugfs);
1842 #else /* CONFIG_FAIL_MAKE_REQUEST */
1844 static inline bool should_fail_request(struct hd_struct *part,
1845 unsigned int bytes)
1847 return false;
1850 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1853 * Check whether this bio extends beyond the end of the device.
1855 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1857 sector_t maxsector;
1859 if (!nr_sectors)
1860 return 0;
1862 /* Test device or partition size, when known. */
1863 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1864 if (maxsector) {
1865 sector_t sector = bio->bi_iter.bi_sector;
1867 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1869 * This may well happen - the kernel calls bread()
1870 * without checking the size of the device, e.g., when
1871 * mounting a device.
1873 handle_bad_sector(bio);
1874 return 1;
1878 return 0;
1881 static noinline_for_stack bool
1882 generic_make_request_checks(struct bio *bio)
1884 struct request_queue *q;
1885 int nr_sectors = bio_sectors(bio);
1886 int err = -EIO;
1887 char b[BDEVNAME_SIZE];
1888 struct hd_struct *part;
1890 might_sleep();
1892 if (bio_check_eod(bio, nr_sectors))
1893 goto end_io;
1895 q = bdev_get_queue(bio->bi_bdev);
1896 if (unlikely(!q)) {
1897 printk(KERN_ERR
1898 "generic_make_request: Trying to access "
1899 "nonexistent block-device %s (%Lu)\n",
1900 bdevname(bio->bi_bdev, b),
1901 (long long) bio->bi_iter.bi_sector);
1902 goto end_io;
1905 part = bio->bi_bdev->bd_part;
1906 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1907 should_fail_request(&part_to_disk(part)->part0,
1908 bio->bi_iter.bi_size))
1909 goto end_io;
1912 * If this device has partitions, remap block n
1913 * of partition p to block n+start(p) of the disk.
1915 blk_partition_remap(bio);
1917 if (bio_check_eod(bio, nr_sectors))
1918 goto end_io;
1921 * Filter flush bio's early so that make_request based
1922 * drivers without flush support don't have to worry
1923 * about them.
1925 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1926 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1927 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1928 if (!nr_sectors) {
1929 err = 0;
1930 goto end_io;
1934 switch (bio_op(bio)) {
1935 case REQ_OP_DISCARD:
1936 if (!blk_queue_discard(q))
1937 goto not_supported;
1938 break;
1939 case REQ_OP_SECURE_ERASE:
1940 if (!blk_queue_secure_erase(q))
1941 goto not_supported;
1942 break;
1943 case REQ_OP_WRITE_SAME:
1944 if (!bdev_write_same(bio->bi_bdev))
1945 goto not_supported;
1946 break;
1947 default:
1948 break;
1952 * Various block parts want %current->io_context and lazy ioc
1953 * allocation ends up trading a lot of pain for a small amount of
1954 * memory. Just allocate it upfront. This may fail and block
1955 * layer knows how to live with it.
1957 create_io_context(GFP_ATOMIC, q->node);
1959 if (!blkcg_bio_issue_check(q, bio))
1960 return false;
1962 trace_block_bio_queue(q, bio);
1963 return true;
1965 not_supported:
1966 err = -EOPNOTSUPP;
1967 end_io:
1968 bio->bi_error = err;
1969 bio_endio(bio);
1970 return false;
1974 * generic_make_request - hand a buffer to its device driver for I/O
1975 * @bio: The bio describing the location in memory and on the device.
1977 * generic_make_request() is used to make I/O requests of block
1978 * devices. It is passed a &struct bio, which describes the I/O that needs
1979 * to be done.
1981 * generic_make_request() does not return any status. The
1982 * success/failure status of the request, along with notification of
1983 * completion, is delivered asynchronously through the bio->bi_end_io
1984 * function described (one day) else where.
1986 * The caller of generic_make_request must make sure that bi_io_vec
1987 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1988 * set to describe the device address, and the
1989 * bi_end_io and optionally bi_private are set to describe how
1990 * completion notification should be signaled.
1992 * generic_make_request and the drivers it calls may use bi_next if this
1993 * bio happens to be merged with someone else, and may resubmit the bio to
1994 * a lower device by calling into generic_make_request recursively, which
1995 * means the bio should NOT be touched after the call to ->make_request_fn.
1997 blk_qc_t generic_make_request(struct bio *bio)
2000 * bio_list_on_stack[0] contains bios submitted by the current
2001 * make_request_fn.
2002 * bio_list_on_stack[1] contains bios that were submitted before
2003 * the current make_request_fn, but that haven't been processed
2004 * yet.
2006 struct bio_list bio_list_on_stack[2];
2007 blk_qc_t ret = BLK_QC_T_NONE;
2009 if (!generic_make_request_checks(bio))
2010 goto out;
2013 * We only want one ->make_request_fn to be active at a time, else
2014 * stack usage with stacked devices could be a problem. So use
2015 * current->bio_list to keep a list of requests submited by a
2016 * make_request_fn function. current->bio_list is also used as a
2017 * flag to say if generic_make_request is currently active in this
2018 * task or not. If it is NULL, then no make_request is active. If
2019 * it is non-NULL, then a make_request is active, and new requests
2020 * should be added at the tail
2022 if (current->bio_list) {
2023 bio_list_add(&current->bio_list[0], bio);
2024 goto out;
2027 /* following loop may be a bit non-obvious, and so deserves some
2028 * explanation.
2029 * Before entering the loop, bio->bi_next is NULL (as all callers
2030 * ensure that) so we have a list with a single bio.
2031 * We pretend that we have just taken it off a longer list, so
2032 * we assign bio_list to a pointer to the bio_list_on_stack,
2033 * thus initialising the bio_list of new bios to be
2034 * added. ->make_request() may indeed add some more bios
2035 * through a recursive call to generic_make_request. If it
2036 * did, we find a non-NULL value in bio_list and re-enter the loop
2037 * from the top. In this case we really did just take the bio
2038 * of the top of the list (no pretending) and so remove it from
2039 * bio_list, and call into ->make_request() again.
2041 BUG_ON(bio->bi_next);
2042 bio_list_init(&bio_list_on_stack[0]);
2043 current->bio_list = bio_list_on_stack;
2044 do {
2045 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2047 if (likely(blk_queue_enter(q, false) == 0)) {
2048 struct bio_list lower, same;
2050 /* Create a fresh bio_list for all subordinate requests */
2051 bio_list_on_stack[1] = bio_list_on_stack[0];
2052 bio_list_init(&bio_list_on_stack[0]);
2053 ret = q->make_request_fn(q, bio);
2055 blk_queue_exit(q);
2057 /* sort new bios into those for a lower level
2058 * and those for the same level
2060 bio_list_init(&lower);
2061 bio_list_init(&same);
2062 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2063 if (q == bdev_get_queue(bio->bi_bdev))
2064 bio_list_add(&same, bio);
2065 else
2066 bio_list_add(&lower, bio);
2067 /* now assemble so we handle the lowest level first */
2068 bio_list_merge(&bio_list_on_stack[0], &lower);
2069 bio_list_merge(&bio_list_on_stack[0], &same);
2070 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2071 } else {
2072 bio_io_error(bio);
2074 bio = bio_list_pop(&bio_list_on_stack[0]);
2075 } while (bio);
2076 current->bio_list = NULL; /* deactivate */
2078 out:
2079 return ret;
2081 EXPORT_SYMBOL(generic_make_request);
2084 * submit_bio - submit a bio to the block device layer for I/O
2085 * @bio: The &struct bio which describes the I/O
2087 * submit_bio() is very similar in purpose to generic_make_request(), and
2088 * uses that function to do most of the work. Both are fairly rough
2089 * interfaces; @bio must be presetup and ready for I/O.
2092 blk_qc_t submit_bio(struct bio *bio)
2095 * If it's a regular read/write or a barrier with data attached,
2096 * go through the normal accounting stuff before submission.
2098 if (bio_has_data(bio)) {
2099 unsigned int count;
2101 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2102 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2103 else
2104 count = bio_sectors(bio);
2106 if (op_is_write(bio_op(bio))) {
2107 count_vm_events(PGPGOUT, count);
2108 } else {
2109 task_io_account_read(bio->bi_iter.bi_size);
2110 count_vm_events(PGPGIN, count);
2113 if (unlikely(block_dump)) {
2114 char b[BDEVNAME_SIZE];
2115 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2116 current->comm, task_pid_nr(current),
2117 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2118 (unsigned long long)bio->bi_iter.bi_sector,
2119 bdevname(bio->bi_bdev, b),
2120 count);
2124 return generic_make_request(bio);
2126 EXPORT_SYMBOL(submit_bio);
2129 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2130 * for new the queue limits
2131 * @q: the queue
2132 * @rq: the request being checked
2134 * Description:
2135 * @rq may have been made based on weaker limitations of upper-level queues
2136 * in request stacking drivers, and it may violate the limitation of @q.
2137 * Since the block layer and the underlying device driver trust @rq
2138 * after it is inserted to @q, it should be checked against @q before
2139 * the insertion using this generic function.
2141 * Request stacking drivers like request-based dm may change the queue
2142 * limits when retrying requests on other queues. Those requests need
2143 * to be checked against the new queue limits again during dispatch.
2145 static int blk_cloned_rq_check_limits(struct request_queue *q,
2146 struct request *rq)
2148 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2149 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2150 return -EIO;
2154 * queue's settings related to segment counting like q->bounce_pfn
2155 * may differ from that of other stacking queues.
2156 * Recalculate it to check the request correctly on this queue's
2157 * limitation.
2159 blk_recalc_rq_segments(rq);
2160 if (rq->nr_phys_segments > queue_max_segments(q)) {
2161 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2162 return -EIO;
2165 return 0;
2169 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2170 * @q: the queue to submit the request
2171 * @rq: the request being queued
2173 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2175 unsigned long flags;
2176 int where = ELEVATOR_INSERT_BACK;
2178 if (blk_cloned_rq_check_limits(q, rq))
2179 return -EIO;
2181 if (rq->rq_disk &&
2182 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2183 return -EIO;
2185 if (q->mq_ops) {
2186 if (blk_queue_io_stat(q))
2187 blk_account_io_start(rq, true);
2188 blk_mq_insert_request(rq, false, true, false);
2189 return 0;
2192 spin_lock_irqsave(q->queue_lock, flags);
2193 if (unlikely(blk_queue_dying(q))) {
2194 spin_unlock_irqrestore(q->queue_lock, flags);
2195 return -ENODEV;
2199 * Submitting request must be dequeued before calling this function
2200 * because it will be linked to another request_queue
2202 BUG_ON(blk_queued_rq(rq));
2204 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2205 where = ELEVATOR_INSERT_FLUSH;
2207 add_acct_request(q, rq, where);
2208 if (where == ELEVATOR_INSERT_FLUSH)
2209 __blk_run_queue(q);
2210 spin_unlock_irqrestore(q->queue_lock, flags);
2212 return 0;
2214 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2217 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2218 * @rq: request to examine
2220 * Description:
2221 * A request could be merge of IOs which require different failure
2222 * handling. This function determines the number of bytes which
2223 * can be failed from the beginning of the request without
2224 * crossing into area which need to be retried further.
2226 * Return:
2227 * The number of bytes to fail.
2229 * Context:
2230 * queue_lock must be held.
2232 unsigned int blk_rq_err_bytes(const struct request *rq)
2234 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2235 unsigned int bytes = 0;
2236 struct bio *bio;
2238 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2239 return blk_rq_bytes(rq);
2242 * Currently the only 'mixing' which can happen is between
2243 * different fastfail types. We can safely fail portions
2244 * which have all the failfast bits that the first one has -
2245 * the ones which are at least as eager to fail as the first
2246 * one.
2248 for (bio = rq->bio; bio; bio = bio->bi_next) {
2249 if ((bio->bi_opf & ff) != ff)
2250 break;
2251 bytes += bio->bi_iter.bi_size;
2254 /* this could lead to infinite loop */
2255 BUG_ON(blk_rq_bytes(rq) && !bytes);
2256 return bytes;
2258 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2260 void blk_account_io_completion(struct request *req, unsigned int bytes)
2262 if (blk_do_io_stat(req)) {
2263 const int rw = rq_data_dir(req);
2264 struct hd_struct *part;
2265 int cpu;
2267 cpu = part_stat_lock();
2268 part = req->part;
2269 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2270 part_stat_unlock();
2274 void blk_account_io_done(struct request *req)
2277 * Account IO completion. flush_rq isn't accounted as a
2278 * normal IO on queueing nor completion. Accounting the
2279 * containing request is enough.
2281 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2282 unsigned long duration = jiffies - req->start_time;
2283 const int rw = rq_data_dir(req);
2284 struct hd_struct *part;
2285 int cpu;
2287 cpu = part_stat_lock();
2288 part = req->part;
2290 part_stat_inc(cpu, part, ios[rw]);
2291 part_stat_add(cpu, part, ticks[rw], duration);
2292 part_round_stats(cpu, part);
2293 part_dec_in_flight(part, rw);
2295 hd_struct_put(part);
2296 part_stat_unlock();
2300 #ifdef CONFIG_PM
2302 * Don't process normal requests when queue is suspended
2303 * or in the process of suspending/resuming
2305 static struct request *blk_pm_peek_request(struct request_queue *q,
2306 struct request *rq)
2308 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2309 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2310 return NULL;
2311 else
2312 return rq;
2314 #else
2315 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2316 struct request *rq)
2318 return rq;
2320 #endif
2322 void blk_account_io_start(struct request *rq, bool new_io)
2324 struct hd_struct *part;
2325 int rw = rq_data_dir(rq);
2326 int cpu;
2328 if (!blk_do_io_stat(rq))
2329 return;
2331 cpu = part_stat_lock();
2333 if (!new_io) {
2334 part = rq->part;
2335 part_stat_inc(cpu, part, merges[rw]);
2336 } else {
2337 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2338 if (!hd_struct_try_get(part)) {
2340 * The partition is already being removed,
2341 * the request will be accounted on the disk only
2343 * We take a reference on disk->part0 although that
2344 * partition will never be deleted, so we can treat
2345 * it as any other partition.
2347 part = &rq->rq_disk->part0;
2348 hd_struct_get(part);
2350 part_round_stats(cpu, part);
2351 part_inc_in_flight(part, rw);
2352 rq->part = part;
2355 part_stat_unlock();
2359 * blk_peek_request - peek at the top of a request queue
2360 * @q: request queue to peek at
2362 * Description:
2363 * Return the request at the top of @q. The returned request
2364 * should be started using blk_start_request() before LLD starts
2365 * processing it.
2367 * Return:
2368 * Pointer to the request at the top of @q if available. Null
2369 * otherwise.
2371 * Context:
2372 * queue_lock must be held.
2374 struct request *blk_peek_request(struct request_queue *q)
2376 struct request *rq;
2377 int ret;
2379 while ((rq = __elv_next_request(q)) != NULL) {
2381 rq = blk_pm_peek_request(q, rq);
2382 if (!rq)
2383 break;
2385 if (!(rq->cmd_flags & REQ_STARTED)) {
2387 * This is the first time the device driver
2388 * sees this request (possibly after
2389 * requeueing). Notify IO scheduler.
2391 if (rq->cmd_flags & REQ_SORTED)
2392 elv_activate_rq(q, rq);
2395 * just mark as started even if we don't start
2396 * it, a request that has been delayed should
2397 * not be passed by new incoming requests
2399 rq->cmd_flags |= REQ_STARTED;
2400 trace_block_rq_issue(q, rq);
2403 if (!q->boundary_rq || q->boundary_rq == rq) {
2404 q->end_sector = rq_end_sector(rq);
2405 q->boundary_rq = NULL;
2408 if (rq->cmd_flags & REQ_DONTPREP)
2409 break;
2411 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2413 * make sure space for the drain appears we
2414 * know we can do this because max_hw_segments
2415 * has been adjusted to be one fewer than the
2416 * device can handle
2418 rq->nr_phys_segments++;
2421 if (!q->prep_rq_fn)
2422 break;
2424 ret = q->prep_rq_fn(q, rq);
2425 if (ret == BLKPREP_OK) {
2426 break;
2427 } else if (ret == BLKPREP_DEFER) {
2429 * the request may have been (partially) prepped.
2430 * we need to keep this request in the front to
2431 * avoid resource deadlock. REQ_STARTED will
2432 * prevent other fs requests from passing this one.
2434 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2435 !(rq->cmd_flags & REQ_DONTPREP)) {
2437 * remove the space for the drain we added
2438 * so that we don't add it again
2440 --rq->nr_phys_segments;
2443 rq = NULL;
2444 break;
2445 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2446 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2448 rq->cmd_flags |= REQ_QUIET;
2450 * Mark this request as started so we don't trigger
2451 * any debug logic in the end I/O path.
2453 blk_start_request(rq);
2454 __blk_end_request_all(rq, err);
2455 } else {
2456 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2457 break;
2461 return rq;
2463 EXPORT_SYMBOL(blk_peek_request);
2465 void blk_dequeue_request(struct request *rq)
2467 struct request_queue *q = rq->q;
2469 BUG_ON(list_empty(&rq->queuelist));
2470 BUG_ON(ELV_ON_HASH(rq));
2472 list_del_init(&rq->queuelist);
2475 * the time frame between a request being removed from the lists
2476 * and to it is freed is accounted as io that is in progress at
2477 * the driver side.
2479 if (blk_account_rq(rq)) {
2480 q->in_flight[rq_is_sync(rq)]++;
2481 set_io_start_time_ns(rq);
2486 * blk_start_request - start request processing on the driver
2487 * @req: request to dequeue
2489 * Description:
2490 * Dequeue @req and start timeout timer on it. This hands off the
2491 * request to the driver.
2493 * Block internal functions which don't want to start timer should
2494 * call blk_dequeue_request().
2496 * Context:
2497 * queue_lock must be held.
2499 void blk_start_request(struct request *req)
2501 blk_dequeue_request(req);
2504 * We are now handing the request to the hardware, initialize
2505 * resid_len to full count and add the timeout handler.
2507 req->resid_len = blk_rq_bytes(req);
2508 if (unlikely(blk_bidi_rq(req)))
2509 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2511 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2512 blk_add_timer(req);
2514 EXPORT_SYMBOL(blk_start_request);
2517 * blk_fetch_request - fetch a request from a request queue
2518 * @q: request queue to fetch a request from
2520 * Description:
2521 * Return the request at the top of @q. The request is started on
2522 * return and LLD can start processing it immediately.
2524 * Return:
2525 * Pointer to the request at the top of @q if available. Null
2526 * otherwise.
2528 * Context:
2529 * queue_lock must be held.
2531 struct request *blk_fetch_request(struct request_queue *q)
2533 struct request *rq;
2535 rq = blk_peek_request(q);
2536 if (rq)
2537 blk_start_request(rq);
2538 return rq;
2540 EXPORT_SYMBOL(blk_fetch_request);
2543 * blk_update_request - Special helper function for request stacking drivers
2544 * @req: the request being processed
2545 * @error: %0 for success, < %0 for error
2546 * @nr_bytes: number of bytes to complete @req
2548 * Description:
2549 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2550 * the request structure even if @req doesn't have leftover.
2551 * If @req has leftover, sets it up for the next range of segments.
2553 * This special helper function is only for request stacking drivers
2554 * (e.g. request-based dm) so that they can handle partial completion.
2555 * Actual device drivers should use blk_end_request instead.
2557 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2558 * %false return from this function.
2560 * Return:
2561 * %false - this request doesn't have any more data
2562 * %true - this request has more data
2564 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2566 int total_bytes;
2568 trace_block_rq_complete(req->q, req, nr_bytes);
2570 if (!req->bio)
2571 return false;
2574 * For fs requests, rq is just carrier of independent bio's
2575 * and each partial completion should be handled separately.
2576 * Reset per-request error on each partial completion.
2578 * TODO: tj: This is too subtle. It would be better to let
2579 * low level drivers do what they see fit.
2581 if (req->cmd_type == REQ_TYPE_FS)
2582 req->errors = 0;
2584 if (error && req->cmd_type == REQ_TYPE_FS &&
2585 !(req->cmd_flags & REQ_QUIET)) {
2586 char *error_type;
2588 switch (error) {
2589 case -ENOLINK:
2590 error_type = "recoverable transport";
2591 break;
2592 case -EREMOTEIO:
2593 error_type = "critical target";
2594 break;
2595 case -EBADE:
2596 error_type = "critical nexus";
2597 break;
2598 case -ETIMEDOUT:
2599 error_type = "timeout";
2600 break;
2601 case -ENOSPC:
2602 error_type = "critical space allocation";
2603 break;
2604 case -ENODATA:
2605 error_type = "critical medium";
2606 break;
2607 case -EIO:
2608 default:
2609 error_type = "I/O";
2610 break;
2612 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2613 __func__, error_type, req->rq_disk ?
2614 req->rq_disk->disk_name : "?",
2615 (unsigned long long)blk_rq_pos(req));
2619 blk_account_io_completion(req, nr_bytes);
2621 total_bytes = 0;
2622 while (req->bio) {
2623 struct bio *bio = req->bio;
2624 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2626 if (bio_bytes == bio->bi_iter.bi_size)
2627 req->bio = bio->bi_next;
2629 req_bio_endio(req, bio, bio_bytes, error);
2631 total_bytes += bio_bytes;
2632 nr_bytes -= bio_bytes;
2634 if (!nr_bytes)
2635 break;
2639 * completely done
2641 if (!req->bio) {
2643 * Reset counters so that the request stacking driver
2644 * can find how many bytes remain in the request
2645 * later.
2647 req->__data_len = 0;
2648 return false;
2651 req->__data_len -= total_bytes;
2653 /* update sector only for requests with clear definition of sector */
2654 if (req->cmd_type == REQ_TYPE_FS)
2655 req->__sector += total_bytes >> 9;
2657 /* mixed attributes always follow the first bio */
2658 if (req->cmd_flags & REQ_MIXED_MERGE) {
2659 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2660 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2664 * If total number of sectors is less than the first segment
2665 * size, something has gone terribly wrong.
2667 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2668 blk_dump_rq_flags(req, "request botched");
2669 req->__data_len = blk_rq_cur_bytes(req);
2672 /* recalculate the number of segments */
2673 blk_recalc_rq_segments(req);
2675 return true;
2677 EXPORT_SYMBOL_GPL(blk_update_request);
2679 static bool blk_update_bidi_request(struct request *rq, int error,
2680 unsigned int nr_bytes,
2681 unsigned int bidi_bytes)
2683 if (blk_update_request(rq, error, nr_bytes))
2684 return true;
2686 /* Bidi request must be completed as a whole */
2687 if (unlikely(blk_bidi_rq(rq)) &&
2688 blk_update_request(rq->next_rq, error, bidi_bytes))
2689 return true;
2691 if (blk_queue_add_random(rq->q))
2692 add_disk_randomness(rq->rq_disk);
2694 return false;
2698 * blk_unprep_request - unprepare a request
2699 * @req: the request
2701 * This function makes a request ready for complete resubmission (or
2702 * completion). It happens only after all error handling is complete,
2703 * so represents the appropriate moment to deallocate any resources
2704 * that were allocated to the request in the prep_rq_fn. The queue
2705 * lock is held when calling this.
2707 void blk_unprep_request(struct request *req)
2709 struct request_queue *q = req->q;
2711 req->cmd_flags &= ~REQ_DONTPREP;
2712 if (q->unprep_rq_fn)
2713 q->unprep_rq_fn(q, req);
2715 EXPORT_SYMBOL_GPL(blk_unprep_request);
2718 * queue lock must be held
2720 void blk_finish_request(struct request *req, int error)
2722 if (req->cmd_flags & REQ_QUEUED)
2723 blk_queue_end_tag(req->q, req);
2725 BUG_ON(blk_queued_rq(req));
2727 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2728 laptop_io_completion(&req->q->backing_dev_info);
2730 blk_delete_timer(req);
2732 if (req->cmd_flags & REQ_DONTPREP)
2733 blk_unprep_request(req);
2735 blk_account_io_done(req);
2737 if (req->end_io)
2738 req->end_io(req, error);
2739 else {
2740 if (blk_bidi_rq(req))
2741 __blk_put_request(req->next_rq->q, req->next_rq);
2743 __blk_put_request(req->q, req);
2746 EXPORT_SYMBOL(blk_finish_request);
2749 * blk_end_bidi_request - Complete a bidi request
2750 * @rq: the request to complete
2751 * @error: %0 for success, < %0 for error
2752 * @nr_bytes: number of bytes to complete @rq
2753 * @bidi_bytes: number of bytes to complete @rq->next_rq
2755 * Description:
2756 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2757 * Drivers that supports bidi can safely call this member for any
2758 * type of request, bidi or uni. In the later case @bidi_bytes is
2759 * just ignored.
2761 * Return:
2762 * %false - we are done with this request
2763 * %true - still buffers pending for this request
2765 static bool blk_end_bidi_request(struct request *rq, int error,
2766 unsigned int nr_bytes, unsigned int bidi_bytes)
2768 struct request_queue *q = rq->q;
2769 unsigned long flags;
2771 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2772 return true;
2774 spin_lock_irqsave(q->queue_lock, flags);
2775 blk_finish_request(rq, error);
2776 spin_unlock_irqrestore(q->queue_lock, flags);
2778 return false;
2782 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2783 * @rq: the request to complete
2784 * @error: %0 for success, < %0 for error
2785 * @nr_bytes: number of bytes to complete @rq
2786 * @bidi_bytes: number of bytes to complete @rq->next_rq
2788 * Description:
2789 * Identical to blk_end_bidi_request() except that queue lock is
2790 * assumed to be locked on entry and remains so on return.
2792 * Return:
2793 * %false - we are done with this request
2794 * %true - still buffers pending for this request
2796 bool __blk_end_bidi_request(struct request *rq, int error,
2797 unsigned int nr_bytes, unsigned int bidi_bytes)
2799 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2800 return true;
2802 blk_finish_request(rq, error);
2804 return false;
2808 * blk_end_request - Helper function for drivers to complete the request.
2809 * @rq: the request being processed
2810 * @error: %0 for success, < %0 for error
2811 * @nr_bytes: number of bytes to complete
2813 * Description:
2814 * Ends I/O on a number of bytes attached to @rq.
2815 * If @rq has leftover, sets it up for the next range of segments.
2817 * Return:
2818 * %false - we are done with this request
2819 * %true - still buffers pending for this request
2821 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2823 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2825 EXPORT_SYMBOL(blk_end_request);
2828 * blk_end_request_all - Helper function for drives to finish the request.
2829 * @rq: the request to finish
2830 * @error: %0 for success, < %0 for error
2832 * Description:
2833 * Completely finish @rq.
2835 void blk_end_request_all(struct request *rq, int error)
2837 bool pending;
2838 unsigned int bidi_bytes = 0;
2840 if (unlikely(blk_bidi_rq(rq)))
2841 bidi_bytes = blk_rq_bytes(rq->next_rq);
2843 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2844 BUG_ON(pending);
2846 EXPORT_SYMBOL(blk_end_request_all);
2849 * blk_end_request_cur - Helper function to finish the current request chunk.
2850 * @rq: the request to finish the current chunk for
2851 * @error: %0 for success, < %0 for error
2853 * Description:
2854 * Complete the current consecutively mapped chunk from @rq.
2856 * Return:
2857 * %false - we are done with this request
2858 * %true - still buffers pending for this request
2860 bool blk_end_request_cur(struct request *rq, int error)
2862 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2864 EXPORT_SYMBOL(blk_end_request_cur);
2867 * blk_end_request_err - Finish a request till the next failure boundary.
2868 * @rq: the request to finish till the next failure boundary for
2869 * @error: must be negative errno
2871 * Description:
2872 * Complete @rq till the next failure boundary.
2874 * Return:
2875 * %false - we are done with this request
2876 * %true - still buffers pending for this request
2878 bool blk_end_request_err(struct request *rq, int error)
2880 WARN_ON(error >= 0);
2881 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2883 EXPORT_SYMBOL_GPL(blk_end_request_err);
2886 * __blk_end_request - Helper function for drivers to complete the request.
2887 * @rq: the request being processed
2888 * @error: %0 for success, < %0 for error
2889 * @nr_bytes: number of bytes to complete
2891 * Description:
2892 * Must be called with queue lock held unlike blk_end_request().
2894 * Return:
2895 * %false - we are done with this request
2896 * %true - still buffers pending for this request
2898 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2900 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2902 EXPORT_SYMBOL(__blk_end_request);
2905 * __blk_end_request_all - Helper function for drives to finish the request.
2906 * @rq: the request to finish
2907 * @error: %0 for success, < %0 for error
2909 * Description:
2910 * Completely finish @rq. Must be called with queue lock held.
2912 void __blk_end_request_all(struct request *rq, int error)
2914 bool pending;
2915 unsigned int bidi_bytes = 0;
2917 if (unlikely(blk_bidi_rq(rq)))
2918 bidi_bytes = blk_rq_bytes(rq->next_rq);
2920 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2921 BUG_ON(pending);
2923 EXPORT_SYMBOL(__blk_end_request_all);
2926 * __blk_end_request_cur - Helper function to finish the current request chunk.
2927 * @rq: the request to finish the current chunk for
2928 * @error: %0 for success, < %0 for error
2930 * Description:
2931 * Complete the current consecutively mapped chunk from @rq. Must
2932 * be called with queue lock held.
2934 * Return:
2935 * %false - we are done with this request
2936 * %true - still buffers pending for this request
2938 bool __blk_end_request_cur(struct request *rq, int error)
2940 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2942 EXPORT_SYMBOL(__blk_end_request_cur);
2945 * __blk_end_request_err - Finish a request till the next failure boundary.
2946 * @rq: the request to finish till the next failure boundary for
2947 * @error: must be negative errno
2949 * Description:
2950 * Complete @rq till the next failure boundary. Must be called
2951 * with queue lock held.
2953 * Return:
2954 * %false - we are done with this request
2955 * %true - still buffers pending for this request
2957 bool __blk_end_request_err(struct request *rq, int error)
2959 WARN_ON(error >= 0);
2960 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2962 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2964 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2965 struct bio *bio)
2967 req_set_op(rq, bio_op(bio));
2969 if (bio_has_data(bio))
2970 rq->nr_phys_segments = bio_phys_segments(q, bio);
2972 rq->__data_len = bio->bi_iter.bi_size;
2973 rq->bio = rq->biotail = bio;
2975 if (bio->bi_bdev)
2976 rq->rq_disk = bio->bi_bdev->bd_disk;
2979 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2981 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2982 * @rq: the request to be flushed
2984 * Description:
2985 * Flush all pages in @rq.
2987 void rq_flush_dcache_pages(struct request *rq)
2989 struct req_iterator iter;
2990 struct bio_vec bvec;
2992 rq_for_each_segment(bvec, rq, iter)
2993 flush_dcache_page(bvec.bv_page);
2995 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2996 #endif
2999 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3000 * @q : the queue of the device being checked
3002 * Description:
3003 * Check if underlying low-level drivers of a device are busy.
3004 * If the drivers want to export their busy state, they must set own
3005 * exporting function using blk_queue_lld_busy() first.
3007 * Basically, this function is used only by request stacking drivers
3008 * to stop dispatching requests to underlying devices when underlying
3009 * devices are busy. This behavior helps more I/O merging on the queue
3010 * of the request stacking driver and prevents I/O throughput regression
3011 * on burst I/O load.
3013 * Return:
3014 * 0 - Not busy (The request stacking driver should dispatch request)
3015 * 1 - Busy (The request stacking driver should stop dispatching request)
3017 int blk_lld_busy(struct request_queue *q)
3019 if (q->lld_busy_fn)
3020 return q->lld_busy_fn(q);
3022 return 0;
3024 EXPORT_SYMBOL_GPL(blk_lld_busy);
3027 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3028 * @rq: the clone request to be cleaned up
3030 * Description:
3031 * Free all bios in @rq for a cloned request.
3033 void blk_rq_unprep_clone(struct request *rq)
3035 struct bio *bio;
3037 while ((bio = rq->bio) != NULL) {
3038 rq->bio = bio->bi_next;
3040 bio_put(bio);
3043 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3046 * Copy attributes of the original request to the clone request.
3047 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3049 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3051 dst->cpu = src->cpu;
3052 req_set_op_attrs(dst, req_op(src),
3053 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE);
3054 dst->cmd_type = src->cmd_type;
3055 dst->__sector = blk_rq_pos(src);
3056 dst->__data_len = blk_rq_bytes(src);
3057 dst->nr_phys_segments = src->nr_phys_segments;
3058 dst->ioprio = src->ioprio;
3059 dst->extra_len = src->extra_len;
3063 * blk_rq_prep_clone - Helper function to setup clone request
3064 * @rq: the request to be setup
3065 * @rq_src: original request to be cloned
3066 * @bs: bio_set that bios for clone are allocated from
3067 * @gfp_mask: memory allocation mask for bio
3068 * @bio_ctr: setup function to be called for each clone bio.
3069 * Returns %0 for success, non %0 for failure.
3070 * @data: private data to be passed to @bio_ctr
3072 * Description:
3073 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3074 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3075 * are not copied, and copying such parts is the caller's responsibility.
3076 * Also, pages which the original bios are pointing to are not copied
3077 * and the cloned bios just point same pages.
3078 * So cloned bios must be completed before original bios, which means
3079 * the caller must complete @rq before @rq_src.
3081 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3082 struct bio_set *bs, gfp_t gfp_mask,
3083 int (*bio_ctr)(struct bio *, struct bio *, void *),
3084 void *data)
3086 struct bio *bio, *bio_src;
3088 if (!bs)
3089 bs = fs_bio_set;
3091 __rq_for_each_bio(bio_src, rq_src) {
3092 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3093 if (!bio)
3094 goto free_and_out;
3096 if (bio_ctr && bio_ctr(bio, bio_src, data))
3097 goto free_and_out;
3099 if (rq->bio) {
3100 rq->biotail->bi_next = bio;
3101 rq->biotail = bio;
3102 } else
3103 rq->bio = rq->biotail = bio;
3106 __blk_rq_prep_clone(rq, rq_src);
3108 return 0;
3110 free_and_out:
3111 if (bio)
3112 bio_put(bio);
3113 blk_rq_unprep_clone(rq);
3115 return -ENOMEM;
3117 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3119 int kblockd_schedule_work(struct work_struct *work)
3121 return queue_work(kblockd_workqueue, work);
3123 EXPORT_SYMBOL(kblockd_schedule_work);
3125 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3127 return queue_work_on(cpu, kblockd_workqueue, work);
3129 EXPORT_SYMBOL(kblockd_schedule_work_on);
3131 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3132 unsigned long delay)
3134 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3136 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3138 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3139 unsigned long delay)
3141 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3143 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3146 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3147 * @plug: The &struct blk_plug that needs to be initialized
3149 * Description:
3150 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3151 * pending I/O should the task end up blocking between blk_start_plug() and
3152 * blk_finish_plug(). This is important from a performance perspective, but
3153 * also ensures that we don't deadlock. For instance, if the task is blocking
3154 * for a memory allocation, memory reclaim could end up wanting to free a
3155 * page belonging to that request that is currently residing in our private
3156 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3157 * this kind of deadlock.
3159 void blk_start_plug(struct blk_plug *plug)
3161 struct task_struct *tsk = current;
3164 * If this is a nested plug, don't actually assign it.
3166 if (tsk->plug)
3167 return;
3169 INIT_LIST_HEAD(&plug->list);
3170 INIT_LIST_HEAD(&plug->mq_list);
3171 INIT_LIST_HEAD(&plug->cb_list);
3173 * Store ordering should not be needed here, since a potential
3174 * preempt will imply a full memory barrier
3176 tsk->plug = plug;
3178 EXPORT_SYMBOL(blk_start_plug);
3180 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3182 struct request *rqa = container_of(a, struct request, queuelist);
3183 struct request *rqb = container_of(b, struct request, queuelist);
3185 return !(rqa->q < rqb->q ||
3186 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3190 * If 'from_schedule' is true, then postpone the dispatch of requests
3191 * until a safe kblockd context. We due this to avoid accidental big
3192 * additional stack usage in driver dispatch, in places where the originally
3193 * plugger did not intend it.
3195 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3196 bool from_schedule)
3197 __releases(q->queue_lock)
3199 trace_block_unplug(q, depth, !from_schedule);
3201 if (from_schedule)
3202 blk_run_queue_async(q);
3203 else
3204 __blk_run_queue(q);
3205 spin_unlock(q->queue_lock);
3208 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3210 LIST_HEAD(callbacks);
3212 while (!list_empty(&plug->cb_list)) {
3213 list_splice_init(&plug->cb_list, &callbacks);
3215 while (!list_empty(&callbacks)) {
3216 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3217 struct blk_plug_cb,
3218 list);
3219 list_del(&cb->list);
3220 cb->callback(cb, from_schedule);
3225 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3226 int size)
3228 struct blk_plug *plug = current->plug;
3229 struct blk_plug_cb *cb;
3231 if (!plug)
3232 return NULL;
3234 list_for_each_entry(cb, &plug->cb_list, list)
3235 if (cb->callback == unplug && cb->data == data)
3236 return cb;
3238 /* Not currently on the callback list */
3239 BUG_ON(size < sizeof(*cb));
3240 cb = kzalloc(size, GFP_ATOMIC);
3241 if (cb) {
3242 cb->data = data;
3243 cb->callback = unplug;
3244 list_add(&cb->list, &plug->cb_list);
3246 return cb;
3248 EXPORT_SYMBOL(blk_check_plugged);
3250 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3252 struct request_queue *q;
3253 unsigned long flags;
3254 struct request *rq;
3255 LIST_HEAD(list);
3256 unsigned int depth;
3258 flush_plug_callbacks(plug, from_schedule);
3260 if (!list_empty(&plug->mq_list))
3261 blk_mq_flush_plug_list(plug, from_schedule);
3263 if (list_empty(&plug->list))
3264 return;
3266 list_splice_init(&plug->list, &list);
3268 list_sort(NULL, &list, plug_rq_cmp);
3270 q = NULL;
3271 depth = 0;
3274 * Save and disable interrupts here, to avoid doing it for every
3275 * queue lock we have to take.
3277 local_irq_save(flags);
3278 while (!list_empty(&list)) {
3279 rq = list_entry_rq(list.next);
3280 list_del_init(&rq->queuelist);
3281 BUG_ON(!rq->q);
3282 if (rq->q != q) {
3284 * This drops the queue lock
3286 if (q)
3287 queue_unplugged(q, depth, from_schedule);
3288 q = rq->q;
3289 depth = 0;
3290 spin_lock(q->queue_lock);
3294 * Short-circuit if @q is dead
3296 if (unlikely(blk_queue_dying(q))) {
3297 __blk_end_request_all(rq, -ENODEV);
3298 continue;
3302 * rq is already accounted, so use raw insert
3304 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3305 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3306 else
3307 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3309 depth++;
3313 * This drops the queue lock
3315 if (q)
3316 queue_unplugged(q, depth, from_schedule);
3318 local_irq_restore(flags);
3321 void blk_finish_plug(struct blk_plug *plug)
3323 if (plug != current->plug)
3324 return;
3325 blk_flush_plug_list(plug, false);
3327 current->plug = NULL;
3329 EXPORT_SYMBOL(blk_finish_plug);
3331 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3333 struct blk_plug *plug;
3334 long state;
3335 unsigned int queue_num;
3336 struct blk_mq_hw_ctx *hctx;
3338 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3339 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3340 return false;
3342 queue_num = blk_qc_t_to_queue_num(cookie);
3343 hctx = q->queue_hw_ctx[queue_num];
3344 hctx->poll_considered++;
3346 plug = current->plug;
3347 if (plug)
3348 blk_flush_plug_list(plug, false);
3350 state = current->state;
3351 while (!need_resched()) {
3352 int ret;
3354 hctx->poll_invoked++;
3356 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3357 if (ret > 0) {
3358 hctx->poll_success++;
3359 set_current_state(TASK_RUNNING);
3360 return true;
3363 if (signal_pending_state(state, current))
3364 set_current_state(TASK_RUNNING);
3366 if (current->state == TASK_RUNNING)
3367 return true;
3368 if (ret < 0)
3369 break;
3370 cpu_relax();
3373 return false;
3375 EXPORT_SYMBOL_GPL(blk_poll);
3377 #ifdef CONFIG_PM
3379 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3380 * @q: the queue of the device
3381 * @dev: the device the queue belongs to
3383 * Description:
3384 * Initialize runtime-PM-related fields for @q and start auto suspend for
3385 * @dev. Drivers that want to take advantage of request-based runtime PM
3386 * should call this function after @dev has been initialized, and its
3387 * request queue @q has been allocated, and runtime PM for it can not happen
3388 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3389 * cases, driver should call this function before any I/O has taken place.
3391 * This function takes care of setting up using auto suspend for the device,
3392 * the autosuspend delay is set to -1 to make runtime suspend impossible
3393 * until an updated value is either set by user or by driver. Drivers do
3394 * not need to touch other autosuspend settings.
3396 * The block layer runtime PM is request based, so only works for drivers
3397 * that use request as their IO unit instead of those directly use bio's.
3399 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3401 q->dev = dev;
3402 q->rpm_status = RPM_ACTIVE;
3403 pm_runtime_set_autosuspend_delay(q->dev, -1);
3404 pm_runtime_use_autosuspend(q->dev);
3406 EXPORT_SYMBOL(blk_pm_runtime_init);
3409 * blk_pre_runtime_suspend - Pre runtime suspend check
3410 * @q: the queue of the device
3412 * Description:
3413 * This function will check if runtime suspend is allowed for the device
3414 * by examining if there are any requests pending in the queue. If there
3415 * are requests pending, the device can not be runtime suspended; otherwise,
3416 * the queue's status will be updated to SUSPENDING and the driver can
3417 * proceed to suspend the device.
3419 * For the not allowed case, we mark last busy for the device so that
3420 * runtime PM core will try to autosuspend it some time later.
3422 * This function should be called near the start of the device's
3423 * runtime_suspend callback.
3425 * Return:
3426 * 0 - OK to runtime suspend the device
3427 * -EBUSY - Device should not be runtime suspended
3429 int blk_pre_runtime_suspend(struct request_queue *q)
3431 int ret = 0;
3433 if (!q->dev)
3434 return ret;
3436 spin_lock_irq(q->queue_lock);
3437 if (q->nr_pending) {
3438 ret = -EBUSY;
3439 pm_runtime_mark_last_busy(q->dev);
3440 } else {
3441 q->rpm_status = RPM_SUSPENDING;
3443 spin_unlock_irq(q->queue_lock);
3444 return ret;
3446 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3449 * blk_post_runtime_suspend - Post runtime suspend processing
3450 * @q: the queue of the device
3451 * @err: return value of the device's runtime_suspend function
3453 * Description:
3454 * Update the queue's runtime status according to the return value of the
3455 * device's runtime suspend function and mark last busy for the device so
3456 * that PM core will try to auto suspend the device at a later time.
3458 * This function should be called near the end of the device's
3459 * runtime_suspend callback.
3461 void blk_post_runtime_suspend(struct request_queue *q, int err)
3463 if (!q->dev)
3464 return;
3466 spin_lock_irq(q->queue_lock);
3467 if (!err) {
3468 q->rpm_status = RPM_SUSPENDED;
3469 } else {
3470 q->rpm_status = RPM_ACTIVE;
3471 pm_runtime_mark_last_busy(q->dev);
3473 spin_unlock_irq(q->queue_lock);
3475 EXPORT_SYMBOL(blk_post_runtime_suspend);
3478 * blk_pre_runtime_resume - Pre runtime resume processing
3479 * @q: the queue of the device
3481 * Description:
3482 * Update the queue's runtime status to RESUMING in preparation for the
3483 * runtime resume of the device.
3485 * This function should be called near the start of the device's
3486 * runtime_resume callback.
3488 void blk_pre_runtime_resume(struct request_queue *q)
3490 if (!q->dev)
3491 return;
3493 spin_lock_irq(q->queue_lock);
3494 q->rpm_status = RPM_RESUMING;
3495 spin_unlock_irq(q->queue_lock);
3497 EXPORT_SYMBOL(blk_pre_runtime_resume);
3500 * blk_post_runtime_resume - Post runtime resume processing
3501 * @q: the queue of the device
3502 * @err: return value of the device's runtime_resume function
3504 * Description:
3505 * Update the queue's runtime status according to the return value of the
3506 * device's runtime_resume function. If it is successfully resumed, process
3507 * the requests that are queued into the device's queue when it is resuming
3508 * and then mark last busy and initiate autosuspend for it.
3510 * This function should be called near the end of the device's
3511 * runtime_resume callback.
3513 void blk_post_runtime_resume(struct request_queue *q, int err)
3515 if (!q->dev)
3516 return;
3518 spin_lock_irq(q->queue_lock);
3519 if (!err) {
3520 q->rpm_status = RPM_ACTIVE;
3521 __blk_run_queue(q);
3522 pm_runtime_mark_last_busy(q->dev);
3523 pm_request_autosuspend(q->dev);
3524 } else {
3525 q->rpm_status = RPM_SUSPENDED;
3527 spin_unlock_irq(q->queue_lock);
3529 EXPORT_SYMBOL(blk_post_runtime_resume);
3532 * blk_set_runtime_active - Force runtime status of the queue to be active
3533 * @q: the queue of the device
3535 * If the device is left runtime suspended during system suspend the resume
3536 * hook typically resumes the device and corrects runtime status
3537 * accordingly. However, that does not affect the queue runtime PM status
3538 * which is still "suspended". This prevents processing requests from the
3539 * queue.
3541 * This function can be used in driver's resume hook to correct queue
3542 * runtime PM status and re-enable peeking requests from the queue. It
3543 * should be called before first request is added to the queue.
3545 void blk_set_runtime_active(struct request_queue *q)
3547 spin_lock_irq(q->queue_lock);
3548 q->rpm_status = RPM_ACTIVE;
3549 pm_runtime_mark_last_busy(q->dev);
3550 pm_request_autosuspend(q->dev);
3551 spin_unlock_irq(q->queue_lock);
3553 EXPORT_SYMBOL(blk_set_runtime_active);
3554 #endif
3556 int __init blk_dev_init(void)
3558 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3559 FIELD_SIZEOF(struct request, cmd_flags));
3561 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3562 kblockd_workqueue = alloc_workqueue("kblockd",
3563 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3564 if (!kblockd_workqueue)
3565 panic("Failed to create kblockd\n");
3567 request_cachep = kmem_cache_create("blkdev_requests",
3568 sizeof(struct request), 0, SLAB_PANIC, NULL);
3570 blk_requestq_cachep = kmem_cache_create("request_queue",
3571 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3573 return 0;